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 1 

Effect of copper on the scope for growth of clams (Tapes 1 

philippinarum) from a farming area in the Northern Adriatic Sea. 2 

 3 
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44100, Italy 6 

 7 

Abstract 8 

Copper is currently the most common biocide in antifouling paints. Levels of this metal were 9 

measured in the water, particulate matter and sediments from a shellfish farming area in the 10 

Sacca di Goro (Northern Adriatic Sea) over one year. With respect to the 1980s, copper 11 

environmental level increased two–fold. The release of copper from shellfish farmer boats 12 

was also estimated to be > 250 kg Cu y-1. Clams Tapes philippinarum were collected in the 13 

same area and seasonally exposed to a sublethal (10 µgCu l-1) concentration of copper. 14 

Physiological traits were significantly affected by copper exposure (scope for growth declined 15 

as a result of reduced clearance rate, increased oxygen consumption and a generally lower 16 

absorption efficiency). Results of this study are cause for concern for shellfish farming 17 

activities at least in Northern Adriatic, where shellfish farming is a monoculture of T. 18 

philippinarum. A strict interpretation of the precautionary principle might suggest that more 19 

rigorous regulatory action to control copper inputs in the field would be justified. 20 

 21 
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 2 

Introduction 1 

Copper is essential for biological life, since it is a cofactor of the prion protein and 2 

many metalloenzymes, such as cytochrome-c oxidase and copper-zinc superoxide dismutase 3 

(White and Rainbow, 1985; Geret et al., 2002). On the other hand, copper at high 4 

concentration is extremely toxic: because of its high affinity for thiol groups, copper is able to 5 

bind to cysteine with a consequent inactivation of the proteins themselves (Freedman et al., 6 

1989). Copper pollution can arise from mining, brass manufacturing, electroplating and 7 

excessive use of copper-based agrochemicals. After the ban of the use of tributyltin as 8 

antifouling agent on small (< 25 m length) boats, copper has become the most common 9 

biocide in many antifouling paints (Yebra et al., 2004), and is the predominant toxicant 10 

among a number of other biocides (Okamura et al., 2002). Recent investigations have 11 

concluded that boat traffic may be a significant source of metal contamination, e.g. through 12 

the use of zinc anodes and copper-based antifouling paints (Matthiessen et al., 1999; Karlsson 13 

and Eklund, 2004; Schiff et al., 2004). Bivalves accumulate copper in direct proportion to 14 

their environmental levels (Roesijadi, 1980). Responses to copper exposure (80 – 500 µg Cu l-15 

1) have been shown to vary from a reduction in filtration rate (Manley, 1983) to profound 16 

effects on protein metabolism (Viarengo et al., 1981), and to reductions in calcium 17 

homeostasis (Gnassia-Barelli et al., 1995). At even lower concentration (10 µg Cu l-1), 18 

activities of antioxidant enzymes are reduced (Isani et al., 2003), and growth performance is 19 

affected (Sobral and Widdows, 1997).  20 

Tapes philippinarum is an exotic species that was deliberately introduced in the 1980s 21 

in the Sacca di Goro, a brackish lagoon in the Po River deltaic area (northern Adriatic Sea, 22 

Italy), for the relaunch of a mollusc fishery. Today, about half of the bottom of the Sacca di 23 

Goro is dedicated to clam culture-based fishery. There is an abundant literature on the 24 

ecological characteristics of the species, largely because of its commercial interest (e.g. 25 
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Goulletquer and Heral, 1997). However, interactions and energetics of T. philippinarum in the 1 

new habitat have only recently been addressed (Mistri, 2004; Sgro et al., 2005a; 2005b). T. 2 

philippinarum is both a deposit feeder (i.e. it filters resuspended sediment) and a facultative 3 

filter feeder, and is available from farming grounds all year round. 4 

Copper, though currently receiving less attention than organotin, will probably face 5 

similar restrictive legislation in the future. To date, one developed country, Sweden, has 6 

banned all toxic metal antifouling coatings in the Swedish Baltic Sea area (Rittschof, 2001). 7 

The main objective of this study was to determine the effect of a sublethal concentration of 8 

copper on the energetics of T. philippinarum. Related goals were to determine whether, due to 9 

the ban of TBT in antifouling paints, copper contamination in clam farming areas exists, and 10 

to estimate the release of copper from shellfish farmers’ boats. 11 

 12 

Materials and Methods 13 

Physiological measurements 14 

Tapes philippinarum were collected from a farming ground (44°48’55.01’’N, 15 

12°18’19.44’’E), and allowed to acclimate to laboratory conditions for one week prior to 16 

experiments. Clams were exposed to a sublethal copper concentration of 10 µg l-1, obtained 17 

by diluting a stock solution of 1 g l-1 of CuCl2. There were two copper exposure tanks and two 18 

control tanks with 30 clams per tank (in 10 l of aerated seawater). Clams were fed daily on a 19 

culture of T-Isochrysis (batch: TISO15-1307839; BlueBiotech® Germany). Water was 20 

renewed every two days. Tanks and glassware were acid-washed prior to use, and tanks rinsed 21 

thoroughly with seawater prior to addition of clams. Sampling times were at 0, 2, 5, 9, 14 and 22 

20 days. At each time point, four randomly chosen clams from each tank (two controls and 23 

two treatments) were taken for physiological measurements. Measurement methods are fully 24 

described in Sgro et al. (2005a), and followed the procedures outlined by Widdows and Staff 25 
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(1997). Briefly, clearance rate was measured in plastic beakers (2 l) of filtered (0.45 µm) 1 

seawater, with two clams per beaker plus one control (without clams). Initial T-Iso 2 

concentration was ca. 25000 cells ml-1. Each trial started when the clams started to filter 3 

again, i.e. when they extended their siphons. Samples were collected from each beaker every 4 

20 min for the duration (2 h) of the experiment. Clearance rate was measured as the volume of 5 

water cleared of chlorophyll-a per unit time, and was related to the dry tissue weight of clams 6 

(oven drying of soft parts for 48 h at 80°C). Oxygen consumption was measured individually 7 

in four closed chambers (200 ml) plus one control, with a calibrated OxyGuard® Handy-γ 8 

oxygen electrode, at the start and after 2 h incubation period. Oxygen consumption was also 9 

corrected for the dry weight of clams, and converted to energy equivalents according to 10 

Gnaiger (1983): 1 µmol O2 = 0.456 J. The absorption efficiency was established by the ratio 11 

method of Conover (1966), which measures the efficiency with which organic material is 12 

absorbed from the ingested food, as the ratio of the fractions of food and faeces lost on ashing 13 

(4 h at 450°C on pre-weighed Whatman® GF/C filters). Faeces were collected from the 14 

beakers at the end of each clearance measurement. The scope for growth provides an 15 

instantaneous measure of the energy status of the clam: the energy that clams have available 16 

for growth and reproduction was finally determined by the equation of Warren and Davis 17 

(1967) which is based on the difference between energy absorbed from food consumed and 18 

energy losses via respiration. In bivalves, clearance and respiration rates depend on the 19 

physiological status, food ration, and to a lesser extent, season and temperature (Bayne et al., 20 

1976; Sobral and Widdows, 2000; Riisgård et al., 2003). The first set of experiments was 21 

carried out in November 2003, and then experiments were repeated in March, May and July 22 

2004. Physico-chemical water parameters were: temperature 10° to 25°C, salinity 26 to 28 23 

and pH 8.0 to 8.2. A total of 480 clams was used (31.5 mm mean shell length + 0.6 SD). 24 

Environmental measurements 25 
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Field surveys focused on sampling of water, sediment and suspended particulate 1 

matter (SPM), and covered nine monthly sampling periods from February to December 2004. 2 

One fixed station (44°48’55.27’’N, 12°18’18.89’’E; depth 1.5 m), close to the farming 3 

ground, was chosen. At each sampling date, 50 l of seawater were collected and immediately 4 

vacuum-filtered onto Millipore® HA 0.45 µm membranes. Two litres of filtered water were 5 

retained and acidified with suprapur HNO3 to 1-2 pH (2 ml l-1). Membranes with SPM were 6 

transferred in weighed bottles and sealed. Sediment samples were collected with a corer; the 7 

first 2 cm of three replicate cores (i.d. 5 cm) were retained. All samples were ice-chilled in a 8 

cooler on the boat, and received at the laboratory within 2 h after collection. Water samples 9 

were analyzed through DPASV (Differential Pulse Anodic Stripping Voltammetry; Wang, 10 

1994) with an AMEL433 instrument. This technique is particularly useful when analyzing 11 

seawater. Membranes with SPM were oven dried (100°C) to constant weight, treated with 12 

suprapur HNO3, and mineralized in a microwave oven (Milestone ETHOS 900: 350 w: 15 13 

min, 400 w: 10 min). After dilution with Milli-Q water, copper analyses were carried out 14 

through plasma spectrometry (Perkin-Elmer Optima 3100 XL). Sediment samples were 15 

treated and analyzed like SPM samples. Adequate quality assurance/quality control measures 16 

were followed in all aspects of the study, and intercalibration exercises were carried out 17 

within the TAQC-WFD (ISO/IEC 17025). The analytical procedures were checked using 18 

certified reference material (2704 of National Bureau of Standards) and allowed agreement 19 

with the certified values higher than 95%.  20 

Estimation of copper inputs from shellfish farmer fleet 21 

The estimate of copper inputs from boats was conducted calculating the wetted hull 22 

area (WHA) of boats, as WHA = L x (B + D), where L is the length, B the beam, and D the 23 

draft. Then, the leaching rate of copper from antifouling paints was calculated considering the 24 
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input for all boats (IB) per day, as IB = Number of boats x WHA x release rate of copper. The 1 

release rate of copper was drawn from literature (6.24 µg cm-2 d-1; Matthiessen et al., 1999). 2 

 3 

Results 4 

No mortality occurred during the physiological experiments. Clearance rates were 5 

always lower in the copper-exposed clams (Fig. 1). Two-way ANOVAs (Table 1) showed a 6 

significant (all p < 0.001) initial decline in clearance rates of exposed clams, which tended to 7 

stabilize between the fifth and the eleventh day of exposure, depending on the period of 8 

experimentation. Clearance rates also differed with time of exposure (all p < 0.001). Oxygen 9 

consumption was always higher in exposed clams (Fig. 2; all p < 0.001 except November, p < 10 

0.05). Absorption efficiency followed a more complicated pattern (Fig. 3). In two out of four 11 

experiments (November and March), a compensation seems evident in the earlier period of 12 

exposure, since less food was ingested (lower clearance rates) but it was absorbed more 13 

efficiently (higher absorption efficiency). However, all experiments showed a consistent 14 

decline in absorption efficiency after 9 d exposure. The results presented in Figures 1, 2 and 3 15 

shows that there was generally a consistent physiological response to Cu in all four seasonal 16 

experiments. Scope for growth was calculated for each measurement period, and was always 17 

higher for control clams, independently from different environmental conditions and 18 

physiological status of the clams (Fig. 4). In March and July, negative values of the scope for 19 

growth indicate that Cu exposed clams had to use their body reserves to meet metabolic 20 

requirements.  21 

Remarkable variations of copper values in the field were found during the study 22 

period. Table 2 summarizes copper concentration in water, SPM, and sediments. Briefly, 23 

water concentrations ranged between 2 and 7.5 µg Cu l-1; in the SPM between 70 and 287 µg 24 

Cu g-1, while in the sediment variations were between 7.5 and 53.5 µg Cu g-1. 25 
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At Goro, shellfish farmers’ boats are quite standard in size, and parameters for the 1 

calculation of WHA were: L = 5 m, B = 1.5 m, and B = 0.5 m. The fleet consists of about 2 

1200 boats (IREPA, 2003). Thus, the leaching rate of copper from antifouling paints was 3 

estimated at 0.75 kg Cu d-1, equalling 273 kg Cu yr-1. However, this copper input must be 4 

considered a very conservative estimate, since it assumes one antifouling treatment per year 5 

(most shellfish farmers treat their boats twice a year), and does not consider the recreational 6 

fleet (about 200 yachts of various sizes) which is moored all year round in the touristic 7 

harbour of Goro. 8 

 9 

Discussion 10 

 After their ban for the use on small boats and aquaculture, triorganotin antifoulants 11 

have been superseded by antifouling products based mainly on copper metal oxides. Although 12 

the deleterious effects of excess copper on aquatic biota are known, very few data are 13 

available regarding the potential increase in copper concentration following an increase in 14 

popularity of such products amongst small boat users. Pre-TBT-ban copper concentration in 15 

the water of the Sacca di Goro (1987-1988) was between 0.2 and 1.6 µg Cu l-1 (Fagioli et al., 16 

1991). It seems evident that in the last 15 y, the concentration of copper in the water has 17 

greatly increased. Of course we can not state whether this is due only to the use of copper-18 

based antifoulants, or to a generalized increase of contamination of the environment (e.g. 19 

through the discharge of continental water from the catchment basin of the Po di Volano 20 

river). Helland and Bakke (2002), however, reported that during a period of 90% reduction in 21 

the industrial input of copper in a Norwegian estuary, the very high concentrations of copper 22 

found were caused by leaching from antifouling paints. We estimated very conservatively a 23 

leaching rate of copper from antifouling paints of about 270 kg Cu yr-1. This amount is 24 

comparable to figures reported in many major marinas and yacht moorings in U.K. 25 



ACCEPTED MANUSCRIPT 
 

 8 

(Matthiessen et al., 1999), which are cause for concern. The sampling site chosen in the Sacca 1 

di Goro, being close to the shellfish farming ground, should be considered a “clean” site. 2 

Unfortunately, there are no data about pre-industrial levels of copper in the Sacca. However, 3 

from the 1980s, an increased concentration of copper in the water (up to 7 µg Cu l-1), SPM 4 

(up to 250 µg Cu g-1) and sediment (up to 50 µg Cu g-1) is evident. Moreover, sedimentary 5 

copper concentrations were often above the threshold effect level (TEL: 18.7 µg Cu g-1) and 6 

effect range Low (ERL: 34 µg Cu g-1) of the Florida Department of Environmental Protection 7 

(FDEP; MacDonald, 1994) and the National Oceanic and Atmospheric Administration 8 

(NOAA; Long et al., 1995) sediment quality guidelines respectively. Copper is known to 9 

preferentially adsorb to organic matter, and such an adsorption might reduce the reactivity and 10 

hence the toxicity of copper (Gardner and Ravenscroft, 1991). Clams, however, can 11 

accumulate contaminants directly from seawater, from sediments and from contaminated food 12 

(Coelho et al., 2002a; 2002b; Coughlan et al., 2002). Such accumulation can result in the 13 

production of initiators of cytotoxic injury with degeneration of lysosomal function (Kurelec, 14 

1993), decreased scope for growth, as shown by the present study, faster aging, and finally, 15 

decreased reproduction which reduces the fecundity of the population (Coughlan et al., 2002).  16 

Most bivalves can reduce the toxic effects of metals by producing metal-binding 17 

proteins (Roesijadi, 1980). However, the increased energy expenditure recorded in the Cu 18 

exposed clams was probably due in part to the increased cost of metal-binding protein 19 

synthesis. When combined with the reduction in food energy consumption, due to the toxic 20 

effects of copper on the ciliary feeding activity, this resulted in very low and even negative 21 

values of scope for growth in 10 µg Cu l-1 exposed clams. Even at the end of the 20 d 22 

exposure period, when physiological responses seemed to recover slightly, the overall 23 

energetics of the clams was still greatly affected. This suggests that any detoxification 24 

mechanism allowed only partial recovery or only served to reduce the potential toxic effects 25 
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of Cu exposure. In fact, at the end of the 20 d long exposure, clearance rates were, on average, 1 

54% of control rates, respiration was high at about 120% of control, and scope for growth was 2 

reduced to about 15% of the initial value. These figures are in accordance with Sobral and 3 

Widdows (1997), who studied the effect of copper on the clam Ruditapes decussatus. It has 4 

been suggested (Hawkins et al., 1989) that a positive relationship may exist between the 5 

growth rate of individual bivalves and heterozygosity measured at polymorphic enzyme loci. 6 

In the blue mussel (Mytilus edulis), exposure to copper in the laboratory revealed genotype-7 

dependent mortality, with those individuals expressing a higher degree of heterozygosity 8 

surviving longest (Hawkins et al., 1989). The hypothesis that heterozygosity is associated 9 

with improved survivorship in contaminated conditions is also supported by Nevo et al. 10 

(1986), who reported that for marine molluscs, broad-niche and highly heterozygous species 11 

display significantly higher survivorship than narrow-niche, genetically poor, congeneric 12 

species, after exposure to inorganic pollutants. Unfortunately, the level of heterozygosity of 13 

Adriatic Tapes philippinarum populations is unknown. However, considering that all Adriatic 14 

populations, from Venice to Ravenna, derive just from three successive introductions (1984, 15 

1985 and 1986) of only about 20 kg of seed imported from the same British hatchery 16 

(Pellizzato, 1990), it seems reasonable to suspect that the level of heterozygosity should not 17 

be particularly high. The increasing environmental levels of copper, as well as other toxic 18 

environmental contaminants,  poses a threat to populations with reduced heterozygosity and 19 

how it will affect the species’ fitness and distribution.  20 

 In summary, the data presented in this study give sufficient concern about possible 21 

environmental damage to further justify restrictive legislation for copper use in antifouling 22 

coating. A strict interpretation of the precautionary principle might suggest that more rigorous 23 

regulatory action to control copper inputs in the field would be justified. 24 

 25 
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Figure Legends 1 

 2 

Figure 1. Mean clearance rates (CR) by clams (Tapes philippinarum) in response to Cu 3 

exposure (10 µg Cu l-1) and control conditions (mean + SD). 4 

Figure 2. Mean rates of oxygen consumption by clams (Tapes philippinarum) in response to 5 

Cu exposure (10 µg Cu l-1) and control conditions (mean + SD). 6 

Figure 3. Mean absorption efficiency (AE) by clams (Tapes philippinarum) in response to Cu 7 

exposure (10 µg Cu l-1) and control conditions (mean + SD). 8 

Figure 4. Scope for growth for control and exposed clams (Tapes philippinarum) at each 9 

measurement period.  10 

 11 
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Table 1
Results of ANOVA (F values) for physiological measurements. 
Significancy: ***: p<0.001; **: p< 0.01; *: p<0.05.

Nov Mar May Jul

Clearance rates

Time 7.9*** 8.8*** 10.5*** 2.4
Treatment 189.4*** 106.7*** 204.1*** 110.2***

T x T 7.9*** 8.6*** 11.5*** 8.1***

Oxygen consumption

Time 1.6 1.6 8.1*** 9.1***
Treatment 5.3* 60.1*** 55.8*** 99.2***

T x T 1.1 4.9** 0.8 8.6***

Absorption efficiency

Time 7.1** 6.8*** 9.8*** 10.4***
Treatment 4.3* 8.3** 65.6*** 88.4***

T x T 10.9*** 12.2*** 2.7* 3.3*
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 Table 2

Values of copper concentration (mean + standard deviation) at the 
study site.

Water SPM Sediment
(µg Cu l-1) (µg Cu g-1) (µg Cu g-1)

February 3.3+0.2 108.1+4.0 16.4+1.5
March 3.0+0.2 187.7+4.7 46.3+5.5
April 2.0+0.1 101.0+3.5 21.9+4.0
May 3.2+0.2 100.7+4.5 15.0+3.2
June 7.3+0.2 74.3+2.1 7.5+2.0
July 3.5+0.1 70.0+2.5 8.6+2.2
August ND ND ND
September ND ND ND
October 3.0+0.3 100.5+4.0 18.0+4.6
November 2.5+0.2 201.6+5.8 26.3+3.7
December 4.7+0.2 287.3+6.0 53.5+10.1




