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Abstract

We consider a nonparametric and a semiparametric (in presence of covariates) ad-

ditive hazards rate competing risks model with censoring and failure cause possibly

missing completely at random. Estimators of the unknown parameters are proposed

in order to satisfy some optimality criteria. Large sample results are given for all the

estimators. Our nonparametric method is applied to a real data set and the behavior

of the semiparametric estimators are analyzed through a Monte Carlo study.

Key words: Additive hazards, competing risks, counting processes, missing failure

cause, reliability, survival analysis.

1 Introduction

We consider p ≥ 2 independent competing failure causes. We assume that to each failure

time Tj is associated a hazard rate function (risk function) λj with 1 ≤ j ≤ p. The failure

time T is the minimum of the p failure times associated to the p failure causes (this can be

seen as a 1-out-of-p system in reliability), then we have T = T1 ∧ · · · ∧ Tp. The failure time

T can be censored by a censoring time C, then we observe X = T ∧ C and δ = 1(T ≤ C)
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where 1(·) is the indicator function. Generally, when T is uncensored, that is for δ = 1, the

failure cause is known, which means that
∑p

j=1 j1(Tj = T ) is observed, but from times to

times, it may happen that the failure cause is unknown and no partial information about the

failure cause is available. In addition, a vector of explanatory variables denoted by Z and

having potentially significant effects on the p failure times may be observed. In this paper

we propose a model that allows to analyze such lifetime data from a semiparametric point

of view in presence of covariates, and from a nonparametric point of view otherwise. We

need to emphasize that our model extends some existing models in the semi-/non-parametric

direction, however, the missingness mechanism is accounted here in the simplest way.

The problem of competing risks is not new and during the last two decades many models

have been proposed in order to account that a system or an individual may fail or dead

from several causes (see Crowder, 2001, for a large overview on the topic). In a number of

real applications of competing risks models the authors have to face the problem of missing

information (e.g. Miyakawa, 1984; Usher and Hodgson, 1988; Lin et al., 1993; Schabe, 1994;

Goetghebeur and Ryan, 1995; Guttman et al., 1995; Reiser et al., 1996; Basu et al., 1999;

Flehinger et al., 2002; Craiu and Duchesne, 2004; Craiu and Reiser, 2007).

Among the great amount of paper dealing with competing risks model some of them

focus on nonparametric estimation methods (see e.g. Lo, 1991 and Schabe, 1994). Because

in many case partial information about the failure cause can only be obtained (e.g. masked

cause of failure), a large number of works developed some specific methods with accurate

modeling of the missingness mechanism. Most of these models are parametric and when a

latent variable represents the missingness mechanism an EM-type algorithm can be proposed

to estimate the model parameters. In Craiu and Duchesne (2004) such estimation procedure

is proposed and the missingness may depend both on the failure cause and the failure time.

Recently, Craiu and Reiser (2007) considered a very complete parametric model including

dependence of failure causes.

Some authors developed estimation procedures in the semi-/non-parametric framework

for two or more failure causes (see e.g. Myakawa, 1984; Dinse, 1986; Lo, 1991, Schabe,

1994). The special case of a possibly censored single failure cause differs from the competing

risks model only be the fact that in this case the censoring time is not an event of interest.

However, when the censoring information is missing, we are close to the competing risks

situation where failure causes are possibly missing. Some specific methods has been derived

in Gijbels et al. (1993), McKeague and Subramanian (1998), van der Laan and McKeague

(1998), Sun and Zhou (2003) and Subramanian (2004) for various models including or not

covariates, and several missingness mechanisms.
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Goetghebeur and Ryan (1995) proposed a competing risks model with proportional haz-

ards assumption for the different failure causes. In their model the mechanism of missing-

ness may depend on the failure time (this is the missing at random assumption) while in the

model we propose it is independent of everything (this is the missing completely at random

assumption). In our model each failure type has its own semiparametric additive hazards

rate model and at the contrary to Goetghebeur and Ryan (1995), these failure rates are not

linked.

The paper is organized as follows. In Section 2 we describe the model and we point out

that each data resulting from the model can be seen as the realization of a nonhomogeneous

Markov process. In Section 3 the estimators are defined. Because data for which the failure

cause is missing are informative for the whole parameters of the model, we develop a method

that allows to account this information in an optimal way with respect to an efficiency

criterium. In Section 4, for the Euclidean parameters, and in Section 5 for the functional

parameters, the corresponding estimators are shown to be consistent and asymptotically

Gaussian. For each estimator, a consistent estimator of the asymptotic variance is provided.

Section 6 is devoted to numerical examples. A Monte Carlo study is performed for the case

including covariates whereas our estimation method is applied to a real data set that does

not include covariates. Some concluding remarks are given in the last Section.

2 Framework

Consider a population in which each individual is liable to die from any of p ≥ 2 causes

D1, . . . , Dp. The causes are not necessarily independent but each death is due to a single

cause. Let us denote by T the individual lifetime and d ∈ {1, . . . , p} its cause of death.

Suppose that our interest focuses on the effect of a time-varying covariate vector Z(·) of

dimension k. More precisely, let Z(t) = {Z(u);u ≤ t} denote the history up to time t of

this covariate process and assume that an additive hazard model holds on the cause specific

hazard rate function, that is:

λj(t|Z) = lim
h→0+

1

h
P (T ∈ [t, t+ h[, d = j|T ≥ t,Z(t)) = λ0j(t) + βT

j Z(t), t ≥ 0, (1)

for j = 1, . . . , p where λ0j(·) is the baseline jth cause specific hazard rate function and

βj ∈ R
k is the regression parameter associated to the jth cause.

Suppose also that the lifetime T is right-censored by a random variable (r.v.) C and

write

X = T ∧ C ≡ min(T,C) and δ = I{T ≤ C},
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where I(A) is the indicator of the set A. Let λC(·) denote the hazard rate function of the

r.v. C and assume that C is, conditionally on Z, independent from (T, d).

Of course the cause of death is not known if C is observed rather than T for a given

individual. But in some situations it might be the case that d is also not known even if T is

observed. Let M denote the missing indicator, i.e. M = 1 if the cause is known and M = 0

otherwise. Thus we are in a situation where the available observation for an individual is

(X, δ,D,Z(X)),

where D = δMd reveals the failure cause d when the failure time is uncensored (δ = 0)

and M = 1 and is equal to zero otherwise. In the following we assume that the missing

mechanism is such that:

P (M = 1|X,Z, δ = 1) = P (M = 1|δ = 1) = α ∈ [0, 1],

where α is an unknown parameter, and

P (M = 0|X,Z, δ = 0) = P (M = 0|δ = 0) = 1.

One can see the observation of the vector (X, δ,D), conditionally on Z, as the real-

ization of a (p + 3)-states nonhomogeneous Markov process (see Fig. 1) with space set

{0, 1, . . . , p,m, c}: state 0 is the initial state; state i, for i = 1, . . . , p, corresponds to the

observation of the lifetime T with known cause of death i; state m to the observation of

the lifetime with missing cause; state c to a censored observation. Except 0, all the states

are absorbant. From the assumptions on M and the independence between (T, d) and C,

conditionally on Z, one can easily get that the instantaneous transition rates of this Markov

process are, conditionally on Z:



















λ′j(t|Z) = αλj(t|Z), for j ∈ {1, . . . , p},
λ′m(t|Z) = (1 − α)

∑p

j=1 λj(t|Z),

λ′c(t|Z) = λC(t|Z).

It is important to note that, up to a multiplicative constant (α or 1 − α), the additive

form of the instantaneous rates is preserved (except for the transition 0 → c). It is obvious

for λ′j(t|Z) with 1 ≤ j ≤ p but also for λ′m(·|Z) since

λ′m(t|Z) = (1 − α)
(

λ0m(t) + βT
mZ(t)

)

,

where λ0m(·) =
∑p

j=1 λ0j(·) et βm =
∑p

j=1 βj . This will help us to estimate the regression

parameters β1, . . . , βp.
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Figure 1: Markov graph associated to (X, δ,D)

Now, let us suppose that we observe a sample (Xi, δi, Di,Zi(Xi))1≤i≤n of (X, δ,D,Z(X)).

Let τ < +∞ be the upper bound of the interval of study which means that individuals are

only observed on the time interval [0, τ ]. Let Nij(·), for j ∈ {1, . . . , p,m}, be the counting

processes defined by:

Nij(t) = 1(Xi ≤ t,Di = j) for j 6= m,

and Nim(t) = 1(Xi ≤ t, δi = 1, Di = 0).

Finally write Yi(t) = 1(Xi ≥ t) the individual risk process, for i = 1, . . . , n.

From Andersen et al. (1993) or Fleming and Harrington (1991), we know that, condi-

tionally on Z, the processes Mij(·), for j = 1, . . . , p, and Mim(·) defined respectively by

Mij(t) = Nij(t) −
∫ t

0

Yi(s)λ
′
j(s|Z)ds and Mim(t) = Nim(t) −

∫ t

0

Yi(s)λ
′
m(s|Z)ds,

for t ≥ 0, are mean-zero martingales with respect to the filtration (Ft)t≥0 defined by

Ft = σ{Nij(s), Nim(s), Yi(s); s ≤ t; 1 ≤ i ≤ n, j ∈ {1, . . . , p}}.

3 Statistical Inference on the euclidean parameters

3.1 Estimators

The finite dimensional parameters of our model are: the probability α to know the cause of

death, and the regression parameters β1, . . . , βp of each cause specific hazard rate functions.

Recall that α = P (M = 1|δ = 1). Thus, one can estimate empirically α by the proportion

of lifetimes with known cause of death among the uncensored lifetimes, that is:

α̂ =

∑n

i=1 1(Di > 0)
∑n

i=1 1(δi = 1)
=

∑p

j=1N·j(τ)

N··(τ)
,
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where

N·j(t) =

n
∑

i=1

Nij(t) and N··(t) =

p
∑

j=1

N·j(t) +

n
∑

i=1

Nim(t), for all t.

Extending an approach used by Lin et Ying (1994) in case of a single cause of death, one

can estimate βj , for j = 1, . . . , p, as the solution β̂j of the estimating equation Uj(β, α̂, τ) = 0

where

Uj(β, α̂, τ) =

n
∑

i=1

∫ τ

0

[

Zi(s) − Z̄(s)
] [

dNij(s) − α̂βTZi(s)Yi(s)ds
]

,

and

Z̄(s) =

∑n

i=1 Yi(s)Zi(s)
∑n

i=1 Yi(s)
.

Now, since it has been seen that the cause specific hazard rate function λ′m(·) associated to

a missing cause has an additive form too, one can also estimate βm by the solution β̂m of

the estimating equation Um(β, α̂, τ) = 0 where

Um(β, α̂, τ) =
n

∑

i=1

∫ τ

0

[

Zi(s) − Z̄(s)
] [

dNim(s) − (1 − α̂)βTZi(s)Yi(s)ds
]

.

Explicit expressions of these estimators are available and given below (see equation (10)).

At this stage, we are in a situation where each parameter βj , for j = 1, . . . , p, has its

own estimator β̂j . But we also have an estimator β̂m of their sum βm = β1 + · · · + βp. It

is of course of interest to use it in order to improve the estimation of the first parameters

βj , for j = 1, . . . , p. In this order, we suggest to find the linear transformation of our

estimator (β̂T
1 , . . . , β̂

T
p , β̂

T
m)T which will give us an estimator of (βT

1 , . . . , β
T
p )T with minimum

asymptotic variance. More precisely, let H be the family of all the block matrices

H =

















H11 H12 · · · H1p H1m

H21 H22 · · · H2p H2m

...
...

...
...

Hp1 Hp2 · · · Hpp Hpm

















,

where the Hij , for i = 1, . . . , p and j = 1, . . . , p,m, are real matrices of dimension k × k,

such that

H

















β1

...

βp

βm

















=











β1

...

βp











(2)

for all vectors β1, . . . , βp in R
k and βm = β1 + · · · + βp. Write

q̂(H) = trace(HΣ̂
β̂,∞H

T ),
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where Σ̂
β̂,∞ is an estimator of the asymptotic covariance matrix of (β̂T

1 , . . . , β̂
T
p , β̂

T
m)T . With

Ĥ = Argmin
H∈H

q̂(H),

an estimator of (βT
1 , . . . , β

T
p ) with minimal asymptotic variance is given by:











β̃1

...

β̃p











= Ĥ

















β̂1

...

β̂p

β̂m

















.

Thus, the optimal estimators of the regression parameters are: β̃i =
∑p

j=1 Ĥij β̂j + Ĥimβ̂m,

for i = 1, . . . , p.

Note that the constraints on H given by (2) are linear and do not link its lines between

them. Indeed, denoting by Ik the identity matrix of order k, these constraints may be

written






Hii +Him = Ik

Hij +Him = 0,

for 1 ≤ i ≤ p and j ∈ {1, . . . , p}\{i}.
On the other hand, we have

q̂(H) =

p
∑

i=1

trace(Hi•Σ̂β̂,∞H
T
i•) =

p
∑

i=1

q̂i(H)

where q̂i(H) = trace(Hi•Σ̂β̂,∞H
T
i•) and Hi• is the ith line block of H.

Thus, it is sufficient to solve separately the following problems (Pi), for i = 1, . . . , p:

(Pi)



















Find Hi1, . . . ,Him which minimize trace(Hi•Σ̂β̂,∞H
T
i•)

such that : Hii +Him = Ik,

Hij +Him = 0, for j 6= i,

3.2 Example for p = k = 2

As an example, let us show how to solve problems (P1) and (P2) when p = k = 2. Since

in this case (P1) and (P2) are identical, we only have to consider problem (P1). Let us

introduce other temporary notations. For j = 1, 2,m, write

H(j) = H1j =





h
(j)
11 h

(j)
12

h
(j)
21 h

(j)
22



 .
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Let

Q̂ =





Σ̂
β̂,∞ 0

0 Σ̂
β̂,∞





and

L =
(

h
(1)
11 , h

(1)
12 , h

(2)
11 , h

(2)
12 , h

(m)
11 , h

(m)
12 , h

(1)
21 , h

(1)
22 , h

2)
21, h

(2)
22 , h

(m)
21 , h

(m)
22

)

= (l1, . . . , l12).

One can rewrite the function q̂1(H) to be minimized like:

q̂1(H) = trace

(

(

H(1) H(2) H(m)
)

Σ̂
β̂,∞

(

H(1) H(2) H(m)
)T

)

= LQ̂LT .

Now, since the constraints on H are






H(1) +H(m) = I2

H(2) +H(m) = 0
⇔







h
(1)
ij + h

(m)
ij = 1 for 1 ≤ i, j ≤ 2

h
(2)
ij + h

(m)
ij = 0 for 1 ≤ i, j ≤ 2

,

they can be rewritten CL = d where

C =









































1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1









































and d =









































1

0

0

0

0

1

0

0









































.

Thus the Lagrange function for this optimization problem with linear constraints is given

by

ℓ(L, λ) =
1

2
LT Q̂L+ (CL− d)Tλ

where λ is a Lagrange multiplier vector. The optimal parameters L̂ and λ̂ necessarily satisfy

the first-order conditions






∂ℓ

∂L
(L, λ) = 0 = Q̂L+ CTλ

CL = d
,

which give

λ̂ = −[CQ̂−1CT ]−1d,

and

L̂ = Q̂−1CT [CQ̂−1CT ]−1d.

It has to be noted that Q̂ is invertible whenever Σ̂
β̂,∞ is.
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4 Asymptotic behavior of the regression parameters es-

timators

4.1 Additional notations or assumptions, preliminary results

In order to simplify the notation in the following derivations, let us denote by p + 1 the

index corresponding to a missing cause (previously denoted by m). Let

β =

















β1

...

βp

βp+1

















and β̂ =

















β̂1

...

β̂p

β̂p+1

















.

If z is a column vector in R
k, let us write

x⊗l =



















1 when l = 0,

z when l = 1,

zzT when l = 2.

Finally, let us denote by Sl(·), for l = 0, 1, 2, the processes defined by

Sl(s) =
1

n

n
∑

i=1

Yi(s)Z
⊗l
i (s),

for 0 ≤ s ≤ τ and for b in R
k the process S3(·; b) defined by

S3(s; b) =
1

n

n
∑

i=1

Yi(s)Z
⊗2
i (s)bTZi(s).

From now on we make the following assumptions.

A1. The probability α to get a known cause of death is strictly positive.

A2. The upper bound τ of the time interval of study is such that 0 <
∫ τ

0
λ0j(s)ds < +∞, for

j = 1, . . . , p, and the covariate processes Zi(·) are (Ft)t≥0-predictable and uniformly

bounded with respect to i = 1, . . . , n.

A3. For 0 ≤ l ≤ 2, there exists functions sk(·) defined on [0, τ ] such that

max
0≤l≤2

sup
s∈[0,τ ]

‖Sl(s) − sl(s)‖ P−→ 0, when n→ +∞.

Moreover, the function s0(·) is bounded below by a strictly positive real number.
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A4. With the notations a(u) = s2(u) − s⊗2
1 (u)/s0(u),

A(t) =

∫ t

0

a(u)du and θ(t) =

∫ t

0

[

s0(u)λ0p+1(u)du+ βT
p+1s1(u)

]

du, (3)

the matrix A(τ) is positive definite and the real θ(τ) is strictly positive.

The matrix
∫ τ

0

[

S2(s) − S⊗2
1 (s)/S0(s)

]

ds

is also positive definite. Note that, from previous assumptions, it was already true

asymptotically.

A5. For all b ∈ R
k, let S4(·; b) be the process defined by

S4(s; b) =
1

n

n
∑

i=1

(bTZi(s))Yi(s)(s1(s)Z
T
i (s)/s0(s)).

There exist functions s3(·; b) and s4(·; b) such that, for all b ∈ R
k,

max
3≤l≤4

sup
s∈[0,τ ]

‖Sl(s; b) − sl(s; b)‖ P−→ 0, when n→ +∞.

A6. The following functions are integrable on [0, τ ]:

a(·), a(·)λ0j(·), s0(·)λ0j(·), s1(·),
s⊗2
1 (·)
s20(·)

, s3(·;βj) and s4(·;βj), for j = 1, . . . , p.

Now, let us introduce, for all b ∈ R
k, the processes Uj(b, αj , ·) defined, for j = 1, . . . , p+1

and t ∈ [0, τ ], by:

Uj(b, αj , t) =
n

∑

i=1

∫ t

0

(

Zi(s) − Z̄(s)
) (

dNij(s) − αjb
TZi(s)Yi(s)ds

)

,

where

αj =







α if 1 ≤ j ≤ p,

1 − α if j = p+ 1.

Note that values of these processes at s = τ appear in the estimating equations of Section 3.1.

It is easily seen that these processes can be rewritten like

Uj(b, αj , ·) =

n
∑

i=1

∫ ·

0

(

Zi(s) − Z̄(s)
)

dMij(s),

for j = 1, . . . , p + 1. Hence they are local square integrable (Ft)t≥0-martingales as sum

of stochastic integrals of predictable and bounded processes with respect to local square

integrable martingales.

We are now in a position to introduce our preliminary technical results which, as all the

following in this paper, take place in the Skorohod space of cadlag functions D[0, τ ].
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Proposition 4.1 The multivariate process Un(·) defined, for all t ∈ [0, τ ], by

Un(t) =
1√
n























U1(β1, α1, t)
...

Up+1(βp+1, αp+1, t)
p+1
∑

j=1

α∗
j

θ(τ)
M·j(t)























,

where α∗
j = 1 − α for 1 ≤ j ≤ p and α∗

p+1 = −α, converges weakly in Dk(p+1)+1[0, τ ], as n

tends to ∞, to a mean zero multivariate gaussian martingale U∞(·) with covariance matrix

given, for all t ∈ [0, τ ], by

ΣU∞
(t) =

















Θ1(t) 0 0 ξ1(t)

0
. . . 0

...

0 0 Θp+1(t) ξp+1(t)

ξT
1 (t) · · · ξT

p+1(t) ξα(t)

















,

where, for j = 1, . . . , p+ 1,

Θj(t) = αj

∫ t

0

[

a(s)λ0j(s) + s3(s;βj) − s4(s;βj) − sT
4 (s;βj) + (βT

j s1(s))s
⊗2
1 (s)/s20(s)

]

ds,

ξj(t) = κj

α(1 − α)

θ(τ)
A(t)βj , with κj = 1, for 1 ≤ j ≤ p and κp+1 = −1,

ξα(t) =
α(1 − α)

θ2(τ)
θ(t)

and A(·) as well as θ(·) are defined in (3).

Proof. As in Andersen and Gill (1982), the main idea is to apply Rebolledo’s Theorem

(see Rebolledo, 1980, or Andersen et al., 1993, p. 83–84). Since this theorem is now of

classical use, we only derive here the limit of the predictable variation process associated to

Un. This will give us the asymptotic covariance matrix function ΣU∞
(·) of Un.

On one hand, straightforward calculations show that we have, for j = 1, . . . , p+ 1,

〈

1√
n
Uj(βj , α, ·)

〉

(t) =
1

n

n
∑

i=1

∫ t

0

(

Zi(s) − Z̄(s)
) (

Zi(s) − Z̄(s)
)T
Yi(s)λ

′
j(s|Z)ds

= αj

∫ t

0

[

S2(s) − S⊗2
1 (s)/S0(s)

]

λ0j(s)ds

+ αj

∫ t

0

[

S3(s;βj) − S4(s;βj) − ST
4 (s;βj) + (βT

j S1(s))S
⊗2
1 (s)/S2

0(s)
]

ds+ oP (1),

which, by Assumptions A2-A6, converges in probability, as n tends to +∞, to Θj(t) given

in the Theorem.
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On the other hand, since the martingalesMij andMi′j′ are orthogonal for all 1 ≤ i, i′ ≤ n

and 1 ≤ j 6= j′ ≤ p+ 1, we have:

〈Uj(βj , αj , ·),Uj′(βj′ , αj′ , ·)〉 (t) = 0,

as soon as j is different from j′ and for all t ∈ [0, τ ]. This justifies the null terms in the

asymptotic covariance matrix ΣU∞
(t).

Now, thanks again to the orthogonality between martingales with different indices, it is

easy to show that, for 1 ≤ l ≤ p+ 1, we have

1

n

〈

Ul(·),
p+1
∑

j=1

α∗
jM·j(·)
θ(τ)

〉

(t) =
α∗

l

nθ(τ)

n
∑

i=1

∫ t

0

(

Zi(s) − Z̄(s)
)

Yi(s)λ
′
j(s|Z)ds

which converges in probability to

ξl(t) = κl

α(1 − α)

θ(τ)
A(t)βl,

when n tends to +∞. Finally, with the same kind of arguments we have

〈

1√
n

p+1
∑

j=1

α∗
jM·j(·)
θ(τ)

〉

(t) =
1

n

p+1
∑

j=1

α∗
j

θ2(τ)

n
∑

i=1

∫ t

0

Yi(s)λ
′
j(s|Z)ds

P−→ ξα(t) =
α(1 − α)

θ(τ)
θ(t),

when n tends to +∞. �

4.2 Large sample behaviour of α̂

Lemma 4.2 We have:

√
n(α̂− α) =

p+1
∑

j=1

α∗
j

θ(τ)

1√
n
M·j(τ) + oP (1). (4)

And thus,
√
n(α̂−α) converges weakly to a N(0, α(1−α)/θ(τ)) distribution when n→ +∞.

Remark. The second result of this lemma is obvious and doesn’t need the first step. A

straightforward application of the central limit theorem will give it. But the first result will

be itself of interest in the following section.
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Proof. From the definition of α̂ we can write:

α̂ =

n
∑

i=1

p
∑

j=1

∫ τ

0

dNij(s)

n
∑

i=1

p+1
∑

j=1

∫ τ

0

dNij(s)

=

n
∑

i=1

p
∑

j=1

∫ τ

0

dMij(s) +
n

∑

i=1

p
∑

j=1

∫ τ

0

Yi(s)λ
′
j(s|Z)ds

n
∑

i=1

p+1
∑

j=1

∫ τ

0

dMij(s) +

n
∑

i=1

p+1
∑

j=1

∫ τ

0

Yi(s)λ
′
j(s|Z)ds

=

p
∑

j=1

M·j(τ) + α

n
∑

i=1

p
∑

j=1

∫ τ

0

Yi(s)λj(s|Z)ds

M··(τ) +
n

∑

i=1

p
∑

j=1

∫ τ

0

Yi(s)λj(s|Z)ds

=

p
∑

j=1

M·j(τ) + αn

∫ τ

0

[

S0(u)λ0p+1(u) + βT
p+1S1(u)

]

du

M··(τ) + n

∫ τ

0

[

S0(u)λ0p+1(u) + βT
p+1S1(u)

]

du

,

where M··(·) denotes the process
∑n

i=1

∑p+1
j=1 Mij(·). It follows that

√
n(α̂− α)

=

1 − α√
n

p
∑

j=1

M·j(τ) −
α√
n
M·p+1(τ)

1

n
M··(τ) +

∫ τ

0

[

S0(u)λ0p+1(u) + βT
p+1S1(u)

]

du

1(N··(τ) > 0) −
√
nα1(N··(τ) = 0)

=

1 − α√
n

p
∑

j=1

M·j(τ) −
α√
n
M·p+1(τ)

1

n
M··(τ) +

∫ τ

0

[

S0(u)λ0p+1(u) + βT
p+1S1(u)

]

du

+ oP (1).

Moreover, using Lenglart’s inequality and Assumption A3, it is easily seen that

1

n
M··(τ)

P−→ 0, as n→ +∞. (5)

These two last results with Assumptions A3 and A4 complete the proof of (4).

Then the asymptotic normality of α̂ is obtained thanks to Proposition 4.1 . �

4.3 Large sample behaviour of β̂

Theorem 4.3 Under Assumptions A1-A5, the random vector
√
n(β̂ − β) is asymptotically

gaussian, with mean zero and positive definite covariance matrix

Σ
β̂,∞ = Σ1(τ)ΣU∞

(τ)ΣT
1 (τ),
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where

Σ1(τ) =

















A−1(τ)
α

0 · · · 0 −β1

α

0
. . .

. . .
...

...
...

. . . A−1(τ)
α

0 −βp

α

0 · · · 0 A−1(τ)
1−α

βp+1

1−α

















.

Proof. Write

α̂j =







α̂ if 1 ≤ j ≤ p

1 − α̂ if j = p+ 1
.

From their definition, the estimators β̂j , for j = 1, . . . , p, are such that Uj(β̂j , α̂j , τ) = 0.

Thus, one can write :

1√
n
Uj(βj , αj , τ) =

1√
n

n
∑

i=1

∫ τ

0

(

Zi(s) − Z̄(s)
)

(

α̂j β̂
T
j Zi(s)Yi(s)ds− αjβ

T
j Zi(s)Yi(s)ds

)

=

[

∫ τ

0

1

n

n
∑

i=1

(

Zi(s)Z
T
i (s) − Z̄(s)ZT

i (s)
)

Yi(s)ds

]

×
[√

n(α̂j − αj)β̂j +
√
nαj(β̂j − βj)

]

.

With the notation

Â(τ) =

∫ τ

0

[

S2(s) − S⊗2
1 (s)/S0(s)

]

ds,

we obtain
1√
n
Uj(βj , αj , τ) = Â(τ)

[√
n(α̂j − αj)β̂j + αj

√
n(β̂j − βj)

]

.

It follows that

β̂j − βj =
1

α̂j

Â−1(τ)
1

n
Uj(βj , αj , τ) +

(

αj

α̂j

− 1

)

βj , (6)

thanks to Assumption A4 which insures that Â(τ) is invertible. Now, using Assumptions

A3 and A4, Proposition 4.1 and Lemma 4.2, it is easily seen that the right-hand side of (6)

converges to zero when n tends to +∞. Thus β̂ is consistent.

Furthermore, after some straightforward calculations on equation (6), one can write, for

j = 1, . . . , p+ 1:

√
n(β̂j − βj) =

1

αj

(

A−1(τ)
Uj(βj , αj , τ)√

n
− βj

√
n(α̂j − αj)

)

+
1

αj

(

(

Â−1(τ) −A−1(τ)
) Uj(βj , αj , τ)√

n
−
√
n(α̂j − αj)(β̂j − βj)

)

.

Using again Assumptions A3 and A4 (which ensures that A−1(τ) converges in probability

to A−1(τ)), Proposition 4.1 and Lemma 4.2 as well as the consistency of β̂, one can prove
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that the second term of the right-hand side of this last equality is an oP (1). Thus we can

write:
√
n(β̂j − βj) =

1

α

(

A−1(τ)
Uj(βj , αj , τ)√

n
− βj

√
n(α̂− α)

)

+ oP (1), (7)

for j = 1 . . . , p, and

√
n(β̂p+1 − βp+1)

=
1

1 − α

(

A−1(τ)
Up+1(βp+1, αp+1, τ)√

n
+ βp+1

√
n(α̂− α)

)

+ oP (1). (8)

Hence, from (4), (7) and (8) we finally obtain

√
n(β̂ − β) = Σ1(τ)Un(τ) + oP (1), (9)

where Σ1(τ) is given in Theorem 4.3. This and Proposition 4.1 complete the proof. Note

that the matrix Σ
β̂,∞ is positive definite since it is the case for ΣU∞

(τ). �

4.4 The optimal estimator β̃

Recall that our optimal estimator is β̃ = Ĥβ̂, where

Ĥ = ArgminH∈Hq̂(H) = ArgminH∈Htrace(HΣ̂
β̂,∞H

T )

and Σ̂
β̂,∞ is required to be an estimator of the asymptotic covariance matrix Σ

β̂,∞ given in

Theorem 4.3. Thus, we first have to find such an estimator of Σ
β̂,∞.

It is easy to check from their definition that the explicit expressions of the estimators

β̂j , for j = 1, . . . , p+ 1, are

β̂j =
1

α̂j

Â−1(τ)
1

n

n
∑

i=1

∫ τ

0

(

Zi(s) − Z̄(s)
)

dNij(s). (10)

Furthermore, let

Θ̂j(τ) =
1

n

n
∑

i=1

∫ τ

0

(

Zi(s) − Z̄(s)
)⊗2

dNij(s),

and

ξ̂j(τ) = κj

α̂(1 − α̂)

θ̂(τ)
Â(τ)β̂j ,

where θ̂(τ) = N··(τ)/n, and finally

ξ̂α(τ) =
α̂(1 − α̂)

θ̂(τ)
.

Therefore, one can use respectively

Σ̂1(τ) =

















Â−1(τ)
α̂

0 · · · 0 − β̂1

α̂

0
. . .

...
...

... Â−1(τ)
α̂

0 − β̂p

α̂

0 · · · 0 Â−1(τ)
1−α̂

β̂p+1

1−α̂
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and

Σ̂U∞
(τ) =

















Θ̂1(τ) 0 0 ξ̂1(τ)

0
. . . 0

...

0 0 Θ̂p+1(τ) ξ̂p+1(τ)

ξ̂T
1 (τ) · · · ξ̂T

p+1(τ) ξ̂α(τ)

















as estimators of Σ1(τ) and ΣU∞
(τ). Finally, let β∗ = (βT

1 , . . . , β
T
p )T .

Theorem 4.4 Under Assumptions A1-A5, the estimator

Σ̂
β̂,∞ = Σ̂1(τ)Σ̂U∞

(τ)Σ̂T
1 (τ)

converges in probability to the matrix Σ
β̂,∞. If Σ

β̂,∞ is invertible, then
√
n(β̃ − β∗) is

asymptotically mean-zero gaussian distributed with covariance matrix whose trace minimizes

q(H) = trace(HΣ
β̂,∞H

T ) for all H ∈ H. Such an estimator is said asymptotically T–

optimal.

Proof. We know from Lemma 4.2 that α̂ converges in probability to α. We have also

seen in the proof of Theorem 4.3 that Â−1(τ) and β̂j , for j = 1, . . . , p + 1, converge in

probability respectively to A−1(τ) and βj . Thus, we thus get the convergence in probability

of Σ̂1(τ) to Σ1(τ).

Moreover, we have seen in the proof of Lemma 4.2 that

N··(τ) = M··(τ) + n

∫ τ

0

[

S0(u)λ0p+1(u) + βT
p+1S1(u)

]

du.

Thanks to Assumptions A3 and A4, the integral in the right-hand side of the last equation

converges in probability to θ(τ). This and (5) give the convergence in probability of θ̂(τ) to

θ(τ).

From the above convergences we have the convergence in probability of ξ̂j(τ) to ξj(τ),

for j = 1, . . . , p+ 1, as well as the one of ξ̂α to ξα.

On the other hand, one can write, for j = 1, . . . , p:

Θ̂j(τ) =
1

n

n
∑

i=1

∫ τ

0

(

Zi(s) − Z̄(s)
)⊗2

dMij(s) +
1

n

n
∑

i=1

∫ τ

0

(

Zi(s) − Z̄(s)
)⊗2

Yi(s)λ
′
j(s|Z)ds. (11)

With the notation A⊗2 = AAT when A is also a matrix, it is easily seen that, for all t ∈ [0, τ ]
〈

1

n

n
∑

i=1

∫ t

0

(

Zi(s) − Z̄(s)
)⊗2

dMij(s)

〉

=
1

n2

n
∑

i=1

∫ t

0

(

(

Zi(s) − Z̄(s)
)⊗2

)⊗2

Yi(s)λ
′
j(s|Z)ds,

which in t = τ converges to zero in probability when n tends to +∞, by Assumptions A2

and A3. This and Lenglart inequality yield the convergence in probability to zero of the first
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term of (11). Moreover, we have seen in the proof of Proposition 4.1 that the second term

of (11) is equal to 〈Uj(βj , α, τ)/
√
n〉 and converges in probability to Θj(τ), when n tends to

+∞. These two last convergences prove that Θ̂j(τ) converges to Θj(τ), for j = 1, . . . , p+ 1.

Thus we get the consistency of the estimator Σ̂U∞
(τ) and finally the one of Σ̂

β̂,∞.

From the above and the continuous dependency of Ĥ on Σ̂
β̂,∞ we deduce that Ĥ con-

verges in probability to the matrix Hopt in H which minimizes trace(HΣ
β̂,∞H

T ). Recall

that the existence of such an optimal matrix is ensured because Σ
β̂,∞ is positive definite.

Since Ĥβ = β∗, we get from the above and Theorem 4.3 that
√
n(β̃ − β∗) = Ĥ

√
n(β̂ − β)

converges to a mean zero gaussian distribution with covariance matrix HoptΣβ̂,∞H
T
opt which

is optimal in the sense defined earlier. �

5 Statistical inference on the functional parameters

Even if it is not the model considered at the beginning of this paper, we will first consider

the fully nonparametric case, that is a model without covariates where only functional

parameters have to be estimated. Of course, this is also of interest for applications. Then

we will come back to our semiparametric model and will see how to estimate its functional

parameters.

5.1 Inference in the nonparameteric model

In this case no parametric form is assumed on the cause specific hazard rate functions

λj(·), for j = 1, . . . , p and we also do not take into account any covariate. Let Λj(·), for

j = 1, . . . , p, denote the cause specific cumulative hazard rate functions defined by:

Λj(t) =

∫ t

0

λj(u)du,

for t in [0, τ ] and

Λp+1(t) =

p
∑

j=1

Λj(t).

With the assumption on M and the hypothesis of independence between (T, d) and C,

the instantaneous transition rates of the Markov process with graph given in Figure 1 are:



















λ′j(t) = αλj(t), for j = 1, . . . , p,

λ′p+1(t) = (1 − α)
∑p

j=1 λj(t) = (1 − α)λp+1(t),

λ′C(t) = λC(t).
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At the contrary to the model by Goetghebeur and Ryan (1995), when there is no covariate

in the data, the model is still of interest because it allows different failure rates for failure

causes.

5.1.1 First estimators of the cause specific cumulative hazard rate functions

By standard arguments, one can easily estimate Λj(t), for j = 1, . . . , p+ 1 and t ∈ [0, τ ], by

Λ̂j(t) =
1

α̂j

Λ̂′
j(t),

where α̂j is defined at the beginning of the proof of Theorem 4.3, Y (s) =
∑n

i=1 Yi(s) is the

number at risk at time s and

Λ̂′
j(t) =

n
∑

i=1

∫ t

0

dNij(s)

Y (s)

is the well-known Nelson-Aalen estimator of

Λ′
j(t) =

∫ t

0

λ′j(u)du.

Write:

Λ(·) =

















Λ1(·)
...

Λp(·)
Λp+1(·)

















and Λ̂(·) =

















Λ̂1(·)
...

Λ̂p(·)
Λ̂p+1(·)

















.

Let us introduce two classical assumptions that allow to obtain the following asymptotic

results.

B1. τ satisfies 0 < Λj(τ) < +∞, for j = 1, . . . , p.

B2. There exists a function s0(·), defined on [0, τ ], and bounded away from 0, such that

sup
s∈[0,τ ]

∣

∣

∣

∣

Y (s)

n
− s0(s)

∣

∣

∣

∣

P−→ 0, when n→ +∞.

Note that these assumptions are nothing but respectively the assumptions A2 and A3

of Section 4 adapted to this new model. It is wellknown that Assumptions B1 and B2 are

fulfilled whenever τ is such that S(τ)Ḡ(τ) > 0, where S and Ḡ are respectively the survival

functions of T and C.

Note also that the functions s0(·)λj(·) and λj(·)/s0(·) are integrable on [0, τ ].
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Finally, let us define:

ηj(·) = αj

∫ ·

0

λj(u)/s0(u)du, for j = 1, . . . , p,

ηp+1(·) =

p
∑

j=1

ηj(·),

θ0(·) =

∫ ·

0

s0(u)λm(u)du

ρj(·) = κjα(1 − α)Λj(·)/θ0(τ), for 1 ≤ j ≤ p+ 1,

and ρα(τ) = α(1 − α)/θ0(τ).

Theorem 5.1 Under Assumptions A1, B1 and B2, the process
√
n(Λ̂(·) − Λ(·)) converges

weakly in Dp+1[0, τ ] to a mean zero gaussian process L(·) with covariance matrix function

ΣL(t) = Σ2(t)ΣV∞
(t)ΣT

2 (t),

where

Σ2(t) =

















1
α

0 · · · 0 −Λ1(t)
α

0
. . .

...
...

... 1
α

0 −Λp(t)
α

0 · · · 0 1
1−α

Λp+1(t)
1−α

















and

ΣV∞
(t) =

















η1(t) 0 0 ρ1(t)

0
. . . 0

...

0 0 ηp+1(t) ρp+1(t)

ρ1(t) · · · ρp+1(t) ρα(τ)

















.

Proof. Our proof starts with the observation that:

Λ̂j(t) − Λj(t) =
1

α̂j

(

Λ̂′
j(t) − Λ′

j(t)
)

−
Λ′

j(t)√
nαjα′

j

√
n (α̂j − α) . (12)

A straightforward application of the central limit theorem gives the
√
n-asymptotical

normality of α̂ and thus that
√
n (α̂− α) is an Op(1). Moreover, under the hypotheses

B1 and B2, the Nelson-Aalen estimators Λ̂′
j(·), for j = 1, . . . , p + 1, are well-known to

be uniformly consistent (see e.g. Andersen et al., 1993). Hence, under the hypotheses of

Theorem 5.3, one can get easily from (12) the uniform convergence in D[0, τ ] of Λ̂j(·) to

Λj(·), for j = 1, . . . , p+ 1. These convergences and (12) yield

√
n(Λ̂j(·) − Λj(·)) =

√
n

αj

∫ ·

0

dM·j(s)

Y (s)
− Λj(·)

αj

√
n(α̂j − αj) + oP (1), (13)
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in D[0, τ ] and for j = 1, . . . , p+ 1.

But, following the lines of Lemma 4.2, one can show that we have

√
n(α̂− α) =

p+1
∑

j=1

α∗
j

θ0(τ)

1√
n
M·j(τ) + oP (1), (14)

where θ0(τ) > 0 by B1 and B2. From this and (13), we deduce that

√
n(Λ̂(t) − Λ(t)) = Σ2(t)Vn(t) + oP (1), (15)

in Dp+1[0, τ ], where Σ2(t) is defined in Theorem 5.3 and

Vn(t) =
√
n

















∫ t

0
dM·1(s)

Y (s)

...
∫ t

0
dM·p+1(s)

Y (s)

1
n

∑p+1
j=1

α∗

j

θ0(τ)M·j(τ)

















.

Using Rebolledo’s Theorem or an approach given in Dauxois (2000) one can easily prove that

Vn(·) converges weakly in Dp+2[0, τ ] to a mean zero gaussian process V∞(·). It remains to

specify its covariance function ΣV∞
(·). First, note that we can write Vn(t) = V1,n(t)+V2,n(t)

where

V1,n(t) =
√
n

















∫ t

0
dM·1(s)

Y (s)

...
∫ t

0
dM·p+1(s)

Y (s)

1
n

∑p+1
j=1

α∗

j

θ0(τ)M·j(t)

















and

V2,n(t) =
1√
n

















0
...

0
∑p+1

j=1

α∗

j

θ0(τ) (M·j(τ) −M·j(t))

















.

Since the martingales M·j are orthogonal, for j = 1, . . . , p+ 1 , we have

E
[

V
⊗2
n (t)

]

= E
[

V
⊗2
1,n(t)

]

+ E
[

V
⊗2
2,n(t)

]

and thus

ΣV∞
(t) = lim

n→∞
E

[

V
⊗2
1,n(t)

]

+ lim
n→∞

E
[

V
⊗2
2,n(t)

]

.

Straightforward calculus lead to the expression of ΣV∞
(·) given in the theorem. From this

and (15) we get the desired result. �
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One can get a consistent estimator of the covariance function ΣL(·) of the limiting process

L(·). In this order, let us define, for j = 1, . . . , p+ 1:

η̂j(t) = n

∫ t

0

dN·j(s)

Y 2(s)
.

Define also:

ρ̂j(t) = κj

α̂(1 − α̂)Λ̂j(t)

θ̂0(τ)
, for j = 1, . . . , p, and ρ̂α =

α̂(1 − α̂)

θ̂0(τ)
,

where θ̂0(τ) = N··(τ)/n.

Then, plug-in estimators of Σ2(t) and ΣV∞
(t), for t ∈ [0, τ ], are respectively

Σ̂2(t) =

















1
α̂

0 · · · 0 − Λ̂1(t)
α̂

0
. . .

...
...

... 1
α̂

0 − Λ̂p(t)
α̂

0 · · · 0 1
1−α̂

Λ̂p+1(t)
1−α̂

















and

Σ̂V∞
(t) =

















η̂1(t) 0 0 ρ̂1(t)

0
. . . 0

...

0 0 η̂p+1(t) ρ̂p+1(t)

ρ̂1(t) · · · ρ̂p+1(t) ρ̂α

















.

Finally, an empirical estimator of ΣL(·) is given by:

Σ̂L(·) = Σ̂2(·)Σ̂V∞
(·)Σ̂T

2 (·).

5.1.2 Optimal estimators of the cause specific cumulative hazard rate functions

We are in the same kind of situation than the one of Section 3.1. Indeed, our multi-

variate functional estimator Λ̂(·) gives us estimators Λ̂1(·), . . . , Λ̂p(·) of Λ1(·), . . . ,Λp(·) re-

spectively and an estimator Λ̂p+1(·) of their sum Λp+1(·) =
∑p

i=1 Λi(·). Here also we

will look for a linear transformation of Λ̂(·) which will give us an optimal estimator of

Λ∗(·) = (Λ1(·), . . . ,Λp(·))T .

In this order, let us define H′ as the set of p× (p+ 1) matrices such that Ha = a∗ for all

a∗ = (a1, . . . , ap)
T ∈ R

p and a = (a∗T ,
∑p

j=1 aj)
T . Let

Ĥ(t) = Argmin
H∈H′

trace(HΣ̂L(t)HT ) (16)

and choose Λ̃(·) = Ĥ(·)Λ̂(·) as a new estimator of Λ∗(·). The next theorem proves that it is

asymptotically normal and T -optimal.
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Theorem 5.2 Under Assumptions A1, B1 and B2, the matrix Σ̂L(t) converges in probability

to the matrix ΣL(t), for all t ∈ [0, τ ].

Moreover, let us assume that the matrix ΣL(t) is invertible, for all t ∈]0, τ ]. If, for all

t ∈ [0, τ ], the matrix Ĥ(t) is the unique solution of (16), then Λ̃(·) is asymptotically normal

and T -optimal. More precisely, the process
√
n(Λ̃(·)−Λ∗(·)) converges weakly in Dp[0, τ ] to

a centered gaussian process L
′(·) = HΣL

(·)L(·) with covariance function HΣL
(·)ΣL(·)HT

ΣL
(·)

where

HΣL
(t) = Argmin

H∈H′

trace(HΣL(t)HT ).

Proof. The proof is omitted since it follows the lines of the proof of Theorem 4.4. �

Let us denote by L the column vector in R
p(p+1) defined by L = (H1, . . . ,Hp) where Hi

is the ith line of H ∈ H′. The link between L = (li)1≤i≤p(p+1) and H = (hi,j)1≤i≤p;1≤j≤p+1

is therefore hi,j = l(i−1)(p+1)+j . One can see that the linear constraints on H may be written

on L as CL = d where C and d are given. Indeed






hi,i + hi,p+1 = 1, for 1 ≤ i ≤ p,

hi,j + hi,p+1 = 0, for 1 ≤ i ≤ p, 1 ≤ j ≤ p+ 1 and i 6= j,

⇔







l(i−1)(p+1)+i + li(p+1) = 1, for 1 ≤ i ≤ p,

l(i−1)(p+1)+j + l(i+1)p = 0, for 1 ≤ i ≤ p, 1 ≤ j ≤ p+ 1 and i 6= j,

⇔ CL = d,

where the matrix C and the vector d are obvious. Moreover, let Q̂(t) be the block diagonal

matrix defined by

Q̂(t) =











Σ̂L(t)

. . .

Σ̂L(t)





























p-times

and note that

trace(HΣ̂L(t)HT ) = LT Q̂(t)L.

Thus, in order to find our optimal estimator, we have to solve the following optimization

problems

(Pt)







Find L(t) which minimizes LT Q̂(t)L

such that : CL = d
,

for t ∈ [0, τ ].

Following the method of Section 3.2, the solution of (Pt) is:

L̂(t) = Q̂−1(t)CT (CQ̂−1(t)CT )−1d
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and Ĥ(t) is therefore defined by ĥij(t) = l̂(i−1)(p+1)+j(t) for 1 ≤ i ≤ p and 1 ≤ j ≤ p+ 1.

Remark. Since Σ̂L(t) is piecewise constant, it is sufficient to calculate the matrix Ĥ(t)

at points t ∈ [0, τ ] where the counting process N·· has jumps, that is at points Xi ∈ [0, τ ]

such that δi = 1.

5.1.3 Estimation of the Cumulative Incidence Functions and the survival func-

tion of T

Our aim in this section is to introduce estimators of the survival function S(·) of the lifetime

T as well as estimators of the Cumulative Incidence Functions Fj(·) defined, for all t and

j = 1, . . . , p, by:

Fj(t) = P (T ≤ t, d = j).

In this order, let us recall that Λ·(·) =
∑p

j=1 Λj(·) is the cumulative hazard rate function

of the survival time T . It is well known that one can write the survival function in terms of

the cumulative hazard rate function:

S(t) = π
u∈]0,t]

(1 − dΛ·(u)) ,

whereπ denotes the product integral (see Gill & Johansen, 1990). Using a plug-in method

on this last equation, one can get the Kaplan-Meier estimator of S(t):

Ŝ(t) = π
u∈]0,t]

(

1 − dΛ̃·(u)
)

,

where Λ̃(·) is the optimal estimator of the previous paragraph and

Λ̃·(·) =

p
∑

j=1

Λ̃j(·).

On the other hand, it is also well-known that one can write, for t ∈ [0, t] and j = 1, . . . , p:

Fj(t) =

∫ t

0

S(u−)dΛj(u)

and that an estimator of this cumulative incidence function is given by the Aalen-Johansen

estimator (see Andersen et al., 1993):

F̂j(t) =

∫ t

0

Ŝ(u−)dΛ̃j(u).

The asymptotic behaviour of these estimators is given by the following theorem.
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Theorem 5.3 Under Assumptions A1, B1 and B2, we have the following weak convergence

in Dp+1[0, τ ], when n→ +∞:

√
n

































F̂1(·)
...

F̂p(·)
Ŝ(·)

















−

















F1(·)
...

Fp(·)
S(·)

































−→

















∫ ·
0
S(u)dL′

1(u) −
∫ ·
0
S(u)L′

·(u)dΛ1(u)
...

∫ ·
0
S(u)dL′

p(u) −
∫ ·
0
S(u)L′

·(u)dΛp(u)

−S(·)L′
·(·)

















,

where L
′
j(·) is the jth component of the limiting process L

′(·) of Theorem 5.2 and L
′
·(·) =

L
′
1(·) + · · · + L

′
p(·).

Proof. This result is easily obtained from Theorem 5.2 and the functional δ-method (see

e.g. van der Vaart & Wellner, 1996, for details on this method). Indeed, from the above,

one can write:
















F1(·)
...

Fp(·)
S(·)

















= ψ











Λ1(·)
...

Λp(·)











,

where ψ(·) is a function from Dp[0, τ ] to Dp+1[0, τ ] with coordinate functions defined, for

i = 1, . . . , p, by:

Fi(·) =

∫ ·

0

S(u−)dΛi(u) = ψi











Λ1(·)
...

Λp(·)











,

and

S(·) = ψp+1











Λ1(·)
...

Λp(·)











= π
u∈]0,·]

(1 − dΛ·(u)) .

We know (see again van der Vaart & Wellner, 1996) that product-integral function

φ(·) : D[0, τ ] → D[0, τ ]

A 7→ φ(A) = π
u∈]0,·]

(1 − dA(u))

is Hadamard differentiable on BVK [0, τ ], the subset of functions in D[0, τ ] with total varia-

tion bounded by K. Its derivative is:

φ′A(α)(·) = −
∫ ·

0

φ(A)(u−)
φ(A)(·)
φ(A)(u)

dα(u)

and is equal to −φ(A)(·)α(·) when A is continuous.
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We also know that the function

ϕ(·, ·) : D[0, τ ] ×BVK [0, τ ] → D[0, τ ]

(A,B) 7→ ϕ(A,B) =
∫ ·
0
AdB

is Hadamard differentiable on (A,B) where A is of bounded variation, with derivative:

ϕ′
A,B(α, β)(·) =

∫ ·

0

Adβ(u) +

∫ ·

0

αdB(u).

Using for instance the chain rule (see Lemma 3.9.3 of van der Vaart & Wellner, 1996)

and the composition

(Λ1(·), . . . ,Λp(·))T 7→ (Λi(·), S(·))T 7→
∫ ·

0

S(u−)dΛi(u),

one can prove that the coordinate functions ψ1(·), . . . , ψp(·) are differentiable and get their

derivatives. The functional δ-method allows us to obtain from Theorem 5.2 the following

weak convergence in Dp+1[0, τ ]:

√
n

(

ψ(Λ̃) − ψ(Λ∗)
)

→ ψ′
Λ∗(L′),

when n → +∞. Straightforward differential calculus and the continuity of S(·) give the

expression of ψ′
Λ∗(L′) detailed in the Theorem. �

5.2 With explanatory variables

Now, let us come back to the semiparametric model of equation (1) with explanatory vari-

able Z. Recall that we have, for j = 1, . . . , p:

dN·j(s) = dM·j(s) + αY (s)dΛ0j(s) + αnST
1 (s)βjds.

Thus, an estimator of Λ0j(t) is given, for all t ∈ [0, τ ], by

Λ̂0j(t) =
1

α̂

∫ t

0

dN·j(s)

Y (s)
− β̂T

j

∫ t

0

S1(s)

S0(s)
ds,

where β̂j is the estimator introduced in Section 3.1 and is such that Uj(β̂j , αj , τ) = 0.

Then we propose to estimate Λj(·|Z), for j = 1, . . . , p, by Λ̂j(·|Z) defined, for t ≥ 0, by

Λ̂j(t|Z) = Λ̂0j(t) + β̂T
j

∫ t

0

Z(s)ds =
1

α̂

∫ t

0

dN·j(s)

Y (s)
+ β̂T

j

(∫ t

0

Z(s)ds−
∫ t

0

S1(s)

S0(s)
ds

)

,

where by abuse of notation
∫ t

0
Z(s)ds denotes the vector of integrals of each coordinate of

Z(·).
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Before giving the large sample behaviour of these estimators in the following theorem,

let us introduce other notations. For j = 1, . . . , p let us define:

µ1j(·) = α

∫ ·

0

s0(s)λ0j(s) + βT
j s1(s)

s20(s)
ds,

µ2j(·) =
α(1 − α)

θ(τ)

∫ ·

0

s0(s)λ0j(s) + βT
j s1(s)

s0(s)
ds,

µ3j(·) = α

∫ ·

0

a(s)

s0(s)
dsβj

and the block-matrix

Σ5(t) =
1

α























1 0 0 . . . 0 K(t) 0 0 . . . 0 −Λ1(t|Z)

0 1 0 . . . 0 0 K(t) 0 . . . 0 −Λ2(t|Z)
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

0 . . . 0 1 0 0 . . . 0 K(t) 0 −Λp−1(t|Z)

0 . . . 0 0 1 0 . . . 0 0 K(t) −Λp(t|Z)























where K(t) is a 1 × k vector defined by

K(t) =

(∫ t

0

Z(s)ds−
∫ t

0

s1(s)

s0(s)
ds

)T

A−1(τ)

Theorem 5.4 Under Assumptions A1-A5, the process

√
n

(

Λ̂1(·|Z) − Λ1(·|Z), . . . , Λ̂p(·|Z) − Λp(·|Z)
)T

converges weakly in Dp[0, τ ], when n→ +∞, to a mean zero gaussian process with covariance

matrix Σ5(t)ΣW′

∞
(t)ΣT

5 (t), where:

ΣW′

∞
(t) =

1

α



























































µ11(t) 0 0 . . . 0 µT
31(t) 0 0 . . . 0 µ21(t)

0 µ12(t) 0 . . . 0 0 µT
32(t) 0 . . . 0 µ22(t)

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...

0 . . . 0 µ1(p−1)(t) 0 0 . . . 0 µT
3(p−1)(t) 0 µ2(p−1)(t)

0 . . . 0 0 µ1p(t) 0 . . . 0 0 µT
3p(t) µ2p(t)

µ31(t) 0 0 . . . 0 Θ1(τ) 0 0 . . . 0 ξ1(τ)

0 µ32(t) 0 . . . 0 0 Θ2(τ) 0 . . . 0 ξ2(τ)
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

0 . . . 0 µ3(p−1)(t) 0 0 . . . 0 Θp−1(τ) 0 ξp−1(τ)

0 . . . 0 0 µ3p(t) 0 . . . 0 0 Θp(τ) ξp(τ)

µ21(t) . . . . . . . . . µ2p(t) ξT
1 (τ) . . . . . . . . . ξT

p (τ) ξα(τ)
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Proof. By the definition of Λj(·|Z) and Λ̂j(·|Z), one can write, for all t > 0 and j =

1, . . . , p:

√
n

(

Λ̂j(·|Z) − Λj(·|Z)
)

=
√
n

[(

1

α̂

∫ t

0

dN·j(s)

Y (s)
− β̂T

j

∫ t

0

S1(s)

S0(s)
ds− Λ0j(t)

)

+ (β̂j − βj)
T

∫ t

0

Z(s)ds

]

But it is easy to check that our assumptions and preliminary results yield

√
n

(

1
α̂

∫ ·
0

dN·j(s)
Y (s) − β̂T

j

∫ ·
0

S1(s)
S0(s)

ds− Λ0j(·)
)

=
√

n

α̂

∫ ·
0

dM·j(s)
Y (s) −

√
n(α̂−α)

α

(

βT
j

∫ ·
0

s1(s)
s0(s)

ds+ Λ0j(·)
)

−√
n(β̂j − βj)

T
∫ ·
0

s1(s)
s0(s)

ds+ oP (1).

These two last equations and (7) enable us to write:

√
n

(

Λ̂j(·|Z) − Λj(·|Z)
)

=

√
n

α̂

∫ ·
0

dM·j(s)
Y (s) −

√
n(α̂−α)

α
Λj(·|Z) + 1

α

(

A−1(τ)
Uj(βj ,αj ,τ)√

n

)T (

∫ ·
0
Z(s)ds−

∫ ·
0

s1(s)
s0(s)

ds
)

+ oP (1).

Hence we have, :

√
n











Λ̂1(·|Z) − Λ1(·|Z)
...

Λ̂p(·|Z) − Λp(·|Z)











= Σ5(·)W′
n(·) + oP (1),

where

W
′
n(·) =





√
n

∫ ·

0

dM·1(s)

Y (s)
, . . . ,

√
n

∫ ·

0

dM·p(s)

Y (s)
,
UT

1 (β1, α1, τ)√
n

, . . . ,
UT

p (βp, αp, τ)√
n

,
1√
n

p+1
∑

j=1

α∗
j

θ(τ)
M·j(τ)





T

But a straightforward application of Rebolledo’s Theorem proves that the process

Wn(·) =





√
n

∫ t

0

dM·1(s)

Y (s)
, . . . ,

√
n

∫ t

0

dM·p(s)

Y (s)
,
U1(β1, α1, ·)√

n
, . . . ,

Up(βp, αp, ·)√
n

,
1√
n

p+1
∑

j=1

α∗
j

θ(τ)
M·j(·)





T

converges weakly in Dp(k+1)+1[0, τ ] to a mean-zero multivariate gaussian martingale W∞(·).
It is easy to check that the covariance matrix ΣW∞

(·) of this limiting process is similar to

ΣW′

∞
(·) where τ is everywhere replaced by t. This ends the proof. �

Estimators Θ̂1(τ), . . . , Θ̂p(τ), ξ̂1(τ), . . . , ξ̂p(τ) and ξ̂α(τ) of respectively Θ1(τ), . . . ,Θp(τ),

ξ1(τ), . . . , ξp(τ) and ξα(τ) have been introduced in Section 4.4. Moreover, one can estimate

µ1j(t), µ2j(t), µ3j(t), for j = 1, . . . , p and t ∈ [0, τ ], with

µ̂1j(t) = nα̂

∫ t

0

dN·j

S2
0(s)

,

µ̂2j(t) =
α̂(1 − α̂)

θ̂(τ)

∫ t

0

dN·j(s)

S0(s)
,

µ̂3j(t) = α̂Â(t)β̂j
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and an estimator of K(t) is given by:

K̂(t) =

(∫ t

0

Z(s)ds−
∫ t

0

S1(s)

S0(s)
ds

)T

Â−1(τ).

Using these estimators one can get consistent estimators of the matrices Σ5(t) and ΣW′

∞
(t).

Finally, it has to be noted that, as in Section 5.1.3, it is also possible to get estimators

of the survival function and the cumulative incidence functions as well as to get their large

sample behaviour (like in Theorem 5.3) . But this is omitted here since it is very similar to

what has been done in Section 5.1.3.

6 Numerical study

6.1 A simulated example with covariates

In this section we give an example where we have two competing risks with a single covariate

Z. We assume that Z is 1 or 2 with equal probabilities. Conditional on Z, we suppose that

the hazard rate functions of T1 and T2 are respectively given by λ1(t|Z) = t/2 + 2Z and

λ2(t|Z) = 2t/9 + 3Z, therefore we have β1 = 2 and β2 = 3. The censoring time C is

exponentially distributed with mean 1 whereas the rate of missingness α is equal to 0.5. As

a consequence, on the whole simulated data the rate of censored data is about 12%, the

rates of observed failures from cause 1 and 2 are respectively about 15% and 28%, and the

rate of missingness is about 45%.

n β̂1 β̃1 β̂2 β̃2

100 2.116 [1.583] 2.117 [1.438] 3.024 [1.923] 3.004 [1.610]

200 2.055 [1.111] 2.023 [1.000] 3.083 [1.367] 3.039 [1.146]

400 2.021 [0.768] 2.001 [0.687] 3.043 [0.919] 3.011 [0.784]

1000 1.998 [0.500] 2.001 [0.454] 2.989 [0.584] 2.993 [0.502]

Table 1: Comparison of means and standard errors (within brackets) of N = 1000 estimates

of β̂i and β̃i for i = 1, 2.

In Table 1 we compare the performances of estimators (β̂i)i=1,2 based on transitions

0 → i with T -optimal estimators (β̃i)i=1,2 that use observations coming from the three

informative transitions. We computed the mean and standard errors of 1000 estimates of

β1 and β2. We can see in Table 1 that from the bias point of view the T -optimal estimators

are generally better (except for β1 when n = 100) whereas the standard errors of T -optimal
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estimates are always smaller than the standard errors of estimates based on transitions 1

and 2.

6.2 A reliability example without covariates

This example deals with the hard drives data sample that may be found in Flehinger et

al. (2002). These authors consider a scenario in which a company manufacturing hard

drives for computers tries to analyze causes of failures of a certain sub-assembly. Some of

these causes, such as ”defective head”, are related to components, but others (e.g., ”particle

contamination”) are not; in this example, there are three major causes of failures which,

without going into details, are denoted as causes 1, 2 and 3. We assume that these causes act

independently and in series. 10,000 drives were manufactured and then information about

failures was collected in a database during 4 years. The number of failures observed in

this period was 172. Some of the failures were masked and a selected number of those were

analyzed to complete resolution in the defect isolation laboratory. The only observed masked

groups were {1, 2, 3} and {1, 3}. Considering causes 1 and 3 as a single failure cause we

obtain data from a competing risks model with two failure modes. Mode 1 (corresponding to

causes 1 , 3 or masked group {1, 3} of the original data set) and mode 2 (that corresponds to

cause 2 in the original data set). The failure cause is missing when none of the three original

cause of failure is known (corresponding to the masking group {1, 2, 3} of the original

data set). Finally, we obtain a data set with 119 failures of type 1, 19 failures of type 2

and 34 failures for which the failure cause is unavailable. The lifetimes of the 9828 drives

still functioning at the end of the study are censored by the 4 years of the study duration.

Because no information is available after 4 years we fix τ to 4. The probability α that the

two failure causes are missing is estimated by α̂ = 0.802. Figure 2 shows, for each failure

cause, estimates of cumulative hazard rate functions with and without using the transition

0 → 3 and the corresponding 95% pointwize confidence intervals for each estimate. We can

see that there is a little gain to use transition 0 → 3. We can see also that the modified

Nelson-Aalen estimators that we propose are slightly more regular (smaller size jumps) than

the corresponding Nelson-Aalen estimators, in exchange of which our estimators can be non

legitimate (they can be locally decreasing). However this drawback disapears as the sample

size increases because of uniform convergence of our estimators. This is also true for for the

two causes reliability estimates that are given on Figure 3 with pointwize 95% confidence

intervals.
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Figure 2: Cumulative hazard rate functions estimated without using the transition 0 → 3

(dotted lines) with 95% pointwize confidence intervals (long-dashed lines) and optimized

estimation of the cumulative hazard functions (solid lines) with 95% pointwize confidence

intervals (dashed lines) for the two failure causes.
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Figure 3: Estimated reliability functions (solid lines) with 95% pointwize confidence intervals

(dashed lines) for the two failure causes.
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7 Conclusions

In this paper we consider a semiparametric competing risks model that accounts covariates

and the fact that information on failure cause can be missing completely at random. In

this paper the missingness mechanism is very simple because it is independent of everything

(time, failure causes, covariates, etc.). However, because of nonparametric assumptions for

baseline hazard rate function of every type of failure cause, this model is quite adaptable. It

is certainly possible to extend this model in several directions: dependent risks, missingness

mechanism dependent on failure cause, etc. This model can also be extended to the case

of masked cause of failure for which many sophisticated parametric models and inference

methods have been developed over the two past decades. The estimation method that

consists in seeing data as realizations of a nonhomogeneous markov process is inspired by

McKeague and Subramanian (1998) while the estimators of the regression parameters of

each transition is inspired from the Lin and Ying (1994) method. In addition we propose

a linear transformation of these estimators which is shown to be asymptotically optimal in

the sense of variance reduction.
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