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Abstract

In this paper we consider a competing risk model under right censoring when

the failure cause is missing completely at random. Two types of models are

considered: a semiparametric one with additive hazard rate and a nonparamet-

ric one. In each case, preliminary estimators of the unknown parameters are

obtained using mainly the lifetimes with known cause of failure. Then we show

that the information given by the lifetimes with unknown failure cause can be

optimally used to improve our estimates. The large sample behavior of our

estimators is obtained and their performance on finite sample sizes illustrated

through a simulation study.

Keywords: Additive hazards, competing risks, counting processes, missing

failure cause, reliability, survival analysis.

1. Introduction

The competing risks models are useful in Survival Analysis or in Reliability

in order to take into account the different causes of death of a patient, or the
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different causes of failure of a device. Based on possibly censored observation of

the lifetimes and the indicators of cause of death, one can carry out a parametric,

semi-parametric or nonparametric statistical inference. But, in some situations,

it may happen that the cause of death or failure is missing for some individuals.

This paper deals with the analysis of lifetimes under competing risks when

the indicator is missing completely at random. We consider an additive hazard

rate model that allows to analyze such data from a semiparametric point of

view in presence of covariates. The case without covariate is also considered

from a nonparametric point of view. We need to emphasize that our model

extends some existing models in the semi-nonparametric direction. However,

the missingness mechanism is accounted here in the simplest way since it is

supposed that the failure cause is missing completely at random (MCAR).

The problem of competing risks is not new. During the last two decades

many models have been proposed in order to account for different causes of

death or failure (see Crowder [7], for a large overview on the topic). In a

number of real applications of competing risks models the authors have to face

the problem of missing information: see e.g. Miyakawa [20], Usher and Hodgson

[25], Lin et al. [16], Schabe [23], Goetghebeur and Ryan [14], Guttman et al.

[15], Reiser et al. [22], Basu et al. [4], Flehinger et al. [10], Craiu and Duchesne

[5], Craiu and Reiser [6].

Many authors have developped methods with accurate modelling of the miss-

ingness mechanism. Most of these works are based on parametric models. When

a latent variable represents the missingness mechanism, an EM-type algorithm

can be used to estimate the model parameters. In Craiu and Duchesne [5] such

a procedure is proposed when the missingness mechanism depends both on the

failure cause and the failure time. Recently, Craiu and Reiser [6] considered a

very complete parametric model including dependence with the failure causes.

Some authors developed estimation procedures in the semi-nonparametric

framework for two or more failure causes (see e.g. Myakawa [20], Dinse [9],

Lo [18], Schabe [23]). The special case of a possibly censored single failure

cause differs from the competing risks model only by the fact that, in this case,
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the censoring time is not an event of interest. However, when the censoring

information is missing, we are close to the competing risks situation where

failure causes are possibly missing. Some specific methods have been derived for

various models including or not covariates, and several missingness mechanisms,

see e.g. Gijbels et al. [12], McKeague and Subramanian [19], van der Laan and

McKeague [26], Zhou and Sun [28] and Subramanian [24].

Goetghebeur and Ryan [14] proposed a competing risks model with propor-

tional hazards assumption for the different failure causes. In their model, the

mechanism of missingness may depend on the failure time (this is the missing

at random assumption) while in our case it is independent of everything (this

is the missing completely at random assumption). In our model each specific

hazard rate function has its own semiparametric additive model and, contrary

to Goetghebeur and Ryan [14], these functions are not linked.

The paper is organized as follows. In Section 2, the model is introduced and

seen as a specific case of a nonhomogeneous Markov process. In Section 3, es-

timators of the Euclidean parameters are obtained using estimating equations.

We also show that the observations with unknown failure cause are usable to

estimate the sum of the previous parameters. Then, we develop a method that

allows to account this information in an optimal way with respect to an asymp-

totic efficiency criterium. In Section 4, we show that our two types of parameter

estimators are consistent and asymptotically gaussian. Section 5 deals with the

estimation of the functional parameters. Here also we show that we can im-

prove the asymptotic efficiency of our estimators using, in an optimal way, the

information carried by the data with missing cause. These estimators are also

proved to be consistent and asymptotically gaussian. Consistent estimators of

the asymptotic variances are provided in each section. Finally, a Monte Carlo

study is performed in Section 6 in order to assess the behavior of our euclidean

parameter estimators on finite sample sizes.
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2. Framework

Consider a population in which each individual is liable to die from any of

p ≥ 2 causes. The causes are not necessarily independent but we assume that

each death is due to a single cause. Let us denote by T the individual lifetime

and d ∈ {1, . . . , p} its cause of death. Suppose that our interest focuses on the

effect of a time-varying covariate vector Z(·) of dimension k. More precisely, let

Z(t) = {Z(u);u ≤ t} be the history up to time t of this covariate process and

assume that an additive hazard model holds on the cause specific hazard rate

function, that is:

λj(t|Z) = lim
h→0+

1

h
P (T ∈ [t, t+ h[, d = j|T ≥ t,Z(t)) = λ0j(t) + βT

j Z(t), t ≥ 0,

(1)

for j = 1, . . . , p where λ0j(·) is the baseline jth cause specific hazard rate func-

tion and βj ∈ R
k is the vector of regression parameters associated to the jth

cause.

Suppose also that the lifetime T is right-censored by a random variable (r.v.)

C and write

X = T ∧C ≡ min(T,C) and δ = I(T ≤ C),

where I(·) is the set indicator function. Let λC(·) denote the hazard rate func-

tion of the r.v. C and assume that conditionally on Z, the r.v. C is independent

from (T, d).

Of course the futur cause of death is not known if C is observed instead of

T . But in some situations it may happen that d is also not known even if T is

observed. Let M denote the missingness indicator, i.e. M = 1 if the cause is

known and M = 0 otherwise. Thus we are in a situation where the available

observation for an individual is

(X, δ,D,Z(X)),

where D = δMd reveals the failure cause d when the failure time is uncensored

(δ = 1) and M = 1 and is equal to zero otherwise. In the following we assume
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Figure 1: Markov graph associated to (X, δ,D)

that the missing mechanism is such that:

P (M = 1|X,Z, δ = 1) = P (M = 1|δ = 1) = α ∈ [0, 1],

where α is an unknown parameter, and

P (M = 0|X,Z, δ = 0) = P (M = 0|δ = 0) = 1.

One can see the observation of the vector (X, δ,D), conditionally on Z, as

the realization of a (p+ 3)-states nonhomogeneous Markov process (see Fig. 1)

with space set {0, 1, . . . , p,m, c}: state 0 is the initial state; state i, for i =

1, . . . , p, corresponds to the observation of the lifetime T with known cause of

death i; state m to the observation of the lifetime with missing cause; state c

to a censored observation. Except 0, all the states are absorbant. From the

assumptions on M and the independence between (T, d) and C, conditionally

on Z, one can easily get that the instantaneous transition rates of this Markov

process are, conditionally on Z:






λ′j(t|Z) = αλj(t|Z), for j ∈ {1, . . . , p},
λ′m(t|Z) = (1 − α)

∑p

j=1 λj(t|Z),
λ′c(t|Z) = λC(t|Z).

[Figure 1 here]

It is important to note that, up to a multiplicative constant (α or 1−α), the
additive form of the instantaneous rates is preserved (except for the transition

0 → c). It is obvious for λ′j(t|Z) with 1 ≤ j ≤ p but also for λ′m(·|Z) since

λ′m(t|Z) = (1− α)
(
λ0m(t) + βT

mZ(t)
)
,

where λ0m(·) = ∑p

j=1 λ0j(·) et βm =
∑p

j=1 βj . This will help us to estimate the

regression parameters β1, . . . , βp.
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Now, let us suppose that we observe a sample (Xi, δi, Di,Zi(Xi))1≤i≤n of

(X, δ,D,Z(X)). Let τ < +∞ be the upper bound of the interval of study which

means that individuals are only observed on the time interval [0, τ ]. Let Nij(·),
for j ∈ {1, . . . , p,m}, be the counting processes defined by:

Nij(t) = 1(Xi ≤ t,Di = j) for j 6= m,

and Nim(t) = 1(Xi ≤ t, δi = 1, Di = 0).

Finally write Yi(t) = 1(Xi ≥ t) the individual risk process, for i = 1, . . . , n.

From Andersen et al. [1] or Fleming and Harrington [11], we know that,

conditionally on Z, the processes Mij(·), for j = 1, . . . , p, and Mim(·) defined

respectively by

Mij(t) = Nij(t)−
∫ t

0

Yi(s)λ
′
j(s|Z)ds and Mim(t) = Nim(t)−

∫ t

0

Yi(s)λ
′
m(s|Z)ds,

for t ≥ 0, are zero mean martingales with respect to the filtration (Ft)t≥0 defined

by

Ft = σ{Nij(s), Nim(s), Yi(s); s ≤ t; 1 ≤ i ≤ n, j ∈ {1, . . . , p}}.

3. Statistical Inference on the Euclidean parameters

3.1. Estimators

The finite dimensional parameters of our model are: the probability α to

know the cause of death, and the regression parameters β1, . . . , βp of each cause

specific hazard rate functions. Recall that α = P (M = 1|δ = 1). Thus, one can

estimate empirically α by the proportion of lifetimes with known cause of death

among the uncensored lifetimes, that is:

α̂ =

∑n
i=1 1(Di > 0)

∑n
i=1 1(δi = 1)

=

∑p

j=1N·j(τ)

N··(τ)
,

where

N·j(t) =

n∑

i=1

Nij(t) and N··(t) =

p
∑

j=1

N·j(t) +

n∑

i=1

Nim(t), for all t.
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Extending an approach proposed by Lin et Ying [17] in case of a single

cause of death, one can estimate βj , for j = 1, . . . , p, by the solution β̂j of the

estimating equation Uj(β, α̂, τ) = 0 where

Uj(β, α̂, τ) =

n∑

i=1

∫ τ

0

[
Zi(s)− Z̄(s)

] [
dNij(s)− α̂βTZi(s)Yi(s)ds

]
,

and

Z̄(s) =

∑n
i=1 Yi(s)Zi(s)
∑n

i=1 Yi(s)
.

Now, since it has been seen that the cause specific hazard rate function λ′m(·)
associated to a missing cause has an additive form too, one can also estimate

βm by the solution β̂m of the estimating equation Um(β, α̂, τ) = 0 where

Um(β, α̂, τ) =

n∑

i=1

∫ τ

0

[
Zi(s)− Z̄(s)

] [
dNim(s)− (1− α̂)βTZi(s)Yi(s)ds

]
.

Closed-form expressions of these estimators are available and given below (see

Equation (10)).

At this stage, we are in a situation where each parameter βj, for j = 1, . . . , p,

has its own estimator β̂j . But we also have an estimator β̂m of their sum

βm = β1 + · · ·+ βp. It is of course of interest to use it in order to improve the

estimation of the first parameters βj , for j = 1, . . . , p. In this order, we suggest

to find the linear transformation of our estimator (β̂T
1 , . . . , β̂

T
p , β̂

T
m)T which will

lead to an estimator of (βT
1 , . . . , β

T
p )

T with minimum asymptotic variance. More

precisely, let H be the family of all the block matrices

H =











H11 H12 · · · H1p H1m

H21 H22 · · · H2p H2m

...
...

...
...

Hp1 Hp2 · · · Hpp Hpm











,

where the Hij , for i = 1, . . . , p and j = 1, . . . , p,m, are k×k real valued matrices,
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such that

H











β1
...

βp

βm











=








β1
...

βp








(2)

for all vectors β1, . . . , βp in R
k and βm = β1 + · · ·+ βp. Write

q̂(H) = trace(HΣ̂
β̂,∞

HT ),

where Σ̂
β̂,∞

is an estimator of the asymptotic variance-covariance matrix of

(β̂T
1 , . . . , β̂

T
p , β̂

T
m)T . With

Ĥ = argmin
H∈H

q̂(H),

an estimator of (βT
1 , . . . , β

T
p ) with minimal asymptotic variance is given by:








β̃1
...

β̃p








= Ĥ











β̂1
...

β̂p

β̂m











.

Thus, the optimal estimators of the regression parameters are

β̃i =

p
∑

j=1

Ĥij β̂j + Ĥimβ̂m, for i = 1, . . . , p,

and are called T –optimal estimators in the sequel. Such a way to improve

estimators has been considered in Balakrishnan et al. [3].

Note that constraints on H , given by (2), are linear and do not link its lines.

Indeed, denoting by Ik the identity matrix of order k, these constraints may be

written 





Hii +Him = Ik

Hij +Him = 0,

for 1 ≤ i ≤ p and j ∈ {1, . . . , p}\{i}.
On the other hand, we have

q̂(H) =

p
∑

i=1

trace(Hi•Σ̂β̂,∞
HT

i•) =

p
∑

i=1

q̂i(H)
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where q̂i(H) = trace(Hi•Σ̂β̂,∞
HT

i•) and Hi• is the ith line block of H .

Thus, it is sufficient to solve separately the following problems (Pi), for

i = 1, . . . , p:

(Pi)







Find Hi1, . . . , Him which minimize trace(Hi•Σ̂β̂,∞
HT

i•)

such that: Hii +Him = Ik,

Hij +Him = 0, for j 6= i.

3.2. Example for p = k = 2

As an example, let us show how to solve problems (P1) and (P2) when

p = k = 2. Since in this case (P1) and (P2) are identical, we only have to consider

problem (P1). Let us introduce other temporary notations. For j = 1, 2,m,

write

H(j) = H1j =




h
(j)
11 h

(j)
12

h
(j)
21 h

(j)
22



 .

Let

Q̂ =




Σ̂

β̂,∞
0

0 Σ̂
β̂,∞





and

L =
(

h
(1)
11 , h

(1)
12 , h

(2)
11 , h

(2)
12 , h

(m)
11 , h

(m)
12 , h

(1)
21 , h

(1)
22 , h

2)
21, h

(2)
22 , h

(m)
21 , h

(m)
22

)

= (l1, . . . , l12).

One can rewrite the function q̂1(H) to be minimized like:

q̂1(H) = trace

((

H(1) H(2) H(m)
)

Σ̂
β̂,∞

(

H(1) H(2) H(m)
)T

)

= LQ̂LT .

Now, since the constraints on H are







H(1) +H(m) = I2

H(2) +H(m) = 0
⇔







h
(1)
ij + h

(m)
ij = 1 for 1 ≤ i, j ≤ 2

h
(2)
ij + h

(m)
ij = 0 for 1 ≤ i, j ≤ 2

,
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they can be rewritten CL = d where

C =























1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1























and d =























1

0

0

0

0

1

0

0























.

Thus the Lagrange function for this optimization problem with linear constraints

is given by

ℓ(L, λ) =
1

2
LT Q̂L+ (CL− d)Tλ

where λ is a Lagrange multiplier vector. The optimal parameters L̂ and λ̂

necessarily satisfy the first-order conditions







∂ℓ

∂L
(L, λ) = 0 = Q̂L+ CTλ

CL = d
,

leading to

λ̂ = −[CQ̂−1CT ]−1d,

and

L̂ = Q̂−1CT [CQ̂−1CT ]−1d.

It has to be noted that Q̂ is invertible whenever Σ̂
β̂,∞

is.

4. Asymptotic behavior of the regression parameters estimators

4.1. Additional notations and assumptions, preliminary results

In order to simplify the notation in the following derivations, let us denote

by p+1 the index corresponding to a missing cause (previously denoted by m).
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Let

β =











β1
...

βp

βp+1











and β̂ =











β̂1
...

β̂p

β̂p+1











.

If z is a column vector in R
k, let us write

x⊗l =







1 when l = 0,

z when l = 1,

zzT when l = 2.

Finally, let us denote by Sl(·), for l = 0, 1, 2, the processes defined by

Sl(s) =
1

n

n∑

i=1

Yi(s)Z
⊗l
i (s),

for 0 ≤ s ≤ τ and for b in R
k the process S3(·; b) defined by

S3(s; b) =
1

n

n∑

i=1

Yi(s)Z
⊗2
i (s)bTZi(s).

From now on we make the following assumptions.

A1. The probability α to get a known cause of death is strictly positive.

A2. The upper bound τ of the time interval of study is such that

0 <

∫ τ

0

λ0j(s)ds < +∞, for, j = 1, . . . , p,

and the covariate processes Zi(·) are (Ft)t≥0-predictable and uniformly

bounded with respect to i ≥ 1.

A3. For 0 ≤ l ≤ 2, there exists functions sk(·) defined on [0, τ ] such that

max
0≤l≤2

sup
s∈[0,τ ]

‖Sl(s)− sl(s)‖ P−→ 0, when n→ +∞.

Moreover, the function s0(·) is bounded below by a positive real number.
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A4. With the notations a(u) = s2(u)− s⊗2
1 (u)/s0(u),

A(t) =

∫ t

0

a(u)du and θ(t) =

∫ t

0

[
s0(u)λ0p+1(u) + βT

p+1s1(u)
]
du, (3)

the matrix A(τ) is positive definite and the real number θ(τ) is strictly

positive.

The matrix
∫ τ

0

[
S2(s)− S⊗2

1 (s)/S0(s)
]
ds

is also positive definite. Note that, from previous assumptions, it was

already true asymptotically.

A5. For all b ∈ R
k, let S4(·; b) be the process defined by

S4(s; b) =
1

n

n∑

i=1

(bTZi(s))Yi(s)(s1(s)Z
T
i (s)/s0(s)).

There exist functions s3(·; b) and s4(·; b) such that, for all b ∈ R
k,

max
3≤l≤4

sup
s∈[0,τ ]

‖Sl(s; b)− sl(s; b)‖ P−→ 0, when n→ +∞.

A6. The following functions are integrable on [0, τ ]:

a(·), a(·)λ0j(·), s0(·)λ0j(·), s1(·),
s⊗2
1 (·)
s20(·)

, s3(·;βj) and s4(·;βj), for j = 1, . . . , p.

Now, let us introduce, for all b ∈ R
k, the processes Uj(b, αj , ·) defined, for

j = 1, . . . , p+ 1 and t ∈ [0, τ ], by:

Uj(b, αj, t) =

n∑

i=1

∫ t

0

(
Zi(s)− Z̄(s)

) (
dNij(s)− αjb

TZi(s)Yi(s)ds
)
,

where

αj =







α if 1 ≤ j ≤ p,

1− α if j = p+ 1.

Note that values of these processes at s = τ appear in the estimating equations

of Section 3.1.
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It is easily seen that these processes can be rewritten like

Uj(b, αj , ·) =
n∑

i=1

∫ ·

0

(
Zi(s)− Z̄(s)

)
dMij(s),

for j = 1, . . . , p+ 1. Hence they are local square integrable (Ft)t≥0-martingales

as sum of stochastic integrals of predictable and bounded processes with respect

to local square integrable martingales.

Now let us introduce two technical results useful in the following section. Let

us note that all the functional convergence results of this paper are considered

in the Skorohod space of cadlag functions D[0, τ ].

Proposition 4.1. Under Assumptions A1-A6, the multivariate process Un(·)
defined, for all t ∈ [0, τ ], by

Un(t) =
1√
n














U1(β1, α1, t)

...

Up+1(βp+1, αp+1, t)
p+1
∑

j=1

α∗
j

θ(τ)
M·j(t)














,

where α∗
j = 1 − α for 1 ≤ j ≤ p and α∗

p+1 = −α, converges weakly in

Dk(p+1)+1[0, τ ], as n tends to infinity, to a zero mean multivariate gaussian

martingale U∞(·) with covariance matrix defined for all t ∈ [0, τ ] by

ΣU∞
(t) =











Θ1(t) 0 0 ξ1(t)

0
. . . 0

...

0 0 Θp+1(t) ξp+1(t)

ξT1 (t) · · · ξTp+1(t) ξα(t)











,

where, for j = 1, . . . , p+ 1,

Θj(t) = αj

∫ t

0

[
a(s)λ0j(s) + s3(s;βj)− s4(s;βj)− sT4 (s;βj) + (βT

j s1(s))s
⊗2
1 (s)/s20(s)

]
ds,

ξj(t) = κj
α(1 − α)

θ(τ)
A(t)βj , with κj = 1, for 1 ≤ j ≤ p and κp+1 = −1,

ξα(t) =
α(1 − α)

θ2(τ)
θ(t)

13



and A(·) as well as θ(·) are defined in (3).

Proof. As in Andersen and Gill [2], the main idea is to apply Rebolledo’s

Theorem (see Rebolledo [21], or Andersen et al. [1], p. 83–84). Since this

theorem is now of classical use, we only derive here the limit of the predictable

variation process associated to Un(·). This will give us the asymptotic variance-

covariance matrix function ΣU∞
(·) of Un(·).

On one hand, straightforward calculations show that we have, for j =

1, . . . , p+ 1,

〈
1√
n
Uj(βj , α, ·)

〉

(t) =
1

n

n∑

i=1

∫ t

0

(
Zi(s)− Z̄(s)

) (
Zi(s)− Z̄(s)

)T
Yi(s)λ

′
j(s|Z)ds

= αj

∫ t

0

[
S2(s)− S⊗2

1 (s)/S0(s)
]
λ0j(s)ds

+ αj

∫ t

0

[
S3(s;βj)− S4(s;βj)− ST

4 (s;βj) + (βT
j S1(s))S

⊗2
1 (s)/S2

0(s)
]
ds+ oP (1),

which, by Assumptions A2-A6, converges in probability, as n tends to infinity,

to Θj(t) given in the Theorem.

On the other hand, since the martingales Mij and Mi′j′ are orthogonal for

all 1 ≤ i, i′ ≤ n and 1 ≤ j 6= j′ ≤ p+ 1, we have:

〈Uj(βj , αj , ·),Uj′(βj′ , αj′ , ·)〉 (t) = 0,

whenever j is different from j′ and for all t ∈ [0, τ ]. This justifies the null terms

in the asymptotic covariance matrix ΣU∞
(t).

Now, thanks again to the orthogonality between martingales with different

indices, it is easy to show that, for 1 ≤ l ≤ p+ 1, we have

1

n

〈

Ul(·),
p+1
∑

j=1

α∗
jM·j(·)
θ(τ)

〉

(t) =
α∗
l

nθ(τ)

n∑

i=1

∫ t

0

(
Zi(s)− Z̄(s)

)
Yi(s)λ

′
j(s|Z)ds

which converges in probability to

ξl(t) = κl
α(1− α)

θ(τ)
A(t)βl,

14



when n tends to infinity. Finally, with the same kind of arguments we have
〈

1√
n

p+1
∑

j=1

α∗
jM·j(·)
θ(τ)

〉

(t) =
1

n

p+1
∑

j=1

α∗
j

θ2(τ)

n∑

i=1

∫ t

0

Yi(s)λ
′
j(s|Z)ds

P−→ ξα(t) =
α(1− α)

θ(τ)
θ(t),

when n tends to infinity. �

4.2. Large sample behaviour of α̂

Lemma 4.2. Under Assumptions A1-A4, we have

√
n(α̂− α) =

p+1
∑

j=1

α∗
j

θ(τ)

1√
n
M·j(τ) + oP (1). (4)

Moreover
√
n(α̂−α) converges weakly to a N(0, α(1−α)/θ(τ)) distribution when

n→ +∞.

Remark. The second result of this lemma is straightforward and doesn’t

require the first step. It arises from an easy application of the central limit

theorem. However the first result will be useful in the next section.

Proof. From the definition of α̂ we can write:

α̂ =

n∑

i=1

p
∑

j=1

∫ τ

0

dNij(s)

n∑

i=1

p+1
∑

j=1

∫ τ

0

dNij(s)

=

n∑

i=1

p
∑

j=1

∫ τ

0

dMij(s) +

n∑

i=1

p
∑

j=1

∫ τ

0

Yi(s)λ
′
j(s|Z)ds

n∑

i=1

p+1
∑

j=1

∫ τ

0

dMij(s) +
n∑

i=1

p+1
∑

j=1

∫ τ

0

Yi(s)λ
′
j(s|Z)ds

=

p
∑

j=1

M·j(τ) + α

n∑

i=1

p
∑

j=1

∫ τ

0

Yi(s)λj(s|Z)ds

M··(τ) +

n∑

i=1

p
∑

j=1

∫ τ

0

Yi(s)λj(s|Z)ds

=

p
∑

j=1

M·j(τ) + αn

∫ τ

0

[
S0(u)λ0p+1(u) + βT

p+1S1(u)
]
du

M··(τ) + n

∫ τ

0

[
S0(u)λ0p+1(u) + βT

p+1S1(u)
]
du

,

15



where M··(·) denotes the process
∑n

i=1

∑p+1
j=1 Mij(·). It follows that

√
n(α̂ − α)

=

1− α√
n

p
∑

j=1

M·j(τ)−
α√
n
M·p+1(τ)

1

n
M··(τ) +

∫ τ

0

[
S0(u)λ0p+1(u) + βT

p+1S1(u)
]
du

1(N··(τ) > 0)−
√
nα1(N··(τ) = 0)

=

1− α√
n

p
∑

j=1

M·j(τ)−
α√
n
M·p+1(τ)

1

n
M··(τ) +

∫ τ

0

[
S0(u)λ0p+1(u) + βT

p+1S1(u)
]
du

+ oP (1).

Moreover, using Lenglart’s inequality (see e.g. [1]) and Assumption A3, it is

easily seen that
1

n
M··(τ)

P−→ 0, as n→ +∞. (5)

These two last results with Assumptions A3 and A4 complete the proof of (4).

As said in the previous remark, the asymptotic normality of α̂ is straight-

forward. �

4.3. Large sample behaviour of β̂

Theorem 4.3. Under Assumptions A1-A6, the random vector
√
n(β̂ − β) is

asymptotically gaussian, with zero mean and positive definite covariance matrix

Σ
β̂,∞

= Σ1(τ)ΣU∞
(τ)ΣT

1 (τ),

where

Σ1(τ) =











A−1(τ)
α

0 · · · 0 −β1

α

0
. . .

. . .
...

...
...

. . . A−1(τ)
α

0 −βp

α

0 · · · 0 A−1(τ)
1−α

βp+1

1−α











.

Proof. Write

α̂j =







α̂ if 1 ≤ j ≤ p

1− α̂ if j = p+ 1
.
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From their definition, the estimators β̂j , for j = 1, . . . , p, are such that Uj(β̂j , α̂j , τ) =

0. Thus, one can write :

1√
n
Uj(βj , αj , τ) =

1√
n

n∑

i=1

∫ τ

0

(
Zi(s)− Z̄(s)

) (

α̂j β̂
T
j Zi(s)Yi(s)ds− αjβ

T
j Zi(s)Yi(s)ds

)

=

[
∫ τ

0

1

n

n∑

i=1

(
Zi(s)Z

T
i (s)− Z̄(s)ZT

i (s)
)
Yi(s)ds

]

×
[√
n(α̂j − αj)β̂j +

√
nαj(β̂j − βj)

]

.

With the notation

Â(τ) =

∫ τ

0

[
S2(s)− S⊗2

1 (s)/S0(s)
]
ds,

we obtain

1√
n
Uj(βj , αj , τ) = Â(τ)

[√
n(α̂j − αj)β̂j + αj

√
n(β̂j − βj)

]

.

It follows that

β̂j − βj =
1

α̂j

Â−1(τ)
1

n
Uj(βj , αj , τ) +

(
αj

α̂j

− 1

)

βj , (6)

thanks to Assumption A4 which insures that Â(τ) is invertible. Now, using

Assumptions A3 and A4, Proposition 4.1 and Lemma 4.2, it is easily seen that

the right-hand side of (6) converges to zero when n tends to infinity. Thus β̂ is

consistent.

Furthermore, after some straightforward calculations on equation (6), one

can write, for j = 1, . . . , p+ 1:

√
n(β̂j − βj) =

1

αj

(

A−1(τ)
Uj(βj , αj , τ)√

n
− βj

√
n(α̂j − αj)

)

+
1

αj

((

Â−1(τ) −A−1(τ)
) Uj(βj , αj , τ)√

n
−
√
n(α̂j − αj)(β̂j − βj)

)

.

Using again Assumptions A3 and A4 (which ensure that Â−1(τ) converges in

probability toA−1(τ)), Proposition 4.1 and Lemma 4.2 as well as the consistency

of β̂, one can prove that the second term of the right-hand side of this last

equality is an oP (1). Thus we can write:

√
n(β̂j − βj) =

1

α

(

A−1(τ)
Uj(βj , αj , τ)√

n
− βj

√
n(α̂− α)

)

+ oP (1), (7)
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for j = 1 . . . , p, and

√
n(β̂p+1 − βp+1)

=
1

1− α

(

A−1(τ)
Up+1(βp+1, αp+1, τ)√

n
+ βp+1

√
n(α̂− α)

)

+ oP (1). (8)

Hence, from (4), (7) and (8) we finally obtain

√
n(β̂ − β) = Σ1(τ)Un(τ) + oP (1), (9)

where Σ1(τ) is given in Theorem 4.3. This and Proposition 4.1 complete the

proof. Note that because ΣU∞
(τ) is positive definite, the matrix Σ

β̂,∞
is positive

definite too. �

4.4. The optimal estimator β̃

Recall that our T –optimal estimator is β̃ = Ĥβ̂, where

Ĥ = argminH∈Hq̂(H) = argminH∈Htrace(HΣ̂
β̂,∞

HT ),

and Σ̂
β̂,∞

is required to be an estimator of the asymptotic covariance matrix

Σ
β̂,∞

given in Theorem 4.3. Thus, we first have to find such an estimator of

Σ
β̂,∞

.

It is easy to check from their definition that the explicit expressions of the

estimators β̂j , for j = 1, . . . , p+ 1, are

β̂j =
1

α̂j

Â−1(τ)
1

n

n∑

i=1

∫ τ

0

(
Zi(s)− Z̄(s)

)
dNij(s). (10)

Furthermore, let

Θ̂j(τ) =
1

n

n∑

i=1

∫ τ

0

(
Zi(s)− Z̄(s)

)⊗2
dNij(s),

and

ξ̂j(τ) = κj
α̂(1− α̂)

θ̂(τ)
Â(τ)β̂j ,

where θ̂(τ) = N··(τ)/n, and finally

ξ̂α(τ) =
α̂(1− α̂)

θ̂(τ)
.
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Therefore, one can use respectively

Σ̂1(τ) =











Â−1(τ)
α̂

0 · · · 0 − β̂1

α̂

0
. . .

...
...

... Â−1(τ)
α̂

0 − β̂p

α̂

0 · · · 0 Â−1(τ)
1−α̂

β̂p+1

1−α̂











and

Σ̂U∞
(τ) =











Θ̂1(τ) 0 0 ξ̂1(τ)

0
. . . 0

...

0 0 Θ̂p+1(τ) ξ̂p+1(τ)

ξ̂T1 (τ) · · · ξ̂Tp+1(τ) ξ̂α(τ)











as estimators of Σ1(τ) and ΣU∞
(τ). Finally, let β∗ = (βT

1 , . . . , β
T
p )

T .

Theorem 4.4. Under Assumptions A1-A6, the estimator

Σ̂
β̂,∞

= Σ̂1(τ)Σ̂U∞
(τ)Σ̂T

1 (τ)

converges in probability to the matrix Σ
β̂,∞

. If Σ
β̂,∞

is invertible, then
√
n(β̃−

β∗) is asymptotically zero mean gaussian distributed with covariance matrix

whose trace minimizes q(H) = trace(HΣ
β̂,∞

HT ) over H ∈ H.

Proof. We know from Lemma 4.2 that α̂ converges in probability to α.

We have also seen in the proof of Theorem 4.3 that Â−1(τ) and β̂j, for j =

1, . . . , p + 1, converge in probability respectively to A−1(τ) and βj . Thus, we

get the convergence in probability of Σ̂1(τ) to Σ1(τ).

Moreover, we have seen in the proof of Lemma 4.2 that

N··(τ) =M··(τ) + n

∫ τ

0

[
S0(u)λ0p+1(u) + βT

p+1S1(u)
]
du.

Thanks to Assumptions A3 and A4, the integral in the right-hand side of the

last equation converges in probability to θ(τ). This and (5) give the convergence

in probability of θ̂(τ) to θ(τ).
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From the above convergences we have the convergence in probability of ξ̂j(τ)

to ξj(τ), for j = 1, . . . , p+ 1, as well as the one of ξ̂α to ξα.

On the other hand, one can write, for j = 1, . . . , p:

Θ̂j(τ) =
1

n

n∑

i=1

∫ τ

0

(
Zi(s)− Z̄(s)

)⊗2
dMij(s) +

1

n

n∑

i=1

∫ τ

0

(
Zi(s)− Z̄(s)

)⊗2
Yi(s)λ

′
j(s|Zi)ds. (11)

With the notation A⊗2 = AAT when A is also a matrix, it is easily seen that,

for all t ∈ [0, τ ]

〈

1

n

n∑

i=1

∫ t

0

(
Zi(s)− Z̄(s)

)⊗2
dMij(s)

〉

=
1

n2

n∑

i=1

∫ t

0

((
Zi(s)− Z̄(s)

)⊗2
)⊗2

Yi(s)λ
′
j(s|Zi)ds,

which in t = τ converges to zero in probability when n tends to infinity, by

Assumptions A2 and A3. This and Lenglart inequality yield the convergence in

probability to zero of the first term of (11). Moreover, we have seen in the proof

of Proposition 4.1 that the second term of (11) is equal to 〈Uj(βj , α, τ)/
√
n〉

and converges in probability to Θj(τ), when n tends to infinity. These two last

convergences prove that Θ̂j(τ) converges to Θj(τ), for j = 1, . . . , p + 1. Thus

we get the consistency of the estimator Σ̂U∞
(τ) and finally the one of Σ̂

β̂,∞
.

From the above and the continuous dependency of Ĥ on Σ̂
β̂,∞

we deduce

that Ĥ converges in probability to the matrix Hopt in H which minimizes

trace(HΣ
β̂,∞

HT ). We recall that the existence of such an optimal matrix is en-

sured because Σ
β̂,∞

is positive definite. Since Ĥβ = β∗, we get from the above

and Theorem 4.3 that
√
n(β̃−β∗) = Ĥ

√
n(β̂−β) converges to a zero mean gaus-

sian distributed random variable with covariance matrix HoptΣβ̂,∞
HT

opt which

is optimal in the sense defined earlier. �

5. Statistical inference on the functional parameters

Even if it is not the model considered at the beginning of this paper, we will

first consider the fully nonparametric case, that is a model without covariates

where only functional parameters have to be estimated. Of course, this is also of

interest for applications. Then we will come back to our semiparametric model

and will see how to estimate its functional parameters.
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5.1. Inference in the nonparameteric model

In this case no parametric form is assumed on the cause specific hazard

rate functions λj(·), for j = 1, . . . , p and we also do not take into account any

covariate. Let Λj(·), for j = 1, . . . , p, denote the cause specific cumulative

hazard rate functions defined by:

Λj(t) =

∫ t

0

λj(u)du,

for t in [0, τ ] and

Λp+1(t) =

p
∑

j=1

Λj(t).

With the assumption on M and the hypothesis of independence between

(T, d) and C, the instantaneous transition rates of the Markov process with

graph given in Figure 1 are:






λ′j(t) = αλj(t), for j = 1, . . . , p,

λ′p+1(t) = (1− α)
∑p

j=1 λj(t) = (1− α)λp+1(t),

λ′C(t) = λC(t).

Contrary to the model by Goetghebeur and Ryan [14], when there is no

covariate in the data, the model is still of interest because it allows different

failure rates for failure causes.

5.1.1. First estimators of the cause specific cumulative hazard rate functions

By standard arguments, one can easily estimate Λj(t), for j = 1, . . . , p + 1

and t ∈ [0, τ ], by

Λ̂j(t) =
1

α̂j

Λ̂′
j(t),

where α̂j is defined at the beginning of the proof of Theorem 4.3, Y (s) =
∑n

i=1 Yi(s) is the number at risk at time s and

Λ̂′
j(t) =

n∑

i=1

∫ t

0

dNij(s)

Y (s)

is the well-known Nelson-Aalen estimator of

Λ′
j(t) =

∫ t

0

λ′j(u)du.
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Write:

Λ(·) =











Λ1(·)
...

Λp(·)
Λp+1(·)











and Λ̂(·) =











Λ̂1(·)
...

Λ̂p(·)
Λ̂p+1(·)











.

Let us introduce two classical assumptions that allow to obtain the following

asymptotic results.

B1. τ satisfies 0 < Λj(τ) < +∞, for j = 1, . . . , p.

B2. There exists a function s0(·), defined on [0, τ ], and bounded away from 0,

such that

sup
s∈[0,τ ]

∣
∣
∣
∣

Y (s)

n
− s0(s)

∣
∣
∣
∣

P−→ 0, when n→ +∞.

Note that these assumptions are nothing but Assumptions A2 and A3 of

Section 4 adapted to this new model. It is well known that Assumptions B1

and B2 are fulfilled whenever τ is such that S(τ)Ḡ(τ) > 0, where S(·) and Ḡ(·)
are respectively the survival functions of T and C.

Note also that the functions s0(·)λj(·) and λj(·)/s0(·) are integrable on [0, τ ].

Finally, let us define:

ηj(·) = αj

∫ ·

0

λj(u)/s0(u)du, for j = 1, . . . , p,

ηp+1(·) =

p
∑

j=1

ηj(·),

θ0(·) =

∫ ·

0

s0(u)λm(u)du

ρj(·) = κjα(1− α)Λj(·)/θ0(τ), for 1 ≤ j ≤ p+ 1,

and ρα(τ) = α(1 − α)/θ0(τ).

Theorem 5.1. Under Assumptions A1, B1 and B2, the process
√
n(Λ̂(·)−Λ(·))

converges weakly in Dp+1[0, τ ] to a zero mean gaussian process L(·) with covari-

ance matrix function

ΣL(t) = Σ2(t)ΣV∞
(t)ΣT

2 (t),
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where

Σ2(t) =











1
α

0 · · · 0 −Λ1(t)
α

0
. . .

...
...

... 1
α

0 −Λp(t)
α

0 · · · 0 1
1−α

Λp+1(t)
1−α











and

ΣV∞
(t) =











η1(t) 0 0 ρ1(t)

0
. . . 0

...

0 0 ηp+1(t) ρp+1(t)

ρ1(t) · · · ρp+1(t) ρα(τ)











.

Proof. Our proof starts with the observation that:

Λ̂j(t)− Λj(t) =
1

α̂j

(

Λ̂′
j(t)− Λ′

j(t)
)

−
Λ′
j(t)√
nαjα′

j

√
n (α̂j − α) . (12)

A straightforward application of the central limit theorem gives the
√
n-

asymptotical normality of α̂ and thus that
√
n (α̂− α) is an Op(1). Moreover,

under Assumptions B1 and B2, the Nelson-Aalen estimators Λ̂′
j(·), for j =

1, . . . , p + 1, are well-known to be uniformly consistent (see e.g. Andersen et

al. [1]). Hence, under the assumptions of Theorem 5.1, one can get easily from

(12) the uniform convergence in D[0, τ ] of Λ̂j(·) to Λj(·), for j = 1, . . . , p + 1.

These convergences and (12) yield

√
n(Λ̂j(·)− Λj(·)) =

√
n

αj

∫ ·

0

dM·j(s)

Y (s)
− Λj(·)

αj

√
n(α̂j − αj) + oP (1), (13)

in D[0, τ ] and for j = 1, . . . , p+ 1.

But, following the lines of Lemma 4.2, we show that

√
n(α̂− α) =

p+1
∑

j=1

α∗
j

θ0(τ)

1√
n
M·j(τ) + oP (1),

where θ0(τ) > 0 by B1 and B2. From this and (13), we deduce that

√
n(Λ̂(t)− Λ(t)) = Σ2(t)Vn(t) + oP (1), (14)
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in Dp+1[0, τ ], where Σ2(t) is defined in Theorem 5.1 and

Vn(t) =
√
n











∫ t

0
dM·1(s)
Y (s)

...
∫ t

0
dM·p+1(s)

Y (s)

1
n

∑p+1
j=1

α∗

j

θ0(τ)
M·j(τ)











.

Using the Rebolledo Theorem or an approach given in Dauxois [8] one can

easily prove that, under Assumptions B1 and B2, the process Vn(·) converges

weakly in Dp+2[0, τ ] to a zero mean gaussian process V∞(·). It remains to

specify its covariance function ΣV∞
(·). First, note that we can write Vn(t) =

V1,n(t) + V2,n(t) where

V1,n(t) =
√
n











∫ t

0
dM·1(s)
Y (s)

...
∫ t

0
dM·p+1(s)

Y (s)

1
n

∑p+1
j=1

α∗

j

θ0(τ)
M·j(t)











and

V2,n(t) =
1√
n











0

...

0
∑p+1

j=1

α∗

j

θ0(τ)
(M·j(τ) −M·j(t))











.

Since the martingales M·j are orthogonal, for j = 1, . . . , p+ 1 , we have

E
[
V

⊗2
n (t)

]
= E

[
V

⊗2
1,n(t)

]
+ E

[
V

⊗2
2,n(t)

]

and thus

ΣV∞
(t) = lim

n→∞
E
[
V

⊗2
1,n(t)

]
+ lim

n→∞
E
[
V

⊗2
2,n(t)

]
.

Straightforward calculus lead to the expression of ΣV∞
(·) given in the theorem.

From this and (14) we get the desired result. �

One can get a consistent estimator of the covariance function ΣL(·) of the

limit process L(·). In this order, let us define, for j = 1, . . . , p+ 1:

η̂j(t) = n

∫ t

0

dN·j(s)

Y 2(s)
.

24



Define also:

ρ̂j(t) = κj
α̂(1− α̂)Λ̂j(t)

θ̂0(τ)
, for j = 1, . . . , p, and ρ̂α =

α̂(1 − α̂)

θ̂0(τ)
,

where θ̂0(τ) = N··(τ)/n.

Then, plug-in estimators of Σ2(t) and ΣV∞
(t), for t ∈ [0, τ ], are respectively

Σ̂2(t) =











1
α̂

0 · · · 0 − Λ̂1(t)
α̂

0
. . .

...
...

... 1
α̂

0 − Λ̂p(t)
α̂

0 · · · 0 1
1−α̂

Λ̂p+1(t)
1−α̂











and

Σ̂V∞
(t) =











η̂1(t) 0 0 ρ̂1(t)

0
. . . 0

...

0 0 η̂p+1(t) ρ̂p+1(t)

ρ̂1(t) · · · ρ̂p+1(t) ρ̂α











.

Finally, an empirical estimator of ΣL(·) is given by:

Σ̂L(·) = Σ̂2(·)Σ̂V∞
(·)Σ̂T

2 (·).

5.1.2. Optimal estimators of the cause specific cumulative hazard rate functions

Except the fact that estimators in this section are functions the situation

is the same as the one of Section 3.1. Indeed, our multivariate functional esti-

mator Λ̂(·) gives estimators Λ̂1(·), . . . , Λ̂p(·) of Λ1(·), . . . ,Λp(·) respectively and

an estimator Λ̂p+1(·) of their sum Λp+1(·) =
∑p

i=1 Λi(·). Here also we will look

for a linear transformation of Λ̂(·) which will give us an optimal estimator of

Λ∗(·) = (Λ1(·), . . . ,Λp(·))T .
In this order, let us define H′ as the set of p× (p + 1) real valued matrices

such that Ha = a∗ for all a∗ = (a1, . . . , ap)
T ∈ R

p and a = (a∗T ,
∑p

j=1 aj)
T .

We define

Ĥ(t) = argmin
H∈H′

trace(HΣ̂L(t)H
T ) (15)

and set Λ̃(·) = Ĥ(·)Λ̂(·) as a new estimator of Λ∗(·). The next theorem proves

that the later estimator is asymptotically normal and T –optimal.
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Theorem 5.2. Under Assumptions A1, B1 and B2, the matrix Σ̂L(t) converges

in probability to the matrix ΣL(t), for all t ∈ [0, τ ].

Moreover, let us assume that the matrix ΣL(t) is invertible, for all t ∈]0, τ ].
If, for all t ∈ [0, τ ], the matrix Ĥ(t) is the unique solution of (15), then the

process
√
n(Λ̃(·) − Λ∗(·)) converges weakly in Dp[0, τ ] to a centered gaussian

process L
′(·) = HΣL

(·)L(·) with covariance function HΣL
(·)ΣL(·)HT

ΣL
(·) where

HΣL
(t) = argmin

H∈H′

trace(HΣL(t)H
T ).

Proof. The proof is omitted since it follows the lines of the proof of Theorem

4.4. �

Let us denote by L the column vector in R
p(p+1) defined by L = (H1, . . . , Hp)

where Hi is the ith row of H ∈ H′. The link between L = (li)1≤i≤p(p+1) and

H = (hi,j)1≤i≤p;1≤j≤p+1 is therefore hi,j = l(i−1)(p+1)+j . One can see that the

linear constraints on H may be written on L as CL = d where C and d are

known. Indeed






hi,i + hi,p+1 = 1, for 1 ≤ i ≤ p,

hi,j + hi,p+1 = 0, for 1 ≤ i ≤ p, 1 ≤ j ≤ p+ 1 and i 6= j,

⇔







l(i−1)(p+1)+i + li(p+1) = 1, for 1 ≤ i ≤ p,

l(i−1)(p+1)+j + l(i+1)p = 0, for 1 ≤ i ≤ p, 1 ≤ j ≤ p+ 1 and i 6= j,

⇔ CL = d,

where the matrix C and the vector d are obvious. Moreover, let Q̂(t) be the

p× p block diagonal matrix defined by

Q̂(t) = diag
(

Σ̂L(t), . . . , Σ̂L(t)
)

︸ ︷︷ ︸

p times

,

and note that

trace(HΣ̂L(t)H
T ) = LT Q̂(t)L.
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Thus, in order to find our optimal estimator, we have to solve the following

optimization problems

(Pt)







Find L(t) which minimizes LT (t)Q̂(t)L(t)

such that : CL(t) = d
,

for t ∈ [0, τ ].

Following the method of Section 3.2, the solution of (Pt) is:

L̂(t) = Q̂−1(t)CT (CQ̂−1(t)CT )−1d

and Ĥ(t) is therefore defined by ĥij(t) = l̂(i−1)(p+1)+j(t) for 1 ≤ i ≤ p and

1 ≤ j ≤ p+ 1.

Remark. Since Σ̂L(t) is piecewise constant, it is sufficient to calculate the

matrix Ĥ(t) at points t ∈ [0, τ ] where the counting process N·· jumps, that is

at points Xi ∈ [0, τ ] such that δi = 1.

5.1.3. Estimation of the cumulative incidence functions and the survival func-

tion of T

Our aim in this section is to introduce estimators of the survival function

S(·) of the lifetime T as well as estimators of the cumulative incidence functions

Fj(·) defined, for all t and j = 1, . . . , p, by

Fj(t) = P (T ≤ t, d = j).

Let us recall that Λ·(·) =
∑p

j=1 Λj(·) is the cumulative hazard rate function

of the survival time T . It is well known that one can write the survival function

in terms of the cumulative hazard rate function:

S(t) = π
u∈]0,t]

(1− dΛ·(u)) ,

where π denotes the product integral (see Gill & Johansen [13]). Using a

plug-in method on this last equation, one can get the Kaplan-Meier estimator

of S(t):

Ŝ(t) = π
u∈]0,t]

(

1− dΛ̃·(u)
)

,

27



where Λ̃(·) is the optimal estimator of the previous paragraph and

Λ̃·(·) =
p

∑

j=1

Λ̃j(·).

On the other hand, it is also well-known that one can write, for t ∈ [0, τ ]

and j = 1, . . . , p

Fj(t) =

∫ t

0

S(u−)dΛj(u),

and that an estimator of this cumulative incidence function is given by the

Aalen-Johansen estimator (see Andersen et al. [1])

F̂j(t) =

∫ t

0

Ŝ(u−)dΛ̃j(u).

The asymptotic behaviour of these estimators is given in the following theorem.

Theorem 5.3. Under Assumptions A1, B1 and B2, we have the following weak

convergence in Dp+1[0, τ ], when n tends to infinity

√
n





















F̂1(·)
...

F̂p(·)
Ŝ(·)











−











F1(·)
...

Fp(·)
S(·)





















−→











∫ ·

0 S(u)dL
′
1(u)−

∫ ·

0 S(u)L
′
·(u)dΛ1(u)

...
∫ ·

0
S(u)dL′

p(u)−
∫ ·

0
S(u)L′

·(u)dΛp(u)

−S(·)L′
·(·)











,

where L
′
j(·) is the jth component of the limit process L

′(·) of Theorem 5.2 and

L
′
·(·) = L

′
1(·) + · · ·+ L

′
p(·).

Proof. This result is easily obtained from Theorem 5.2 and the functional

δ-method (see e.g. van der Vaart & Wellner [27] for details on this method).

Indeed, from the above, one can write











F1(·)
...

Fp(·)
S(·)











= ψ








Λ1(·)
...

Λp(·)







,
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where ψ(·) is a function from Dp[0, τ ] to Dp+1[0, τ ] with coordinate functions

defined, for i = 1, . . . , p, by:

Fi(·) =
∫ ·

0

S(u−)dΛi(u) = ψi








Λ1(·)
...

Λp(·)







,

and

S(·) = ψp+1








Λ1(·)
...

Λp(·)








= π
u∈]0,·]

(1− dΛ·(u)) .

We know (see again [27]) that the product-integral function

φ(·) : D[0, τ ] → D[0, τ ]

A 7→ φ(A) = π
u∈]0,·]

(1− dA(u))

is Hadamard differentiable on BVK [0, τ ], the subset of functions in D[0, τ ] with

total variation bounded by K. Its derivative is

φ′A(α)(·) = −
∫ ·

0

φ(A)(u−)
φ(A)(·)
φ(A)(u)

dα(u)

and is equal to −φ(A)(·)α(·) when A is continuous.

We also know that the function

ϕ(·, ·) : D[0, τ ]×BVK [0, τ ] → D[0, τ ]

(A,B) 7→ ϕ(A,B) =
∫ ·

0 AdB

is Hadamard differentiable on (A,B) where A is of bounded variation, with

derivative:

ϕ′
A,B(α, β)(·) =

∫ ·

0

A(u)dβ(u) +

∫ ·

0

α(u)dB(u).

Using for instance the chain rule (see Lemma 3.9.3 of [27]) and the compo-

sition

(Λ1(·), . . . ,Λp(·))T 7→ (Λi(·), S(·))T 7→
∫ ·

0

S(u−)dΛi(u),

one can prove that the coordinate functions ψ1(·), . . . , ψp(·) are differentiable

and get their derivatives. The functional δ-method allows us to obtain from
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Theorem 5.2 the following weak convergence in Dp+1[0, τ ]:

√
n
(

ψ(Λ̃(·))− ψ(Λ∗(·))
)

→ ψ′
Λ∗(L′(·)),

when n tends to infinity. Straightforward differential calculus and the continuity

of S(·) give the expression of ψ′
Λ∗(L′(·)) detailed in the Theorem. �

5.2. With explanatory variables

Now, let us come back to the semiparametric model of equation (1) with

explanatory variable Z(·). Recall that we have, for j = 1, . . . , p:

dN·j(s) = dM·j(s) + αY (s)dΛ0j(s) + αnST
1 (s)βjds.

Thus, an estimator of Λ0j(t) is given, for all t ∈ [0, τ ], by

Λ̂0j(t) =
1

α̂

∫ t

0

dN·j(s)

Y (s)
− β̂T

j

∫ t

0

S1(s)

S0(s)
ds,

where β̂j is the estimator introduced in Section 3.1 and is such that Uj(β̂j , αj , τ) =

0.

Then we propose to estimate Λj(·|Z), for j = 1, . . . , p, by Λ̂j(·|Z) defined,

for t ≥ 0, by

Λ̂j(t|Z) = Λ̂0j(t)+β̂
T
j

∫ t

0

Z(s)ds =
1

α̂

∫ t

0

dN·j(s)

Y (s)
+β̂T

j

(∫ t

0

Z(s)ds−
∫ t

0

S1(s)

S0(s)
ds

)

,

where by abuse of notation
∫ t

0
Z(s)ds denotes the vector of integrals of each

coordinate of Z(·).
Before giving the large sample behaviour of these estimators in the following

theorem, let us introduce other notations. For j = 1, . . . , p let us define:

µ1j(·) = α

∫ ·

0

s0(s)λ0j(s) + βT
j s1(s)

s20(s)
ds,

µ2j(·) =
α(1 − α)

θ(τ)

∫ ·

0

s0(s)λ0j(s) + βT
j s1(s)

s0(s)
ds,

µ3j(·) = α

∫ ·

0

a(s)

s0(s)
dsβj ,
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and the block matrix

Σ5(t) =
1

α














1 0 0 . . . 0 K(t) 0 0 . . . 0 −Λ1(t|Z)
0 1 0 . . . 0 0 K(t) 0 . . . 0 −Λ2(t|Z)
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

0 . . . 0 1 0 0 . . . 0 K(t) 0 −Λp−1(t|Z)
0 . . . 0 0 1 0 . . . 0 0 K(t) −Λp(t|Z)














where K(t) is a 1× k vector defined by

K(t) =

(∫ t

0

Z(s)ds−
∫ t

0

s1(s)

s0(s)
ds

)T

A−1(τ), for all t ∈ [0, τ ].

Theorem 5.4. Under Assumptions A1-A6, the process

√
n
(

Λ̂1(·|Z) − Λ1(·|Z), . . . , Λ̂p(·|Z) − Λp(·|Z)
)T

converges weakly in Dp[0, τ ], when n → +∞, to a zero mean gaussian process

with covariance matrix Σ5(t)ΣW′

∞
(t)ΣT

5 (t), where

ΣW′

∞
(t) =

1

α




Σ

(11)
W′

∞

(t) Σ
(12)
W′

∞

(t)

Σ
(12)
W′

∞

(t)T Σ
(22)
W′

∞

(t)



 ,

with

Σ
(11)
W′

∞

(t) = diag (µ11(t), . . . , µ1p(t))
︸ ︷︷ ︸

p times

,

Σ
(12)
W′

∞

(t) =














µT
31(t) 0 0 . . . 0 µ21(t)

0 µT
32(t) 0 . . . 0 µ22(t)

...
. . .

. . .
. . .

...
...

0 . . . 0 µT
3(p−1)(t) 0 µ2(p−1)(t)

0 . . . 0 0 µT
3p(t) µ2p(t)














,
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and

Σ
(22)
W′

∞

(t) =

















Θ1(τ) 0 0 . . . 0 ξ1(τ)

0 Θ2(τ) 0 . . . 0 ξ2(τ)
...

. . .
. . .

. . .
...

...

0 . . . 0 Θp−1(τ) 0 ξp−1(τ)

0 . . . 0 0 Θp(τ) ξp(τ)

ξT1 (τ) . . . . . . . . . ξTp (τ) ξα(τ)

















.

Proof. By the definition of Λj(·|Z) and Λ̂j(·|Z), one can write, for all t > 0

and j = 1, . . . , p

√
n
(

Λ̂j(·|Z)− Λj(·|Z)
)

=
√
n

[(
1

α̂

∫ t

0

dN·j(s)

Y (s)
− β̂T

j

∫ t

0

S1(s)

S0(s)
ds− Λ0j(t)

)

+ (β̂j − βj)
T

∫ t

0

Z(s)ds

]

.

But it is easy to check that our assumptions and preliminary results yield

√
n

(
1

α̂

∫ ·

0

dN·j(s)

Y (s)
− β̂T

j

∫ ·

0

S1(s)

S0(s)
ds− Λ0j(·)

)

=

√
n

α̂

∫ ·

0

dM·j(s)

Y (s)

−
√
n(α̂− α)

α

(

βT
j

∫ ·

0

s1(s)

s0(s)
ds+ Λ0j(·)

)

−
√
n(β̂j − βj)

T

∫ ·

0

s1(s)

s0(s)
ds+ oP (1).

These two last equations and (7) enable us to write:

√
n
(

Λ̂j(·|Z)− Λj(·|Z)
)

=

√
n

α̂

∫ ·

0

dM·j(s)

Y (s)
−

√
n(α̂− α)

α
Λj(·|Z)

+
1

α

(

A−1(τ)
Uj(βj , αj , τ)√

n

)T (∫ ·

0

Z(s)ds−
∫ ·

0

s1(s)

s0(s)
ds

)

+ oP (1).

Hence we have

√
n








Λ̂1(·|Z)− Λ1(·|Z)
...

Λ̂p(·|Z)− Λp(·|Z)








= Σ5(·)W′
n(·) + oP (1),

where

W
′
n(·) =

(√
n

∫ ·

0

dM·1(s)

Y (s)
, . . . ,

√
n

∫ ·

0

dM·p(s)

Y (s)
,

UT
1 (β1, α1, τ)√

n
, . . . ,

UT
p (βp, αp, τ)√

n
,

1√
n

p+1
∑

j=1

α∗
j

θ(τ)
M·j(τ)





T

.
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But a straightforward application of Rebolledo’s Theorem proves that, under

Assumptions A1-A6, the process

Wn(·) =

(√
n

∫ t

0

dM·1(s)

Y (s)
, . . . ,

√
n

∫ t

0

dM·p(s)

Y (s)
,

U1(β1, α1, ·)√
n

, . . . ,
Up(βp, αp, ·)√

n
,

1√
n

p+1
∑

j=1

α∗
j

θ(τ)
M·j(·)





T

converges weakly in Dp(k+1)+1[0, τ ] to a zero mean multivariate gaussian mar-

tingale W∞(·). It is easy to check that the covariance matrix ΣW∞
(·) of this

limit process is similar to ΣW′

∞

(·) where τ is everywhere replaced by t. This

ends the proof. �

Estimators Θ̂1(τ), . . . , Θ̂p(τ), ξ̂1(τ), . . . , ξ̂p(τ) and ξ̂α(τ) of respectively Θ1(τ), . . . ,Θp(τ),

ξ1(τ), . . . , ξp(τ) and ξα(τ) have been introduced in Section 4.4. Moreover, one

can estimate µ1j(t), µ2j(t), µ3j(t), for j = 1, . . . , p and t ∈ [0, τ ], with

µ̂1j(t) = nα̂

∫ t

0

dN·j

S2
0(s)

,

µ̂2j(t) =
α̂(1 − α̂)

θ̂(τ)

∫ t

0

dN·j(s)

S0(s)
,

µ̂3j(t) = α̂Â(t)β̂j

and an estimator of K(t) is given by:

K̂(t) =

(∫ t

0

Z(s)ds−
∫ t

0

S1(s)

S0(s)
ds

)T

Â−1(τ).

Using these estimators one can get consistent estimators of the matrices Σ5(t)

and ΣW′

∞
(t).

Finally, it has to be noted that, as in Section 5.1.3, it is also possible to get

estimators of the survival function and the cumulative incidence functions as

well as to get their large sample behaviour (like in Theorem 5.3). But this is

omitted here since it is very similar to what has been done in Section 5.1.3.

6. Simulation study

A simulation study is driven in this section in order to assess the behavior of

our estimates on small sample sizes. We have assumed that there is two compet-
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ing risks and a single time-independent covariate Z with uniform distribution

on {1, 2}. Moreover, the two risks T1 and T2 are supposed to be, conditionally

on Z, independent with respective hazard rate function λ1(t|Z) = t/2+2Z and

λ2(t|Z) = 2t/9+3Z. Therefore we have β1 = 2 and β2 = 3. The censoring time

C is supposed to be exponentially distributed with mean 1 whereas the rate of

missingness α is equal to 0.5. As a consequence, the rate of censored data is

about 12%, the rates of observed failures from cause 1 and 2 are respectively

about 15% and 28%, and the rate of missingness is about 45%. The study of

the performance of our estimators is based on 1000 simulations of samples with

size 100, 200, 400 or 1000.

n β̂1 β̃1 β̂2 β̃2

100 2.116 [1.583] 2.117 [1.438] 3.024 [1.923] 3.004 [1.610]

200 2.055 [1.111] 2.023 [1.000] 3.083 [1.367] 3.039 [1.146]

400 2.021 [0.768] 2.001 [0.687] 3.043 [0.919] 3.011 [0.784]

1000 1.998 [0.500] 2.001 [0.454] 2.989 [0.584] 2.993 [0.502]

Table 1: Empirical means [standard errors] of β̂i and β̃i, for i = 1, 2, based on Monte Carlo

simulation of size N=1000.

Table 1 gives the mean and the standard error of the estimators (β̂i)i=1,2,

based on transitions 0 → i, and of the T –optimal estimators (β̃i)i=1,2, which use

observations coming from the three informative transitions. It appears that in

terms of bias the T –optimal estimators are generally better (except for β1 when

n = 100) whereas the standard errors of the T –optimal estimates are always

smaller than the standard errors of estimates based on transitions 1 and 2.
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