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Abstract 
�

Benthic fluxes of copper, copper complexing ligands and thiol compounds in the shallow ���

waters of Venice Lagoon (Italy) were determined using benthic chambers and compared to ���

porewater concentrations to confirm their origin. Benthic copper fluxes were small due to small ���

concentration differences between the porewaters and the overlying water, and the equilibrium ���

concentration was the same at both sites, suggesting that the sediments acted to buffer the copper ���

concentration. Thiol fluxes were ~10 x greater at 50 - 60 pmol cm-2 h-1, at the two sites. ���

Porewater measurements demonstrated that the sediments were an important source of the thiols ���

to the overlying waters. The overlying waters were found to contain at least two ligands, a strong ���

one, L1 (log K�CuL1 = 14.2) and a weaker one, L2 (log K�CuL2 = 12.5). The concentration of L1 �	�

remained relatively constant during the incubation and similar to that of copper, whereas that of �
�

L2 was in great excess of copper, its concentration balanced by porewater releases and ���

breakdown, probably due to uptake by microorganisms, similar to that of the thiol compounds. ���

Similarity of the thiol and L2 concentrations and similar complex stability with copper suggest ���

that L2 was dominated by the thiols. The free copper concentration ([Cu�]) in the Lagoon waters ���

was lowered by a factor of 105 as a result of the organic complexation. ���
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Introduction ���

Sediments can act as a source of copper (Klinkhammer, 1980), copper complexing ���

ligands(Skrabal et al., 2000), sulfur species and thiol compounds (Luther III et al., 1986).  Metal ���

complexing ligands (Croot et al., 2000; Moffett and Brand, 1996) and thiol compounds are also �	�

known to be released by marine phytoplankton (Dupont and Ahner, 2005; Leal et al., 1999) into �
�

surface waters. Specific thiols like glutathione have been found in oceanic�(Dupont et al., 2006; ���

Le Gall and van den Berg, 1998) and estuarine (Tang et al., 2004) waters. As thiol compounds ���

form stable complexes with copper(I) (Leal and Van den Berg, 1998) it is likely that the thiols are ���

part of the pool of copper complexing ligands in natural waters and could play a role in ���

controlling the bioactivity and biogeochemistry of copper. ���

In this study we investigated whether benthic interactions are an important source for thiols, ���

copper and copper-binding ligands in shallow surface waters as occurring in lagoons and salt ���

marshes. Venice Lagoon (Italy) was selected for this study as it is an extensive, shallow lagoon, ���

with salt marshes on the boundaries. Benthic interactions are likely to be relatively important to �	�

its water composition due to a shallow water depth of typically 1 m. Benthic fluxes were �
�

determined by placing large benthic chambers on the sediments and following changes in the ���

water composition as a function of time. Porewaters were collected from sediment cores to ���

identify the source of the thiols and copper, and the concentration difference with the overlying ���

water was used to estimate comparative thiol fluxes.  ���

Materials and Methods ���

Instrumentation and reagents ���

Voltammetric equipment was a �Autolab potentiostat attached to a Metrohm VA 663 ���

electrode stand and controlled by a personal computer. The working electrode was a hanging ���

mercury drop electrode (HMDE), the reference electrode was double junction, Ag/AgCl, 3 M �	�
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KCl and the counter electrode was a glassy carbon rod. �
�

Water used for dilutions was obtained from a Milli-Q (MQ) system. HCl and NH3 were ���

purified by sub-boiling distillation on a quartz condenser. Copper standards were prepared by ���

dilution of atomic adsorption standards (Spectrosol, BDH) and acidified to pH 2.2 using 11 M ���

HCl. Stock solutions of 0.01 salicylaldoxime (SA) (BDH) were prepared in 0.1 M HCl.  ���

Speciation ���

Copper, copper complexing ligands (Campos and van den Berg, 1994) and copper - thiol ���

interactions (Leal and Van den Berg, 1998) were determined by cathodic stripping voltammetry ���

(CSV). Copper complexing capacity titrations were at pH 7.8 (NBS scale), using 0.01 M HEPES ���

buffer, diluted from 1 M HEPES (N-2 hydroxyethylpiperazine-N’-2 ethanesulfonic acid, Merck) �	�

and 0.55 M NaOH, using ligand competition against 2 �M SA (Campos and van den Berg, 1994). �
�

Reactive copper is part of the total dissolved copper which is bound by the added SA, which is a ���

function of the competition between the added SA and the natural ligand. The reactive copper ���

concentration ([Cureactive]) was determined by CSV after deposition at -0.1 V, deposition time 90 s ���

and the scan used the square-wave mode. Uncalibrated reactive copper concentrations (peak ���

heights) were used to fit [Cureactive]/[CuL] as a function of [Cureactive]; a linear least squares ���

regression was used unless curvature of a plot of [Cureactive]/[CuL] as a function of [Cureactive] ���

showed the presence of more ligands, which were then fitted using iterative, linear, least-squares ���

regressions of the data. The sensitivity was corrected for the degree of unsaturation of the ligands ���

with copper at the end of the titrations(Leal and Van den Berg, 1998; Turoczy and Sherwood, �	�

1997). The uncertainties in the values for the ligand concentrations and stability constants were �
�

calculated from the standard deviation of the least-squares regressions. ���

Samples used for total dissolved copper were acidified to pH 2.5 and UV-digested for 1 h in ���

acid cleaned silica tubes, prior to CSV using 30 �M SA at pH 8.3 using 10 mM borate pH buffer. ���
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The deposition potential was -1.1 V, the re-oxidation potential -0.1 V and the CSV scan was in a ���

negative direction using the square-wave modulation. The sensitivity was calibrated for each ���

sample by standard additions of copper.  ���

Reactive thiol concentrations were determined by CSV as before (Leal et al., 1999). ���

Voltammetric parameters were as for reactive copper with calibration against glutathione which ���

was found to behave similarly to the unknown thiol species. Our method differed from that used �	�

before in that the peak height of the total thiol concentration (Imax) was determined after addition �
�

of 100 µM EDTA to free any thiols bound by copper and other metals by lowering the, free, ionic 	��

metal concentrations. The peak height of the reactive thiol species was measured during the 	��

complexing ligand titrations along with reactive copper, and used to compute conditional stability 	��

constants of the copper thiol complexes (Laglera and van den Berg, 2003). Stock solutions of 	��

glutathione, thioacetamide, thiourea, cysteine (BDH) and 3-mercaptopropanoic acid (Fluka) were 	��

prepared freshly before use by dissolution in MQ. 	��

Study sites 	��

Venice Lagoon, Italy, lies on the northern Adriatic coast and consists of salt marshes and 	��

shallow waters. It is constituted of three main basins and several sub-basins. During the 1960s 		�

and 1970s it was subjected to sizable anthropogenic inputs that have gradually impaired the 	
�

quality of the lagoon ecosystem (Pavoni et al., 1987). Significant amounts of these pollutants, 
��

both organic and inorganic, have accumulated in the sediments and may constitute a potential 
��

secondary source of contaminants. The water exchange rate is 140 km3 yr-1, it has an area of 549 
��

km2 and an average depth of 1 m, causing a residence time of the water of about one day, but this 
��

can increase to three days in areas of lower dynamics. In remote parts of the lagoon, atmospheric 
��

deposition of contaminants is thought to dominate (Cochran et al., 1998) but run-off is the main 
��

source near an industrial area (Donazzolo et al., 1984). 
��
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Two sites were studied, both in relatively contaminated waters: Tresse (Site 1), near the 
��

industrial area of Marghera, and Campalto (Site 2), near to an area with a history of solid waste 
	�

disposal (Turetta et al., 2005) (Fig. 1). The experiment at Tresse was from 28 to 31 October 2002 

�

and at Campalto from 25 to 27 May 2003; both started at 1:00 PM. The sediment from site 1 (the ����

first cm) had a mean organic carbon content of 0.4 % and was classified as silt clay loam. The ����

mean organic carbon concentration in the sediment of site 2 was 1.0 % which was classified as ����

silty clay. ����

Benthic chambers ����

Benthic chambers were constructed at Venice University with a volume of 90 L with ����

collapsible, polyethylene, sides to enable sample extraction without water exchange (Turetta et ����

al., 2005). The chambers (60 cm x 60 cm) had a water height of 25 cm and the water was mixed ����

slowly by a paddle (120 cm2) rotating at 10 rpm. The stirring ensured mixing of the internal water ��	�

in about 2 min with a diffusive boundary layer thickness of about 0.5 mm and a current speed ��
�

close to the bottom of about 2 cm s-1, at which sediment resuspension should be minor (Tengberg ����

et al., 2005). Samples were collected by battery operated peristaltic pump. Oxygen, pH, ����

conductivity and temperature were monitored continuously using a multi-probe (YSI, model 556, ����

Ohio, USA). ����

Water samples for metal analyses were collected every 3 h and for metal speciation at 9 h ����

intervals. All samples were filtered using two-stage cartridge filters containing 0.45 �m and 0.2 ����

�m membranes (Sartorius Sartobran 300) and collected in low density polyethylene (LDPE) ����

bottles. Speciation samples were subsequently stored frozen and other samples were acidified. ����

The sample bottles were cleaned by soaking sequentially in hot detergent and dilute (2 M) acid ��	�

and were stored partially filled with 0.01 M HCl. The bottles were rinsed with water from the ��
�

chamber before filling. ����
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Porewater sampling ����

30 cm box cores were collected from the sediments at the sampling sites (June 2003) using ����

a piston corer. The cores were sealed and stored in a nitrogen-flushed box to maintain an oxygen-����

free atmosphere. The overlying water column was sampled at the same time. The cores were ����

sliced at intervals of 0.5-2 cm with more detail at the top of the core. The slices were centrifuged ����

to extract the porewater, which was quickly filtered under an inert atmosphere and frozen until ����

analysis. Copper in the porewaters was determined by ICP-SFMS (inductively coupled plasma - ����

sector field mass spectrometry) (Turetta et al., 2005). ��	�

Calculation of the benthic flux from the benthic chamber data ��
�

Benthic fluxes were calculated from the change in the concentrations as a function of time ����

where each change was corrected for the volume change after sampling: ����

�mol �t-1 = (�moli(rem) + moli) �ti
-1 ����

where �moli(rem) was the sum of the moles removed of the chamber as a result of sampling at time ����

i, �ti the time lapsed during time interval i (h), and moli was the actual number of moles in the ����

chamber at time i. The values for �mol �t-1 were used to calculate the flux, F:  ����

F = �mol �t -1 A-1 ����

where A was the sediment area (cm2) covered by the chamber. The flux F (pmoles cm-2 h-1) was ����

obtained by linear regression of the data.  ��	�

Calculation of the benthic flux from the gradient at the sediment/water interface ��
�

Estimates of the molecular diffusion of thiols across the sediment-water interface were ����

calculated from the sediment/water gradient using the following equation (Berner, 1980): ����

Fd = -Ds �C �x-1 ����

where Fd = the diffusion flux of the species (pmol cm-2 h-1), Ds = the diffusion coefficient of the ����

species in sedimentary porewaters  (10-6 cm2 s-1), �C �x-1 = concentration gradient of the species ����
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across the sediment-water interface (pmol cm-4), and where x = 0.05 cm (diffusion boundary ����

layer thickness) was set by the stirring rate in the chamber. Uncertainties in the fluxes were ����

calculated from the standard deviation of the measured thiol concentrations. Differences in the ����

composition of porewater from the top 0.5 cm of the sediment and from surface water from a ��	�

depth of ~20 cm (total water depth ~1 m) were used to establish the gradients. ��
�

The porewater diffusion coefficient (Ds) was calculated using (Iversen and Jorgensen, ����

1993): ����

Ds = D0 (1 + n (1 - �))-1 ����

where parameter n depends on the type of sediment and the diffusing species: a value of 3 was ����

selected as before for similar sediments (Iversen and Jorgensen, 1993). Changing n in the ����

porosity range of the sample sites (0.5 – 0.75) created differences of less than 10 % in Ds per unit ����

of n. D0 was the diffusion coefficient of the species at infinite dilution (cm2 s-1)(Li and Gregory, ����

1974) and � was the porosity of the sediment (% volume/weight). The flux value included ����

tortuosity (constrained diffusion) and molecular diffusion within the porewaters, but did not ��	�

account for other processes such as adsorption, wave shear and bioturbation (Berner, 1980). ��
�

Results and discussion ����

Temperature, oxygen and salinity ����

The chambers were placed on the sediments, carefully pushed into the top of the sediments ����

and then the cover was closed; the stirrer was started and the measurements were initiated. The ����

chambers were fully submerged and the water depth was ~1 m. It is likely that the placing of the ����

benthic chamber and the starting of the stirrer would have disturbed the original gradients across ����

the sediment – water interface. However, this is an unavoidable problem with using benthic ����

chambers. In this case any effects were minimized by using a large chamber which was open at ����

the time of placing and by using a slow stirring rate. The absence of abrupt variability in the ��	�
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major parameters (oxygen, pH) suggests that the water in the chamber had equilibrated within an ��
�

hour, possibly minutes. The oxygen concentration in both chambers dropped to ~94 �M O2 (~30 ����

% air saturation) during the first 12-15 h (Fig. 2), after which it continued to drop more gradually ����

at Tresse and became more or less constant at Campalto. The overall decrease was greatest at ����

Campalto which started from a higher concentration of oxygen (219 �M O2 compared to 156 �M ����

O2 at Tresse). The temperature variation in the chambers can be used as a measure of possible ����

effects of solar radiation and from this it can be seen that the leveling off of the oxygen ����

concentration at Campalto, and the slower drop at Tresse, coincided with daylight, indicating that ����

further oxygen uptake was balanced by oxygen production by benthic or planktonic algae. ����

The pH dropped from 8 to 7.6 at Tresse and from 7.8 to 7.3 at Campalto presumably due to ��	�

diffusion of CO2 out of the sediments, or bacterial activity in the chamber water itself. The drop ��
�

in pH paralleled that in O2 which stabilized after 22 h at the Campalto site and gradually leveled �	��

off at Tresse (Fig. 2). The parallel behaviour of O2 and CO2 is consistent with the release of CO2 �	��

by heterotrophic organisms as they use oxygen, either in the benthic chamber itself or due to �	��

diffusion of CO2 from the sediments and O2 into the sediments. Dissolved organic carbon (DOC) �	��

showed comparatively small variability: at Tresse the decrease was from 160 at the beginning to �	��

150 µM carbon by the end of the experiment, and at Campalto from ~600 to 500 µM carbon �	��

except for an outlier of 750 µM carbon after 25 h(Manodori et al., 2006). The decreases in DOC �	��

in the benthic chambers were much less than those of dissolved oxygen indicating that the much �	��

larger variations in O2 and CO2 were not related to bulk breakdown of the DOC in the chamber �		�

but due to benthic processes. �	
�

The oxygen flux (nmol cm2 h-1), calculated from the change in the benthic chamber �
��

composition as a function of time, was -86 (negative means into the sediments) at Tresse and -�
��

163 at Campalto for the first 25 h of the experiment. These values are similar to oxygen fluxes �
��
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found in other estuarine sediments; for instance, a flux of -150 nmol O2 cm-2 h-1 has been found �
��

previously in estuarine sediments of sandy mud (Clavero et al., 1992). The oxygen flux decreased �
��

after the first 25 h to ~-23 nmol cm-2 h-1 at Tresse, and became insignificant at Campalto, as the �
��

chamber became equilibrated with the sediments and further oxygen decreases were offset by in-�
��

situ oxygen production.  �
��

Copper fluxes derived from the benthic chamber data �
	�

The copper concentration in the chambers was initially greater at Tresse (40 nM) than at �

�

Campalto (14 nM) (Fig. 3). With time the concentrations converged to similar levels at the two ����

sites: ~24 nM at Campalto and ~19-24 nM at Tresse, compared to outside chamber values of 40 ����

nM (Tresse) and 24 nM (Campalto). Because of the greater than equilibrium concentration of ����

copper in the water at Tresse station, the copper flux was negative, -4.4 ± 0.2 pmol cm-2 h-1, ����

whereas it was positive 3.8 ± 0.1 pmol cm-2 h-1 at Campalto (out of the sediments).  ����

It is possible that 19 - 24 nM Cu is the steady state level for copper in these waters, a ����

balance of adsorption on particles, uptake by phytoplankton and other algae, releases or uptake ����

from the sediments and possible interactions with strong complexing ligands. This steady state ����

level (19 - 24 nM) is similar to levels of 8-21 nM found previously in the north of the lagoon ��	�

(Martin et al., 1994). It is likely that the proximity of an industrial zone (Porto Maghera) near ��
�

Tresse may have been the cause for the initially higher copper levels in the lagoon water at Tresse ����

than at Campalto. The steady state copper levels in the Venice Lagoon were greater than those (2-����

15.5 nM) in San Diego Bay (Zirino et al., 1998), similar to those (10-25 nM), in the lagoons of ����

Jacarepaguá, Rio de Janeiro, Brazil (Fernandes et al., 1994), and less than those (31-95 nM) in ����

the Pom-Atasta Lagoon, Mexico (Vazquez et al., 1999), suggesting that, relative to other shallow ����

lagoon waters, Venice Lagoon does not suffer from major contamination with copper.  ����

Organic copper complexing ligands ����
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Curvature in the linearised form of the speciation data showed that copper complexation ����

was affected by more than one ligand (Fig. 3). A good fit of the data was obtained to a model ��	�

containing two ligands at both stations: L1 and L2, with complex stabilities (log K�CuL1 and log ��
�

K�CuL2) of 14.2 ± 0.5 and 12.5 ± 0.3 respectively (Table 1). The overall α-coefficient, αCuL, was ����

106 (Table 1) predominantly as a result of complexation with L1, causing the free copper ����

concentration to be low with pCu values of 13.7 ± 0.2 (pCu = -log [Cu2+]). These levels are well ����

below where free copper affects marine microorganisms: for instance, cupric ion concentrations ����

>1 pM are thought to influence cyanobacteria (Brand et al., 1986).  ����

The concentration of L1 was on average 17 ± 4 nM at the two stations, much less than that ����

(108 ± 51 nM) of L2 (Fig. 4). During the titrations L1 became saturated and subsequent copper ����

additions were bound to the weaker ligand (L2). The change in the slope (indicating saturation of ����

L1) occurred at pCu ~13.1 at both stations. Due to the higher copper concentrations at the start of ��	�

the Tresse experiment, L1 was largely saturated and L2 bound there more copper (up to 50 %) ��
�

than at Campalto. The difference between the complex stability of L1 and L2 was 1.7 log-units, ����

indicating that L1 and L2 are of a different nature or that different sites are responsible for copper ����

complexation.  ����

The equilibrium concentration of copper at ~19 - 22 nM at both sites was similar to that of ����

L1, suggesting that this ligand may play an important role in keeping copper at a level ����

approximately equal to its concentration. Possibilities are that copper-complexed L1 is stabilized ����

from photochemical (Laglera and van den Berg, 2006), or bacterial breakdown, or because ����

copper-L1 species are released from porewaters, or a combination of these.  ����

The concentration of L2 was much greater than that of copper. Because L2 forms weaker ��	�

complexes with copper than L1, L2 played a secondary role with respect to copper complexation ��
�
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in these waters in spite of its higher concentration, whereas L1 was generally fully complexed ����

with copper. During the incubation in the chambers the concentration of L2 increased from 40 to ����

120 nM at Campalto, and from 120 to 160 nM at Tresse, as a result of diffusion from the ����

sediments as will be shown below, before dropping back to the original level near the end of the ����

experiment, probably due to photodegradation. ����

There is no previous published work on the chemical speciation of copper in this lagoon. ����

The ligand concentrations and complex stability are similar to those in estuarine waters or ����

productive shelf waters, but greater than those expected for deeper coastal waters. For instance at ����

the higher salinity end of the estuary of the river Scheldt the concentration of L1 was 12.9 nM ��	�

with a complex stability of log K�CuL1 = 14.8 (Laglera and van den Berg, 2003); the concentration ��
�

of L2 in that water was 35 nM with a value for log K�CuL2 of 13.2. Guanabara Bay, a shallow ����

lagoon adjacent to Rio de Janeiro, had copper complexing ligands at greater concentrations of 40 ����

- 300 nM and log K�CuL values of 9.6 to 12.4 (Van Den Berg and De Luca Rebello, 1986). These ����

results are directly comparable as they had been determined at a similar detection window but ����

using a different ligand (catechol) as competing ligand. The much greater ligand concentrations ����

in Guanabara Bay were likely caused by a high primary productivity. Complex stabilities of log ����

K�CuL1 > 12.5 have been reported for Gullmar Fjord, Sweden (Croot, 2003), and of log K�CuL1 > ����

13.5 and log K�CuL2 of 9.0 – 9.6 in waters of San Francisco Bay (Donat et al., 1994). The complex ����

stabilities cover therefore several log-units, and the ligand concentrations several decades, in near ��	�

coastal or estuarine waters. Part of the reason for this variability may be that the analytical ��
�

methods have difficulties in discriminating between the ligands, but at the same time it is likely ����

that several ligands are present and that competition reactions with other metals can cause the ����

complex stabilities to vary.  ����

Thiols as a candidate for the natural ligands ����
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Thiol compounds are known to form strong complexes with copper (Leal and van den Berg, ����

1998) and have been shown to exist in estuarine waters (Laglera and van den Berg, 2003; Tang et ����

al., 2000) and salt marsh sediments (Luther III et al., 1986). For this reason a method (Laglera ����

and van den Berg, 2003) was used in this work that identifies thiol-type ligands directly from ����

their specific voltammetric response. The thiol peak was apparent in the voltammetric scans of all ��	�

the samples of this study, in the potential range -0.55 and -0.65V, typical for thiols (Al-Farawati ��
�

and Van Den Berg, 2001; Leal and Van den Berg, 1998), and sulphide species (Rozan et al., ����

2000). Stability of the peak indicated that the response was due to thiols, as the sulphide peak is ����

known to be unstable, except at very high concentration, decreasing rapidly in height due to ����

reaction with mercury traces in the voltammetric cell (Al-Farawati and van den Berg, 1997). The ����

sensitivity was calibrated with glutathione which matched the electrochemical characteristics of ����

the peak with respect to peak potential and shape and its response at different deposition ����

potentials. Copper additions caused the thiol peak to decrease and shift to a more negative ����

potential (Fig. 5 A) due to a change from a mercury-thiol species to a copper-thiol species on the ����

surface of the electrode with increasing copper concentration (Le Gall and van den Berg, 1993): ��	�

HgThiolads + CuSA + 2e- � CuThiolads + Hg + SAH ��
�

Copper-binding thiol concentrations and values for their complex stability (K`CuThiol) were �	��

determined by fitting the voltammetric thiol response to the free, Cu2+, concentration obtained �	��

during the copper complexing capacity titrations (Laglera and van den Berg, 2003) and are shown �	��

in Table 1. �	��

The total thiol concentrations were determined by adding EDTA (100 µM, log �CuEDTA =6) �	��

to each sample to mask ambient copper from the thiol to obtain the overall thiol peak current �	��

(Imax), where the �-coefficient indicates the ratio of complexed over free copper �	��

([CuEDTA]/[Cu2+]). The EDTA addition was found to increase the reactive thiol concentration �	��
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by 20-25% compared to that in the presence of 10 µM SA (log �CuSA ~5) in line with expectation �		�

for a high complex stability of the thiol species. The CSV scans for the total thiol determinations �	
�

were similar to the scan shown at the lowest copper concentration in Fig. 5A, but then with a �
��

smaller peak height for copper and a greater peak height for the thiol.  �
��

Plots of Ip / Imax showed that the thiol compounds started to bind copper at 10-14 Cu2+ and �
��

were saturated at 10-12 M Cu2+ consistent with a value for log K�Cuthiol near 13 (Fig. 5 B). The �
��

fitted log K�Cuthiol values were similar at the two study sites with an average of 13.1 ± 0.2. The �
��

complex stability of the copper thiols is near that of the CuL2 species (logK�CuL2 = 12.5 ± 0.3). �
��

The alpha-coefficient for copper binding by the thiols, �Cu-thiol = [CuThiol] / [Cu2+], was ~106.1 �
��

(for 100 nM thiols with average complex stability), compared to a value of �CuL2 = 105.5 for 100 �
��

nM of L2 and �CuL1 = 106.5 for 20 nM of L1. The higher value for Cu2+ complexation with L1 is �
	�

due to the high stability of the L1 species, but it does not reflect that L1 is mostly saturated with �

�

copper causing any excess copper to be bound with L2. ����

Identification and quantification of the thiol compounds ����

The CSV response of the thiols in Venice Lagoon was compared to that of several thiols ����

(thioacetamide, thiourea, cysteine and glutathione) and glutathione was found to give a good ����

match. 100 nM additions caused a small 10 mV negative shift in peak position and a slight ����

broadening of the peak. The thiol peak height is known to be dependent on pH, deposition ����

potential as well as on concentration (Laglera and van den Berg, 2003; Le Gall and van den Berg, ����

1993) so this shift was not unusual. The CSV response for the thiols in Venice Lagoon varied ����

upon variation of the deposition potential similarly to that of glutathione, with a much smaller ��	�

change in response than for thiourea or thioacetamide consistent with a response due to mercury ��
�

species typical for glutathione (Hg(II)-glutathione) (Leal and Van den Berg, 1998). Because of its ����

similar response characteristics, glutathione was used to calibrate the sensitivity for the thiol ����
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determinations.  ����

Fluxes of thiols from the benthic chamber data ����

 Thiol concentrations in the chambers at both sites were found to initially increase with time ����

and subsequently decrease after about 40 h. At Tresse the thiols increased from 60 nM to 120 nM ����

(glutathione equivalents), and at Campalto from 100 to 160, so the overall increase was the same ����

magnitude. The thiol concentration in the external water was 40 nM at Tresse and 110 nM at ����

Campalto. The average thiol fluxes were 63 ± 1 pmol cm-2 h-1 at Campalto and 51 ± 1 pmol cm-2 ��	�

h-1 at Tresse for the first 25 h of the experiment. The decreasing thiol concentrations at the end of ��
�

the experiment may be due to activities of suspended or benthic organisms, or to photochemical ����

breakdown as the chamber was exposed to sunlight in these very shallow waters and as thiols and ����

other ligands are known to be liable to photochemical breakdown (Laglera and van den Berg, ����

2006; Shank et al., 2006). Biological breakdown may also have played a role as thiols are a ����

known substrate for marine bacteria (Tripp et al., 2008; Visscher and Taylor, 1993), ����

phytoplankton (Ietswaart et al., 1994) and the microphytobenthic community generally (Linares ����

and Sundback, 2006). ����

Thiols in the sedimentary porewaters ����

The thiol concentrations (60 - 170 nM) during these benthic chamber experiments were ��	�

much greater than those (0.7 - 3.6 nM) typical for the deeper coastal waters of the North Sea (Al-��
�

Farawati and Van Den Berg, 2001). In view of the similar increase in both chambers it is likely ����

that benthic processes are the source of the much greater thiol concentrations in these marsh ����

waters. For this reason porewaters were subsampled from sediment box-cores at the experimental ����

sites. The cores were collected about 2 weeks after the benthic chamber experiment, but this ����

should not affect the basic findings as the benthic processes are established over long time scales.  ����

The porewaters were found to contain extremely high (micromolar) thiol concentrations ����



 

 

 

ACCEPTED MANUSCRIPT 

 

� ���

(1.2 �M at a depth of 2 cm, 6 �M at 8 cm) much greater than in the overlying waters (~100 nM) ����

(Fig. 4). The large difference explains that the high apparent thiol flux in the benthic chamber ����

could easily have originated from the sediments, not from in-situ production in the chamber. The ��	�

thiol identity (similar to glutathione as based on the electrochemical characteristics) was the same ��
�

in the porewaters as in the overlying water, confirming that the porewater thiols are the source of ����

the thiols in the overlying water. ����

The porewater concentrations of the thiols increase with depth, which is consistent with an ����

in-situ production by reaction of sulfide with sedimentary organic matter (Vairavamurthy and ����

Mopper, 1987). Similar trends but at higher levels (0.1-2.5 mM organic thiol) have been observed ����

previously in salt-marsh porewaters (Luther III et al., 1986). Our benthic chamber experiments ����

demonstrate that the porewaters are the main source of thiols in the overlying waters, and that the ����

steady state level of thiols is a balance of porewater releases and biological uptake and ����

photochemical reactions in the surface waters.  ��	�

Porewater fluxes were estimated from the concentration difference between the top of the ��
�

porewaters and the overlying waters (Table 2). These thiol fluxes are much greater than those ����

from the benthic chamber data (7x at Tresse and 1.3x at Campalto), suggesting that there is a ����

rapid loss of the thiols in the overlying water, which may be due to rapid uptake by ����

microorganisms, or photolysis, of the thiols. It is also possible that a benthic boundary diffusive ����

sublayer (Morse, 1974; Sundby et al., 1986) inhibited transport from the benthic interface to the ����

overlying water. ����

Although the gradient in the sediment core itself is evidence for an outward flux, the ����

calculation of the magnitude of the flux is subject to large uncertainty due to the difficulty of ����

finding the thiol concentration at the surface of the sediments which is responsible for the flux ��	�

into the overlying water in case of a steep gradient inside the sediment. The difference in the thiol ��
�
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fluxes at Tresse and Campalto is probably due to this uncertainty, so the best we can establish ����

from the porewater data is a) that the porewaters are a source of thiols to the overlying waters ����

because the porewater thiol concentration is much greater than in the overlying water, and b) that ����

the flux must be large in view of the large gradient in the sediments and because of the ����

concentration difference with the overlying water. ����

The porewater concentration of copper of 16-20 nM (Fig. 4B) was similar to or slightly less ����

than in the overlying water in the benthic chambers, except for high values (83 nM at Tresse and ����

47 nM at Campalto) at the sediment surface (this had been sampled separately using an in-situ ����

pump, close to the sediment surface). The porewater concentrations are similar to those found in ��	�

other coastal sediments (Ciceri et al., 1992; Westerlund et al., 1986). The much greater levels at ��
�

the sediment surface are possibly associated with a fluffy layer of organic-rich material ����

(Hlawatsch et al., 2002) enriched in copper, which could have been sucked up into the sampling ����

tube. These high values were not used for the porewater flux calculations as it is likely that this ����

copper was not free but associated with flocs of organic matter, but they are of interest as it ����

illustrates the variability at the sediment surface. The lack of a clear gradient in the sediments ����

suggests that any copper flux into, or out of the overlying waters is small. Any copper diffusing ����

out of, or into these sediments would have to pass through, and could be trapped by, this fluffy ����

layer. It will be interesting to investigate the copper speciation exactly at the interface in further ����

work, as stabilization of copper at this location, rather than the deeper porewater concentration, ��	�

could control the copper concentration in the overlying waters.  ��
�
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Table 1 Copper speciation and ligand concentrations in Venice Lagoon. CL1 and CL2 (nM), K�CuL1 ����

and K�CuL2 were determined by copper complexing capacity titrations, while K�CuThiol was ����

determined from the cathodic stripping voltammetry (CSV) response for thiols during the copper ����

complexing capacity titrations; thiol concentrations were separately measured and are in ����

glutathione equivalents. The standard deviation of the log K�CuThiol values is ± 0.1 (n = 12). ��	�

Site / time 

from start (h) 

CCu 

(nM) 
CL1 (nM) 

Log 

K�CuL1 

CL2 

(nM) 

Log 

K�CuL2 
pCu 

Log 

αCuL 

Thiols 

(nM) 

Log 

K�CuThiol 

Tresse / 6 24.4 22.9 ± 1.9 14.8±0.6 41 ± 1 12.8 ± 0.1 13.8 6.2 62 13.1 

Tresse / 17 23.0 17.3 ± 2.2 13.9±0.3 41 ± 4 12.8 ± 0.2 13.3 5.6 77 13.0 

Tresse / 29 21.7 20.2 ± 0.4 14.7±0.1 97 ± 10 12.4 ± 0.1 13.8 6.1 113 13.2 

Tresse / 41 19.1 13.7 ± 0.5 15.0±0.3 116 ± 1 12.4 ± 0.1 13.7 6.0 120 13.3 

Tresse / 53 18.8 12.4 ± 1.1 14.3±0.4 33 ± 2 13.0 ± 0.2 13.5 5.7 57 13.1 

Campalto /2 16.5 15.1 ± 4.0 13.8±0.2 122 ± 2 12.7 ± 0.1 13.9 5.9 97 13.3 

Campalto /12 10.3 14.3 ± 1.8 13.7±0.1 127 ± 6 12.6 ± 0.1 14.0 6.0 125 13.2  

Campalto /23 13.9 17.7 ± 2.1 13.5±0.1 168±14 12.5 ± 0.1 13.8 5.9 152 13.4 

Campalto /36 18.0 25.2 ± 0.4 13.7±0.2 169 ± 4 12.1 ± 0.1 13.7 5.9 154 13.5 

Campalto /48 20.7 12.7 ± 0.3 14.2±0.1 167 ± 1 12.2 ± 0.1 13.4 5.8 139 13.5 

Campalto/60 24.2 19.7 ± 0.2 14.2±0.1 106 ± 2 12.4 ± 0.1 13.5 5.9 94 13.2 
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Table 2. The measured flux (Fm in pmol cm-2h-1) from the benthic chamber data and the modelled ��
�

diffusion flux (Fd in pmol cm-2h-1) from porewater data. Diffusion coefficients used for the ����

calculation: thiol: 14.8 x 10-6 cm2 s-1 and copper: 7.3 x 10-6 cm2 s-1. The values shown are the mean ± ����

SD for 3 repeated analyses. ����

 ����

 ����

 Thiol Copper 

Site name Tresse Campalto Tresse Campalto 

Fm 51 ± 1 63 ± 1 -4.4 ± 0.2 3.8 ± 0.1 

Fd 344 ± 2 84 ± 8 - 2.1 ± 0.1 - 3.8 ± 0.2 
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Figure Captions ����

Figure 1. Map showing the locations of the sample sites in Venice Lagoon, Italy.  ����

 ����

Figure 2. Temperature, pH and dissolved oxygen (µM), inside the benthic chambers during the ��	�

experiments. A) Tresse: 28 – 31 October 2002 (salinity 29.4); B Campalto: 25 – 27 May 2003 ��
�

(salinity 28.6). Solid black bars show night time hours. ����

 ����

Figure 3. Complexing capacity titration of copper in the presence of 2 µM SA. A) Curvature in ����

the plot of reactive copper as a function of total copper showed the presence of complexing ����

ligands; B) linearization of the data: curvature shows the presence of at least two ligands. A good ����

data fit was obtained to a two-ligand model. ����

 ����

Figure 4. Changes in the concentrations of copper, ligands and thiols (glutathione equivalents) as ����

a function of time in the benthic chambers at Tresse (A) and Campalto (B). Mean and standard ��	�

deviation values are shown for 3 repeated analyses are shown. ��
�

 ����

Figure 5. Effect of varying the copper concentration on the response for the thiol species. A) CSV ����

scans for copper and thiols in Lagoon water showing the decrease in the thiol peak (which is an ����

Hg-thiol species) as the copper-SA peak increases; the copper-SA peak is off scale at -0.35 V; B) ����

change in the thiol peak height (R = relative peak height = ip / ipmax) as a function of pCu showing ����

that the thiols started to bind copper from pCu ~14, becoming saturated at pCu ~12.5. Individual ����

pCu values were calculated from [Cureactive] / αCuSA. ����

   ����
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Figure 6. Concentrations of dissolved thiols (glutathione equivalents) (A) and copper (B) in ��	�

porewaters from sediment cores taken at the study sites. Mean values and standard deviations for ��
�

3 repeated analyses are shown (n = 3).�����
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