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Abstract 16 
 17 
The variability of the bioaccumulation of metals (Ag, Cd, Cu, Fe, Mn, Zn) was extensively 18 
studied in the mussel Bathymodiolus azoricus from five hydrothermal vent sites inside three 19 
main vent fields of increasing depth along the Mid Atlantic Ridge: Menez-Gwen, Lucky-20 
Strike and Rainbow. Metal bioaccumulation varied greatly between vent fields and even 21 
between sites inside a vent field with B. azoricus showing a great capacity to accumulate 22 
metals. The bioaccumulation of these metals also varied significantly among tissues. The 23 
main target was the gills where metals were mainly associated with soluble compounds 24 
whereas in the digestive gland they were mainly associated with insoluble compounds. 25 
Storage of metals under insoluble forms in B. azoricus seems to be a major pathway for the 26 
detoxification of both essential and non-essential metals. Mussels from the studied fields can 27 
be discriminated following their metallic load but the segregation relies partially on the 28 
composition of the metal-enriched fluids. 29 
 30 
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 37 
1. Introduction 38 

 39 

Marine molluscs have a large capacity to accumulate metals and therefore are commonly 40 

suggested as biomonitors of metal contamination of marine ecosystems (Phillips, 1977, 1985; 41 

Goldberg et al., 1978; Rainbow, 1995; Lauenstein and Daskalalis, 1998; Langston and 42 

Bebianno, 1998; Neff, 2002). Some metals (Cu, Fe, Mn and Zn) are essential for living 43 

organisms as they are components of enzymes, respiratory proteins and structural elements of 44 

organisms. Although they become toxic when present in excess, it has been shown that the 45 

coastal mussel, Mytilus edulis, regulates zinc and partially copper bioaccumulation over a 46 

wide range of concentrations in the environment sea water (Langston et al., 1998). 47 

Conversely, other metals like Ag and Cd, are non essential metals, their accumulation by 48 

molluscs is almost universally determined by the degree of exposure (Langston et al., 1998). 49 

The cellular detoxification of trace metals is then achieved by several mechanisms including 50 

their binding to metallothioneins (e.g. Ag, Cd, Cu, Hg and Zn) and/or their incorporation to 51 

metabolically inert granules (Dallinger and Rainbow, 1993). 52 

The hydrothermal environments are characterized by high concentrations of several metals 53 

like Cd, Cu, Fe, Hg, Mn, Zn originating from the discharge of hydrogen sulfide-rich vent 54 

waters (Corliss et al., 1979; Von Damm, 1990). These peculiar ecosystems represent natural 55 

laboratories for studies on the potential deleterious effects of the cited metals (Cosson and 56 

Vivier, 1995; Cosson and Vivier, 1997; VENTOX, 2003). Bivalve molluscs living in these 57 

environments are known to accumulate tremendous amounts of metals with surprinsingly no 58 

evident deleterious effects. Bioaccumulation was reported for the clams Calyptogena 59 

magnifica (Roesijadi and Crecelius, 1984; Roesijadi et al., 1985; Cosson-Mannevy et al., 60 

1988) and Vesicomya gigas (Ruelas-Inzunza et al., 2003), and an unidentified Japanese clam 61 

(Kim et al., 1991) from the East Pacific Rise. Similar results were obtained when studying the 62 

mussels Bathymodiolus thermophilus from the East Pacific Rise (Smith and Flegal, 1989; 63 
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Rousse, 1999) and B. azoricus from the Mid-Atlantic Ridge (Geret et al., 1998; Rousse et al., 64 

1998).  65 

The Mytilidae of the genus Bathymodiolus are almost ubiquitous among the organisms 66 

associated with hydrothermal vents (Tunnicliffe, 1991) and are appropriate models for 67 

assessing the responses to the metallic enrichment of such ecosystems. The Atlantic species B. 68 

azoricus is commonly found at the Azores Triple Junction hydrothermal vents on the Mid-69 

Atlantic Ridge (ATJ-MAR) where it is frequently the dominant species, extended in high 70 

densities at the base or even on the entire walls of the chimneys (Van Dover et al., 1996; 71 

Colaço et al., 1998; Desbruyères et al., 2001). Preliminary results from individuals sampled at 72 

two sites indicated that the levels of some elements (i.e. Ag, Ba, Cd, Cu, Fe, Mn, Sr and Zn) 73 

within the gills and the digestive gland were high compared to the levels measured in tissues 74 

of the mussel Mytilus edulis (Rousse et al., 1998). Moreover, the authors suggested that the 75 

observed differences between the levels of metals in the mussels from the two vent sites could 76 

be related to differences within the chemical composition of respective hydrothermal fluids. 77 

This paper details the bioaccumulation of essential (Cu, Fe, Mn and Zn) and non-essential 78 

metals (Ag and Cd) in three tissues (i.e. gills, mantle and digestive gland) of B. azoricus 79 

sampled at five sites located among three different vent fields from the ATJ-MAR. The aims 80 

of this study were, (i) to describe the variations of metal levels between tissues, (ii) to address 81 

their intracellular distribution between soluble and insoluble fractions in relation with 82 

bioaccumulation and detoxification processes, and (iii) to establish an eventual correlation 83 

between their abundance within and among vent fields and their bioaccumulation by B. 84 

azoricus. 85 

 86 

2. Materials and Methods 87 

 88 

2.1. Sampling and sample preparation 89 
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 90 

Mussels were collected during dives using the Ifremer Remotely Operated Vehicule 91 

"Victor6000" during the "ATOS 2001" cruise. Three vent fields were explored located on 92 

three segments of the south-eastern limb of the ATJ (Ondréas et al. 1997): Menez Gwen (MG, 93 

37°51'N, 31°31'W, 850m), Lucky Strike (LS, 37°17'N, 32°16'W, 1650m) and Rainbow 94 

(36°13'N, 33°54'W, 2350m) (Fig. 1). 95 

The vent fields differ by their depth (850 to 2350m), their tectonic settings, the composition 96 

of their host rocks (mantle-derived serpentinized peridotite vs. basalt), the nature of associated 97 

volcanism, their fluid composition and the dominance of different key faunal assemblages 98 

(Fouquet et al. 1998, Desbruyères et al. 2001). Samples were collected using the grab of the 99 

submersible. Two sites were visited at Menez Gwen (ATOS 8 - A8 and ATOS 10 - A10, North 100 

East of the top of the volcano), two at Lucky Strike (Eiffel Tower - ET and Bairro Alto – BA, 101 

respectively South East and North West of the lava lake) and one in Rainbow (Rb). 102 

At each site, about ten mussels of comparable size (A8: 4.76 ± 0.15cm, A10: 4.99 ± 0.37cm, 103 

BA: 7.67 ± 0.66cm, ET: 6.50 ± 0.38cm, Rb: 6.76 ± 0.57cm) were sampled from a very small 104 

area delimited by a 50x50cm frame deployed by the submersible. Mussels were dissected on 105 

board. Tissues (i.e. gills, mantle and digestive gland) were isolated, stored in liquid nitrogen 106 

and lyophilised when back to the laboratory. Each sample was weighed, homogenized in 107 

TRIS buffer (100mM, 10mM βmercaptho-ethanol, pH 8.6) and centrifuged (30 000g, 30min, 108 

4°C). For each sample, the pellet containing the insoluble compounds (named insoluble 109 

fraction hereafter) and an aliquot of the supernatant, containing the soluble compounds 110 

(named soluble fraction hereafter) were digested with nitric acid at 60°C for metal analysis. 111 

 112 

2.2. Analytical procedure 113 

 114 

Metal quantification (i.e. Ag, Cd, Cu, Fe, Mn and Zn) was determined by Electrothermal 115 



ACCEPTED MANUSCRIPT 
 

 5 

Atomic Absorption Spectrometry (E-AAS: Hitachi Z-5000 and Solaar Unicam 989QZ), by 116 

Flame Atomic Absorption Spectrometry (F-AAS: Hitachi Z-5000) or by Inductive Coupled 117 

Plasma Atomic Emission Spectrometry (ICP-AES JY-238 sequential) depending on the ratio, 118 

concentration vs volume, of the liquid aliquots. The accuracy of the analytical procedure was 119 

checked using certified reference material (TORT-2; DORM-2; DOLT-2) from the National 120 

Research Council, Canada. Our results were in good agreement with the certified values 121 

except for Ag. The concentration of Ag in the nitric digested supernatants (soluble fractions) 122 

of homogenized reference material was too close to our detection limit. The levels of metals 123 

are expressed as µg g-1 dry weight of soft tissue. 124 

 125 

2.3. Statistical analysis 126 

 127 

In a first step, univariate analyses were performed to assess the variations in the levels of 128 

metals among sites for each tissue. One-way ANOVAs with site as a fixed factor were used on 129 

log-transformed data [ln(x+1)]. Normality was judged by normal probability plots and 130 

homogeneity of variances was verified with the Bartlett’s test (α = 0.05). Post-hoc comparison 131 

tests for means were made using the Tukey’s honestly significant difference method for 132 

unequal sample size. When a log transformation failed to meet ANOVA assumptions, raw data 133 

were analysed by a Kruskal-Wallis nonparametric test. Nonparametric multiple comparisons 134 

were performed using Nemenyi and Dunn's test (Zar, 1999). Analyses were carried out on 135 

total levels of each metal. 136 

In a second step, principal components analysis (PCA) was used to investigate the spatial 137 

patterns of the relative levels of soluble and insoluble fractions of metals over the individuals 138 

(Legendre and Legendre, 1998). One analysis was performed for each tissue. Metal levels 139 

were ln(x+1) transformed prior to analysis. 140 

 141 
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3. Results 142 

 143 

3.1. Whole metal levels 144 

 145 

Detailed variations of metal bioaccumulation in the tissues between vent fields and sites are 146 

given in Table 1. 147 

 148 

3.1.1. Intra-site comparison 149 

At Menez Gwen, the gills and the digestive gland showed a similar pattern regarding the 150 

mean levels of analysed metals (Table 1). Ag, Cd and Mn levels were higher at ATOS 8 (A8) 151 

than at ATOS 10 (A10), while the contrary was observed for Cu. No significant difference 152 

was noticed for Fe and Zn. Concerning the mantle, a pattern similar to that of the gills and 153 

digestive gland was observed for Cu and Fe, while similar levels of Ag, Cd and Mn were 154 

measured in mussels from A8 or A10. Consequently, with the exception of Cu, tissues of 155 

mussels from A8 presented metal levels (e.g., Ag, Cd, Fe, Mn, Zn) higher than or equal to 156 

those observed for mussels from A10. 157 

At Lucky Strike, the levels of Ag in the gills and the mantle were higher at Bairro Alto (BA) 158 

than at Eiffel Tower (ET). Higher levels of Cd and Zn were observed respectively for the gills 159 

and the mantle of mussels collected at BA. Beside these observations, no significant 160 

difference was evidenced between the levels of metals measured in gills and mantle from BA 161 

or ET mussels. 162 

 163 

3.1.2. Inter-sites comparison 164 

In general, mean levels of Ag, Cd, Cu and Zn in mussel tissues were higher at both sites of 165 

MG than at Rainbow or did not differ significantly (Table 1). Conversely, Fe and Mn were 166 

more abundant in mussels from Rb than from MG sites. 167 
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Similarly mussels collected at Rb generally contained less Ag, Cd, Cu and Zn than those 168 

collected at LS. The digestive gland was the only tissue where higher levels of Fe and Mn 169 

were observed for mussels collected at Rb. 170 

Gills and mantle of mussels from both BA and A8 presented similar high levels of Ag, while 171 

this metal was less abundant in mussels collected at both A10 and ET. Cd was more abundant 172 

in the tissues of the mussels collected at LS than in those collected at MG. Cu was particularly 173 

abundant in mussels collected at A10 whereas Zn was more abundant in mussels collected at 174 

LS, especially at BA. The same observation goes for Fe and Mn with equal mean levels 175 

observed for BA and ET in the gills and the mantle. 176 

Mussels from Rb bioaccumulated more Fe and Mn than those from MG or LS. Conversely, 177 

they showed lower mean levels of Ag, Cd, Cu and Zn. Higher levels of Cd, Zn, Fe and Mn 178 

were recorded for mussels collected at LS than for those collected at MG. At both fields (LS 179 

and MG) high levels of Ag were observed in mussels from BA and A8, while the highest 180 

level of Cu was recorded in mussels from A10 site. 181 

 182 

3.2. Metal compartmentalization 183 

 184 

The amount (expressed as percentages – mean values) of metals associated with insoluble 185 

compounds in the tissues of mussels collected at the studied ATJ sites are given in Table 2. 186 

This amount ranges between 24 and 97%. However, with a few exceptions (bold in the table), 187 

whatever the site, the tissue and the metal, there is a predominant association of the metals 188 

with insoluble compounds with mean amounts > 50%. 189 

From all the metals traced at the mussel gills, Zn was the only one that was not predominantly 190 

associated with insoluble compounds, being equally distributed between the soluble and 191 

insoluble fractions in mussels from MG and Rb. 192 
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In the mantle Ag is preferably immobilized as soluble form with the exception of mussels 193 

from Eiffel Tower site (Lucky Strike field), the ratio of Ag stored under insoluble form of 194 

which reached 50%. Cd was essentially associated with insoluble compounds in ATJ mussels. 195 

The ratio of Cu associated with insoluble compounds was low in mussels from Rb, while it 196 

was high for MG and LS mussels. Fe and Mn insoluble percentages were high for ATJ mussel 197 

mantles with the exception of Mn at MG. The percentage of Zn associated with insoluble 198 

compounds in mussels from Rb was lower than that of MG and LS mussels. 199 

The association of Ag with insoluble compounds varied greatly in the digestive gland of 200 

mussels from ATJ sites resulting in the following ranking LS>MG>Rb. Cd was essentially 201 

associated with insoluble compounds in mussels from MG and LS, while the association was 202 

moderate at Rb. The same observations fit with the association of Cu and Zn. Similarly, the 203 

ratios of Fe and Mn immobilized as insoluble form in the digestive gland were elevated. 204 

 205 

3.3. PCA analysis 206 

 207 

A principal components analysis (PCA) was used to investigate the spatial patterns of the 208 

relative levels of soluble and insoluble fractions of metals over the individuals. For each 209 

tissue, principal component analyses clearly separated individuals between the sampling vent 210 

fields and even between the vent sites within a field according to their relative concentrations 211 

in the soluble and insoluble fractions of the different metals (Fig. 2-4). 212 

The first 2 principal components accounted for 64.2% of the variability in the metal 213 

concentrations in the gill, with 38.9% on axis 1 and 25.3% on axis 2 (Fig. 2A). Several groups 214 

of mussels were discriminated. Going from the right of axis 1 we found LS mussels (BA then 215 

ET) followed by MG mussels (A8 and A10) and Rb mussels towards the left. This axis 216 

discriminates according to the relative levels of Zn and Cd, insoluble Ag and Fe, and soluble 217 
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Mn (Fig. 2B). On the second axis, MG discriminated itself from Rb and LS vent fields with 218 

respect to relative levels of Fe, insoluble Mn and soluble Cu. 219 

In the mantle, the PCA showed that the first two axes accounted for 64.6% of variability 220 

between the mussels, with 36.2% explained by axis 1 and 28.4% by axis 2 (Fig. 3A). The first 221 

axis takes into account the relative levels of Cd and Fe, soluble Zn and insoluble Mn, while 222 

the second one discriminates positively the Cu levels and negatively the levels of Mn. LS (BA 223 

then ET) and MG (A8 and A10) separated out to the right and left of axis 1, respectively (Fig. 224 

3B). Rainbow showed some separation from MG along the second axis. 225 

Axes 1 and 2 of the PCA accounted for 72.8% of the variability in metal levels in the 226 

digestive gland between individuals, with 50.3% on axis 1 and 22.5% on axis 2 (Fig. 4A). 227 

Metals with the greatest influence on variability between groups of mussels along axis 1 are 228 

Zn, soluble Mn and Ag, and insoluble Cu (Fig. 4B). Along axis 2 the discrimination follows 229 

the levels of insoluble Fe and Mn. On the first plane PCA ordination, Rb separated out from 230 

LS and MG along axis 1, while this later field separated from LS and Rb along axis 2. 231 

The main features that can be extracted from the 3 PCA are: (i) there is a clear spatial 232 

segregation in the metal bioaccumulation by B. azoricus; (ii) this site segregation is observed 233 

for the 3 organs studied; (iii) the behaviour of each metal or metal fraction is different for 234 

each organ studied. 235 

 236 

4. Discussion 237 

 238 

Hydrothermal fluids contain high concentrations of metals, the proportions of which vary 239 

greatly from one field to another, even at the scale of the ATJ zone (Charlou et al., 2000, 240 

2002; Douville et al., 2002). These variations are related both to the chemical composition of 241 

the basement rocks, the dynamic specificity of each hydrothermal field (Bonatti, 1984; Von 242 

Damn 1990) and even the depth bringing about phase separation processes (Charlou et al., 243 
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2000, 2002; Douville et al., 2002). Vent mussels do not live directly in contact with the 244 

potentially harmful hot fluid but in the highly chemically reactive mixing zone. Here, the 245 

mineral-rich solution, characterized by elevated methane, hydrogen and reduced sulfides, 246 

mixes dynamically with the bottom oxygen-rich seawater. Metals present in the fluid form 247 

precipitates with sulfide in plumes, chimney or in conduits surfaces (Trefry and Trocine, 248 

1985; Von Damm et al., 1995b). Iron forms preferentially fine grained sulfide particles that 249 

are exported in the buoyant and neutrally buoyant plume. Cu and Zn sulfides form large sized 250 

grains and more crystalline particles that settle rapidly in the near field region (Feely et al., 251 

1994). 252 

The bioaccumulation of metals in the mussels depends on the abundance and the 253 

bioavailability of the latter in their proximal environment. Moreover, metal bioaccumulation 254 

and storage forms are governed by the physiological functioning of the mussels. Taking into 255 

account these abiotic and biotic factors, the goal of our work was to ascertain if the amounts 256 

of metals bioaccumulated by the vent mussel B. azoricus in its tissues reflect the relative 257 

abundance of the metals present in the emitted fluids at 5 sites (A8, A10, ET, BA, Rb) located 258 

within 3 hydrothermal fields (Menez Gwen, Lucky Strike and Rainbow). 259 

 260 

Our results highlighted that vent mussels bioaccumulate higher metal levels (Ag, Cd, Cu, Fe, 261 

Mn, Zn) in their tissues (gills, mantle, digestive gland) than the coastal mussels, Mytilus 262 

edulis (Fung et al., 2004) and M. galloprovincialis (Bebianno and Machado, 1997; Besada et 263 

al., 2002; Kalpaxis et al., 2004; Szefer et al., 2004) in similar tissues. These results are in 264 

accordance with scattered studies that reported whole levels of various metals in B. azoricus 265 

from the same fields (Rousse et al., 1998; Geret et al., 1998; Kadar et al., 2005; Colaço et al., 266 

2006). As a general rule, there are specific pathways of metal bioaccumulation in tissues 267 

depending upon their direct contact with the surrounding environment, the bioavailability 268 

(chemical forms) of metals, the efficiency of uptake, storage, transfer to inner organs, 269 
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excretion mechanisms and physiological status. Despite its very peculiar environment and 270 

physiology B. azoricus presents a metal organotropism similar to the main trends observed in 271 

coastal mussels (Langston and Bebianno, 1998). The gills are directly exposed to dissolved 272 

and particulate metals and show the highest levels of metals while the mantle, similarly 273 

exposed, shows the lowest levels. This discrepancy could be related to a lesser involvement of 274 

the mantle in exchanges, its participation to shell production as well as storage and its lack of 275 

symbionts. The digestive gland of B. azoricus is supposed to be involved at a lesser degree in 276 

the nutrition owing to the importance of the symbiosis as a source of energy, but confirms its 277 

participation in metal metabolism as a pathway and storage organ. However, the fact that B. 278 

azoricus can thrive with such metallic loads is noteworthy knowing that non essential metal 279 

presence or excessive amounts of essential metals result generally in the perturbation of the 280 

enzymatic functions (via constitutive ion substitutions on metalloenzymes) and the 281 

antioxidant defence system (Bebianno et al., 2005; Company et al., 2006).  282 

 283 

A comparison of the levels of studied metals in B. azoricus whole organs was established with 284 

data regarding vent bivalves from the East Pacific Rise (EPR): Bathymodiolus thermophilus 285 

and two vesicomids Calyptogena magnifica and Vesicomya gigas to assess the metal load of 286 

B azoricus (Fig. 5). 287 

Main features emerge from this comparison between B. azoricus and related species from the 288 

Pacific vents. The high load of Fe and Zn in the gills of mussels collected at Rb and LS, 289 

respectively has to be attributed to the high concentration of these metals in corresponding 290 

end-members (Charlou et al., 2000, 2002; Douville et al., 2002). However it should be noted 291 

that, even though Fe and Zn are as abundant in the fluids from the EPR (Michard et al., 1984; 292 

Von Damm, 1995; Cosson 1996; Le Bris et al., 2003) as in Rb and LS fluids, the availability 293 

of both metals in the surrounding environment of B. thermophilus seems to be lower than in 294 

B. azoricus environment (Table 3). Conversely, C. magnifica and V. gigas, present high levels 295 
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of Fe and Zn. Several hypothesis can be proposed to explain this discrepancy. First of all, C. 296 

magnifica and B. thermophilus, even if they share the same location in some EPR sites, are 297 

not positioned identically with regard to the emission of the fluid-seawater mixture. C. 298 

magnifica lives in cracks in the basalt crust with its foot extending towards the input of fluid 299 

enriched with reduced compounds, while B. thermophilus is an epibiotic organism living on 300 

bare basalt having a more versatile relationship to the reduced compound-providing fluid. In 301 

the Guaymas Basin, V. gigas is encountered in a sedimentary environment enriched with 302 

particulate mineral and organic matter which could be ingested and partially responsible for 303 

the important metal bioaccumulation (Ruelas-Inzunza et al., 2003). The high amounts of Zn in 304 

C. magnifica tissues could also be attributed to the occurrence of a Zn-protein involved in 305 

sulphide transport from their foot to the endosymbiont host in their gills (Childress et al., 306 

1993). The existence of such a protein has been suggested by Ruelas-Inzunza et al. (2003) as 307 

a reason for the high amounts of Zn observed in V. gigas tissues. Moreover, the degree of 308 

dependence of the bivalve genus regarding their endosymbionts could interfere with the 309 

uptake of metals from their environment under soluble or particulate forms, in relation with 310 

their feeding habit. Copper in the end-member and immediate neighbourhood of mussels at 311 

MG is low compared to recorded values for the EPR or LS and Rb sites (Charlou et al., 2000, 312 

2002; Cosson 1996; Douville et al., 2002; Michard et al., 1984; Von Damm, 1995), but 313 

however Cu is abundant in both gills and mantle of MG mussels reflecting a higher 314 

bioavailability. 315 

The association of Ag with insoluble compounds in the gills of B. azoricus is less important 316 

than for B. thermophilus but similar to that observed in M. edulis. Mussels from LS are 317 

presenting intermediate values (Table 2). Conversely, the storage of Cd under insoluble forms 318 

is more efficient for B. azoricus. It is of interest to note that compared to M. edulis both 319 

Bathymodiolus species present higher percentages of Cd associated with insoluble 320 

compounds. The proportion of Cu in an insoluble form in B. azoricus is generally lower than 321 
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the very high value reported for B. thermophilus and higher than the intermediate value 322 

reported for M. edulis. The percentage of insoluble Zn in the gills of mussels from LS is the 323 

highest reported, but mussels from MG or Rb show percentages similar to that reported for B. 324 

thermophilus and M. edulis. 325 

In the mantle of mussels from ATJ, the proportion of Ag immobilized in an insoluble form is 326 

low compared to the corresponding ratio observed for B. thermophilus. Mussels from Rb 327 

present a percentage of Ag bound to insoluble compounds equivalent to that observed in M. 328 

edulis mantle, while the values reported for MG and LS mussels are higher. Unlike B. 329 

thermophilus Cd is essentially associated with insoluble compounds in B. azoricus mantle. 330 

Owing to the very low and erratic levels of Cd in the mantle of M. edulis used as controls in 331 

cited metal exposure experiments, no comparison can be established with B. azoricus Cd 332 

partitioning. The proportion of Cu associated with insoluble compounds in B. azoricus mantle 333 

is generally below that reported for B. thermophilus. ATJ mussels present percentages of Cu 334 

associated with insoluble compounds in their mantle equivalent to those reported for M. 335 

edulis. Generally, the association of Zn with insoluble compounds is more effective in B. 336 

azoricus than in B. thermophilus or M. edulis.  337 

The percentage of Ag associated with insoluble compounds in the digestive gland of Rb 338 

mussels is equivalent to that recorded for M. edulis, while that observed at MG and LS are 339 

higher and much higher, respectively. Mussels from ATJ present a high association of Cd, Cu 340 

and Zn with insoluble compounds in the digestive gland compared to M. edulis. 341 

In B. azoricus the partionning of metals between soluble and insoluble fractions varies among 342 

sites and tissues as whole metal levels do. But, as mentioned in earlier work, metals are 343 

preferentially associated with insoluble compounds (Rousse et al., 1998; Geret et al., 1998). 344 

However it is noticeable that the distribution of metals in B. azoricus tissues often does not 345 

differ from that of corresponding tissues of non-exposed M. edulis, underlying that the 346 

compartmentalization of metals in bivalves is a complex phenomenon not directly related to 347 
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their abundance in the surrounding seawater and/or the whole tissue. The comparison of the 348 

proportion of metals stored as insoluble forms in the tissues of both Bathymodiolus species 349 

(with higher percentages observed for Ag and Cu in B. thermophilus, while higher 350 

percentages of Cd and Zn are observed in B. azoricus) supports also the former statement. 351 

Nevertheless, the efficient storage of metals as chemical forms known to be less toxic is a 352 

mechanism allowing Bathymodiolus to cope with a highly metal-loaded environment. 353 

The PCA analysis (Fig. 2-4) allows discrimination of the bioaccumulation of metals by B. 354 

azoricus in relation to the sampling fields (RB, LS and MG) and even to the sampling sites 355 

(MG-A8 vs A10, LS-ET vs BA). This discrimination can be related to the large differences 356 

observed in the chemical composition of the hydrothermal fluids emitted in the 3 fields (Table 357 

3). The fluids venting in Rainbow are characterized by unique Fe and Mn composition, 358 

largely higher than generally encountered in the MAR hydrothermal vents. This metallic 359 

enrichment of the fluid is also observed for Ag, Cu, Zn and Pb (Douville et al., 2002). In the 360 

same way, the discrimination observed at the site scale in Lucky Strike between Eiffel Tower 361 

and Bairro Alto can be explained by the differences in end-member concentrations between 362 

the vents located around the LS lava lake area (Charlou et al., 2000). Bairo Alto is situated in 363 

the Northern part of the lake where the emitted fluids have a salinity similar to seawater. 364 

Eiffel Tower is in the Southern part of the lake where the fluid exhibits a salinity lower than 365 

seawater. The same conclusion could be applied to Menez Gwen: the two different sampling 366 

sites (A8 and A10) are situated in the NW of the volcano and could be under the influence of 367 

two chemically different fluids not studied by Charlou et al., 2000. 368 

However, the chemical composition of the pure fluid is not sufficient to explain the 369 

discrimination observed in the PCA. For example, concerning gills and mantle, the LS 370 

mussels are separated from Rb mussels owing to their high levels of Cd and Zn that are not 371 

consistent with data regarding the fluid concentration at LS. In the same way, the variables Fe 372 

and Mn are often opposed to Zn and Cu, whereas the metal concentrations in the fluid follow 373 
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the same trend with higher concentrations at Rainbow and smaller ones in Menez Gwen. 374 

Consequently, the metal burden of B. azoricus tissues is under the dependency of factors 375 

belonging to different scales. At the site scale, the composition of the emitted fluid governs 376 

the input of metals in the ecosystem and their potential bioaccumulation by mussels. At the 377 

scale of mussel’s immediate environment, uptake and storage of metals is more dependent of 378 

their physico-chemical forms (dissolved vs particulate), the potential accumulation of 379 

particulate matter, their association with inert or organic material, and the physiological needs 380 

and behaviour of the mussels. However, even if not directly related to their concentration in 381 

the pure fluid, the analysis of the metallic load of B. azoricus allows their separation among 382 

the three studied ATJ fields. 383 

 384 

Taking into account that the bioaccumulation of metals in bivalves results mainly from their 385 

trophic uptake (e.g. Geret 2000, Wang 2002) the high amounts of metals observed in the 386 

mixotrophic B. azoricus are surprising. Several explanations can be proposed: (i) B. azoricus 387 

are exposed continuously to a metal enriched environment (Desbruyères et al., 2001); (ii) 388 

metals in B. azoricus surrounding water are in extremely available forms; (iii) B. azoricus 389 

uptake rates from the environment are extremely high in relation with the need of energy 390 

sources; (iv) the trophic uptake of metal by B. azoricus is particularly important despite the 391 

relevant role of the symbiosis in its nutrition. Data regarding the bioavailability of metals in 392 

mussels proximate environment are needed. Further work has to be developed regarding 393 

metal uptake pathways, direct or trophic, in relation with the feeding habits of B. azoricus and 394 

the occurrence of metal containing particles in its digestive tract and the putative participation 395 

of symbionts in trace element detoxication in the gills. 396 

 397 

5. Conclusions 398 

 399 
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Our study confirms the existence of an equilibrium between the levels of metals in the end-400 

members, the proximate environment of B. azoricus and mussel tissues. The recorded 401 

variations are due to local modification of metal bioavailability generated by abiotic or biotic 402 

factors, and the physiological status of the organisms influenced by the physico-chemical 403 

characteristics of the three studied fields. 404 

 405 
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Table 1 : Mean levels and standard deviation of metals in tissues of the vent mussel 

Bathymodiolus azoricus collected at three fields (five sites) on the Mid Atlantic Ridge-Azores 

Triple Junction. For each line, similar letters indicate no statistical difference among tissues 

(p>0.05). Levels are expressed as µg.g-1 dry weight of soft tissue. A8 and A10 (Menez Gwen 

field), BA and ET (Bairro Alto and Eiffel Tower - Lucky Strike field). 

�

�

�

GILLS
Ag 4.5 ± 1.2 a 1.9 ± 1.3 b 5.2 ± 1.3 a 2.1 ± 0.7 b 1.8 ± 1.1 b
Cd 7.4 ± 2.5 c 3.2 ± 1.0 d 47.2 ± 9.8 a 17.6 ± 2.2 b 1.8 ± 0.7 e
Cu 57 ± 12 b 130 ± 82 a 80 ± 21 ab 109 ± 69 a 52 ± 27 b
Fe 183 ± 46 c 206 ± 45 bc 361 ± 185 ab 488 ± 570 ab 2066 ± 956 a
Mn 6.3 ± 0.8 a 4.8 ± 0.7 b 9.5 ± 6.5 a 7.2 ± 1.7 a 9.1 ± 2.6 a
Zn 168 ± 33 c 197 ± 57 bc 1977 ± 605 a 768 ± 578 ab 106 ± 46 c

MANTLE
Ag 0.7 ± 0.3 a 0.5 ± 0.3 ab 0.8 ± 0.3 a 0.4 ± 0.1 bc 0.1 ± 0.1 c
Cd 0.5 ± 0.3 bc 0.5 ± 0.4 bc 2.4 ± 1.2 a 1.2 ± 0.6 ab 0.04 ± 0.03 c
Cu 9 ± 4 bc 81 ± 76 a 15 ± 6 abc 28 ± 27 ab 1 ± 1 c
Fe 28 ± 35 c 40 ± 47 bc 229 ± 113 a 141 ± 74 ab 186 ± 94 ab
Mn 3.0 ± 0.7 bc 2.4 ± 1.8 c 6.4 ± 2.4 a 5.5 ± 1.1 ab 8.4 ± 2.5 a
Zn 46 ± 13 cd 100 ± 63 ab 145 ± 67 a 69 ± 27 bc 28 ± 8 d

DIGESTIVE 
GLAND

Ag 0.9 ± 0.3 a 0.4 ± 0.1 b 0.5 ± 0.2 b 0.5 ± 0.2 b
Cd 4.0 ± 1.3 a 2.3 ± 0.5 b 4.5 ± 2.1 a 1.5 ± 1.0 b
Cu 30 ± 15 b 172 ± 81 a 48 ± 27 b 11 ± 10 c
Fe 198 ± 91 c 200 ± 60 c 919 ± 699 b 1854 ± 1048 a
Mn 3.8 ± 2.1 c 2.1 ± 0.6 d 5.4 ± 1.6 b 8.1 ± 1.9 a
Zn 82 ± 42 b 111 ± 49 b 276 ± 81 a 45 ± 12 c

A10 ET
RAINBOWLUCKY STRIKEMENEZ GWEN

BAA8
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Table 2 : Mean levels and standard deviation of amounts (expressed as percentages) of metals 

associated with insoluble compounds in the tissues of vent mussels collected at the studied 

Azores Triple Junction sites. A8 and A10 (Menez Gwen field), BA and ET (Bairro Alto and 

Eiffel Tower - Lucky Strike field). B. t.: Bathymodiolus thermophilus collected during the 

HOPE99 cruise at the East Pacific Rise (EPR) 9°N vent site (Cosson, unpublished data), M. 

edulis: Mytilus edulis, from Bay of Bourgneuf and Normandy shellfish farms used as control 

in laboratory experiments, except for Ag data obtained from Ag-exposed mussels (Geret, 

2000). ** : levels were too low to allow the determination of Ag levels in soluble and/or 

insoluble fractions. 

�

 �

B. t. M. edulis
EPR Geret
9�N 2000

GILLS
Ag 27 ± 6 24 ± 14 43 ± 10 43 ± 15 31 ± 25 89 33 / 13 / **
Cd 57 ± 5 47 ± 7 80 ± 7 73 ± 7 47 ± 18 43 17 / ** / 24
Cu 64 ± 5 76 ± 9 80 ± 5 86 ± 4 65 ± 10 91 54 / 38 / 44
Fe 82 ± 4 82 ± 4 74 ± 8 79 ± 8 75 ± 5
Mn 61 ± 3 68 ± 5 86 ± 5 71 ± 5 68 ± 7
Zn 45 ± 8 45 ± 13 94 ± 2 84 ± 7 37 ± 15 38 48 / 55 / 47

MANTLE
Ag 31 ± 16 38 ± 26 36 ± 7 50 ± 14 22 ± 15 91 24 / 26 / **
Cd 61 ± 18 85 ± 14 57 ± 11 42 ± 22 67 ± 25 45 ** / ** / **
Cu 52 ± 17 89 ± 6 66 ± 12 69 ± 14 34 ± 24 89 60 / 55 / 29
Fe 58 ± 24 79 ± 17 68 ± 17 68 ± 14 80 ± 7
Mn 49 ± 7 45 ± 17 62 ± 7 50 ± 3 57 ± 9
Zn 66 ± 9 82 ± 7 81 ± 8 68 ± 11 48 ± 10 59 42 / 35 / 51

DIGESTIVE 
GLAND

Ag 54 ± 19 41 ± 19 80 ± 14 24 ± 22 18 / 23 / 24
Cd 79 ± 8 80 ± 11 94 ± 5 48 ± 23 22 / 18 / 15
Cu 88 ± 7 98 ± 1 95 ± 5 68 ± 18 32 / 29 / 09
Fe 96 ± 3 98 ± 1 95 ± 6 77 ± 11
Mn 87 ± 8 89 ± 5 92 ± 5 61 ± 18
Zn 92 ± 6 96 ± 2 97 ± 2 61 ± 20 32 / 33 / 44

Bathymodiolus azoricus
MENEZ GWEN LUCKY STRIKE RAINBOW
A8 A10 BA ET
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Table 3 : End-member concentrations in the Mid Atlantic Ridge-Azores Triple Junction 

(Menez Gwen, Lucky Strike and Rainbow), East Pacific Rise (EPR) and Guaymas Basin vent 

fluids. Adapted from Charlou et al., 2002; Cosson, 1996; Douville et al., 2002; LeBris et al., 

2003; VonDamm, 1995. 
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Figure 1: Location of the vent fields on the Mid-Atlantic Ridge (adapted from Desbruyères et 

al., 2006). 

Figure 2 : First plane principal component analysis (PCA) of mussels based on metal levels in 

soluble and insoluble fractions of the gills. (A) individual scores. (B) descriptor scores. MG-A8 

and MG-A10 (Menez Gwen field), BA and ET (Bairro Alto and Eiffel Tower - Lucky Strike 

field), Rb (Rainbow field). 

Figure 3 : First plane principal component analysis (PCA) of mussels based on metal levels in 

soluble and insoluble fractions of the mantle. (A) individual scores. (B) descriptor scores. MG-

A8 and MG-A10 (Menez Gwen field), BA and ET (Bairro Alto and Eiffel Tower - Lucky 

Strike field), Rb (Rainbow field). 

Figure 4 : First plane principal component analysis (PCA) of mussels based on metal levels in 

soluble and insoluble fractions of the digestive gland. (A) individual scores. (B) descriptor 

scores. MG-A8 and MG-A10 (Menez Gwen field), BA and ET (Bairro Alto and Eiffel Tower - 

Lucky Strike field), Rb (Rainbow field). 

Figure 5 : Comparison of Bathymodiolus azoricus gill and mantle metal level range with the 

average levels of metals observed in corresponding organs within bivalves from the East 

Pacific Rise hydrothermal vents. A: Ag, Cd, Cu, Mn levels, scale 0-220 µg.g-1 dw. B: Fe, Zn 

levels, scale 0-2200 µg.g-1 dw. Calyptogena magnifica (Roesijadi and Crecelius, 1984; 

Roesijadi et al., 1985; Cosson-Mannevy et al., 1988); Vesicomya gigas (Ruelas-Inzunza et 

al.,2003); Bathymodiolus thermophilus (Rousse, 1999).  
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