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We present an existence result for the stationary Vlasov–Poisson system in a bounded
domain of RN , with more general hypotheses than considered so far in the literature. In
particular, we prove the equivalence of the kinetic approach (which consists in looking for
the equilibrium distribution function) and the potential approach (where the unknown
is the electrostatic potential at equilibrium). We study the dependence of the solution on
parameters such as the total mass of the distribution, or those entering in the boundary

conditions of the potential. Focusing on the case of a plane polygon, we study the singular
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the singularity coefficients on the parameters of the problem. Numerical experiments
illustrate and confirm the analysis.
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1. Introduction.

The interplay between electrically charged gases and strong electromagnetic fields

is a complex physical issue. The fields further ionisation, which in turn modifies the

dielectric properties and conductivity of the gas, leading to a non-linear feedback
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on the fields. Among the mechanisms able to generate strong fields in the first

place, the point effect is particularly efficient. This is the principle of the lightning

conductor, and is also used in various analogue electronic or microwave devices.

The mathematical modelling of such devices requires to investigate the effects of

geometrical singularities (edges and vertices on the boundary of the domain of

interest) on the solution to kinetic equations, e.g., the Vlasov–Poisson or Vlasov–

Maxwell systems. Singularities are well-described for most linear problems; they can

be considered as completely known for the Poisson equation with usual boundary

conditions.11,12 On the other hand, taking account of boundary conditions in kinetic

models is generally quite technical.

Another difficulty, especially from a computational point of view, is that the

characteristic time scales associated to the various particle species in the gas are

typically several order of magnitude apart.6,17 Electrons are very much lighter, and

thus faster, than ions (and neutral atoms if any). However, this fact allows one to

simplify the model when the time scale of the phenomenon under study is taken

into account. For instance, if the relevant time scale is much smaller than that of

ion motion, the latter can be neglected, or at least considered as a data, on which

the electrons have no effect. On the other hand, on a time scale much larger than

that of the electrons, one can consider them to be at any time in thermodynamic

equilibrium.6 Thus, their distribution function f depends on the one-particle energy

only: typical cases are the Maxwell–Boltzmann distribution f(W ) ∝ e−W/θ (where

θ represents the temperature), or the quantum Fermi–Dirac distribution.

In this article, we shall investigate the effect of singularities on a simple model

which incorporates both approximations above. In other words, we look at the gas

on a time scale much larger than that of electrons, but much smaller than that

of ions. One thus obtains a static model, which describes the equilibrium of the

electrons in the potential created by both species of particles, while the ion density

is given. The treatment of boundary conditions is much easier than in a full kinetic

model, but the non-linear character is kept. This may be a first step toward a quasi-

equilibrium modela valid on a larger time scale, where the equilibrium description

of the electrons would be coupled to a kinetic or fluid model for the ions. This

approximation is classical in plasma physics.6

The article is written as follows. Section 2 is devoted to the derivation of the

static model as a class of stationary solutions to the Vlasov–Poisson system. Its well-

posedness is proved in Section 3. This part is strongly reminiscent of Refs. 8, 5, 2,

but our assumptions are more general, and we expose certain details and subtleties

which were overlooked in the above references. Furthermore, we demonstrate the

equivalence of the kinetic approach (which consists in looking for the equilibrium

distribution function as the minimum of a free energy functional) and the potential

aSuch models are sometimes called quasi-neutral ; we avoid this word as it is also often used in a
different and incompatible sense: see Ref. 17 for a numerical study of this issue.
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approach (where the unknown is the electrostatic potential at equilibrium). As the

latter is solution to an elliptic equation, it is possible to use the powerful elliptic

theory. As a first application, we study the dependence of the solution on parameters

such as the total mass of the distribution, or the boundary condition of the potential.

The rest of the article is devoted to the case where the problem is set in a

polygonal domain of R2. Section 4 describes the singular behavior of the solution

near a non-convex geometrical singularity (i.e., a reentrant corner). The case of

the Maxwell–Boltzmann distribution is examined in Section 5, where we study the

dependence of the singularity coefficients on the parameters of the problem. The

analysis makes use of the theory of large solutions to nonlinear elliptic problems,18,9

which we adapt to the case of a polygon. To illustrate the theory, numerical exper-

iments have been conducted, using the Singular Complement Method,7 which is

particularly well-suited to the problem. The results are exposed in Section 6.

2. Stationary solutions to the Vlasov–Poisson system

2.1. Setting of the problem

We consider a population of charged particles, with charge q and mass m, described

as usual by their distribution function f(t,x,v), where t, x and v are the time,

position and velocity variables. The particles occupy a domain Ω ⊂ R
N ; they are

assumed to be non-relativistic and move in an electrostatic field E = −∇xV (t,x).

The distribution function is governed by the Vlasov equation:

∂f

∂t
+ v · ∇xf − q

m
∇xV · ∇vf = 0, in (0, T )× Ω× R

N . (2.1)

The potential V is created by the particles under consideration, and possibly

by a neutralising background of particles of the opposite sign,b with given den-

sity ne(t,x), and/or an applied voltage Vin(t,x) imposed on part of the boundary

of Ω. Elsewhere, the boundary conditions are assumed to be homogeneous Dirichlet

or Neumann. Summarising, the potential obeys at any time the Poisson equation:

∆xV =
q

ε0

(
ne −

∫
f dv

)
in (0, T )× Ω ; (2.2)

V = 0 on (0, T )× Γ1, V = Vin on (0, T )× Γ2, ∂νV = 0 on (0, T )× Γ3. (2.3)

Above, we have of course ∂Ω := Γ1∪Γ2∪Γ3; ε0 is the dielectric permittivity of vac-

uum. We use the shorthand
∫
f dv to denote the mapping (t,x) 7→

∫
RN f(t,x,v) dv;

this function is called the spatial density of particles.

The Vlasov–Poisson system (2.1)–(2.3) must be supplemented with an initial

condition

f(0,x,v) = f0(x,v) in Ω× R
N ,

bEquation (2.2) assumes that the charge of these particles is exactly −q. Otherwise, one arrives
at the same expression after suitably rescaling the data ne.
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as well as suitable boundary conditions for f on ∂Ω, and decay conditions at infinity

for V if Ω is unbounded. We denote by M the total number of particles, which is

preserved by time evolution, at least for not too weak solutions:

∀t ≥ 0,

∫

Ω

∫

RN

f(t,x,v) dv dx =

∫

Ω

∫

RN

f0(x,v) dv dx := M.

We shall also refer to M as the “mass”, as it is proportional to the total mass

of the particles. Generally speaking, the existence and uniqueness of solutions is

a difficult problem when Ω is not the whole space R
N . Let us mention the works

by Guo13,14 and Hwang15,16 dealing respectively with the cases of a half-space and

a smooth convex domain. In both cases, rather restrictive conditions are imposed

on the initial data f0. Existence (but not uniqueness) of weaker solutions has been

proved by Bostan,4 but the smoothness of Ω remains a crucial assumption.

In this article, we are interested in stationary solutions (or equilibria) to (2.1)–

(2.3), i.e., those which do not depend on time t. Obviously, the existence of such

solutions supposes that ne and Vin are independent of t. In this case, the solution

V to (2.2)–(2.3) is time-independent, and any function of the one-particle energy,

namely, f(x,v) = F(12 m |v|2 + q V (x)) is a stationary solution to (2.1). We choose

to write this function as:

F(W ) := γ(W/θ − β), (2.4)

where: γ(·) is a given function which defines the type of equilibrium; θ is a “tem-

perature” parameter or typical value of the energy, also supposed to be given; β is

an unknown scalar, to be determined by the condition:
∫

Ω

∫

RN

f(x,v) dv dx = M. (2.5)

In the stationary framework, the total mass is not inherited from the initial con-

dition, but has to be supplied as a data of the problem, i.e., the integral of the

solution to (2.1) must match the actual number of particles under consideration.

The existence and stability of stationary solutions have been examined8,5 when

Ω = R
N , and when Ω is bounded.2 In this article, we shall give a more general

version of the existence and uniqueness proof in a bounded domain.

2.2. Rescaled equations and basic notations

To simplify the notations while keeping track of the physical parameters, we now

derive a rescaled version of the equations. To this end, we introduce some units of

length x and density n. The temperature parameter θ introduced in (2.4) furnishes

the units of speed and potential:

v =

√
θ

m
, V =

θ

|q| ;

the unit of distribution function is f = n/vN . Furthermore, let δ be the sign of q.
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Keeping the same notation for the rescaled variables and domain, we arrive at

the following equations:

f(x,v) = γ(12 |v|2 + δ V (x)− β), ∀(x,v) ∈ Ω× R
N ; (2.6)

∆x(δ V ) = η

(
ne −

∫
f dv

)
in Ω, where: η := q2 nx2/(ε0 θ) ; (2.7)

∫

Ω

∫

RN

f(x,v) dv dx =M :=
M
nxN

; (2.8)

the boundary conditions (2.3) being still valid in rescaled units. If the dimension N

is different from 2, it is possible to choose the units (n, x) such as to have both non-

dimensional parameters η = M = 1. However, this choice has several drawbacks.

The influence of the total mass on the solution is somewhat obscured; and x can

be very different from the actual scale of the physical domain Ω. Therefore, it may

appear necessary to change the scale again in order to perform efficient numerical

simulations. For our purpose, it is preferable to choose x as a typical length scale of

the physical domain Ω, and n such as to have η = 1. The parameter M (still called

the “mass”) will be proportional to the actual number of particles.

Finally, we split the rescaled potential energy as δV = φ[f ] − φe. The external

(or confining) potential φe contains the contributions of the neutralising background

and/or the applied voltage:

−∆φe = ne in Ω, (2.9)

φe = 0 on Γ1, φe = φin := −δ Vin on Γ2, ∂νφe = 0 on Γ3. (2.10)

From now on, we shall always consider derivatives with respect to the space variable;

therefore we drop the subscript x in ∇, ∆. What is more, we assume for the sake

of simplicity that Γ1 is not empty (but Γ2 and Γ3 can be).

The self-consistent potential φ[f ] is created by the particles under consideration

only and satisfies homogeneous boundary conditions everywhere:

−∆φ[f ] =

∫
f dv in Ω ; φ[f ] = 0 on Γ1 ∪ Γ2, ∂νφ[f ] = 0 on Γ3. (2.11)

More precisely, we define the linear mappings ρ, Φ and φ as follows. The operator ρ :

L1(Ω× R
N) → L1(Ω) corresponds to the integration in the variable v:

∀g ∈ L1(Ω× R
N ), ∀x ∈ Ω, ρ[g](x) :=

∫

RN

g(x,v) dv.

Then, we introduce the space:

V =
{
v ∈ H1(Ω) : v = 0 on Γ1 ∪ Γ2

}
, (2.12)

endowed (thanks to the Poincaré inequality) with the norm ‖v‖V := ‖∇v‖L2(Ω). The

operator Φ : V ′ → V is the inverse of the Laplacian with homogeneous Dirichlet (or
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Dirichlet–Neumann) boundary conditions: given g ∈ V ′, Φ[g] := u is the solution

to the variational formulation:∫

Ω

∇u · ∇v dx =

∫

Ω

g v dx, ∀v ∈ V. (2.13)

If g ∈ D′(Ω) ∩ V ′, then Φ[g] satisfies the homogeneous Neumann condition on Γ3.

Finally, φ := Φ ◦ ρ whenever this mapping is defined. The operators Φ and φ are

self-adjoint; one notices for instance the formula:
∫

Ω

∫

RN

f φ[g] dv dx =

∫

Ω

∫

RN

φ[f ] g dv dx =

∫

Ω

∇φ[f ] · ∇φ[g] dx, (2.14)

valid as soon as ρ[f ] and ρ[g] ∈ V ′. By the same token, Φ achieves an isometry

between V ′ and V if the latter is endowed with the above ‖v‖V norm and the

former with the dual norm.

All in all, the rescaled model (2.6)–(2.8) can be rewritten as:

f(x,v) = γ
(
1
2 |v|2 + φ[f ](x)− φe(x)− β

)
, with:

∫

Ω

∫

RN

f dv dx =M, (2.15)

where the function φe is given by (2.9)–(2.10).

3. Existence and uniqueness

3.1. Assumptions

Throughout this paper, we shall use the following hypotheses. The domain Ω ⊂ R
N

is bounded, with a Lipschitz boundary. Furthermore:c

(H1) The solution φe to (2.9)–(2.10) belongs to L∞(Ω).d

(H2) The function γ is continuous, with one of the following monotonicity prop-

erties (see Figure 1):

(a) either, γ is strictly decreasing from R to (0,+∞),

(b) or, it is strictly decreasing from (−∞, s∗] to [0,+∞), for some s∗ ∈ R,

and equal to 0 on [s∗,+∞).

Furthermore, it satisfies the following integrability properties:

(1) for all r ∈ R, the function s 7→ s
N
2
−1 γ(s+ r) is integrable on (0,+∞);

(2) the function r 7→
∫ +∞

0 s
N
2
−1 γ(s + r) ds is integrable in a neighbour-

hood of +∞, hence on any interval (a,+∞).

(H3) Let σ be the function r 7→ −
∫ r
0
γ
(−1)
∗ (s) ds, where γ

(−1)
∗ is the inverse of γ

on (0,+∞), extended by γ
(−1)
∗ (0) = s∗ in case (b). We assume:

lim
s→+∞

σ(s)

s
= +∞ and ∀r ∈ R, s 7→ s

N
2
−1 σ(γ(s+ r))− ∈ L1(R+).

cThe existence results of §3 can be proved under slightly less restrictive assumptions, when the ex-
ternal potential φe is fixed. The framework of (H1)–(H3) is convenient when the external potential
is allowed to vary, and in order to prove the estimates of §5.
dSufficient conditions to achieve this in the two-dimensional case will be examined in §4.
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Fig. 1. The functions γ and σ, cases (a) and (b).

By (H2), σ is strictly convex on (0,+∞) and belongs to C1((0,+∞))∪C0([0,+∞)).

One readily checks that, in case (b), σ admits a right derivative σ′(0) = −s∗, while
in case (a), the right derivative is infinite: limsց0 σ(s)/s = −∞, cf. Figure 1. The

first assumption in (H3) implies that σ is bounded from below.

As a consequence of (H1) and item (1) of (H2), one checks2 that the function

g : (x,v) ∈ Ω× R
N 7→ γ(12 |v|2 − φe(x)) (3.1)

belongs to L1(Ω×R
N ). The second part of (H3) is automatically satisfied in case (b),

as there holds: σ(s)− ≤ s∗ s. In both cases, it implies σ(g)− ∈ L1(Ω×R
N), allowing

one to define
∫
Ω×RN σ(g) as an element of R ∪ {+∞}.

3.2. Kinetic approach

To prove the existence of a unique solution to Problem (2.15), we use an argument

similar to that of Refs. 2, 5, 8. Let

TΩ := Ω× R
N ; L1

+(TΩ) :=
{
u ∈ L1(TΩ) : u ≥ 0 a.e.

}
;

this is a convex and closed subset of L1(TΩ). We introduce the functional J on

L1
+(TΩ), defined by

J [u] :=

∫

TΩ

(
σ(u) + (

1

2
|v|2 − φe)u

)
dx dv

︸ ︷︷ ︸
J1[u]

+
1

2

∫

Ω

| ∇φ[u]|2dx
︸ ︷︷ ︸

J2[u]

. (3.2)

Remark 3.1. If ρ[u] ∈ L1(Ω) \ V ′ then φ[u] does not exist, and in this case, we

agree that J2[u] = +∞. Indeed, by density there exists a sequence ρn ∈ L1(Ω)∩V ′
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such that ρn converges to ρ[u] in L1(Ω). Then, as n→ ∞ we have
∫

Ω

|∇Φ[ρn]|2 = ‖ρn‖2V ′ → +∞,

otherwise there exists a subsequence converging weakly in V ′, which would imply

ρ[u] ∈ V ′, a contradiction. Similarly, we agree that

J1[u] = +∞ if σ(u) + (12 |v|2 − φe)u /∈ L1(TΩ) ;

we shall see in the proof of Proposition 3.2 that the negative part of this function

is integrable for all u ∈ L1
+(TΩ), under the assumptions of §3.1. Finally, we extend

J by +∞ on L1(TΩ) \ L1
+(TΩ).

We now study the differentiability of the functional J . Using the property (2.14),

we calculate the “formal” derivative:

J ′[u] = −γ(−1)
∗ (u) + 1

2 |v|2 − φe + φ[u]. (3.3)

Proposition 3.1. Let u ∈ L1
+(TΩ) be such that J [u] is finite. The subdifferential

∂J [u] is not empty if, and only if, J ′[u] is bounded from below on TΩ, and from

above where u > 0. If these conditions are achieved, the subdifferential is equal to

∂J [u] = {J ′[u] + ϕ : ϕ ≤ 0 and uϕ = 0 and J ′[u] + ϕ ∈ L∞(TΩ)}. (3.4)

Proof. Fix u ∈ L1
+(TΩ), with J [u] finite. Any p0 ∈ L∞(TΩ) belongs to ∂J [u] iff:

∀v ∈ L1(TΩ), ∀t ∈ R, J [u+ t v] ≥ J [u] + t 〈p0, v〉, (3.5)

see Proposition 3, p. 187 of Ref. 1. In practice, it suffices to have this for v ∈
TuL

1
+(TΩ), the tangent cone to L1

+(TΩ) at u, otherwise the the left-hand side is

infinite. The tangent cone is TuL
1
+(TΩ) = {v ∈ L1(TΩ) : v ≥ 0 in A} = L1(B) ⊕

L1
+(A), where we have set:

A := [u = 0] := {(x,v) ∈ TΩ : u(x,v) = 0} and B := [u > 0].

Then, we introduce the following sets of bounded functions with compact support:

Eu := {v ∈ L∞
c (TΩ) : ∃c∗, c∗ s.t. 0 < c∗ ≤ u ≤ c∗ < +∞ on supp v} ;

Cu := {v ∈ L∞
c (TΩ) : v ≥ 0 in A, and v = 0 in B} .

By standard density and truncation arguments, the vector space Eu is dense within

L1(B), and Cu is dense within L1
+(A); thus Eu ⊕ Cu is dense within TuL

1
+(TΩ).

For any v ∈ L1(TΩ), consider the function t 7→ J [u + t v], for t ∈ R. Dif-

ferentiating under the integral sign, one sees that if the following conditions are

satisfied:

(
∃t0(v) > 0 s.t. ∀t ∈ [0, t0(v)], J [u+ t v] < +∞

)
and J ′[u] v ∈ L1(TΩ), (3.6)
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then J [u+ t v] admits a right derivative at t = 0, equal to
∫
TΩ

J ′[u] v. As a conse-

quence, for 0 ≤ t ≤ t0(v) there holds:

J [u+ t v] = J [u] + t

∫

TΩ

J ′[u] v + o(t). (3.7)

It is not difficult to check that, for any v ∈ Eu, the conditions (3.6) are satisfied.

Furthermore, −v ∈ Eu, meaning that (3.7) holds for −t0(v) ≤ t ≤ t0(v). Comparing

with (3.5), we arrive at:

〈p0, v〉 =
∫

TΩ

J ′[u] v, ∀p0 ∈ ∂J [u], ∀v ∈ Eu.

Thanks to the density of Eu within L1(B), we infer p0|B = J ′[u]|B if the latter

belongs to L∞(B), otherwise we get a contradiction.

Similarly, we check that (3.6) holds for v ∈ Cu. From (3.5), we deduce:

〈p0, v〉 −
∫

TΩ

J ′[u] v ≤ 0, ∀p0 ∈ ∂J [u], ∀v ∈ Cu,

which implies (p0 − J ′[u])|A ≤ 0 a.e. in A. If J ′[u] is not bounded from below

on A, this entails a contradiction, hence ∂J [u] = ∅. Otherwise, we have proved

p0|A = J ′[u]|A + ϕ, where ϕ is a non-positive function on A.

Conversely, the same calculations show that any function p0 = J ′[u]+ϕ, where

ϕ = 0 on B and ϕ ≤ 0 on A satisfies the inequality (3.5) for v ∈ Eu⊕Cu. By density,

this extends to v ∈ TuL
1
+(TΩ). Hence, p0 ∈ ∂J [u] as soon as it is bounded, which

means that J ′[u] is bounded from below on B ∪ A = TΩ, and from above on B.

Finally, we consider the following closed convex subset of L1(TΩ):

KM (TΩ) :=

{
u ∈ L1(TΩ) : u ≥ 0 a.e. and

∫

TΩ

u dxdv =M

}
.

Proposition 3.2. There exists a unique function f solution to Problem (2.15),

which is the unique minimum of the functional J on KM (TΩ).

Proof. First, we establish the existence and uniqueness of the minimum. To begin

with, J is strictly convex; any critical point is a strict and global minimum, hence

it is unique. The existence proof is as follows. Using the convexity inequality σ(s)−
σ(r) − (s− r)σ′(r) ≥ 0 for any r, s ≥ 0, and Hypotheses (H1), (H2) and (H3), we

have for any non-negative function u:

σ(u) + (12 |v|2 − φe)u ≥ σ(g) + (12 |v|2 − φe) g

≥ min(σ(g), 0)− (‖φe‖L∞) g ∈ L1(TΩ),

see Eq. (3.1). As the integrand is greater or equal to a fixed integrable function, J1[u]

is bounded from below. Moreover, a standard argument (see Ref. 1, p. 13) shows

that J1 is lower semi-continuous on L1
+(TΩ). On the other hand, J2 is non-negative,

and its lower semi-continuity is proved by an argument similar to Remark 3.1.
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All together, we see that J = J1 + J2 is bounded from below and lower semi-

continuous, hence weakly l.s.c. on L1
+(TΩ), a fortiori on KM (TΩ) := K. Further-

more, taking u as a non-negative bounded function with compact support on TΩ

and massM , one easily checks that J [u] is finite. Therefore, J has a finite infimum

on K.

Let (fn)n ∈ K be a minimizing sequence for J . Using (H3) and the Dunford–

Pettis compactness criterion, we can extract a subsequence still denoted (fn) which

converges weakly to f ∈ L1(TΩ). As K is convex and closed, it is weakly closed,

and f ∈ K. And, since J is weakly l.s.c., then

J [f ] ≤ lim inf
n→∞

J [fn] = inf
K

J ,

meaning that f is the global minimum of J . As a consequence (see Ref. 1, p. 189):

0 ∈ ∂J [f ] +NfK, (3.8)

where NfK is the normal cone to K at f , i.e., the negative polar cone to the tangent

cone TfK. For any u ∈ K, we calculate the tangent and normal cones:

TuK =

{
v ∈ L1(TΩ) :

∫

TΩ

v = 0 and v ≥ 0 where u = 0

}
;

NuK = {c+ ψ} ⊂ L∞(TΩ), where:

c = const., 0 ≥ ψ ∈ L∞(TΩ), u ψ = 0.

The optimality condition (3.8) implies that J ′[f ] is not empty, so it is described

by (3.4), and we arrive at J ′[f ] − β + ν = 0, where β ∈ R and ν := ϕ + ψ ≤ 0

satisfies f ν = 0. Using the formula (3.3) and noting that γ
(
γ
(−1)
∗ (s)

)
= s for all

s ≥ 0, this means:

• where f > 0, f(x,v) = γ
(
1
2 |v|2 + φ[f ](x)− φe(x)− β

)
;

• where f = 0, f(x,v) = γ
(
1
2 |v|2 + φ[f ](x)− φe(x)− β + ν(x,v)

)
.

As γ is non-increasing and non-negative, this implies:

f(x,v) = 0 ≥ γ
(
1
2 |v|2 + φ[f ](x)− φe(x)− β

)
≥ 0 = f(x,v).

Therefore, f is a solution to (2.15).

As γ is bijective (one-to-one and onto) whenever it is strictly positive, the unique-

ness of f implies that of β. This allows one to take the following definition.

Definition 3.1. Fix φe ∈ L∞(Ω). The mapping S : R+
∗ → R is given by S(M) = β,

the multiplier which appears in the solution to Problem (2.15).
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3.3. Potential approach

As noted in the Introduction, it is fruitful to look at Problem (2.15) from the point

of view of the potential φ[f ], rather than f . To this end, we introduce the function

G defined as:

G(r) =

∫

RN

γ

(
1

2
|v|2 + r

)
dv = 2

N
2
−1|SN−1|

∫ +∞

0

s
N
2
−1γ(s+ r) ds ; (3.9)

where |SN−1| is the (N−1)-dimensional area of the unit sphere of RN ; we have used

a change of variables in polar coordinates. The finiteness of G(r) for all r follows

from (H2). If f is solution to Problem (2.15), then φ := φ[f ] solves:

−∆φ = G(φ− φe − β) := ρ in Ω, φ = 0 on Γ1 ∪ Γ2, ∂νφ = 0 on Γ3. (3.10)

where β = S(M), see Definition 3.1. Notice that γ being non-increasing implies

that G is non-increasing.

Proposition 3.3. For any φe ∈ L∞(Ω) and β ∈ R, there exists a unique solution

to Problem (3.10).

Proof. The variational formulation of this problem writes:

Find φ ∈ V such that,
∫

Ω

∇φ · ∇ξ =
∫

Ω

G(φ − φe − β) ξ, ∀ξ ∈ V. (3.11)

Clearly, φ is a solution to (3.11) iff it is a critical point of the functional F : V −→ R

defined by

F [φ] =
1

2

∫

Ω

|∇φ|2 +
∫

Ω

G(φ− φe − β)

where G(r) :=
∫ +∞

r G(s) ds; this function is well-defined by (H2). As G is posi-

tive, we see that F is coercive. Furthermore, G being decreasing implies that G is

convex. Thus, a standard argument shows that the functional F is strictly convex

and (weakly) l.s.c. Furthermore, it is not identically +∞, as F [0] is finite by (H1)

and (H2). This ensures the existence and uniqueness of the critical point.

Definition 3.2. Fix φe ∈ L∞(Ω). For any β ∈ R, let φ be the solution to Prob-

lem (3.10). The mapping µ : R → R
+
∗ is given by:

µ(β) :=

∫

Ω

G(φ− φe − β) dx.

From the above discussion, it follows that µ(S(M)) = M , for all M > 0. Con-

versely, let β ∈ R be given. Set φ as the solution to Problem (3.10), and M = µ(β).

Then, define f̃(x,v) := γ
(
1
2 |v|2 + φ(x)− φe(x)− β

)
. Integrating in v, we find:

ρ[f̃ ] = G(φ− φe − β), i.e. −∆φ[f̃ ] = −∆φ.
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As φ and φ[f̃ ] satisfy the same boundary conditions, they are equal. Hence, f̃ is the

(unique) solution to Problem (2.15) for the massM ; in other words, β = S(M). So,

S(µ(β)) = β, for all β ∈ R. Summarising, we have:

Proposition 3.4. Fix φe ∈ L∞(Ω). The mappings S and µ, as in Definitions 3.1

and 3.2 respectively, are bijective, and inverse of each other.

This proves the equivalence of Problems (2.15) and (3.10).

3.4. Monotonicity and regularity properties

Now, we study the dependence of the solution to (3.10) with respect to the data,

and the regularity of the solutions to (3.10) and (2.15). First, the monotonicity of

the function G entails a comparison principle.19

Proposition 3.5. Let φ1 and φ2 be two solutions to Problem (3.10) corresponding

to (φe, β) = (φ1e , β1) and (φ2e , β2) respectively. If φ1e + β1 ≥ φ2e + β2 a.e. in Ω, then

φ1 ≥ φ2 in Ω.

It is also possible to compare the “masses” associated to different instances of

Problem (3.10).

Proposition 3.6. Under the hypotheses of Proposition 3.5, define for i = 1, 2:

ρi := −∆φi = G(φi − φie − βi) and Mi =

∫

Ω

ρi.

If φ1e + β1 ≥ φ2e + β2 a.e. in Ω, then M1 ≥M2.

Proof. By the previous Proposition, we decompose Ω = [φ1 = φ2] ∪ [φ1 > φ2] =

A ∪ B. The function w = φ1 − φ2 is solution to
∫

Ω

∇w · ∇ξ =
∫

Ω

(ρ1 − ρ2) ξ, ∀ξ ∈ V.

Let us take ξ = Υǫ(w) as a test function in the previous formulation, where Υǫ(·)
is defined as

Υǫ(r) = 1 if r ≥ ǫ, Υǫ(r) = r/ǫ if 0 ≤ r ≤ ǫ, Υǫ(r) = 0 if r ≤ 0.

We arrive at:
∫

Ω

|∇w|2 Υ′
ǫ(w) =

∫

Ω

(ρ1 − ρ2)Υǫ(w).

The left-hand side of this equation is non-negative. When ǫ tends to 0, Υǫ(w) con-

verges pointwise toward the Heaviside function Υ(w), with the convention Υ(0) = 0.

Therefore, by the dominated convergence theorem, we get:
∫

Ω

(ρ1 − ρ2)Υ(w) ≥ 0, i.e.

∫

B

ρ1 ≥
∫

B

ρ2.



March 16, 2012 13:17 WSPC/INSTRUCTION FILE KLP12-submitted

Singularities of stationary solutions to the Vlasov–Poisson system in a polygon 13

On the other hand, on the set A there holds:

φ1 − φ1e − β1 ≤ φ2 − φ2e − β2, hence G(φ1 − φ1e − β1) ≥ G(φ2 − φ2e − β2),

and
∫
A ρ1 ≥

∫
A ρ2. Adding the two contributions, we find M1 ≥M2.

Corollary 3.1. Let φe ∈ L∞(Ω) be given. The mappings S and µ, as in Defini-

tions 3.1 and 3.2 respectively, are strictly increasing.

Proof. As a consequence of the previous Proposition, µ is non-decreasing. As a

bijection between real intervals (Proposition 3.4), it must then be strictly increasing;

and the same holds for its inverse mapping S.

Similarly, one may study the dependence of φ on parameters other than M ,

through the external potential φe, as we shall do in §5.2.

Corollary 3.2. Consider two bounded external potentials φ1e ≥ φ2e . Let fi, i = 1, 2

be the solutions to (2.15) with φe = φie and the same mass M > 0, and βi the

corresponding multipliers. Then, β1 ≤ β2.

Proof. The potentials φi = φ[fi] satisfy:

−∆φi = G(φi − φie − βi), φi = 0 on Γ1 ∪ Γ2, ∂νφi = 0 on Γ3, for i = 1, 2.

Introducing the solution φ̃ to

−∆φ̃ = G(φ̃ − φ2e − β1), φ̃ = 0 on Γ1 ∪ Γ2, ∂ν φ̃ = 0 on Γ3,

and M̃ =

∫

Ω

G(φ̃− φ2e − β1) dx,

it follows from Propositions 3.5 and 3.6 that φ1 ≥ φ̃, and M ≥ M̃ . Comparing then

φ2 and φ̃ by Corollary 3.1, one deduces β2 ≥ β1.

Definition 3.3. Let p ≥ 2N/(N + 2) for N ≥ 3, or p > 1 for N = 2. We call Φp
the space of potentials

Φp =
{
v ∈ H1(Ω) : ∆v ∈ Lp(Ω), v = 0 on Γ1 ∪ Γ2, ∂νv = 0 on Γ3

}
,

i.e., the space of solutions to (2.13) when g ∈ Lp(Ω). The condition on p implies

that Lp(Ω) ⊂ V ′, and ‖v‖Φp
:= ‖∆v‖Lp(Ω) defines a norm on Φp, equivalent to the

canonical norm.

Lemma 3.1. Let f be the solution of Problem (2.15). Then f ∈ L∞(Ω × R
N ),

ρ[f ] ∈ L∞(Ω) and φ[f ] ∈ Φp for all p <∞.

Proof. As γ takes its values in R
+, we obviously have f ≥ 0 and ρ[f ] ≥ 0, hence

φ[f ] ≥ 0. Using (H1) and the fact that γ is a decreasing function, we have:

f(x,v) = γ
(
1
2 |v|2 + φ[f ](x)− φe(x)− β

)
≤ γ (−‖φe‖∞ − β) .
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Similarly, G being a decreasing function implies

ρ[f ](x) = G (φ[f ](x)− φe(x)− β) ≤ G (−‖φe‖∞ − β) .

Therefore, ρ[f ] ∈ L∞(Ω) and φ[f ] ∈ Φp, for all p <∞.

4. Corner behavior in dimension 2

In the rest of the article, we consider the case where Ω is a polygonal domain of R2,

an example of which is shown on Figure 2. If c is any corner on ∂Ω, we denote:

x

3

Γ1

Γ2

θs

π/αs

rs

s
j

Γ

Fig. 2. The polygonal domain Ω.

• π

αc
(with αc ∈ (12 ,+∞)) the interior angle at c;

• (rc, θc) the local polar coordinates, with 0 < θc < π/αc;

• Γc the subset of ∂Ω made of the two sides that meet at c;

• χc ∈ C∞ a cut-off function, which depends on rc only, and is supported in a

neighbourhood Ωc of c such that of ∂Ωc ∩ ∂Ω ⊂ Γc.

To begin with, let us recall Grisvard’s results11,12 on the linear Poisson problem. As

noted above, Lp(Ω) ⊂ V ′ (see (2.12)) for all p > 1. Let u be the solution to (2.13)

for g ∈ Lp(Ω). Then, for each corner there exists a finite sequence of scalars (λcℓ)ℓ∈Λp
c

(the singularity coefficients) such that

u −
∑

c

∑

ℓ∈Λp
c

λcℓ S
c
ℓ := uR ∈ W 2,p(Ω). (4.1)

The functions uR and
∑

c

∑
ℓ∈Λp

c
λcℓ S

c
ℓ are respectively called the regular and sin-

gular parts of u. Both depend continuously on g, i.e.,

‖uR‖W 2,p(Ω) +
∑

c

∑

ℓ∈Λp
c

|λcℓ| ≤ C(Ω, p) ‖g‖Lp(Ω). (4.2)

The indexing set Λpc and the local primal singular functions Scℓ are given by:

• if c is a pure Dirichlet corner (Γc ⊂ Γ1 ∪ Γ2):

Λpc := Z
∗ ∩
(
p− 2

p αc
,
2p− 2

p αc

)
, Scℓ (rc, θc) := χc(rc) r

ℓαc

c sin(ℓαcθc) ;
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• if c is a pure Neumann corner (Γc ⊂ Γ3):

Λpc := Z ∩
(
p− 2

p αc
,
2p− 2

p αc

)
, Scℓ (rc, θc) := χc(rc) r

ℓαc

c cos(ℓαcθc) ;

• if c is a mixed corner, with a Dirichlet condition on the side θc = 0 and a

Neumann condition on the side θc = π/αc:
e

Λpc := Z∩
(
p− 2

p αc
+

1

2
,
2p− 2

p αc
+

1

2

)
, Scℓ (rc, θc) := χc(rc) r

(ℓ− 1

2
)αc

c sin((ℓ− 1
2 )αcθc).

As the singular functions Scℓ are smooth away from c, the function u is of W 2,p

regularity except in a neighbourhood of the corners. We shall mainly concentrate on

the regularity in the scale Hs(Ω), the most natural one both from a theoretical and

a computational point of view, given the semi-linear nature of the problem. From

the above description of the singular functions, one checks that a pure Dirichlet

or Neumann corner c is singular, i.e., u|Ωc
/∈ H2(Ωc) in general, iff it is reentrant

(αc < 1). A mixed corner c is singular iff it is obtuse or reentrant (αc < 2). To

simplify the discussion, we shall assume the following hypothesis in the sequel:

(H4) There is exactly one reentrant corner s; it is a pure Dirichlet corner, with

Γs ⊂ Γ1. All mixed corners (if any) have angles smaller than or equal to π
2 .

Therefore, we shall generally drop the subscript s in rs, θs, αs, etc. Nevertheless,

the general case can be handled in the same manner.

We have the following estimate on the regular part in the neighbourhood of the

reentrant corner.

Lemma 4.1. Let g ∈ Lp(Ω), u = Φ[g], for p > 2. The regular part uR satisfies:
∣∣∣∣
χ(r)uR(r, θ)

r sin(αθ)

∣∣∣∣ ≤ C(Ω, p) ‖g‖Lp(Ω).

Therefore, u is equivalent to its singular part λχ(r) rα sin(αθ) as x → s.

Proof. Let w := χuR. We have w ∈ W 2,p(Ω)∩W 1,p
0 (Ω), hence ∇w ∈ W 1,p(Ω)2 ⊂

C(Ω)2, and w is supported in Ωs. From (4.2), it follows that

‖∇w‖L∞(Ωs)
≤ C(Ω, p) ‖∇w‖W 1,p(Ω) ≤ C(Ω, p) ‖g‖Lp(Ω).

Of course, this bound applies to the θ-component of ∇w, which is
1

r

∂w

∂θ
. As w

vanishes on the boundary, we have
w

r
(r, 0) = 0 for any r > 0. Therefore:

w(r, θ)

r
=

∫ θ

0

∂

∂θ̃

(
w(r, θ̃)

r

)
dθ̃,

eThe reader will adapt the statement to the opposite conditions.
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and
∣∣∣∣
w(r, θ)

r

∣∣∣∣ ≤ θ

∥∥∥∥
∂

∂θ

(w
r

)∥∥∥∥
L∞(Ωs)

≤ C θ ‖g‖Lp(Ω).

In the same manner, we have:

w(r, πα )

r
= 0, and

∣∣∣∣
w(r, θ)

r

∣∣∣∣ ≤ C
(π
α
− θ
)
‖g‖Lp(Ω).

On the other hand, one easily checks that

∀θ ∈ [0, πα ], min(θ, πα − θ) ≤ π
2α sin(αθ).

This completes the proof of Lemma.

Now we return to the non-linear problems (3.10) and (2.15). We know from

Lemma 3.1 that φ = φ[f ] ∈ Φp for any p. The Sobolev imbeddings and the analytic

expression of singularities imply the existence of ǫ > 0 such that Φp ⊂ H1+ǫ(Ω) ⊂
C(Ω) for any polygonal domain.12 To study the local behavior of the total potential

V = φ[f ]−φe near the reentrant corner, we introduce the following stronger version

of (H1), which implies11,12 that φe locally belongs to Φp.

(H1’) There is p > 2 such that ne ∈ Lp(Ω) and φin ∈W p,2−1/p(Γ2).

Furthermore, if Γ1 ∩ Γ2 6= ∅, there must hold at any j ∈ Γ1 ∩ Γ2:

φin(j) = 0 and, unless αj = 2 or αj =
2
3 , ∂τ2φin(j) = 0,

where τ 2 is the tangent unit vector on Γ2. The exceptions involve right angles.

Therefore, the regular-singular decomposition of these functions writes:

φ = φR + λχ(r) rα sin(αθ), φe = φe,R + λe χ(r) r
α sin(αθ), (4.3)

with φR, φe,R ∈ W 2,p(Ω) for p < p∗. The upper bound p∗ > 2 depends on the ge-

ometry of Ω and on the hypothesis (H1’).f Furthermore, φR|Ωs
φe,R|Ωs

∈ W 2,p(Ωs)

for any p < 1/(1 − α) (resp. any such p satisfying ne ∈ Lp(Ωs)). Notice, however,

that (H1) is sufficient if one is interested in the behavior of φ alone. Sufficient (and

nearly optimal) conditions to achieve (H1) are:

ne ∈ H−1+ǫ(Ω), φin ∈ H1/2+ǫ(Γ2), φin(j) = 0, ∀j ∈ Γ1 ∩ Γ2, (4.4)

or ne ∈ Lp1(Ω), φin ∈W 1−1/p2,p2(Γ2), φin(j) = 0, ∀j ∈ Γ1 ∩ Γ2, (4.5)

for some ǫ > 0, respectively p1 > 1 and p2 > 2.

fUnder (H4), the precise conditions are: (i) (1−αs) p < 1 for the reentrant corner; (ii) (2−αc) p < 2
for the salient (αc > 1) corners with pure Dirichlet or Neumann conditions; (iii) (4 − αc) p < 4
for the acute (αc > 2) corners with mixed conditions; (iv) as far as the regularity of φe,R is
concerned, p satisfies (H1’). Note that, thanks to a symmetry principle, the mixed-condition right-
angle corners are not singular.
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Interestingly, the singularity coefficient of φ enjoys a monotonicity property.

Theorem 4.1. Let f1 and f2 be two solutions of Problem (2.15), corresponding to

M =M1 and M2 respectively, with the same external potential φe ∈ L∞(Ω). Let λ1
and λ2 be the singularity coefficients of φ1 := φ[f1] and φ2 := φ[f2]. If M1 ≥ M2,

then λ1 ≥ λ2.

Proof. Thanks to Lemma 4.1, we have

φ1 − φ2 ∼ (λ1 − λ2) r
α sin(αθ) as r → 0, uniformly in θ.

Let βi, i = 1, 2, be the multipliers associated to fi; then φi satisfies −∆φi =

G(φi − φe − βi). Thanks to Corollary 3.1, we have β1 ≥ β2, and φ1 ≥ φ2 by

Proposition 3.3; therefore λ1 ≥ λ2.

Finally, we recall that λ is given by the representation formula:12

λ =

∫

Ω

ρPs dx, (4.6)

where the dual singular function Ps is characterized by the following properties:

−∆Ps = 0 in Ω, Ps = 0 on Γ1 ∪ Γ2, ∂νPs = 0 on Γ3 ; (4.7)

Ps = Pp + P̃ , where: Pp =
1
π r

−α sin(αθ), P̃ ∈ H1(Ω) ∩C(Ω). (4.8)

Thus, Ps ∈ L2(Ω), and Ps ≥ 0: a non-negative right-hand side implies a non-

negative potential and thus a non-negative singularity coefficient. As the principal

part Pp is zero on Γs, and smooth on the other sides of ∂Ω, the remainder P̃ appears

as the variational solution to:

−∆P̃ = ∆Pp = 0 in Ω, P̃ = −Pp on Γ1 ∪ Γ2, ∂νP̃ = −∂νPp on Γ3. (4.9)

As a consequence, P̃ locally belongs to Φp for all p, near the reentrant corner s. By

Lemma 4.1 and (4.8), we infer that there exists ζ̃ ∈ R such that

P̃ ∼ ζ̃ rα sin(αθ) and Ps ∼ 1
π r

−α sin(αθ) as r → 0, uniformly in θ. (4.10)

5. Behavior of the Maxwell–Boltzmann Problem

From now on, we assume γ(s) = exp(−s); one readily checks that γ(s) and σ(s) =

s ln s− s satisfy the assumptions of §3.1: this is the Maxwellian distribution. Then,

Eq. (3.9) yields G(r) = 2π exp(−r), and Problems (3.10) or (2.15) become:

−∆φ = κ exp(φe − φ) := ρ in Ω, with:

∫

Ω

ρ =M, (5.1)

φ = 0 on Γ1 ∪ Γ2, ∂νφ = 0 on Γ3 ; (5.2)

where we have set κ = 2π exp(β).
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5.1. Behaviour with respect to the mass

In this section, we fix φe and set φ∗e := supφe. We study the effect of the variation

of M . We call φM the solution to Problem (5.1)–(5.2), and similarly κM , ρM .

The singularity coefficient of φM is denoted by λM . Under (H1’), the singularity

coefficient of the total potential φM − φe is ΛM = λM − λe.

Theorem 5.1. As M → 0, there holds:

κM ∼M

(∫

Ω

exp(φe) dx

)−1

and λM ∼ κM

∫

Ω

exp(φe)Ps dx. (5.3)

Proof. From (5.1) follows that κM =M
(∫

Ω eφe−φM
)−1

, therefore:

M

(∫

Ω

exp(φe) dx

)−1

≤ κM ≤M exp(‖φM‖L∞)

(∫

Ω

exp(φe) dx

)−1

. (5.4)

As remarked above, Φ2 ⊂ L∞(Ω), hence:

‖φM‖L∞ ≤ C ‖φM‖Φ2
≤ C ‖ρM‖L2 ≤ C ‖ρM‖1/2L1 ‖ρM‖1/2L∞ ≤ C

(
M κMeφ

∗

e

)1/2
.

By Corollary 3.1, κM = 2π expS(M) is nondecreasing with respect to M ; thus, it

tends to a limit κ0 ≥ 0 when M → 0. As a consequence, we have ‖φM‖L∞ → 0.

Plugging this into (5.4) proves the first assertion in (5.3).

Similarly, we have

λM =

∫

Ω

ρM Ps dx = κM

∫

Ω

exp(φe − φM )Ps dx.

As we have seen, ‖φM‖L∞ → 0 as M → 0, therefore exp(φe − φM ) → exp(φe)

a.e. in Ω. Since | exp(φe − φM )|2 ≤ exp(2φe), the dominated convergence theorem

gives exp(φe − φM ) → exp(φe) in L
2(Ω) and we obtain

λM
κM

=

∫

Ω

exp(φe − φM )Ps →
∫

Ω

exp(φe)Ps as M → 0,

proving the second assertion in (5.3).

The behavior as M → +∞ can be investigated with the help of the theory of

large solutions to non-linear elliptic problems exposed in Appendix A.

Theorem 5.2. As M → +∞, there holds:

M

κM
→ 0 and

λM
κM

→ 0 and λM → +∞. (5.5)

Proof. From (5.4), we deduce κM → +∞. Now, consider the function uM :=

ln ρM − φe = lnκM − φM . It appears as the unique solution in H1(Ω) to:

∆uM = ρM = exp(φe + uM ) in Ω, uM = lnκM on Γ1 ∪ Γ2, ∂νuM = 0 on Γ3.
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As κM → +∞, uM converges monotonically toward the smallest solution to:

∆u∞ = exp(φe + u∞) := ρ∞ in Ω, u∞ = +∞ on Γ1 ∪ Γ2, ∂νu∞ = 0 on Γ3.

Then, for any x ∈ Ω, φM (x) = lnκM − uM (x) → +∞ as M → +∞. Using the

dominated convergence theorem, we deduce

M

κM
=

1

κM

∫

Ω

ρM ≤ eφ
∗

e

∫

Ω

e−φM → 0,

λM
κM

=
1

κM

∫

Ω

ρM Ps ≤ eφ
∗

e

∫

Ω

Ps e
−φM → 0.

Furthermore, Ps ρM converges monotonically toward Ps ρ∞ (recall that Ps is non-

negative). By the monotone convergence theorem, we infer:

λM =

∫

Ω

Ps ρM →
∫

Ω

Ps ρ∞ := λ∞ ∈ [0,+∞].

Combining Eq. (4.10) with Proposition Appendix A.2 and Definition Appendix A.1,

we see that, near the reentrant corner s:

Ps ρ∞ ≥ C
r−αs
s sin(αsθs)

(rs sin(αsθs))2
=

C

rαs+2
s sin(αsθs)

/∈ L1(Ωs),

hence the last part of (5.5).

Remark 5.1. To have more precise asymptotics of κM and λM , one may think of

boundary layer techniques. The relevant scale appears to be ǫ = κ
−1/2
M . However,

the limiting problem near the reentrant corner, to wit −∆φ = e−φ in an infinite

sector, with a Dirichlet boundary condition, seems to be ill-posed.

5.2. Behaviour with respect to the applied voltage

Now, we return to the Maxwell–Boltzmann problem (5.1)–(5.2), and we suppose

that the value of the external potential on Γ2 (the applied voltage) is given as

φin = mφ̄in, where m is a variable real parameter and

φ̄in ∈ Hs(Γ2) for some s > 1
2 , min φ̄in = 1, max φ̄in := φ̄∗in < +∞.

Of course, this supposes the existence of a non-empty Neumann boundary Γ3 be-

tween Γ1 and Γ2. On the other hand, the neutralizing background density ne and

the total mass M are independent of m. Global neutrality (M =
∫
Ω
ne) does not

necessarily hold. This setting can be thought of as a toy model for the following

situation: Γ1 is the ground, with the reentrant corner representing a lightning con-

ductor or a tall tree, Γ2 is an electrically charged cloud, and Γ3 is an artificial

boundary which keeps the domain bounded. We call this the “cloud problem”.
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We decompose φe := mHin + ψe, where Hin and ψe solve:

∆Hin = 0 in Ω, Hin = 0 on Γ1, Hin = φ̄in on Γ2, ∂νHin = 0 on Γ3 ;

−∆ψe = ne in Ω, ψe = 0 on Γ1 ∪ Γ2, ∂νψe = 0 on Γ3.

Hypothesis (H1’) implies that both parts are bounded: 0 ≤ Hin ≤ φ̄∗in and 0 ≤ ψe ≤
ψ∗
e . Problem (5.1)–(5.2) reads:

−∆φm = κm exp(mHin + ψe − φm) := ρm in Ω, with:

∫

Ω

ρm =M, (5.6)

φm = 0 on Γ1 ∪ Γ2, ∂νφm = 0 on Γ3 . (5.7)

The singularity coefficient of φm is denoted λm; thus the total singularity coefficient

is Λm = λm −mηin − ηe, where ηin and ηe are the singularity coefficients of Hin

and ψe. We investigate the behavior of the various coefficients as m → +∞. The

limit m→ −∞ cannot be studied with the tools introduced in this article.

Theorem 5.3. As m→ +∞, there holds:

κm → 0 and κm exp(mφ̄∗in) → +∞. (5.8)

Proof. Both claims are proved by contradiction. First, κm is non-increasing with

respect to m, as a consequence of Corollary 3.2. Thus, there exists 0 ≤ κ∞ =

limm→+∞ κm. Consider wm := ln ρm − ψe = lnκm +mHin − φm, which solves the

problem:

∆wm = ρm = exp(ψe + wm) in Ω,

wm = lnκm on Γ1, wm = lnκm +mφ̄in on Γ2, ∂νwm = 0 on Γ3.

Assume κ∞ > 0. A simple comparison argument shows that wm ≥ wm, where:

∆wm = exp(ψe + wm) := ρ
m

in Ω,

wm = lnκ∞ on Γ1, wm = lnκ∞ +mφ̄in on Γ2, ∂νwm = 0 on Γ3.

As m→ +∞, wm converges monotonically (see Remark Appendix A.1) toward the

smallest solution to:

∆w∞ = exp(ψe + w∞) := ρ
∞

in Ω,

w∞ = lnκ∞ on Γ1, w∞ = +∞ on Γ2, ∂νw∞ = 0 on Γ3 ;

and similarly ρ
m

ր ρ
∞
. By Proposition Appendix A.2 the latter is not integrable

in a neighbourhood of Γ2. Applying the monotone convergence theorem, we find:

M =

∫

Ω

ρm ≥
∫

Ω

ρ
m

→
∫

Ω

ρ
∞

= +∞,

a contradiction which proves the first point in (5.8).
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To check the second point, assume the existence of a sequence mn → +∞ such

that

κmn
exp(mn φ̄

∗
in) ≤ C, and therefore κmn

exp(β mn) → 0, ∀β < φ̄∗in.

As a harmonic function, Hin < φ̄∗in in Ω. So, for all x ∈ Ω one has ρmn
(x) → 0 while

bounded by the integrable function C eψe . This implies M =
∫
Ω ρmn

→ 0, another

contradiction.

Proposition 5.1. Assume there exists β > 0 and C > 0 such that

κm eβm ≤ C as m→ +∞. (5.9)

Then the singularity coefficient λm remains bounded as m → +∞. If (5.9) holds

for all β < φ̄∗in, then λm → 0. Therefore, Λm is asymptotically linear in m.

Proof. As Hin is continuous on Ω and zero on Γ1, the set ω := [Hin < β] is a

neighbourhood of the reentrant corner s. On the other hand, Ps is smooth away

from s, so A := supΩ\ω Ps is finite. We bound:

λm =

∫

ω

ρm Ps +

∫

Ω\ω

ρm Ps ≤
∫

ω

κm emHin eψe−φm Ps + A

∫

Ω\ω

ρm

≤
∫

ω

C eψ
∗

e Ps + AM ≤ C′.

If (5.9) holds for all β < φ̄∗in, taking β < β′ < φ̄∗in shows κm eβm =

(κm eβ
′m) e(β−β

′)m → 0. Therefore, κm emHin(x) → 0 and thus ρm(x) → 0 ev-

erywhere in Ω, except on Σ := [φ̄in = φ̄∗in] ⊂ Γ2. As the total mass
∫
Ω ρm = M is

conserved, we infer that ρm converges (in the sense of measures) toward a multiple

of the surface Dirac measure δΣ. As Ps = 0 on Σ ⊂ Γ2, this implies λm → 0.

The condition (5.9) can be proved in a somewhat special geometrical setting,

which nevertheless seems natural given the physical context. We assume that Γ2 is

a segment of a straight line, and that Γ3 is made of two segments at right angles

with Γ2, see Figure 3. This induces a coordinate system (X,Y ), with X along Γ2

and Y along Γ3. The above conditions imply that Ω is entirely contained in the

half-strip [0 < Y < B and X > 0]. We then choose A′′ > A′ > 0 such that the

rectangular domain Ω′ := [0 < X < A′ and 0 < Y < B] is entirely contained in Ω,

which in turn is entirely contained in Ω′′ := [0 < X < A′′ and 0 < Y < B]. The

various parts of the boundary of Ω′ will be denoted Γ′
1, Γ2, Γ

′
3, and similarly for Ω′′.

Proposition 5.2. Let Ω be the domain represented on Figure 3. The bound (5.9)

holds for all β < 1. Therefore, λm is bounded as m→ ∞, and λm → 0 if φ̄∗in = 1.

Proof. Consider the function um := mHin−φm = ln ρm− lnκm−ψe, which solves

the problem:

∆um = ρm = κm exp(ψe + um) in Ω, (5.10)

um = 0 on Γ1, um = mφ̄in on Γ2, ∂νum = 0 on Γ3. (5.11)
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Fig. 3. Model setting for the cloud problem.

Introduce the similar function u′m on Ω′, solution to:

∆u′m = ρ′m := κm exp(ψ∗
e + u′m) in Ω′,

u′m = 0 on Γ′
1, u′m = m on Γ2, ∂νu

′
m = 0 on Γ′

3,

with the same value of κm. Clearly, the above problem is independent of the co-

ordinate Y , and u′m is given in function of X ∈ (0, A′) as the solution to the one-

dimensional model studied in Appendix B. As noted at the end of that appendix,

the one-dimensional solution can be extended to a subsolution on a larger interval,

which is non-positive for X ≥ A′. Thus, we have extended u′m to a function um
on Ω′′, which satisfies:

∆um ≥ ρ
m

:= κm exp(ψ∗
e + um) ≥ κm exp(ψe + um) in Ω′′,

um ≤ 0 in Ω′′ \ Ω′, um = m ≤ mφin on Γ2, ∂νum = 0 on Γ′′
3 .

In particular, um ≤ 0 on Γ1: this function is a subsolution to (5.10)–(5.11). So,

um ≤ um in Ω, which means u′m ≤ um in Ω′. In turn, this implies ρ′m ≤ eψ
∗

e ρm and:

M ′
m :=

∫

Ω′

ρ′m ≤ eψ
∗

e

∫

Ω′

ρm ≤ eψ
∗

e M.

According to Proposition Appendix B.1, M ′
m being bounded implies (5.9), for all

β < 1.

6. Numerical solution of the Maxwell–Boltzmann problem

Solving numerically the problem (5.1)–(5.2) needs to tackle its non-linearity. De-

noting, as in the previous sections, Φ[ρ] = φ the solution to:

−∆φ = ρ in Ω, ∂νφ = 0 on Γ3, φ = 0 on Γ1 ∪ Γ2, (6.1)

we have used, in a finite-dimensional context which we will introduce later, the

following two approaches:



March 16, 2012 13:17 WSPC/INSTRUCTION FILE KLP12-submitted

Singularities of stationary solutions to the Vlasov–Poisson system in a polygon 23

(1) Simple fixed point iterations:

ρ(k)
A7−→ φ(k) := Φ[ρ(k)]

B7−→ ρ(k+1) =M
exp(φe − φ(k))∫
Ω exp(φe − φ(k))

(6.2)

but as the mapping F := B ◦A is linear in M it cannot be a contraction for M

large enough.

(2) Minimization of the functional (compare with §3.2):

J [ρ] :=

∫

Ω

[
ρ ln ρ− ρ− φe ρ+

1

2
|∇Φ[ρ]|2

]
=

∫

Ω

ρ

(
−φe +

1

2
Φ[ρ] + ln ρ− 1

)
,

(6.3)

on the set L1
+(Ω) := {v ∈ L1(Ω) : v ≥ 0 a.e. in Ω and

∫
Ω v = M}, which is

more involved, but allows one to handle larger values of M .

In both approaches we need to solve many times Eq. (6.1) for various ρ on a domain

with a reentrant corner. It is well known that the classical P1 finite element method

generally loses the O(h2) convergence in L2(Ω) norm. One possibility to recover

the expected O(h2) convergence is to use the singular complement method.7 It fits

well our needs, because we are also interested in studying numerically the behavior

(cf. §5) of the singularity coefficient of φ, which is a key ingredient of the method.

The singular complement method is used in conjunction with the classical P1 fi-

nite element method, and we now introduce some notations we use in the sequel.

Given a triangulation T h of Ω, we denote by V h the space spanned by the finite

elements, i.e., continuous functions on Ω whose restriction on each triangle of T h

is an affine function. It is well known that each vh ∈ V h can be written as:

vh =
∑

i

vh(ai)ϕi

where the ai are the triangulation vertices and ϕi the global “hat” basis functions.

Given a function vh ∈ V h, we will denote as {vh} the vector of its nodal values

[vh(a1), . . . , v
h(an)]

⊤ and M the mass matrix with coefficients Mi,j = (ϕi, ϕj).

Using the mass matrix, the L2 scalar product between two functions of V h can be

computed by (uh, vh) = {uh}⊤M{vh}. Moreover we will denote:

• ΠhI the interpolation operator from C(Ω) to V h: ΠhI v =
∑

i v(ai)ϕi ;

• Πh the orthogonal projection operator from L2(Ω) to V h ; for any v ∈ L2(Ω)

we have Πhv =
∑

i wiϕi with w ∈ R
n the solution of the linear system Mw = b,

with bi = (v, ϕi).

The subspace V h0 ⊂ V h of functions which vanish on Γ1∪Γ2 is used to approximate

the regular part of Φ[ρ] (cf. §4), while its singular part is treated in a semi-analytical

way which we detail below. A similar approach is used for φe. Finally we also use the

same space V h to approximate the function ρ in both fixed point and minimisation

approaches. This is not mandatory, but overall simplifies the computations.
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The rest of this section is organized as follows. First we recall briefly the prin-

ciples of the singular complement method. Then we give some details on our two

approaches to solve the non-linear problem. Finally we present numerical tests on

the two family of problems examined in §5, the behavior with respect to the mass

and the behavior with respect to the applied voltage (the cloud problem), and

compare the results with the expected theoretical behavior.

6.1. The singular complement method

The method is based on the following decomposition12 of L2(Ω):

L2(Ω) = ∆Φ2

⊥
⊕ N, where: N = {p ∈ L2(Ω) : ∆p = 0, p|Γ1∪Γ2

= 0, ∂νp|Γ3
= 0},

see Definition 3.3 for Φ2. In case of only one reentrant corner dimN = 1 and

N = span (Ps), see (4.7)–(4.8). So we split the right hand side of (6.1) as:

ρ := ρR + ρS , where: ρS =
(ρ, Ps)

‖Ps‖2L2

Ps := c Ps, ρR = ρ− ρS ,

then by linearity Φ[ρ] = Φ[ρR] + Φ[ρS ] = Φ[ρR] + cΦ[Ps]. This decomposition is

equivalent to (4.3).

In the following we denote φs := Φ[Ps], κ = ‖Ps‖2L2, λ = (ρ, Ps) the singularity

coefficient. If the domain Ω and the boundary conditions are fixed, one can compute

once and for all the dual and primal singular functions Ps and φs, and the coeffi-

cient κ. Practically, we compute approximations P hs , φ
h
s , κ

h on the given mesh T h,

which should respect a few constraints on the triangles around the reentrant corner.

This must be done with care, see Appendix C for details. Summarizing, a function ρ

being given, the method consists in:

(1) computing the singularity coefficient λh = (ρ, P hs ); for ρ ∈ V h this reads λh =

L⊤{ρ} with Li = (ϕi, P
h
s ) ;

(2) approximating φR := Φ[ρR] by φ
h
R, using the finite element method;

(3) finally, reconstituting φh := φhR + chφhs , with c
h = λh/κh.

6.2. The nonlinear solving procedures

Fixed point iterations

In our finite-dimensional context, the operator Ah corresponding to A is the one

obtained by the method described just above. It goes from V h to V h0 . Now, it is

clear that the operator B does not map V h0 to V h. Therefore, we tried two possible

discrete versions, namely (i) Bh = ΠhIB and (ii) Bh = ΠhB. The second approach is

more time-consuming (as it involves the solution of a linear system with matrix M),

but it causes the fixed point iterations to converge until a slightly larger value ofM

than the first one. As stopping criterion we chose:

‖ρ(k) − ρ(k+1)‖2L2 ≤ tol ‖ρ(k+1)‖2L2

with tol = 10−8.
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Optimization procedure

Denoting J̃({ρ}) := J [ρ] we have a minimization problem in R
n which can be

solved by an appropriate method. We used the limited memory quasi-Newtonm1qn3

code.10 As the operator ρ 7→ Φ[ρ] is self-adjoint, we get easily:

∂J̃

∂{ρ}i
({ρ}) = 〈J ′[ρ], ϕi〉 =

∫

Ω

ϕi (−φe +Φ[ρ] + ln ρ)

m1qn3 does not handle constraints, but starting from ρ(0) ∈ V h which verifies

the mass constraint and projecting the gradient onto the subspace of V h made

of functions with vanishing integral, the whole optimization process takes place in

{ρ ∈ V h :
∫
Ω ρ = M}. A key point is to use the L2(Ω) scalar product, which

corresponds to the Rn scalar product u⊤Mv. This can be done easily by a Cholesky

factorization of M. Indeed, even on quite regular meshes, we remarked a good

improvement when using this scalar product instead of the canonical one.

Despite the a priori good properties of the functional J in view of minimization,

we guess it is quite flat near the optimum. So to have a better idea of the solution

quality, we do one fixed point iteration at the end of the optimization. Namely, from

ρ obtained by minimization, we compute ρr = Bh ◦ Ahρ and measure the relative

variation ‖ρ − ρr‖2L2/‖ρr‖2L2. Then, ρr is chosen as a new starting point for the

minimization. Repeating this a few times, we select the iterate with the smallest

relative variation. As we use the optimization procedure when M is large enough

(so that Bh ◦ Ah is not contracting), the underlying idea is to “just try another

starting point” not too far from the optimum.

6.3. Some numerical tests

Behaviour with respect to the mass M

For these tests we take φe = 0, and a Dirichlet boundary condition everywhere

for φ, i.e., Γ1 = ∂Ω. We go from small values of M (0.01) up to the largest one

(M = 1000) we could manage with a good reliability of the results, i.e., with

‖ρ− ρr‖2L2/‖ρr‖2L2 ≤ 0.5× 10−3. An example of computation (M = 400) is plotted

on Figure 4.

Figure 5 shows:

(1) λ as function of M : we note a nearly linear dependency, but the curve has a

slight concavity (the dotted line is the straight line between the two extreme

points).

(2) M/κ as function of M in log-log scale: for M ≤ 1, the least-squares line gives

a slope of −0.0047 which is consistent with Theorem 5.1. Moreover, one checks

the asymptotics M/κ ∼
0

(∫
Ω
exp(φe) dx

)−1
= |Ω|−1.

For large M , the results agree with Theorem 5.2 ; the least-squares line (com-

puted for M ≥ 200) have a slope around −0.9 (so that κ ≃ CM1.9 for
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Fig. 4. The solution for M = 400. Left: density ρ; right: potential φ.

M ∈ [200, 1000]) which seems to show that κ would be a sub-quadratic function

of M when M → ∞.

(3) λ/κ as function of M in log-log scale: as previously, the numerical results are

well consistent with both Theorems 5.1 and 5.2. For M ≥ 200 the least-squares

line has a slope of −0.955 which implies that λ would be a slightly sub-linear

function of M when M → ∞, which is in accordance with the slight concavity

of the λM curve.

Remark 6.1. The switch from fixed point to optimization procedures occurs at

M = 85. AsM becomes large, the density ρ concentrates near the boundary: a thin

boundary layer appears (see Figure 4), which needs a very fine mesh at least near

the boundary. Thus one faces a dilemma. Using an adapted mesh typically causes

the condition number of the mass and stiffness matrices to grow fast, and may

amplify errors in our stopping criterion. On the other hand, a very regular mesh

needs a high number of nodes. This limited to M ≤ 1000 the range of tractable

problems on our computer.

Behavior with respect to the applied voltage (the cloud problem)

In this test, we choose φe to be the solution of (2.9)–(2.10), where φin = m ∈ R is

constant. Hence, the assumptions of Proposition 5.2 hold, as φ̄in ≡ 1 is constant.

Furthermore, ne ≡ 10 is also constant, and the mass is fixed to M = ne |Ω|, which
is small enough to use the fixed point method. Each numerical test corresponds to

an m (voltage parameter) picked in the interval [−200, 400]. φe is computed the

same way as Φ[ρ], up to a lifting of the non-homogeneous Dirichlet condition on Γ2.

Our numerical results are displayed on Figure 6, and seem to be consistent with

Theorem 5.3 and Proposition 5.1:

• The curve κ as a function of m in y-log scale: the least-squares line (computed

with the 5 points with m ≥ 100) has a slope of −0.9955 (the last segment has
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Fig. 5. Behavior with respect to the mass

a slope of −0.9971) so that ultimately it seems that the limiting slope would

be almost −1 (κ ≤ Ce−βm for all β < 1, when m → ∞). This is in agreement

with Proposition 5.1, as φ̄∗in = 1.

• The curve λ as a function of m: clearly λ seems to go to 0 as m → +∞.

The same curve in y-log scale exhibits a slightly convex (rather than straight)

appearance for m large, hinting at a sub-exponential decay of λ.

• As m→ −∞, κ seems to grow in a sub-exponential fashion, while λ→ 0 again.

Remark 6.2. As m tends to +∞ (resp. −∞), a very thin boundary layer appears

at the top (resp. the bottom) of the domain. To capture it, the mesh is strongly

refined in this region. Using such a graded mesh is computationally not too difficult,

as we use the fixed point method.

Appendix A. Large solutions to ∆u = p eu in a polygon

We consider the problem, set in a bounded Lipschitz domain Ω:

∆u = p(x) eu in Ω, with p ≥ 0 a.e. in Ω ; (A.1)

u→ +∞ near ΓB, u = gD on ΓD, ∂νu = gN on ΓN . (A.2)
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Fig. 6. Results for the cloud problem

The first part of (A.2) will be called a Bieberbach condition.3 The Dirichlet and

Neumann parts ΓD and ΓN of the boundary can be empty. There is, however, a

restriction: if ΓD is not empty, then ΓN 6= ∅ and ΓB ∩ ΓD = ∅, i.e., a Dirichlet part

and a Bieberbach part are always separated by a Neumann part.

The pure Bieberbach problem (ΓB = ∂Ω) has been intensively studied, see

Ref. 18 and references therein. However, most results were proved in the framework

of smooth domains, and to our knowledge mixed conditions were not considered.

Here, we prove the existence and (under some restrictive conditions) uniqueness

of the solution to (A.1)–(A.2), and an asymptotic expansion in the neighbourhood

of ΓB. We follow the approach of Ref. 9, to which we refer for the omitted details.

We shall concentrate on the novelties induced by the presence of corners and the

(possibly) mixed boundary conditions.

Existence. Let us begin with a special case. If Ω is the disk B(x0, R), the function

ud(x) := −2 ln

(
R2 − |x− x0|2

2R

√
p∗
2

)
(A.3)

is solution to (A.1)–(A.2) for p = p∗ = constant and ΓB = ∂Ω. (According to

Ref. 18, it is the only one.) It is also solution to the mixed Bieberbach–Neumann

problem (with gN = 0) if Ω is a sector of the previous disk with vertex at x0,

ΓB is the arc [|x− x0| = R], and ΓN is the rest of the boundary, i.e., the two radii

converging to x0.

Now we return to the case where Ω is a polygon.

Proposition Appendix A.1. Assume that 0 < p∗ ≤ p(x) ≤ p∗ < +∞, gD ∈
H1/2+ǫ(ΓD) and gN ∈ H−1/2+ǫ(ΓD) for some ǫ > 0. There exists at least one

solution u to (A.1)–(A.2).

Proof. Assume for the moment that gN = 0 or gD = 0, whenever ΓN or ΓD is
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not empty. From a variational argument (cf. Proposition 3.3), there exists a unique

solution uK ∈ H1(Ω) to

∆uK = p(x) euK in Ω, uK = K on ΓB, uK = 0 on ΓD, ∂νuK = 0 on ΓN ,

and it belongs to C(Ω), see §4. The monotonicity of the exponential implies uK1
≥

uK2
on Ω for K1 ≥ K2.

19 Thus, for any x ∈ Ω, there exists a (finite or not) limit

u(x) = limK→+∞ uK(x). Clearly, u is zero on ΓD and infinite on ΓB. Moreover, for

any A > 0 and K > A there is a neighbourhood U of ΓB such that uK > A in U ,
and hence u > A in U : this is the Bieberbach condition.

Using again a comparison argument, we see that if x0 ∈ Ω and R is small enough

to have ω = B(x0, R) ⊂ Ω, then for any K, uK is majorized in ω by ud defined

in (A.3). The same holds on the sector or half-disk ω = B(x0, R) ∩ Ω, with either

x0 ∈ ΓN or x0 ∈ ΓD and R small enough. Thus in all three cases u ≤ ud in ω, and

u is bounded on a slightly smaller neighbourhood. By a compactness argument,

u ∈ L∞(ω) for any ω ⊂ Ω such that ω ∩ ΓB = ∅. Similarly, p(x) expuK(x) →
p(x) expu(x) monotonically for all x ∈ Ω. By the monotone convergence theorem,

this implies uK → u and p euK → p eu strongly in L2(ω). Therefore, ∆u = p eu in

the sense of distributions.

Let ω be a polygonal subdomain equal to Ω minus some neighbourhood of ΓB.

As u ∈ L2(ω) and ∆u ∈ L2(ω), one can consider12 the traces of u and ∂νu in a

very weak sense on each side of ∂ω; by continuity, ∂νu = 0 on ∂ω ∩ ΓN . Together

with u = 0 on ΓD ∩ ∂ω and u ∈ L∞(ω), this fact implies that u is actually of

H1 regularity, except maybe near the remaining part of ∂ω.12 Thus, the Neumann

condition holds in the sense ofH−1/2(Γ′
N ), for any Γ′

N ⊂ ΓN such that Γ′
N∩ΓB = ∅.

To prove the general case, introduce the function v ∈ H1(Ω) solution to

∆v = 0 in Ω, v = 0 on ΓB, v = gD on ΓD, ∂νv = gN on ΓN .

The conditions on the boundary data imply that v ∈ H1+ǫ(Ω) ⊂ C(Ω) for ǫ small

enough. Therefore, p◦ := p ev is bounded above and below like p. We have just seen

that there exists u◦ such that

∆u◦ = p◦(x) e
u◦ in Ω, u◦ = +∞ on ΓB, u◦ = 0 on ΓD, ∂νu◦ = 0 on ΓN .

Finally, u := u◦ + v is solution to (A.1)–(A.2).

Remark Appendix A.1. Setting aside the question of uniqueness, the above pro-

cedure necessarily yields the smallest solution to (A.1)–(A.2), which is by definition

unique. For instance, taking the limit of uK such that:

∆uK = p(x) euK in Ω, uK = ϕK on ΓB, uK = gD on ΓD, ∂νuK = gN on ΓN ,

with ϕK(x) ր +∞ uniformly in x as K → +∞, one finds the same solution.

Remark Appendix A.2. Let p1 ≤ p2 be as in Proposition Appendix A.1, and

u1, u2 be the corresponding smallest solutions to (A.1)–(A.2). Comparing the ap-

proximating sequences u1K , u
2
K , one finds u1 ≥ u2.
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Expansion near the Bieberbach boundary and uniqueness. For the mo-

ment, we suppose that

p = const. in Ω and gN ≡ 0 on ΓN ∩ ∂V , (A.4)

where V is a neighbourhood of ΓB in Ω. To describe the behavior of u in V , we
introduce the following functions. For any side Γi ⊂ ΓB and x ∈ Ω, let di(x) be

the distance to Γi. In a neighbourhood of Γi, there holds −∇di = νi, the normal

vector, and ∆di = 0. Now, consider a pure Bieberbach corner c ∈ ΓB , of opening

π/αc. Let (rc, θc) be the local polar coordinates as in §4. We define:

dc(x) = dc(rc, θc) := α−1
c rc sin(αcθc). (A.5)

For a mixed Bieberbach–Neumann corner c ∈ ΓB ∩ ΓN , we take again the defi-

nition (A.5), but αc is now such that the opening is π/(2αc), and θc = 0 is the

Bieberbach side. In both cases, simple calculations show that −∇dc = ±eθc = ν on

the Bieberbach side(s), and ∇dc = erc on the Neumann side of a mixed corner, i.e.,

∂νdc = 0. Furthermore:

min(α2
c , α

−2
c ) ≤ |∇dc|2 ≤ max(α2

c , α
−2
c ) and |∇dc|2 − dc∆dc = 1. (A.6)

Using a partition of unity in V , we construct the following function.

Definition Appendix A.1. The pseudo-distance d to ΓB is a function which is

equal to di near the midpoint of each side Γi ⊂ ΓB, to dc near each corner c ∈ ΓB
(including the mixed corners), and varies smoothly in between. These respective

regions will be called the mid-edge zone, the corner zone and the transition zone.

There holds: d(x) = 0 ⇐⇒ x ∈ ΓB, and d is uniformly bounded above and below

by the actual distance to ΓB.

If V is not too large, then d ∈ C2(V), and this regularity extends all the way

to ΓB, except the corners. In the transition zone, the property −∆d = ν on ΓB is

still verified; so there exist four constants such that:

0 < C1 ≤ |∇d|2 ≤ C2 ,
∣∣1− |∇d|2

∣∣ ≤ C3 d , |∆d| ≤ C4. (A.7)

Recall that C1 = C2 = 1 and C3 = C4 = 0 in the mid-edge zone. As ∇d 6= 0

everywhere, the level sets [d = δ] are C2 submanifolds for all δ > 0.

Theorem Appendix A.1. Under (A.4), the solution to (A.1)–(A.2) is unique,

and satisfies:

lim
x→ΓB

u(x)− ln

[
2

p d(x)2

]
= 0. (A.8)

Proof. Thanks to the regularity properties of d, one can follow the lines of Ref. 9,

and prove that any solution u satisfies

lim
x→ΓB

u(x)

−2 ln d(x)
= 1.
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Therefore, any two solutions are equivalent near ΓB, which allows one to prove

uniqueness.

To obtain the stronger estimate (A.8), we construct suitable super- and subso-

lutions in the neighbourhood Ωδ := [d < δ]. Introduce the function

u := −2 ln d+ ln

(
2 + ǫ

p

)
+K dβ ,

where ǫ > 0, K > 0 and 0 < β < 1 are constants. One readily checks that:

∆u = d−2
[
2 (|∇d|2 − d∆d) +K β

[
(β − 1) |∇d|2 + d∆d

]
dβ
]
;

p eu = (2 + ǫ) d−2 exp(K dβ).

In the corner zone, Eq. (A.6) shows that

∆u = d−2
[
2 +K β

(
β |∇d|2 − 1

)
dβ
]
;

this implies ∆u ≤ p eu when 0 < β < min(α2
c , α

−2
c ), for any K and ǫ. In the

mid-edge and transition zones, the bounds (A.7) imply:

∆u ≤ d−2
[
2 + 2 (C3 + C4) d+K β [(β − 1)C1 + C3 d] d

β
]
.

For any β < 1 and ǫ > 0, there holds ∆u ≤ p eu in Ωδ, regardless the size of K, if δ

is small enough. Similarly, it can be checked that the function

u := −2 ln d+ ln

(
2− ǫ

p

)
−K dβ ,

satisfies ∆u ≤ p eu in Ωδ, if β < min(α2
c , α

−2
c ) and δ is small enough.

If K is large enough, one can achieve u ≤ u ≤ u on the [d = δ] part of the

boundary; while on the remaining part ∂Ωδ ∩ ΓN there holds ∂νu = ∂νu = 0.

Therefore, u and u are respectively a supersolution and a subsolution in Ωδ; as u is

the unique solution, this implies u(x) ≤ u(x) ≤ u(x) in Ωδ, for any ǫ > 0. Taking

the limits ǫ→ 0 and d(x) → 0 yields (A.8).

As an immediate consequence of (A.8), one has:

p eu(x) ∼ 2 d(x)−2 as x → ΓB.

The question of uniqueness in the general case is still open. However, one can

derive useful estimates for the smallest solution to (A.1)–(A.2) when p is variable,

but gN still vanishes near ΓB. To this end, introduce the (unique) solutions u∗ and

u∗ obtained by replacing p with p∗ and p∗ in (A.1). By Remark Appendix A.2,

u∗ ≤ u ≤ u∗, hence:

lim inf
x→ΓB

u(x)− ln

[
2

p∗ d(x)2

]
≥ 0 and lim sup

x→ΓB

u(x)− ln

[
2

p∗ d(x)2

]
≤ 0.

Thus we are led to:
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Proposition Appendix A.2. If gN vanishes near ΓB, the smallest solution

to (A.1)–(A.2) satisfies

C1 d(x)
−2 ≤ p(x) eu(x) ≤ C2 d(x)

−2,

for some constants C1 < C2, if d(x) is small enough.

Appendix B. One-dimensional model for the cloud problem

In this appendix we are interested in the following problem:

u′′(x) = p eu(x) in (0, L), with p > 0 constant ; (B.1)

u(0) = m > 0, u(L) = 0. (B.2)

The interval length L is fixed, and we investigate the asymptotic behavior as

p→ 0 and m→ +∞ while p em → +∞. (B.3)

Accordingly, we shall use to word “eventually” as a shorthand meaning “for p small

enough, and/or m large enough and/or p em large enough”.

The solution u is of course unique but its analytical expression differs according

to the values of the parameters L, p, m. If L < (1 − e−m/2)
√
2/p — which is

eventually true — it is given as:

u(x) = −2 ln sinh(a (x− L) + b) + ln(2a2/p), (B.4)

where the parameters a > 0, b are given by the conditions (B.2), which read:

sinh b = a

√
2

p
and sinh(b− aL) = a

√
2

p em
. (B.5)

Eliminating b, we find the following implicit equation for a:

a

√
2

p em
= sinh

[
arcsinh

(
a

√
2

p

)
− La

]
:= f(a). (B.6)

Asymptotic behavior of a. The function f(s) is increasing for s small, maximal

for s = s∗ :=
√
L−2 − p/2, and tends to −∞ as s → +∞, as shown on Figure 7.

Furthermore, it is concave at least for s ≤ s∗. Under (B.3), f(s∗) → +∞, while

s∗ ≤ L−1. On the other hand, s∗
√
2/p em → 0. We infer that, eventually, the

equality (B.6) can only happen in the descending part of the curve of f , i.e., for

a > s∗; this ensures the uniqueness of a. Then, the conditions (B.5) imply b→ +∞
and b− aL→ 0, hence a→ +∞ under (B.3).

On the other hand, there holds a < s0, where f(s0) = 0, i.e.:

s0

√
2

p
= sinh(L s0), or sinh(L s0) = (L s0)

√
2

pL2
.

This equation is of the form sinhx = η x, with x > 0. Denoting the solution as x(η),

one finds (using the implicit function theorem) that x′(η) ∼ η−1 as η → +∞, hence

x(η) ∼ ln η. In our case, we thus have:

a < s0 ∼ − 1
2L ln p as p→ 0. (B.7)
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a*

+∞→max

slope→ +∞

s0

slope→ 0

0
s

f(s)

s

Fig. 7. Solution of Eq. (B.6).

Mass. This is the integral of both sides of (B.1).

M :=

∫ L

0

p eu(x) dx = 2 a [coth(b − aL)− coth b]

=
√
2 p em + 4 a2 −

√
2 p+ 4 a2. (B.8)

The main result of this appendix is the following.

Proposition Appendix B.1. If M remains bounded under (B.3), then the pa-

rameters p, m satisfy:

p eβm → 0 for all β < 1. (B.9)

Proof. We begin by proving (by contradiction) that, if M remains bounded:

p em/a2 → 0 under (B.3). (B.10)

Assume that this condition does not hold. Then there exist sequences pn → 0, mn →
+∞, such that the corresponding values of a eventually satisfy pn e

mn/a2n ≥ C > 0.

The values of the mass are then bounded from below as:

Mn ≥ an

[√
C + 4−

√
4 + o(1)

]
→ +∞,

and we get the contradiction. Combining (B.10) and (B.7), we get:

p em/ ln2 p
(B.3)−→ 0, hence p1+ν em → 0 and p eβm → 0,

for any ν > 0 and β = 1/(1 + ν) < 1.

Extension to a subsolution on a larger interval. We already used in (B.8) the

fact that u′(L) = −2 a coth b, which goes to −∞ under (B.3). Therefore, defining

the function ũ as

ũ(x) := u(x) for x ≤ L, ũ(x) := −(2 a coth b) (x− L) +
p

2
(x− L)2 for x ≥ L,

(B.11)

we see that ũ ∈ C1(R+). For x > L, there holds ũ′′(x) = p ≥ p eũ(x) as long as

ũ(x) ≤ 0. Thus, if ũ(L′) ≤ 0 for some L′ > L — which is eventually true if L′ is

fixed — then ũ is a subsolution to (B.1)–(B.2) on the interval (0, L′).
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Appendix C. Details on the singular complement method

This method is described in Ref. 7. In this section, we recall the practical numerical

details of the method, and we give the result of a straightforward but tedious cal-

culation involved in it. We assume the reentrant corner located at (0, 0) with angle

π/α, α ∈ (1/2, 1) and its two edges at angles θ = 0 and π/α. We denote Γs ⊂ Γ1

the union of these two edges.

1

Γ

Ω

2

ΓΓ 3

Γ1 Γ

π/α

3 θ

Fig. 8. The domain used in the numerical tests of §6.

C.1. Computing the dual singularity Ps

This is done by splitting this function into an analytically known principal part Pp
and a smoother remainder P̃ , as in (4.8)–(4.9). The remainder P̃ ∈ H1(Ω) will be

approximated by P̃ h ∈ V h, and so we define P hs := Pp + P̃ h. Moreover we define

the approximation κ
h of κ = ‖Ps‖2L2 by:

κ
h = (P hs , P

h
s ) = ‖Pp‖2L2 + 2(Pp, P̃

h) + (P̃ h, P̃ h)

= ‖Pp‖2L2 + 2
∑
i(Pp, ϕi){P̃ h}i + {P̃ h}⊤M{P̃ h}

Some care must be taken in computing ‖Pp‖2L2 and (Pp, ϕi) see §C.3.

C.2. Computing the primal singularity φs

In a similar way, an approximation of the primal singularity function φs = Φ[Ps]

is obtained by splitting it into a principal part φp = κ rα sin(αθ) and a remainder

φ̃ ∈ H2(Ω), cf. (4.3):

φs = κ rα sin(αθ) + φ̃,

with φ̃ solution to:

−∆φ̃ = Ps in Ω, φ̃ = −φp on Γ1 ∪ Γ2, ∂ν φ̃ = −∂νφp on Γ3. (C.1)

In numerical computations, we use P hs = Pp + P̃ h as right-hand side instead of Ps,

and −κ
hΠhI (r

α sin(αθ)), −κ
h ΠhI ∂ν(r

α sin(αθ)) as boundary data. Thus we get a
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finite element solution φ̃h. To obtain an approximation of φs in V h we define:

φhs = φ̃h + κ
hΠhI (r

α sin(αθ)).

Here the difficulty is to compute the right-hand side of the finite element equations,

that is, the scalar products:

(P hs , ϕi) = (Pp, ϕi) + (P̃ h, ϕi) = (Pp, ϕi) +Mi{P̃ h},
whereMi denotes the i-th row of the mass matrix. So, again, the difficulty is reduced

to computing the (Pp, ϕi) terms.

C.3. Details on computing (Pp, ϕi) and ‖Pp‖
2

L2

Computing (Pp, ϕi) terms

If the first layer of triangles around the reentrant corner is made of isosceles triangles

(see Figure 8), an exact calculation of the non-vanishing parts of the terms (Pp, ϕi)

can be done when i is the index of a vertex on the first layer. Indeed, after tedious

calculations one can show the following result: if v is an affine function defined on

the isosceles triangle T with vertex P 0 = (0, 0):

T

1

θ2P
0

P2

P1

a

θ

then IT :=

∫

T

Pp(x, y)v(x, y) dxdy is given by:

IT =
2a2−α cos̟

1− α

[
C sin(αθm) sin((1 − α)̟)

+D
cos(αθm)

(2− α) sin̟
(sin(α̟)− α sin̟ cos((1 − α)̟))

]

where we have set:

̟ = (θ2 − θ1)/2, θm = (θ1 + θ2)/2 ;

C =
1

π

1

(3− α)

(
v0

2− α
+
v1 + v2

2

)
, D =

1

π

1

(3− α)

(
v2 − v1

2

)
;

vi = v(P i), for i = 0, 1, 2.

On the other triangles the function Pp is smooth, so we use a numerical quadrature

formula with 7 interior points (Radon’s rule, p. 314 in Ref. 22). The requirement

to have a layer of isosceles triangles around the corner is easily feasible when using

the versatile (and very fast) meshing code triangle.21
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Computing ‖Pp‖2L2

Our approach consists in using an exact integration in r which “kills” the singularity,

followed by a numerical integration in θ. This can be done for any sub-domain

ω ⊂ Ω star-shaped around the reentrant corner, with an external border known as

a function of θ, say, ω = [r < R(θ)]. We obviously get:

‖Pp‖L2(ω) =
1

(2− 2α)π2

∫ π
α

0

R(θ)2−2α sin2(αθ) dθ.

In the case of Figure 8, we can take ω as the whole domain Ω. Using the symmetry

of the domain, the resulting integral is split into three parts (bottom (right) border,

right border and half right top border) corresponding to smooth expressions of the

function R(θ), which are computed with the well-known quadpack20 routine dqag.
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