

Protein carbonyls and antioxidant defenses in corkwing wrasse () from a heavy metal polluted and a PAH polluted site

Bethanie Carney Almroth, Joachim Sturve, Eiríkur Stephensen, Tor Fredrik Holth, Lars Förlin

► To cite this version:

Bethanie Carney Almroth, Joachim Sturve, Eiríkur Stephensen, Tor Fredrik Holth, Lars Förlin. Protein carbonyls and antioxidant defenses in corkwing wrasse () from a heavy metal polluted and a PAH polluted site. Marine Environmental Research, 2008, 66 (2), pp.271. 10.1016/j.marenvres.2008.04.002 . hal-00501965

HAL Id: hal-00501965 https://hal.science/hal-00501965

Submitted on 13 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Protein carbonyls and antioxidant defenses in corkwing wrasse (*Symphodus melops*) from a heavy metal polluted and a PAH polluted site

Bethanie Carney Almroth, Joachim Sturve, Eiríkur Stephensen, Tor Fredrik Holth, Lars Förlin

PII:	S0141-1136(08)00120-7
DOI:	10.1016/j.marenvres.2008.04.002
Reference:	MERE 3248
To appear in:	Marine Environmental Research
Received Date:	20 December 2007
Revised Date:	2 April 2008
Accepted Date:	4 April 2008

Please cite this article as: Almroth, B.C., Sturve, J., Stephensen, E., Holth, T.F., Förlin, L., Protein carbonyls and antioxidant defenses in corkwing wrasse (*Symphodus melops*) from a heavy metal polluted and a PAH polluted site, *Marine Environmental Research* (2008), doi: 10.1016/j.marenvres.2008.04.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Protein carbonyls and antioxidant defenses in corkwing wrasse (Symphodus
2	melops) from a heavy metal polluted and a PAH polluted site
3	
4	
5	Bethanie Carney Almroth ^a *, Joachim Sturve ^a , Eiríkur Stephensen, Tor Fredrik Holth ^b and
6	Lars Förlin ^a
7	
8	^a Department of Zoology, Zoophysiology, Göteborg University, Box 463, SE 405 30
9	Göteborg, Sweden
10	
11	^b Norwegian Institute for Water Research (NIVA) Gaustadalléen 21, N-0349 Oslo, Norway
12	and the Department of Biology, University of Oslo, P.O. Box 1066, Blindern, N-0316 Oslo,
13	Norway
14	
15	*Corresponding author
16	Tel: int + 46 (0) 31 773 3449
17	Fax: int + 46 (0) 31 773 38 07
18	bethanie.carney@zool.gu.se
	N N N N N N N N N N N N N N N N N N N

19 Abstract:

20 The use of fish in environmental monitoring has become increasingly important in recent 21 years as anthropogenic substances, many of which function as prooxidants, are accumulating 22 in aquatic environments. We have measured a battery of antioxidant defenses as a measure of 23 oxidative status, as well as protein carbonylation as a measure of oxidative damage, in 24 corkwing wrasse (Symphodus melops) captured near a disused copper mine, where water and 25 sediment are contaminated with heavy metals, and an aluminum smelter, a site contaminated 26 with PAHs. Results were compared to two different reference sites. Fish at the heavy metal 27 site had lower glucose-6-phosphate dehydrogenase activity and elevated protein carbonyls 28 (1.8 times) compared to fish from the reference site. At the PAH site, EROD was increased 2-29 fold, while total glutathione and methemoglobin reductase concentration, were decreased. No 30 differences were seen in protein carbonyl levels at the PAH site. Measures of both antioxidant 31 defenses and oxidative damage should be used when assessing effects of xenobiotics on 32 oxidative stress in fish species.

33

34 Keywords: fish; oxidative stress; antioxidant enzymes; biomarker; protein carbonyls; PAHs;

35 heavy metals

COK.

36 **1. Introduction**

37

38 Coastal marine environments are often exposed to the influences of anthropogenic activities 39 and consequentially, toxic chemicals. Many of these xenobiotics exert their effects through 40 redox-cycling, resulting in the production of reactive oxygen species (ROS). ROS production 41 resulting from xenobiotic redox-cycling is an important mechanism of pollutant toxicity and 42 can lead to oxidative damage to proteins, lipids and DNA (Stadtman and Oliver 1991). This is 43 linked to diseases such as carcinogenesis in fish (Livingstone 2001). Protein damage resulting 44 from oxidative stress may be useful as a biomarker for exposure of fish to environmental 45 contaminants (Carney Almroth et al., 2005, Shi et al., 2005, Bagnyukova et al., 2006). The 46 form of oxidative damage to protein molecules that is most widely accepted as a biomarker is 47 protein carbonylation (Shacter et al., 1994). The formation of carbonyl derivatives is 48 irreversible and increases the susceptibility of proteins to proteases (Stadtman and Oliver 49 1991). A number of enzymes and molecules play important roles in detoxifying xenobiotics 50 and in protecting the cell against the harmful effects of ROS. Many of these enzymes and 51 molecules are well studied in mammals (Halliwell and Gutteridge 1999) and have been 52 applied as biomarkers for environmental risks in fish (van der Oost, et al. 2003, Valavanidis 53 2006).

54

55 Oxidative stress is a very complex phenomenon, starting with the production of ROS and 56 including oxidative damage or disruption as well as adaptive responses of antioxidant defense 57 components. Thus, instead of choosing a single biomarker for oxidative stress, use of a 58 battery of biomarkers will provide a more complete picture of the effects of xenobiotics on 59 oxidative stress in the cells of an organism. This battery should preferably include both 50 oxidative damage as well as changes to the antioxidant defense system. In the current study a

61	large battery of biomarkers for pollutant exposure was assessed in corkwing wrasse
62	(Symphodus melops) caught at a PAH contaminated site and a heavy metal polluted site near
63	Stavanger, Norway. The biomarkers included were the phase I enzyme CYP1A and the phase
64	II enzyme glutahione S-transferase as were the antioxidant enzymes superoxide dismutase
65	(SOD), catalase (CAT), glutathione reductase (GR) and DT-diaphorase (DTD) in liver, and
66	methemoglobin reductase (MtHB) and glucose-6-phosphate dehydrogenase in blood. In
67	addition to these enzymes, total and oxidized glutathione and metallotheinonein
68	concentrations in liver were measured. Also, as an example of oxidative damage, protein
69	carbonyl formation was measured. Though protein oxidation products have been used as
70	biomarkers for oxidative stress and damage in humans (Dalle-Donne et al., 2003), their
71	usefulness has not been fully explored as a potential biomarker in fish.
72	The species of wrasse used in the current study is known to possess a limited home range
73	within the littoral zone, as it is a territorial species. Its benthic behavior should make it a
74	suitable sentinel species for studies involving contaminants (Aas, et al. 2001). In addition,
75	corkwing wrasse are ubiquitous throughout the northeastern Atlantic and Mediterranean
76	(Quignard and Pras 1986), making them suitable for European biomonitoring campaigns.
77	
78	
79	2. Materials and methods
80	\mathcal{O}^{-}
81	2.1. Chemicals
82	
83	Biotinylated anti-dinitrophenyl-KLH rabbit IgG fraction was purchased from Molecular
84	Probes, streptavidin-biotinylated horse radish peroxidase (HRP) from Amersham Bioscience,
85	UK, and the BCA Protein Assay Reagent Kit from Pierce. Tween 20 was obtained from BIO-

86	RAD. Copper (II) chloride dihydrate and EDTA (Titriplex III) were purchased from Merck,
87	heparin from LEO Pharma AB, Sweden, and trasylol from Bayer, Germany. Trifluoroacetic
88	acid, oxidized and reduced glutathione, glutathione reductase, reduced glutathione (GSSG),
89	5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB), dichlorophenol indophenol (DCPIP), 2, 4-
90	dinitrophenol hydrazine (DNPH) and rabbit metallothionein were obtained from Sigma.
91	NADPH and NADH were purchased from Boehringer Mannheim and dicoumoral (DIC) was
92	purchased from Aldrich. All other reagents were of analytical grade.
93	
94	2.2. Field study sites
95	
96	Corkwing wrasse (Symphodus melops) were caught at 4 sites using fyke nets during field
97	sampling near Stavanger, Norway, in the fall of 2001. Fish were collected from the heavy
98	metal site Visnes and the PAH site Høgvarde and the respective reference sites, Salvøy and
99	Bokn. See figure 1 for site locations. The two polluted sites are well known as sinks for
100	industrial pollution. Visnes is a village located outside Stavanger and is home to a copper
101	mine which was in operation during several periods between 1865 and 1965. Tailings and
102	slag were dumped into the sea and heavy metals, including copper, zinc and iron,
103	contaminated the sea water and sediment as a result of dumping and land run off. There was
104	no evidence of higher organisms close to the mine, where copper concentration in the water
105	was 53.6 μ g l ⁻¹ . Andersen et al. (2003a) reported the contaminant levels in water, sediment
106	and biota at Visnes as follows. The sediment content of metals at Visnes reaches up to 20000
107	mg Zn kg ⁻¹ , 13000 mg Cu kg ⁻¹ , 1500 mg Pb kg ⁻¹ and 35 mg Cd kg ⁻¹ . The site displays a sharp
108	gradient in copper concentration, from the mouth of the mine to the sea. Copper concentration
109	in the water at the catch site during this study was $8.59 \ \mu g \ l^{-1}$, zinc was $33.6 \ \mu g \ l^{-1}$, iron $96 \ \mu g$
110	l^{-1} and lead 0.135 µg l^{-1} . Analyses of blue mussel (<i>Mytilus edulis</i>) tissue from Visnes indicated

111	48 mg Cu kg dry weight $(d.w.)^{-1}$, 257 mg Zn kg ⁻¹ d.w., 470 mg Fe kg d.w. ⁻¹ and 1.3 mg Pb kg
112	d.w. ⁻¹ , levels which were 9.6, 4.0 and 4.2 and 2.6 fold higher than at the reference site.
113	Høgvarde is located outside an active aluminum smelter and is contaminated with a mixture
114	of primarily pyrogenic PAHs (from the smelter) (Aas et al., 2001). In 2001, 0.6 tons of PAHs
115	were discharged from the aluminum smelter into the sea. At the PAH site, both blue mussels
116	and shore crabs (Carcinus maenas) were shown to contain high levels of PAHs in their
117	tissues, totalling 38.3 mg kg ⁻¹ d.w. in mussels and 7.8 mg kg d.w. ⁻¹ in crabs. The levels in
118	mussel were 1158 fold higher than at the control site and 16 fold higher in crabs (Andersen et
119	al., 2003b).
120	9
121	The two polluted sites differed with respect to water salinity and current velocity (personal
122	communication with Odd-Ketil Andersen, IRIS – Biomiljø, International Research Institute of
123	Stavanger, Norway) and consequently required comparison with different reference stations.
124	Water temperature at respective depths differed by no more than 0.5°C. Samples taken from
125	Visnes were compared to the reference site Salvøy since both sites are exposed to the same
126	water mass, the open ocean with a salinity of approximately 33%. Samples taken at Høgvarde
127	were compared to the reference site Bokn as these sites are located inside the archipelago with
128	a lower average salinity of approximately 29.5%.
129	$-O^{\mathbf{v}}$
130	2.3. Sampling

131

In order to reduce the risk of measuring changes due to capture-related stress, fish were caged on site 2-3 days after capture before being sacrificed. After acclimatization, fish were killed by a blow to the head, measured and weighed. A blood sample was taken from the caudal vein using a syringe treated with heparin. Blood was centrifuged at 6 000 g for 2 minutes and

136	plasma samples were immediately frozen at -80°C where they were stored until measurement.
137	The liver was excised, weighed, divided into pieces, and stored in liquid nitrogen until
138	analysis. The numbers of fish sampled at each site were as follows: Salvøy – 10 males, 8
139	females; Visnes – 10 males, 10 females; Bokn – 10 males; Høgvarde – 10 males, 6 females.
140	No female fish were caught at Bokn.
141	
142	2.4. Protein carbonyl measurements
143	
144	An ELISA method described by Winterbourn et al. (1999) was used to measure protein
145	carbonyls in blood plasma of corkwing wrasse. In brief, plasma samples were derivatized
146	with DNPH (10 mM DNPH in 6 M guanidine hydrochloride, 0.5 M potassium phosphate
147	buffer, pH 2.5) which binds selectively to protein carbonyl groups. Detection was achieved
148	using biotinylated anti-dinitrophenyl (anti-DNP) and streptavidin-biotinylated HRP. A
149	standard curve of fully reduced and oxidized bovine serum albumin was used to quantify
150	results, according to a colorimetric method described by Levine et al. (1990).
151	
152	2.5. Enzymatic activities
153	
154	Preparation of liver microsome and cytosol fractions was performed according to Förlin
155	(1980). Ethoxyresorufin-O-deethylase (EROD) activity was measured in the microsomal
156	fraction using ethoxyresorufin as a substrate and NADPH to provide reducing equivalents
157	(Förlin et al., 1994). Hepatic antioxidant enzyme activities were measured in the cytosolic
158	fraction. Superoxide dismutase (SOD) activity was measured using 6-hydroxy dopamine as a
159	substrate. The assay was run with and without sample to distinguish between SOD-catalyzed

160 activity and auto-oxidation reactions (Heikkila and Cabbat 1976). Catalase (CAT) activity

161	was measured in liver cytosol with hydrogen peroxide as a substrate, according to Aebi
162	(1985). Glutathione reductase (GR) activity was measured using GSSG as a substrate, with
163	NADPH acting as an electron donor. The resulting reduced GSH then reacts with 5,5'-Dithio-
164	bis-(2-nitrobenzoic acid) (DTNB), forming a glutathione-TNB conjugate and free TNB, the
165	production of which is measured over time (Cribb et al., 1989). Glutathione S-transferase
166	(GST) was measured using 1-chloro-2, 4-dinitrobenzene (CDNB) as a substrate as described
167	by Habig et al. (1974) and adapted to a microplate reader by Stephensen et al. (2002). The
168	formation of GST-catalysed CDNB-glutathione conjugate is measured
169	spectrophotometrically. DT-diaphorase activity (DTD) was measured according to Sturve et
170	al. (2005). Here, 2,6-dichloroindophenol (DCIP) was used as a substrate, and samples were
171	analysed with and without the addition of dicumarol, a DTD inhibitor, to distinguish between
172	DTD-catalysed reduction and the action of all other reductases. Red blood cells were lysed
173	and cytosolic fractions prepared according to Beutler (1984). SOD activity in the red blood
174	cells (rbc) was measured following the same method as was used in liver samples (Heikkila
175	and Cabbat 1976). Methemoglobin reductase activity (MetHb) in the rbc was measured using
176	K_3 Fe(CN) ₆ as a substrate according to Beutler (1984). Glucose-6-phosphate dehydrogenase
177	(G6PDH) activity in the rbc was measured using glucose-6-phosphate and NADP+ in the
178	reaction buffer, according to Deutsch (1987).
179	O^{V}
180	2.6. Molecular antioxidant measurements

181

182 Total glutathione (tGSH) and oxidized glutathione (GSSG) were measured according to

183 Baker et al. (1990), adapted to a microplate reader by Vandeputte et al. (1994). This is an

184 indirect method in which all GSH is reduced through the action of GR, followed by

185 conjugation to DTNB as described above in section 2.5. To measure the GSSG portion of the

- total glutathione pool in the sample, GSH was first derivitized by a reaction with 2-
- 187 vinylpyridine.
- 188

189 2.7. Metallothionein

- 190
- 191 The concentration of metallothionein was measured using differential pulse polarography
- 192 (DPP) according to Olafson and Olsson (1991). Briefly, cytosolic fractions of liver were
- 193 prepared according to Förlin et al. (1980), diluted 10x in 0.9% NaCl and heat denatured at
- 194 95°C for 4 min. Heat-denatured samples were centrifuged 15 min at 10 000 g after which the
- supernatant was analysed with DPP electrolyte (2 mM hexamine cobalt chloride, 1M NH₄Cl,
- 196 1M NH₄OH 300 μ l 0.025% Triton X-100 added per 10 ml electrolyte). The purging time with
- 197 N_2 before measurements was 60 sec. A standard of 50.8 µg/ml rabbit MT in 0.9% NaCl was
- 198 used to prepare a standard curve.
- 199
- 200 2.8. Morphological indices
- 201
- 202 Morphological indices were calculated as described here. Condition factor (CF) was
- 203 calculated according to the formula: $CF = (weight (g) length (cm)^{-3}) \times 100$. Liver somatic
- 204 index (LSI), gonodosomatic index (GSI) and spleen somatic index (SSI) were calculated
- according to the formula: (tissue weight (g) body weight $(g)^{-1}$) x 100.
- 206

207 2.9. Statistics

- 208
- All data values are given as means \pm standard error. Data from contaminated site and the
- 210 respective reference site were tested for statistically significant differences using the t-test. All

1	0	

211	data that did not meet requirements	s for heterogeneity of	variance and	l normality were l	og-

- transformed prior to testing. Significance limit was set at p < 0.05. Data were tested using
- 213 SPSS® 12.0 for Windows. False discovery rate (FDR) was calculated for each p-value. This is
- a correction for multiple testing, accepted values are normally set at <0.1 or <0.2.
- 215
- 216 **3. Results**
- 217
- 218 **3.1. Wrasse captured near the copper mine**
- 219

220 Data from male and female fish were compared separately since little is known about

221 variations between the sexes in corkwing wrasse in the parameters measured here.

222

223 3.1.1. Morphometric indices

224

225 Male fish caught at Salvøy weighed 126 ± 11 g and females weighed 93 ± 3 g. Males caught 226 at Visnes weighed 93 \pm 13 g and females weighed 93 \pm 11 g. The mean SSI was significantly 227 lower in all fish, both males and females, captured at Visnes compared to Salvøy. Hematocrit 228 levels were significantly higher (122%) in male wrasse captured at Visnes compared to 229 Salvøy. GSI was significantly decreased by 47% in male fish at Visnes. Both LSI and SSI 230 were significantly higher in males compared to females at Salvøy. See table 1 for results and 231 p values. The FDR for each significant p value in table 1 was <0.1. The FDR for SSI and LSI 232 comparisons between the two sexes was <0.2. 233 234 3.1.2. Protein carbonylation ELISA

Protein carbonylation was significantly higher in the fish captured at Visnes, outside a copper
mine, compared to Salvøy (table 2) in both males and females. Levels were 123% higher in
males and 49% higher in females caught at Visnes than at Salvøy. FDR was < 0.01 in both
sexes.
3.1.3. Enzyme activities and antioxidants in liver and red blood cells
Few of the antioxidant enzymes differed between Visnes and Salvøy. G6PDH levels were
significantly lower in red blood cells of male fish from Visnes. Males also had significantly
higher levels of both G6PDH (FDR<0.01) and SOD (FDR<0.1) than females at Salvøy. No
other differences were seen between the two sites. Results and p values are shown in table 2.
3.2. Wrasse captured at the PAH contaminated site
Only male fish were available for measurements from the reference site Bokn. Data from
female fish captured at Høgvarde were therefore not compared to the control site, but were
analyzed statistically for sex-related differences at the PAH site.

254 3.2.1. Morphometric indices

255

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

- 256 Male fish living at Bokn weighed 85 ± 4 g. Male wrasse caught at Høgvarde weighed $107 \pm$
- 257 10 g and females weighed 67± 14 g. CF was significantly higher in male fish captured at
- 258 Høgvarde compared to Bokn (FDR<0.2). Hematocrit LSI, GSI and SSI were not affected. See

table 3 for results and p values.

261 3.2.2. Protein carbonylation

262

263 No difference was seen between Høgvarde, the PAH exposed site, and Bokn, the reference

- site. However, a comparison between males and females at Høgvarde shows that the female
- 265 fish had higher levels of oxidized proteins in their blood (FDR < 0.2).
- 266
- 267 3.2.3. Enzyme activities and antioxidants in liver and red blood cells

- 269 EROD activity was significantly higher in male fish caught at the PAH contaminated site
- 270 compared to the reference site (FDR<0.1). tGSH was significantly decreased in male fish
- 271 captured at Høgvarde (FDR<0.02) but GSSG was unaffected. tGSH also correlated
- significantly to size of the fish (Pearson correlation, p=0.037) where levels decreased with
- 273 increasing weight. GR activity did not differ. MetHb levels in red blood cells were
- significantly lower in fish captured at Høgvarde compared to Bokn (FDR<0.1). No other
- 275 parameters showed any significant effects when comparing the reference and polluted sites.
- 276 See table 4 for results and p values.
- 277
- **4. Discussion**
- 279

280	The definition of oxidative stress states that a disturbance in the prooxidant-antioxidant
281	balance in favor of the former can lead to potential damage. Here, we have investigated a
282	battery of antioxidant defenses, both molecular and enzymatic, and an oxidative damage
283	product, protein carbonyls, and have found that a limited number of biomarkers are affected
284	in corkwing wrasse captured at sites with high levels of heavy metals and PAHs. The
285	information concerning heavy metal and PAH levels in water, sediment and biota, cited in the

286	field site descriptions in section 2.2, indicate that the contaminants are bioavailable and since
287	this species of wrasse is known to feed on molluscs and crustaceans (Quignard and Pras
288	1986), they would have been receiving contaminants both through water exposure and
289	through their food supply. Measurements of metals and PAHs in fish tissue should be
290	conducted in future studies to determine the extent of actual exposure.
291	
292	4.1 Wrasse living at the copper mine
293	
294	Although copper and zinc are essential trace elements needed, for example, as cofactors in
295	enzymes (i.e. SOD) they are also toxic heavy metals. Marine teleosts will take up heavy
296	metals directly into the blood stream via the gills (Dethloff et al., 1999) as well as additional
297	amounts via the gut, as they, contrary to fresh water species, drink large amounts of water
298	(Filipovic Marijic and Raspor 2007). Redox cycling of copper and iron species can induce the
299	formation of ROS which can lead to oxidative stress (Stadtman and Oliver 1991, Dean et al.,
300	1997). The levels of protein carbonylation measured in this study were significantly higher at
301	Visnes thereby indicating that the fish were suffering from oxidative stress as a result of
302	heavy metal exposure. Metals are known to directly induce the formation of protein carbonyls
303	via metal catalyzed oxidation reactions (MCO) (Stadtman and Oliver 1991). The resulting
304	damaged protein is more susceptible to degradation and may lose some or all of its function.
305	Interestingly, we did not see an induction of metallothionein in wrasse captured at Visnes,
306	near the copper mine. Measurements of MT proteins have shown mixed results in field
307	studies as levels can be influenced by both biotic factors (age, organ, reproductive status,
308	season) and abiotic factors (temperature, pH, salinity). As a result, MT protein levels will
309	reflect bioavailability, tissue pharmacokinetics of metal uptake or MT synthesis (Handy et al.,
310	2003, Filipovic Marijic and Raspor 2007). Also, we have measured MT levels in liver, while

311 other studies have shown great induction in kidneys and intestines in marine teleost species 312 (Filipovic Marijic and Raspor 2007). To our knowledge, there is no information available on 313 MT levels in corkwing wrasse, but hepatic MT concentrations in a related species, goldsinny 314 wrasse (*Ctenolabrus rupestris*) were lower than those seen here (median concentrations of 315 $1.5-2.0 \,\mu$ g/mg protein). In goldsinny wrasse, there was a clear positive correlation between 316 hepatic concentrations of Zn/Cu and MT (Ketil Hylland, Department of Biology, University 317 of Oslo, Norway, personal communication). Other binding sites may be involved in metal 318 chelation in corkwing wrasse, thereby eliminating the need for MT induction. Kamunde and 319 MacPhail (2007) found indiscriminate Cu binding in all subcellular fractions of rainbow trout 320 liver suggesting that Cu-binding sites are ubiquitous in this organ. Also, base-line levels of 321 MT in corkwing wrasse may be sufficient to counteract the metal exposure at this site. 322 323 G6PDH levels were significantly lower in RBC of male fish captured at Salvøy. Bagnyukova 324 et al. (2006) report a decrease in G6PDH in goldfish exposed to iron. This decrease was 325 negatively correlated to protein carbonyl levels and the authors suggest that this enzyme may 326 be inactivated due to oxidative damaged. The indication that wrasse from the copper mine site 327 might be suffering from oxidative stress, as is evident in the measured increase in oxidative 328 damage to protein molecules, was not paralleled in results from the other measurements; GR, 329 DTD, GST, tGSH, GSSG, metHb and SOD were unaffected. The fact that few of the 330 antioxidant defense mechanisms were increased at the site near the copper mine indicates that 331 these heavy metals may not have been able to induce antioxidant defenses or that fish may 332 have acclimated to the exposure conditions in the field and become more tolerant to acute 333 challenges of metal exposure, via regulation of uptake, detoxification, storage or excretion of 334 metal ions (Kamunde and MacPhail 2007, Rainbow 2007). However, metal exposure that 335 exceeds detoxification capacity may lead to toxicity (Hamilton and Mehrle 1986), i.e.

increases in ROS and accumulation of damaged protein molecules. Based on the data found in
the current field study, it becomes more evident that oxidative damage products, and not just
antioxidant defenses, are of importance to measure in order to determine effects on oxidative
stress parameters.

340

341 SSI was lower in both male and female wrasse caught outside the copper mine, results that are 342 mirrored in the higher hematocrit levels measured in these same fish, though this increase was 343 only significant in males. This indicates that wrasse living in this environment were under a 344 certain degree of stress, as release of red blood cells from the spleen is an adaptive response. 345 Cyriac et al. (1989) showed that fish acutely exposed to copper showed an increase in both 346 hematocrit as well as hemoglobin content in blood, possibly due to changes in blood 347 parameters which result in erythrocyte swelling, or by release of large red blood cells from the 348 spleen. GSI was significantly lower in male fish captured at Visnes although this parameter 349 was not altered in female fish. Levesque et al. (2003) found that yellow-perch from metal-350 contaminated lakes had lower GSI values and that they possessed gonads at less mature stages 351 compared to those from reference stations. Similar results were obtained by Sepúlveda et al. 352 (2002) in a study conducted on largemouth bass. Chronic exposure to metals could alter the 353 physiological functions of fish and delay reproduction.

354

355 4.2 The PAH site

356

PAHs are persistent chemicals and many studies have been conducted on their effects on
marine animals (van der Oost, et al. 2003). The induction of cytochrome P450, a phase I
detoxification enzyme, and its catalytic activity (EROD) have been used as biomarkers of
PAH exposure for many years and are known to be sensitive to PAH exposure (Goksøyr and

361 Förlin 1992). An increase in EROD activity was measured at the PAH-contaminated site, 362 Høgvarde, with no differences between the two sexes. EROD induction seen in this study 363 was relatively low, approximately 2-fold. Though there are large amounts of PAHs in the 364 sediment at Høgvarde, water flow is quite high in the strait and this may result in low 365 waterborne PAH exposure for the fish. On the other hand, the fish would also be exposed to 366 PAHs via their diet, as is evident in PAH levels in crab and mussel tissues (Andersen et al. 367 2003b). The somewhat modest elevated EROD activity at the PAH site compared to the 368 reference site might indicate that fish at the PAH site have acclimated to the chronic PAH 369 exposure, as has been demonstrated in brown bullhead (McFarland et al., 1999) and 370 mummichog (Weis 2002). 371 372 Little work has been done on how PAHs affect protein oxidation in fish as most studies have 373 focused on lipid peroxidation as a biomarker for oxidative damage (van der Oost, et al. 2003). 374 A previous study showed increased levels of protein carbonyls in eelpout (Zoarces viviparus) 375 exposed to bunker oil containing high levels of PAHs, both in the field following an oil spill 376 and in a laboratory exposure study (Carney Almroth, et al. 2005). In the current study, protein 377 carbonyl levels were not elevated at the PAH site compared to the reference site. The low 378 EROD induction measured in these fish may indicate a low level of PAH exposure which 379 may not have been sufficient to induce an accumulation of protein carbonyls. On the other 380 hand, the fish may have acclimated to the chronic PAH exposure, resulting in mechanisms 381 preventing accumulation of protein carbonyls, for example an increase in activity of the 20S 382 proteosome (Grune et al., 2001). A comparison between male and female wrasse at Høgvarde 383 revealed higher levels of protein carbonyls in the plasma of female wrasse, possibly due to 384 differences in the plasma protein profile. Future work needs to be done in fish to ascertain

385	which proteins are most susceptible to protein carbonylation, the mechanisms by which this
386	damage occurs, and whether baseline variations caused by i.e. season, sex, nutrition, exist.

387

388 We saw a significant decrease in amounts of tGSH at Høgvarde. The GSSG/tGSH ratio 389 remained unchanged as GSSG also decreased, though not significantly. The activity of GR 390 and GST did not differ between the PAH and control site, thereby indicating that the decrease 391 in tGSH may result from reactions other than phase II conjugation, i.e. reduction of lipid 392 peroxides. The method used to measure GST in the current paper measures several isoforms 393 so it is not possible to say whether another isoform may be responsible for the observed 394 decrease in tGSH. This decrease in tGSH could also be due to the action of ATP-dependent 395 efflux pumps that export GSSG and glutathione-conjugates from liver cells during oxidative 396 stress (Keppler 1999). We also found a significant negative correlation between tGSH and 397 weight. These results may reflect changes in synthesis of new glutathione molecules as 398 transcription of these genes can be affected by environmental factors as well as age (Lu 1999, 399 Carney Almroth et al., 2008). 400 401 MetHb levels were significantly lower in the red blood cells of male wrasse captured at

Høgvarde compared to those captured at Bokn. This indicates a decreased need for the
reparatory activity of the enzyme and therefore a decrease in oxidation of hemoglobin
molecules in red blood cells. CF in fish caught at Høgvarde was significantly higher, which
probably reflects differences in food availability and nutritional content between sites rather
that an effect of PAH exposure.

407

408 **5.** Conclusions

410 Results from the current study show that protein carbonyl levels serve as a good biomarker 411 for oxidative perturbations in corkwing wrasse, especially in cases of heavy metal 412 contamination. However, more studies are needed to confirm the mechanisms through which 413 this damage occurs for specific pollutants and if these mechanisms differ between male and 414 female fish. Knowledge concerning which proteins are most susceptible in different exposure 415 situations is also needed. Further studies should investigate toxicological relevance of protein 416 carbonyl accumulation in different species of fish. 417 418 The other parameters measured here, those involved in detoxification and antioxidant 419 functions, were shown to be only lightly affected or unaffected in fish captured at both the 420 heavy metal and PAH contaminated sites. Antioxidant defences do not appear to provide a 421 good biomarker for chronic exposure in corkwing wrasse and other biomarkers should also be 422 measured. 423 424 6. Acknowledgements 425 426 The authors would like to thank the EU-BEEP project and MISTRA-NewS for financial

427 support. We would also like to thank Odd-Ketil Andersen and his group for arranging the

428 collection of fish and the field sampling in Norway and Ketil Hylland for assistance with

- 429 metallothionein measurements. We are grateful to Erik Kristiansson for expert help with
- 430 statistical analyses.

431 7. References

433 434	Aas, E., Beyer, J., Jonsson, G., Reichert, W.L., Andersen, O.K., 2001. Evidence of uptake, biotransformation and DNA binding of polyaromatic hydrocarbons in Atlantic cod and
435 436	corkwing wrasse caught in the vicinity of an aluminium works. Marine Environmental Research 52, 213-229
430	Resestaten 52, 215-229.
438 439	Aebi, H., 1985. Catalase. In: Bergmeyer, H.U. (Eds.). Methods of Enzymatic Analysis. Academic Press, New York, 671-684.
440	
441 442	Andersen, O.K., Bjørnstad, A., Larsen, B.K., 2003a. BEEP WP4 Campaigns: heavy metals in water sediment and biota BEEP project meeting. December 4.6
442	water, sediment and blota. BEEr project meeting, December, 4-0.
445	
444 445	burdens in mussel and shore crab. BEEP project meeting, December, 4-6.
446	
447	Bagnyukova, T.V., Chahrak, O.I., Lushchak, V.I., 2006. Coordinated response of goldfish antioxidant defenses to environmental stress. Aquatic Toxicology, 78, 325.
449	
450 451	Baker, M.A., Cerniglia, G.J., Zaman, A., 1990. Determination of glutathione and glutathione disulfide in biological samples. Analytical Biochemistry 190, 360-365.
452	\sim
453 454	Beutler, E., 1984. Red Cell Metabolism - A Manual of Biochemical Methods. Orlando: Grune & Stratton, Inc.
455	
456 457	Carney Almroth, B., Sturve, J., Berglund, A., Förlin, L., 2005. Oxidative damage in eelpout (<i>Zoarces viviparus</i>), measured as protein carbonyls and TBARS, as biomarkers.
458 459	Aquatic Toxicology 73, 171-180.
460 461	Carney Almroth, B., Albertsson, E., Sturve, J. and Forlin, L., 2008. Oxidative stress, evident in antioxidant defences and damage products, in rainbow trout caged outside a sewage
462 463	treatment plant. Ecotoxicology and Environmental Safety, doi:10.1016/j.ecoenv.2008.01.023.
464	
465 466	Cribb, A.E., Leeder, J.S., Spielberg, S.P. 1989. Use of microplate reader in an assay of glutathione reductase using 5,5'-dithiobis(2-nitrobenzoic acid). Analytical
467	Biochemistry 183, 195-196.
468	
469	Cyriac, P.J., Antony, A., Nambisan, P.N.K., 1989. Hemoglobin and hematocrit values in the
470 471	fish <i>Oreochromis mossambicus</i> (peters) after short term exposure to copper and mercury. Bulletin of Environmental Contamination and Toxicology 43, 315.
472	
473	Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., Colombo, R. 2003. Protein carbonvl
474	groups as biomarkers of oxidative stress. Clinica Chimica Acta 329, 23-38.
475	
476 477	Dean, R.T., Fu, S., Stocker, R., Davies, M.J. 1997. Biochemistry and pathology of radical- mediated protein oxidation. Biochemical Journal 324, 1-18
478	mediated protein oxidation. Dioenennear Journar 524, 1-10.

479 480 481 482	Dethloff, G.M., Schlenk, D., Khan, S., Bailey, H.C., 1999. The effects of copper on blood and biochemical parameters of rainbow trout (<i>Oncorhynchus mykiss</i>). Archives of Environmental Contamination and Toxicology 36, 415-423.
483 484 485 486	Deutsch, J., 1987. Glucose-6-phosphate dehydrogenase. D-Glucose-6-phosphate:NADP+ 1- oxidoreductase, EC 1.1.1.49. In: Bergmeyer, H. U. (Eds.). Methods of Enzymatic Analysis. Verlag Chemie, Weinheim, Deutschland, pp.190-197.
487 488 489	Filipovic Marijic, V., Raspor, B., 2007. Metal exposure assessment in native fish, <i>Mullus barbatus L.</i> , from the Eastern Adriatic Sea. Toxicology Letters 168, 292.
490 491 492 493 494	Forlin, L., 1980. Effects of clophen A50, 3-methylcolantrene, pregnelone-16-carbonitrile, and phenobarbital on the hepatic microsomal cytochrome <i>P</i> -450-dependent monooxygenase system in rainbow trout, <i>Salmo gairdneri</i> , of different age and sex. Toxicology and Applied Pharmacology 54, 420-430.
495 496 497 498	Förlin, L., Goksøyr, A., Husøy, A. 1994. Cytochrome P450 monooxygenase as indicator of PCB/dioxin like compounds in fish. In: Kramer K. (Eds.). Biomonitoring of Coastal Waters and Estuaries. CRC Press, Boca Raton, Fla, USA, pp.135-150.
499 500 501	Goksøyr, A., Förlin, L., 1992. The cytochrome <i>P</i> -450 system in fish, aquatic toxicology and environmental monitoring. Aquatic Toxicology 22, 287-311.
502 503 504 505	Grune, T., Klotz, LO., Gieche, J., Rudeck, M., Sies, H. 2001. Protein oxidation and proteolysis by the nonradical oxidants singlet oxygen or peroxynitrite. Free Radical Biology and Medicine 30, 1243-1253.
506 507 508 509	Habig, W.H., Pabst, M.J., Jakoby, W.B. 1974. Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 7130-7139.
510 511 512	Halliwell, B., Gutteridge, J.M.C. 1999. Free radicals in biology and medicine. Oxford: Oxford University Press.
512 513 514 515 516	Hamilton, S.J., Mehrle, P.M. 1986. Metallothionein in fish: Review of its importance in assessing stress from metal contaminants. Transactions of the American Fisheries Society 115, 596-609.
517 518 519 520	 Handy, R.D., Galloway, T.S., Depledge, M.H. 2003. A proposal for the use of biomarkers for the assessment of chronic pollution and in regulatory toxicology. Ecotoxicology 12, 331.
521 522 523	Heikkila, R.E., Cabbat, F., 1976. A sensitive assay for superoxide dismutase based on the autoxidation of 6-hydroxydopamine. Analytical Biochemistry 75, 356-362.
524 525 526 527	Kamunde, C., MacPhail, R. 2008. Bioaccumulation and hepatic speciation of copper in rainbow trout (<i>Oncorhynchus mykiss</i>) during chronic waterborne copper exposure. Archives of Environmental Contamination and Toxicology 54, 493-503.

n	1
4	T

528 529 530	Kelly, K.A., Havrilla, C.M., Brady, T.C., Abramo, K.H., Levin, E. D., 1998. Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environmental Health Perspectives 106, 375-384.
531	
532 533 534	Keppler, D., 1999. Export pumps for glutathione S-conjugates. Free Radical Biology and Medicine 27, 985.
534	
535	Levesque, H.M., Dorval, J., Hontela, A., Van Der Kraak, G.J., Campbell, P.G.C. 2005.
536	Hormonal, morphological, and physiological responses of yellow perch (Perca
537	<i>Flavescens</i>) to chronic environmental metal exposures. Journal of Toxicology and
538	Environmental Health Part A 66, 657 - 676.
539	
540	Levine, R.L., 1990. Determination of carbonyl content in oxidatively modified proteins.
541	Methods in Enzymology 186, 464-478.
542	
543	Livingstone, D.R. 2001. Contaminant-stimulated reactive oxygen species production and
544	oxidative damage in aquatic organisms. Marine Pollution Bulletin 42, 656-666.
545	
546	Lu, S.C. 1999. Regulation of hepatic glutathione synthesis: current concepts and
547	controversies, FASEB Journal 13, 1169-1183.
548	
549	McFarland V A Incurve L S Lutz C H Jarvis A S Clarke LU McCant D D 1999
550	Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown
551	bullhead Amajurus nabulasus Archives of Environmental Contamination and
557	Toxicology 27, 226
552	Toxicology 57, 250.
555	Olafson B. Olsson D. E. 1001 Electrochemical detection of metallethionoin. Methods in
554	Engrandel and 205, 205, 212
555	Enzymology 203, 203-213.
550	Ovigrand I. D. Dros A. 1096 Jakridge In Whitehead D. D. Develet M. L. Hurson, I.
551	Quignard, JP., Pras, A., 1980. Labridae. In: Wintenead, P.J.P., Bauchol, ML., Hureau, J
550	C., Nielsen, J., Toltonese, E. (Eds.). Fisnes of the north-eastern Atlantic and the
559	Mediterranean. UNESCO, Paris, pp. 919-942.
560	
561	Rainbow, P.S. 2007. Trace metal bioaccumulation: Models, metabolic availability and
562	toxicity. Environment International 33, 576.
563	
564	Sepúlveda, M.S., Johnson, W.E., Higman, J.C., Denslow, N.D., Schoeb, T.R., Gross, T. S.
565	2002. An evaluation of biomarkers of reproductive function and potential contaminant
566	effects in Florida largemouth bass (Micropterus salmoides floridanus) sampled from
567	the St. Johns River. The Science of the Total Environment 289, 133-144.
568	
569	Shacter, E., Williams, J.A., Lim, M., Levine, R. L. 1994. Differential susceptibility of plasma
570	proteins to oxidative modification: Examination by western blot immunoassay. Free
571	Radical Biology and Medicine 17, 429-437.
572	
573	Shi, H., Wang, X., Luo, Y., Su, Y. 2005. Electron paramagnetic resonance evidence of
574	hydroxyl radical generation and oxidative damage induced by tetrabromobisphenol A
575	in Carassius auratus. Aquatic Toxicology 74, 365.
576	

Stadtman, E., Oliver, C. 1991. Metal-catalyzed oxidation of proteins. Physiological consequences. Journal of Biological Chemistry 266, 2005-2008.
Stephensen, E., Sturve, J., Forlin, L. 2002. Effects of redox cycling compounds on glutathione content and activity of glutathione-related enzymes in rainbow trout liver. Comparative Biochemistry and Physiology Part C 133, 435-442.
Sturve, J., Berglund, Å., Balk, L., Massey, S., Broeg, K., Köhler, A., Förlin, L. 2005. Effects of dredging in Göteborg harbour assessed by biomarkers in eelpout (<i>Zoarces</i> <i>vivaparus</i>). Environmental Toxicology and Chemistry 24, 1951-1961.
Valavanidis, A., Vlahogianni, T., Dassenakis, M., Scoullos, M. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety 64, 178-189.
van der Oost, R., Beyer, J., Vermeulen, N.P.E. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13, 57-149.
Vandeputte, C., Guizon, I., Genestie-Denis, I., Vannier, B., Lorenzon, G. 1994. A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biology and Toxicology 10, 415-421.
Weis, J. 2002. Tolerance to environmental contaminants in the mummichog, <i>Fundulus heteroclitus</i> . Human and Ecological Risk Assessment 8, 933.
Winterbourn, C.C., Buss, I.H., 1999. Protein carbonyl measurement by enzyme-linked immunosorbent assay. Methods in Enzymology 300, 106-111.

609	Figure	legends.
	<u> </u>	<u> </u>

610

611 **Figure 1:** Map of Norwegian west coast, showing site locations. Site 1 = Salvøy, a reference 612 site exposed to the open ocean, Site 2 = Visnes, located outside a copper mine, Site 3 =613 Høgvarde, a PAH contaminated site, Site 4 = Bokn, a reference site located in a strait. 614 615 **Table 1:** Levels of biometric parameters calculated in corkwing wrasse captured at a heavy 616 metal contaminated site (Visnes) and reference site (Salvøy). Statistical differences between 617 sites are shown in bold. * represents statistically significant difference, p<0.05, between males 618 (M) and females (F) at the same site. 619 620 Table 2: Activities or levels of various liver and red blood cell (rbc) detoxification and 621 antioxidant defenses measured in corkwing wrasse captured at a heavy metal contaminated 622 site (Visnes) and a reference site (Salvøy). Statistical differences between sites are shown in 623 bold. * represents statistically significant differences, p < 0.05, between males (M) and 624 females (F). EROD= ethoxyresorufin-O-deethylase, GST= glutathione-S-transferase, GR= 625 glutathione reductase, tGSH= total glutathione, GSSG = oxidized glutathione, DTD= DT-626 diaphorase, SOD= superoxide dismutase, MT= metallothionein, metHb= methemoglobin 627 reductase, G6PDH= glucose-6-phosphate dehydrogenase. 628 629 Table 3: Levels of biometric parameters calculated in corkwing wrasse captured at a PAH 630 contaminated site (Høgvarde) and reference site (Bokn). Statistical differences between sites 631 are shown in bold. * represents statistically significant difference, p<0.05, between males (M) 632 and females (F). Only male fish were available at Bokn.

- 634 Table 4: Activities or levels of various liver and red blood cell (rbc) detoxification and
- 635 antioxidant defenses measured in corkwing wrasse captured at a PAH contaminated site
- 636 (Høgvarde) and a reference site (Bokn). Statistical differences between sites are shown in
- 637 bold. * represents statistically significant differences, p< 0.05, between males (M) and
- 638 females (F). Only male fish were available at Bokn. See Table 2 legend for abbreviations.

MANUS

,

CERT

Heavy metal site

		Salvøy	visnes	p values	
LSI	М	2.39 ± 0.28	1.93 ± 0.21	0.074	
(liver weight/body weight) x100	F	1.61 ± 0.15 *	1.87 ± 0.07	0.109	
GSI	М	0.19 ± 0.05	0.10 ± 0.01	0.009	
(gonad weight/body weight) x100	F	1.079 ± 0.08	0.93 ± 0.03	0.053	
CF	Μ	1.52 ± 0.04	1.59 ± 0.04	0.237	
(weight $g/(\text{length cm})^3$) x100	F	1.58 ± 0.03	1.63 ± 0.03	0.317	
SSI	М	0.13 ± 0.01	0.07 ± 0.01	0.0001	
(spleen weight/body weight) x100	F	0.10 ± 0.01 *	0.06 ± 0.01	0.019	\mathcal{O}
Hematocrit	М	28.11 ± 0.88	34.44 ± 1.29	0.001	\sim
(%)	F	30.71 ± 1.86	32.50 ± 1.81	0.504	

6	Λ	5
υ	-	5

Heavy metal site	9			
		Salvøy	Visnes	p value
EROD (liver)	М	0.021 ± 0.002	0.029 ± 0.003	0.056
$(nmol mg^{-1} min^{-1})$	F	0.019 ± 0.002	0.025 ± 0.004	0.307
GST (liver)	М	0.860 ± 0.022	0.844 ± 0.037	0.065
$(\mu \text{ mol mg}^{-1} \text{ min}^{-1})$	F	0.714 ± 0.074	0.801 ± 0.033	0.233
GR (liver)	Μ	28.35 ± 1.93	20.82 ± 3.28	0.070
$(nmol mg^{-1} min^{-1})$	F	28.69 ± 3.73	31.72 ± 1.79	0.446
tGSH (liver)	Μ	2333.7 ± 137.3	2109.6 ± 104.0	0.216
(nmol g liver $^{-1}$)	F	2083.7 ± 71.2	2158.8 ± 56.4	0.414
GSSG (liver)	М	58.77 ± 5.85	58.01 ± 4.56	0.998
(nmol g liver ⁻¹)	F	63.92 ± 6.11	60.70 ± 7.67	0.574
%GSSG (liver)	Μ	2.55 ± 0.24	2.81 ± 0.27	0.480
(%, ratio GSSG/tGSH)	F	3.07 ± 0.28	2.77 ± 0.30	0.479
Catalase (liver)	Μ	280.10 ± 30.91	291.93 ± 31.78	0.526
$(nmol mg^{-1} min^{-1})$	F	289.08 ± 23.50	288.18 ± 26.54	0.981
DTD (liver)	М	13.57 ± 1.22	16.49 ± 1.64	0.167
$(nmol mg^{-1} min^{-1})$	F	12.38 ± 1.90	18.18 ± 3.11	0.156
SOD (liver)	М	94.71 ± 11.01	93.56 ± 19.74	0.470
(ng mg ⁻¹)	F	65.67 ± 8.73	78.40 ± 7.60	0.238
MT (liver)	М	5.12 ± 0.24	5.83 ± 0.31	0.210
(µg mg prot ⁻¹)	F	4.63 ± 0.28	5.63 ± 0.38	0.693
SOD (rbc)	Μ	388.38 ± 45.21	419.32 ± 34.57	0.593
$(ng mg^{-1})$	F	376.92 ± 33.41 *	381.52 ± 61.78	0.949
metHb (rbc)	Μ	252.97 ± 8.63	248.00 ± 9.79	0.708
(D abs mg ⁻¹)	F	238.32 ± 18.18	225.78 ± 6.35	0.526
G6PDH (rbc)	М	125.72 ± 4.77	97.96 ± 7.41	0.004
(D abs mg ⁻¹)	F	84.14 ± 6.86 *	87.21 ± 6.75	0.709
Protein carbonyls	М	1.59 ± 0.17	3.55 ± 0.43	0.001
(plasma) (nmol/mg prot) F	2.24 ± 0.44	3.34 ± 0.14	0.020

646 647

Table 2

PAH site					
		Bokn	Høgvarde	p values	
JSI	Μ	1.40 ± 0.09	1.60 ± 0.09	0.118	
iver weight/body weight) x100	F		1.46 ± 0.11		
JSI	Μ	0.13 ± 0.02	0.23 ± 0.10	0.132	
gonad weight/body weight) x100	F		1.05 ± 0.05		
CF	Μ	1.47 ± 0.05	1.60 ± 0.03	0.034	
weight $g/(\text{length cm})^3) \times 100$	F		1.50 ± 0.05		
SSI	Μ	0.09 ± 0.01	0.07 ± 0.01	0.200	
spleen weight/body weight) x100	F		0.06 ± 0.01		\mathcal{O}
Iematocrit	Μ	30.56 ± 1.00	27.67 ± 1.79	0.178	
%)	F		30.00 ± 2.22		k.
				5	
OF-P			A		
A Color			A		
A Color			NA		
A CER			NA		
A CER					

I AII SIL				
		Bokn	Høgvarde	p value
EROD (liver)	М	0.013 ± 0.002	0.029 ± 0.006	0.008
$(nmol mg^{-1} min^{-1})$	F		0.024 ± 0.009	
GST (liver)	М	0.898 ± 0.043	0.842 ± 0.038	0.371
$(\mu \text{ mol mg}^{-1} \text{ min}^{-1})$	F		0.870 ± 0.079	
GR (liver)	М	30.33 ± 1.61	28.35 ± 1.51	0.382
$(nmol mg^{-1} min^{-1})$	F		24.57 ± 3.88	
tGSH (liver)	Μ	2530.4 ± 172.0	1855.1 ± 209.2	0.023
(nmol g liver ⁻¹)	F		2099.9 ± 233.0	
GSSG (liver)	Μ	61.81 ± 4.57	47.86 ± 9.70	0.056
(nmol g liver ⁻¹)	F		48.97 ± 6.25	
%GSSG (liver)	М	2.55 ± 0.26	2.53 ± 0.29	0.954
(%, ratio GSSG/tGSH)	F		2.38 ± 0.27	6
Catalase (liver)	M	376.11 ± 26.04	349.75 ± 37.77	0.293
$(nmol mg^{-1} min^{-1})$	F	14.07 . 2.00	2/0.77 ± 22.77	0.000
DTD (liver)	M	14.07 ± 2.00	14.84 ± 1.68 8 39 + 3 38	0.823
(nmol mg ⁺ min ⁺)	Г	124.22 ± 11.50	$147 11 \pm 20.22$	0.018
SOD (liver) $(n_2 m_2^{-1})$	M F	134.25 ± 11.50	147.11 ± 20.22 105.40 ± 25.70	0.910
(ng mg)	м	6 15 + 0 60	552 ± 032	0 345
$(ug mg \text{ prot}^{-1})$	F	0.15 - 0.00	5.37 ± 0.45	0.5 15
SOD (rbc)	м	328.56 ± 39.13	330.42 ± 51.40	0.977
$(ng mg^{-1})$	F		406.99 ± 47.98	
metHb (rbc)	Μ	248.35 ± 12.63	192.17 ± 10.35	0.003
(D abs mg ⁻¹)	F		222.35 ± 10.71	
G6PDH (rbc)	М	106.16 ± 13.67	85.21 ± 5.95	0.208
(D abs mg ⁻¹)	F		88.57 ± 8.62	
Protein carbonyls	M	2.02 ± 0.14	2.39 ± 0.22 3.39 ± 0.25*	0.207
	_	1	$3.37 \pm 0.33^{\circ}$	1