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Abstract 17 

The present study aimed to obtain additional data on the effect of long-term 18 

depuration on the levels of oxidative stress biomarkers, and to clarify the role of 19 

mullets for monitoring pollution in River Douro estuary. Mullets chronically exposed 20 

to a mixture of contaminants in Douro estuary were captured in Spring of 2001, 2002 21 

and 2003. The activities of antioxidant enzymes catalase superoxide dismutase 22 

(SOD) and glutathione peroxidase (GPx); and oxidative damages in lipids (lipid 23 

peroxidation) and in proteins (protein carbonyl content) were assessed at capture day 24 

and after transfer to unpolluted seawater for one, four and eight months. An overall 25 

decrease in the activities of the antioxidant enzymes was detected, except for the 26 

GPx after 4 months depuration. CAT activity exhibited the more significant decrease 27 

at the end of the long-term depuration. The decrease in SOD activity after one month 28 

of depuration was then maintained during the remaining depuration period. 29 

Regarding oxidative damages, a decrease in lipid peroxidation as well as the content 30 

of oxidised proteins was observed during depuration. Indeed, at capture the activities 31 

of antioxidant defences were higher as a result of the formation of Reactive Oxygen 32 

Species (ROS) from the metabolism of pollutants. The oxidative damaged molecules 33 

were repaired or degraded during the depuration period, supporting the use of such 34 

damages as indicators of exposure to pro-oxidant pollutants. 35 
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Introduction 36 

Environmental contaminants such as metals, polychlorinated compounds (PCBs), 37 

polycyclic aromatic hydrocarbons (PAHs) are known to enhance intracellular 38 

formation of reactive oxygen species (ROS) with subsequent oxidative damage to 39 

macromolecules (Livingstone, 2001; Ferreira et al., 2005). The response of 40 

organisms to the increase in levels of ROS production involves up-regulating 41 

antioxidant defences, such as the activities of antioxidant enzymes, and of 42 

scavenger’s compounds. The level of antioxidants against ROS overproduction 43 

associated with tissue damage can be considerer as a toxicity measure in aquatic 44 

organisms exposed to pollution (Ahmad et al., 2000; Di Giulio et al, 1989; Ferreira et 45 

al., 2005). The importance of oxidative stress response as potential biomarkers of 46 

environmental pollution has been addressed by different experimental approaches 47 

(Ferreira et al., 2005; Orbea et al., 2002; Rodriguez-Ariza et al., 2003). The 48 

biomarkers utilized include components of oxidative adaptative responses, such as 49 

antioxidant enzyme activities (catalase (CAT), superoxide dismutases (SODs) or 50 

glutathione peroxidase (GPx)), or the estimation of oxidative damages in lipids, 51 

proteins and DNA (Filho, 1996; Winston and Di Giulio, 1991). When the defences 52 

mechanisms are unbalanced regarding the increased presence of ROS generated 53 

compounds, e.g. by the presence of pollutants, oxidative damage will occur, 54 

indicating a mechanism of toxicity in aquatic organisms. It has been reported that 55 

despite an increase in antioxidant enzymes, oxidative damage occurs in animals 56 

living in polluted sites (Van der Oost et al., 2003). 57 

It has been reported previously the presence of several contaminants, in River Douro 58 

Estuary, namely polychlorinated biphenyls (PCBs) and DDT (Ferreira et al., 2004), 59 

xenoestrogens (Ferreira et al., 2002), metals from anthropogenic origin (Mucha et al., 60 
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2003), and polyaromatic hydrocarbons (PAH) (Ferreira et al., 2006). An earlier 61 

report has shown that mullets (Mugil cephalus) from Douro estuary had elevated 62 

levels of hepatic SODs and CAT activity that decreased after one month depuration 63 

in captivity conditions, and also showed lipid peroxidation in liver (Ferreira et al., 64 

2005). When comparing these results, after depuration, with phase I biotrasformation 65 

enzyme, namely ethoxyresorufin O-deethylase (EROD) (Ferreira et al., 2004, 2006), 66 

the antioxidant enzyme (SOD and CAT) responses were not so evident, showing less 67 

marked decreases in their activities during depuration (Ferreira et al., 2005). Lipid 68 

peroxidation (LPO) in mullet liver, after one month depuration, have decreased in 69 

spring and winter; and regarding oxidised proteins there was an increase after the 70 

depuration (Ferreira et al., 2005). 71 

The aim of the present work was to evaluate changes in antioxidant defences, 72 

measured as hepatic CAT, SOD and GPx activity, associated with a longer 73 

depuration period, when animals are transferred from a polluted environment to a 74 

laboratory setting. In addition, we assessed the oxidative damages after long-term 75 

depuration, to check if mullets are able to repair mainly the damages observed in 76 

liver proteins. 77 

 78 

Material and methods 79 

2.1. Study area 80 

The present work was carried out in the lower Douro estuary. The Douro is one of 81 

the longest rivers in the Iberian Peninsula (930 Km), sharing its 98,000 Km2 of 82 

watershed with Spain and Portugal. It drains into the Atlantic Ocean at 41º08’ N and 83 

8º42’ W, near Porto (fig. 1). Domestic sewage as well as industrial effluents are still 84 

discharged, mostly without treatment, directly into the estuary and its tributaries.  85 
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2.2. Sampling  86 

Mullets (N=66, mean wet weight, 406.4±23.0 g, and mean length, 33.7±1.6 cm) were 87 

netted in an established polluted site in Douro estuary in the spring of 2001, 2002 88 

and 2003. In each sampling campaign, twenty two mullets were used. For the first 89 

group six mullets (Group I) were sacrificed within 24 hours after capture. Mullets 90 

were measured and weighed to determine condition factor (CF) (body weight (g) x 91 

100/ (length (cm))3). After dissection livers were weighed to determine hepato-92 

somatic index (HSI) (liver weight (g)/body weight (g)x100). Livers were frozen in 93 

liquid nitrogen and stored at -80°C until further use.  At each sampling occasion, the 94 

remaining mullets were allowed to depurate separately for one month (Group II; 95 

n=6), four months (Group IV; n=5) and eight months (Group VIII; n=5) in 3000 L 96 

tanks at a salinity of 20 ‰ (similar to the salinity in the estuary where the mullets 97 

were captured) with a flow rate of 5 L/min. Water was continuously filtered through 98 

an extensive biological filter, and a charcoal filter before being recycled. Aeration 99 

was provided in the tanks to maintain 100% oxygen saturation. Fish were kept under 100 

natural photoperiod and temperature. Mullets were fed with uncontaminated frozen 101 

fish (hake), during the first 10 days the added food was not consumed probably due 102 

to the stress of captivity. At day 15 it was observed that all fish were eating normally.  103 

2.3. Antioxidant enzyme activities 104 

Livers were homogenized in ice-cold sodium phosphate buffer 50 mM, Na2EDTA 105 

0.1 mM, pH 7.8. Mitochondrial fractions were obtained after centrifugation at 15 000 106 

g for 20 min. Catalase activity was determined by measuring the consumption of 107 

H2O2 at 240 nm (ext. coef. 40 mM-1.cm-1) according to Aebi (1974). The reaction 108 

volume was 1 ml and contained 67.5 mM potassium phosphate buffer, pH 7.5, and 109 

12.5 mM H2O2. The reaction was started by the addition of the sample. CAT activity 110 
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is expressed as mmol/min/mg protein. SOD activity was determined by an indirect 111 

method involving the inhibition of cytochrome c reduction. In this method SOD 112 

competes with cytochrome c for the superoxide anion generated by the hypoxanthine 113 

and xanthine oxidase reaction. SOD activity was determined in the mitochondrial 114 

fraction as the degree of inhibition of cytochrome c reduction at 550 nm (McCord 115 

and Fridovich, 1969). The concentration of the reactives was: potassium phosphate 116 

buffer 50 mM, pH 7.8, hypoxanthine 50 µM, xanthine oxidase 1.98 mU/ml and 117 

cytochrome c 10 µM (Orbea et al., 2002). The activity of MnSOD was evaluated 118 

adding to the reaction KCN 2 mM. The activity is given in SOD units (1 SOD unit = 119 

50 % inhibition of the xanthine oxidase reaction). GPx activity was measured with 120 

H2O2 as substrate, i.e. the activity of the selenium(Se)-containing GPX (Halliwell 121 

and Gutteridge, 1999). The activity was monitored by following the decrease in 122 

NADPH concentration at 340 nm (ext. coef. 6.22 mM-1.cm-1), which is consumed 123 

during the generation of GSH from oxidized glutathione, according to Günzler and 124 

Flohe (1985). The concentration of the reactives was: potassium phosphate buffer 50 125 

mM, pH 7.8, 2.5 mM GSH, 0.6 mM sodium azide, 1.25 U glutathione reductase, 126 

0.15 mM NADPH, 0.2 mM H2O2. GPx activity is expressed as nmol/min/mg protein. 127 

 128 

2.4. Oxidative damages 129 

The peroxidative damage to lipids that occurs with free radical generation, and 130 

results in the production of malondialdehyde (MDA) was assessed by the 131 

determination of thiobarbituric acid reactive substances (TBARS). MDA was 132 

determined by the thiobarbituric acid method, the liver homogenate was incubated 133 

with trichloroacetic acid (TCA) 100%, after centrifugation the supernatant was 134 

incubated at 100ºC, for 30 min, with thiobarbituric acid (TBA) 1%, NaOH 0.05 M 135 
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and BHT 0.025 % (Niki, 2000). The absorbance was measured at 532 nm. Lipid 136 

peroxidation (LP) is expressed as nanomoles of MDA equivalents per mg of protein. 137 

Sodium dodecyl sulphate polyacrilamide gel electrophoresis (SDS-PAGE) was 138 

performed using minigels consisting of a 4 % stacking gel and 12.5 % running gel. 139 

Fish liver samples were prepared to a final protein concentration of 4 µg.µl-1 and 140 

derivatizated with DNPH by incubation at dark for 30 min,  a control was incubated 141 

with trifluoroacetic acid (TFA) 10% (Levine et al., 1994), without preheating the 142 

sample, 5 µl per lane were loaded in the gels. After electrophoresis, separated 143 

proteins were transferred onto nitrocellulose membranes using a HOEFER TE 22. 144 

Membranes were blocked overnight at 4ºC in phosphate buffered saline (PBS) plus 145 

0.05 % Tween 20 (TPBS) containing 5 % non-fatty dried milk. Incubations with the 146 

diluted antibody rabbit anti-DNP (1:5000) (DAKO) were preformed for 1h at room 147 

temperature. Membranes were washed and incubated with the diluted secondary 148 

antibody, anti-rabbit IgG-peroxidase (1:5000) (SIGMA) for 1h at 4ºC. Activity was 149 

visualized with an enhanced chemiluminescence (ECL) kit (Amershan Life Science). 150 

In all assays total protein was measured by Lowry method adapted to microplates. 151 

 152 

2.5. Statistical analysis 153 

Differences between groups were tested using a one-Way ANOVA with a multiple 154 

comparison test (LSD) at a 5% significance level. Some data had to be log 155 

transformed in order to fit ANOVA assumptions. All tests were performed using the 156 

software Statistica 6.0 (Statsoft, Inc., 2001). No differences between years were 157 

observed and therefore the data are presented grouped. Differences between genders 158 

were also assessed, and no statistical differences were observed and therefore the 159 

data are presented with both sexes grouped. 160 
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 161 

Results  162 

Biological parameters such as HSI and CF can be used to assess the status of the 163 

organ and the organism. The values for HSI and CF in mullets after capture and after 164 

the three periods of depuration revealed significant decreases after one, four and 165 

eight months of depuration for HSI, whereas no differences were observed for CF 166 

(Table 1). 167 

Hepatic CAT, totalSOD, MnSOD and GPx activities are displayed in fig.2. CAT 168 

activity has shown a slightly increase after one month of depuration, however, after 169 

four months the activity was lower (18.4 %; p<0.05), and were maintained during the 170 

following months of depuration. TotalSOD activity decreased after the first month of 171 

depuration (15.2 %; p<0.05) maintaining similar values in the forthcoming periods of 172 

depuration. Hepatic MnSOD activity presented the same pattern as liver totalSOD 173 

activity, although more pronounced with significant decreases in group II (16.2 %; 174 

p<0.05), in group IV (22.5 %; p<0.05) and in Group VIII (16.2 %; p<0.05). Liver 175 

GPx activity decreased after one month of depuration (18.8 %; p<0.05), and in 176 

contrast with the assessed antioxidant enzymes, an increase was observed at the forth 177 

month of depuration, and decreasing after eight months of depuration to values 178 

similar to the ones measured in group II. 179 

Oxidative damages in lipids evaluated as lipid peroxidation levels (LPO), using the 180 

TBA test, showed that after one month of depuration LPO decreased significantly 181 

(33.5 %; p<0.05), and continued to decrease in group IV (48.8 %;p<0.05) (fig. 3). In 182 

group VIII however, an increase was observed although below the values measured 183 

in mullets after capture. Oxidative damages in proteins were evaluated by 184 

immunoblot of carbonyl groups (fig.4). One month of depuration led to an increase 185 
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in oxidised protein content, in agreement with our previous results and only after 186 

eight months of depuration was a reduction of carbonyl groups observed.  187 

 188 

Discussion 189 

Previous studies reported the presence of different types of contaminants in the river 190 

Douro estuary (Mucha et al., 2003; Ferreira et al., 2002, 2004) inducing oxidative 191 

stress in fish inhabiting these waters (Ferreira et la., 2005). However, the changes on 192 

oxidative stress biomarkers and the ability to recover from damages after different 193 

periods of depuration has not been analysed.  194 

Four types of PAH metabolites were found in mullet’s bile captured in Douro 195 

estuary, and a significant decrease was observed after four and eight months of 196 

depuration (Ferreira et al., 2006). The presence of PCBs and DDT was also identified 197 

and it was observed that these pollutants are more persistent than PAHs. After one 198 

month of depuration, the levels of these contaminants in muscle and liver of mullets 199 

were maintained (Ferreira et al., 2004), and started to decrease only in the muscle 200 

after four months depuration (Antunes et al., in press). 201 

During the captivity period the mullets CF did not change, indicating that the 202 

captivity had no effect at the organism level. In addition, the decreased HSI values 203 

after depuration period, also indicate a recovery of liver enlargement due to chemical 204 

exposure (Ferreira et al., 2006). However, the smaller HSI observed in Group IV 205 

could be a result of the smaller fish used in this particular group. 206 

Antioxidant systems can be considered as non-specific biomarkers of exposure to 207 

pollutants, and also as an indicator of toxicity. The induction of levels of primary 208 

antioxidant defences preventing cell damage can be regarded as an adaptative 209 

response to an altered environment; in contrast an inhibition can lead to cell damage 210 
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and toxicity of bioavailable pollutant in a dose-dependent manner (Vassuer and 211 

Cossu-Leguille, 2003). After one month of depuration an increase in hepatic CAT 212 

activity was observed, contrary to our previous study (Ferreira et al., 2005). This 213 

increase could be related to the period of non-consumption of food during the first 214 

days of captivity. Some authors reported the influence of starvation in oxidative 215 

stress responses with increases in some antioxidant enzyme activities including CAT 216 

(Morales et al., 2004). Nevertheless, after four and eight months of depuration CAT 217 

activity had significantly decreased, indicating that a longer period of time is needed 218 

to recover from oxidative stress induced by pollutants, directly or indirectly. Hepatic 219 

totalSOD and MnSOD activity, contrary to CAT activity, showed significant 220 

decreases after one month of depuration and then the levels were maintained in the 221 

following period. The decrease observed for MnSOD activity was more evident and 222 

so far there are few studies on this enzyme in aquatic organisms although it plays a 223 

key role in protecting mitochondria from oxidative stress (Reed, 2001). Interestingly, 224 

hepatic GPx activity, revealed a significant decrease after one month of depuration, 225 

and then increased in Group IV. This period was concomitant with summer months 226 

and the increase in GPx activity can be attributed, probably to the higher 227 

temperature, as reported by Bacanskas et al. (2004) for killifish (Fundulus 228 

heteroclitus). These results are in agreement with the ones observed for glutathione 229 

S-transferase (GST), an enzyme involved in the defence against oxidative damage 230 

and peroxidative products of DNA and lipids (George, 1994). In mullets under 231 

similar conditions GST activity also increased in the warmer periods (Ferreira et al., 232 

2006). In addition, the increase in GPx activity in this period may act as a protective 233 

mechanism avoiding the increase in LPO in summer observed in mullets during 234 

depuration (Ferreira et al., 2005). 235 
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Oxidative damage can occur when antioxidant and detoxifying systems are deficient 236 

and not able to neutralise the active intermediates produced by the metabolism of 237 

xenobiotics or their products. The presence of single and mixed contaminants, 238 

including metals, PAHs and PCBs led to an increase in oxidative damages in both 239 

fish and invertebrates (Livingstone, 2001). Previously we have reported a decrease in 240 

LPO in mullet liver, in spring and winter, after one month of depuration, in contrast 241 

with the levels of oxidised proteins that were increased (Ferreira et al., 2005). In this 242 

study, in summer, LPO levels continued to decrease, which could have been a result 243 

of the increased GPx activity observed in summer. Stephensen et al. (2002) 244 

speculated that GPx was not an important enzyme in destroying organic peroxides in 245 

fish, in mullet liver a possible correlation between GPx activities and LPO was 246 

observed. Higher GPx activity in Group IV corresponded to lower levels of LPO and 247 

after eight month of depuration the decrease in GPx activity was associated with an 248 

increase in LPO. 249 

Protein oxidation can be increased by xenobiotic exposure (Gibson et al., 1996; 250 

Fessard and Livingstone, 1998), and the assessment of individual or groups of 251 

proteins can be used as potential biomarkers of contaminant-mediated oxidative 252 

damage in fish liver. The formation of carbonyl derivatives is non-reversible, causing 253 

conformational changes and decreased catalytic activity in enzymes (Almroth et al., 254 

2005). Our previous study has shown an increase in oxidised protein content in 255 

mullet liver after one month of depuration (Ferreira et al., 2005). This increase could 256 

be a result of the decrease in antioxidant enzyme activities after the depuration, and 257 

because the formation of carbonyl derivatives is a non-reversible process we should 258 

expect longer time to replace the damaged proteins. In fact, after eight months of 259 

depuration the content in oxidised proteins in liver has decreased.  260 
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In conclusion, the present study brings key information in the capacity of mullets, 261 

after long-term depuration, to recover oxidative damages induced by the presence of 262 

pollutants. Antioxidant enzyme activities showed different responses, with CAT 263 

activity decrease after only four month of depuration, whereas for total SOD and 264 

MnSOD activities the decrease was detected after one month of depuration. GPx 265 

activity has shown an increase in activity in the summer period that inhibited the 266 

increase observed in LPO. Oxidative damages in LPO returned to normal values after 267 

one month of depuration whereas the time for replacing the oxidative damaged 268 

proteins was longer. 269 
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Table 1: Mullets mean weight (g) and length (cm), hepato-somatic index (HSI) (%) 369 

and condition factor (CF) at capture day (Group I), after 1 month (group II), 4 370 

months (Group IV) and after 8 months (Group VIII) in captivity.  371 

 Weight (g) Length (cm) HSI (%) CF 

Group I (n=18) 521.5 (29.2) 40.0 (0.8) 1.75 (0.05) 0.80 (0.02) 

Group II (n=18) 470.0 (25.1) 39.2 (0.7) 1.27 (0.07)*** 0.76 (0.02) 

Group IV (n=15) 333.8 (34.4) *** 34.1 (1.6) *** 1.09 (0.06)*** 0.84 (0.04) 

Group VIII (n=15) 441.7 (37.0) * 37.6 (0.8) 1.23 (0.09)*** 0.86 (0.04) 

Values presented as mean (Standard Error). Statistical differences to Group I : * 372 

p<0.05; ** p<0.01 and *** p<0.001. 373 
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Figure 1: Map of the Douro estuary and the sampling station (black dot). 376 

  377 



 

 

 

ACCEPTED MANUSCRIPT 

 

 19 

0

5

10

15

20

25

CAT SOD MnSOD GPx

Group I
Group II
Group IV
Group VIII

 378 

Figure 2: Hepatic antioxidant enzymes activities in mullets after capture in Douro 379 

estuary (Group I), and after one month (Group II), 4 months (Group IV) and 8 380 

months (Group VIII) of depuration. Values presented as mean±SE. Statistical 381 

differences to Group I: * p<0.05. CAT in mmol/min/mg protein, Total SOD and 382 

MnSOD in U/mg protein and GPx in nmol/min/mg protein. 383 
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Lipid peroxidation in mullet liver
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 384 

Figure 3: Hepatic lipid peroxidation (LP) in mullets after capture in Douro estuary 385 

(Group I), and after one month (Group II), 4 months (Group IV) and 8 months 386 

(Group VIII) of depuration. Values presented as mean±SE. Statistical differences to 387 

Group I: * p<0.05. MDA: malondialdehyde. LP in nmol MDA equivalents per mg of 388 

protein. 389 
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 390 

 391 

Figure 4: Example of Western blot of carbonyl groups (derivatizated with DNPH) 392 

from oxidised mullet liver proteins. In lanes 1 and 3 liver proteins from mullets 393 

captured in Douro estuary (Group I), in lanes 2 and 4, from mullets kept in captivity 394 

for 1 month (Group II) and in lanes 5 and 6 mullet depurated for 4 and 8 months 395 

respectively.  396 
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