Stationary Solutions to the Vlasov-Poisson System

Fahd Karami, Simon Labrunie, Bruno Pinçon

To cite this version:

Fahd Karami, Simon Labrunie, Bruno Pinçon. Stationary Solutions to the Vlasov-Poisson System. 2010. hal-00501842v1

HAL Id: hal-00501842
https://hal.science/hal-00501842v1
Preprint submitted on 12 Jul 2010 (v1), last revised 19 Jun 2012 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Stationary Solutions to the Vlasov-Poisson System

Fahd Karami * Simon Labrunie ${ }^{\dagger} \quad$ Bruno Pinçon ${ }^{\ddagger}$

july 12,2010

Abstract

In this paper, we present an existence and uniqueness result for stationary Vlasov Poisson system and we study the asymptotic behavior of the solution near the corner.

Keywords: Vlasov-Poisson, Plasma physics, Polygonal domains, Asymptotic analysis.

1 Introduction.

We consider a gas of charged particles. This particles are described by their distribution function $f(x, v)$ where $x \in \Omega \subset \mathbb{R}^{N}$ is the position of the particle and v its velocity. We consider the Stationary Vlasov-Poisson system which governs the motion of charged particles under the influence of an electrostatic field. The stationary Vlasov equation reads

$$
\begin{equation*}
v . \nabla_{x} f-E(x) . \nabla_{v} f=0, \quad(x, v) \in \Omega \times \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

where the electric field $E(x)$ is given by the equations

$$
E(x)=-\nabla_{x}\left(\phi[f]-\phi_{e}\right), \quad-\Delta \phi[f]=\int f(x, v) d v:=\rho[f] \quad \text { and }-\Delta \phi_{e}=\rho_{e}
$$

where $\rho[f]$ is a spatial density of particles, ϕ the self-consistent electrostatic potential, ρ_{e} is the density of the fixed charges and ϕ_{e} is the external potential. Denoted by $\nu(x)$ the outward normal vector of Ω at a point $x \in \partial \Omega$ and we assume that $\partial \Omega:=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$ where

$$
\begin{array}{ll}
\phi[f]=\phi_{e}=0 & \text { on } \Gamma_{1} \\
\phi[f]=0, \phi_{e}=\phi_{i n} & \text { on } \Gamma_{2} \tag{2}\\
\frac{\partial \phi[f]}{\partial \nu}=\frac{\partial \phi_{e}}{\partial \nu}=0 & \text { on } \Gamma_{3} .
\end{array}
$$

[^0]
1.1 Assumptions

Throughout this paper, we assume that
$\left(H_{1}\right) \rho_{e} \in L^{p}(\Omega)$ and $\phi_{i n} \in L^{\infty}\left(\Gamma_{2}\right) \cap W^{1-1 / p, p}\left(\Gamma_{2}\right)$ for some $p>N$.
$\left(H_{2}\right) \gamma \geq 0$ is a strictly decreasing function such that $\forall \delta>0$

$$
s^{\frac{N}{2}-1} \gamma(s-\delta) \in L^{1}(0,+\infty)
$$

$\left(H_{3}\right)$ Assume that $\sigma(r)=-\int_{0}^{r} \gamma^{-1}(s) d s$ with $\sigma \in \mathcal{C}^{2}\left(\mathbb{R}^{+}\right) \cup \mathcal{C}^{0}\left(\mathbb{R}_{0}^{+}\right)$bounded from below and strictly convex

$$
\sup _{x \in \Omega} \int_{0}^{\infty} \sigma(h(x, s)) d s<\infty \quad \text { and } \quad \lim _{s \rightarrow \infty} \frac{\sigma(s)}{s}=+\infty
$$

where $h(x, s)=s^{\frac{N}{2}-1} \gamma\left(s-\phi_{e}(x)\right)$.

1.2 Preliminaries

We consider the spaces V and W of functions defined by:

$$
\begin{gathered}
V=\left\{w \in H^{1}(\Omega) \quad \text { such that } w=0 \text { on } \Gamma_{1} \cup \Gamma_{2}\right\} \\
W=\left\{w \in H^{1}(\Omega) \quad \text { such that } w=0 \text { on } \Gamma_{1} \quad \text { and } w=\phi_{\text {in }} \text { on } \Gamma_{2}\right\} .
\end{gathered}
$$

Let $f \in L^{1}\left(\Omega \times \mathbb{R}^{N}\right)$. If $\rho[f] \in V^{\prime}$ then there exists $\phi \in V$ solution of $-\Delta \phi=\rho[f]$ satisfying

$$
\int_{\Omega} \nabla \phi \cdot \nabla \xi d x=\int_{\Omega} \rho[f] \xi d x, \quad \text { for any } \xi \in V \text {. }
$$

We define a mapping Φ and ϕ by $\Phi[\rho]=\Phi[\rho[f]]=\phi$ and $\phi[f]=\phi$, we have

$$
\int_{\Omega}|\nabla \phi[f]|^{2}<\infty
$$

If $\rho[f] \in L^{1}(\Omega) \backslash V^{\prime}$ then, the solution $\phi \in V$ does not exist, and in this case, we agree that

$$
\int_{\Omega}|\nabla \phi[f]|^{2}=\infty
$$

Indeed, by density there exists a sequence $\rho_{n} \in L^{1}(\Omega) \cap V^{\prime}$ such that ρ_{n} converges to ρ in $L^{1}(\Omega)$. Then, as $n \rightarrow \infty$ we have

$$
\int_{\Omega}\left|\nabla \Phi\left[\rho_{n}\right]\right|^{2} \sim\left\|\rho_{n}\right\|_{V^{\prime}}^{2} \rightarrow \infty
$$

otherwise there exists a subsequence will be noted by ρ_{n} which converges weakly to ρ in V^{\prime} and this is contradictory because $\rho \notin V^{\prime}$.
Similarly, we agree that

$$
\int_{\Omega \times \mathbb{R}^{N}} \sigma(f)=\infty \quad \text { if } \quad \sigma(f) \notin L^{1}\left(\Omega \times \mathbb{R}^{N}\right)
$$

It is clear that the operator ϕ is a linear and satisfies

$$
\int_{\Omega \times \mathbb{R}^{N}} f \phi[g] d(x, v)=\int_{\Omega \times \mathbb{R}^{N}} g \phi[f] d(x, v) \quad \text { and } \quad \int_{\Omega \times \mathbb{R}^{N}} f \phi[f] d(x, v)=\int_{\Omega}|\nabla \phi[f]|^{2} d x .
$$

In the next section, we prove existence and uniqueness of the solution of the stationary problem (1-2). For that, we use some techniques for nonlinear optimization in L^{1} and we give also some preliminary properties that will be used afterwards. In the third section, we study the asymptotic of the solution near the corner. Then, we establish some interesting properties for the singularity coefficient. The last section is devoted to the asymptotic of the solution of Maxwell-Boltzmann problem with respect to the total mass.

2 Existence and uniqueness

Thanks to $\left(H_{1}\right)$, there exists a unique $\phi_{e} \in W^{1, p}(\Omega)$ solution to problem

$$
\begin{cases}-\Delta \phi_{e}=\rho_{e} & \text { in } \Omega \tag{3}\\ \phi_{e}=0 & \text { on } \Gamma_{1} \\ \phi_{e}=\phi_{i n} & \text { on } \Gamma_{2} \\ \frac{\partial \phi_{e}}{\partial \nu}=0 & \text { on } \Gamma_{3}\end{cases}
$$

Now, any function f satisfying

$$
\begin{equation*}
f(x, v)=\gamma\left(\frac{1}{2}|v|^{2}+\phi[f](x)-\phi_{e}(x)-\beta\right) \quad \text { and } \quad \int_{\Omega \times \mathbb{R}^{N}} f(x, v)=M \tag{4}
\end{equation*}
$$

is a stationary solution to problem (1-2), where β is unknown constant and M is the total mass. Now, we consider the space $L_{M}^{1}\left(\Omega \times \mathbb{R}^{N}\right)$ defined by:

$$
L_{M}^{1}\left(\Omega \times \mathbb{R}^{N}\right):=\left\{f \in L^{1}\left(\Omega \times \mathbb{R}^{N}\right): \int_{\Omega \times \mathbb{R}^{N}} f d x d v=M\right\}
$$

To prove the existence of a solution to problem (4), we use some similar argument in [1], [2] and [3].

Proposition 2.1 Assume that the Hypothesis $\left(H_{1}-H_{3}\right)$ are satisfied. There exists a unique function f solution to problem (4). The function f is the minimum on $L_{M}^{1}\left(\Omega \times \mathbb{R}^{N}\right)$ of the functional:

$$
J[f]=\int_{\Omega \times \mathbb{R}^{N}}\left(\sigma(f)+\left(\frac{1}{2}|v|^{2}-\phi_{e}\right) f\right) d x d v+\frac{1}{2} \int_{\Omega}|\nabla \phi[f]|^{2} d x .
$$

Proof: It is not difficult to see that \mathcal{J} is convex and lower semi-continuous, then \mathcal{J} is weakly l.s.c. Taking $g(x, v)=\gamma\left(\frac{1}{2}|v|^{2}-\phi_{e}(x)\right)$ by $\left(H_{2}\right)$, we have $g(x, v) \in L^{1}\left(\Omega \times \mathbb{R}^{N}\right)$. Thanks to the fact that $\sigma(s)-\sigma(r)-(s-r) \sigma^{\prime}(r) \geq 0 \quad$ for any $r, s \geq 0$, we have

$$
\begin{aligned}
\mathcal{J}[f] & \geq \int_{\Omega \times \mathbb{R}^{N}}\left(\sigma(g)+\left(\frac{1}{2}|v|^{2}-\phi_{e}\right) g\right) d(x, v) \\
& \geq 2^{\frac{N}{2}-1}\left|S^{N-1}\right| \int_{\Omega} \int_{0}^{\infty} \sigma\left(s^{\frac{N}{2}-1} \gamma\left(s-\phi_{e}\right)\right) d(s, x)-\left\|\phi_{e}\right\|_{L^{\infty}(\Omega)}\|g\|_{L^{1}\left(\Omega \times \mathbb{R}^{N}\right)}
\end{aligned}
$$

where $\left|S^{N-1}\right|$ is the measure of the unit sphere in \mathbb{R}^{N}. Using $\left(H_{2}\right)$ and $\left(H_{3}\right)$ we have $\mathcal{J}[f]$ is bounded from below on $L_{M}^{1}\left(\Omega \times \mathbb{R}^{N}\right)$. Let $\left(f_{n}\right) \in L_{M}^{1}\left(\Omega \times \mathbb{R}^{N}\right)$ is a minimizing sequence for \mathcal{J}. Now, using the Dunford-Pettis compactness criterion, we can extract a subsequence still noted $\left(f_{n}\right)$ such that

$$
f_{n} \rightharpoonup f \quad \text { weakly in } \quad L^{1}\left(\Omega \times \mathbb{R}^{N}\right) \quad \text { as } \quad n \rightarrow \infty
$$

Since \mathcal{J} is weakly l.s.c, then

$$
\mathcal{J}[f] \leq \liminf _{n \rightarrow \infty} \mathcal{J}\left[f_{n}\right]=\inf _{L_{M}^{1}} \mathcal{J}
$$

Then the function f is a global minimum of \mathcal{J}, that satisfies $\int_{\Omega}|\nabla \phi[f]|^{2} d x<\infty$ and

$$
-\gamma^{-1}(f)+\phi[f]+\frac{1}{2}|v|^{2}-\phi_{e}(x)-\beta=0
$$

where β is the Lagrange multiplier associated to the constraint $\int_{\Omega \times \mathbb{R}^{N}} f(x, v)=M$. Finally, the uniqueness of the solution follows by the strict convexity of the function σ.

Now, let the function G defined by

$$
G(r)=\int_{\mathbb{R}^{N}} \gamma\left(\frac{1}{2}|v|^{2}+r\right) d v=2^{\frac{N}{2}-1}\left|S^{N-1}\right| \int_{0}^{+\infty} s^{\frac{N}{2}-1} \gamma(s+r) d s
$$

then the problem (4) is equivalent to solving:

$$
\begin{cases}-\Delta \phi=\rho, \rho=G\left(\phi-\phi_{e}-\beta\right) & \text { in } \Omega \tag{5}\\ \phi=0 & \text { on } \Gamma_{1} \cup \Gamma_{2} \\ \frac{\partial \phi}{\partial \nu}=0 & \text { on } \Gamma_{3}\end{cases}
$$

where β is defined implicitly by:

$$
\int_{\Omega} G\left(\phi-\phi_{e}-\beta\right)=M
$$

Proposition 2.2 For any fixed β, there exists a unique solution to Problem (5) satisfying

$$
\int_{\Omega} \nabla \phi \cdot \nabla \xi=\int_{\Omega} G\left(\phi-\phi_{e}-\beta\right) \xi \quad \text { for all } \quad \xi \in V
$$

Poof: We consider the nonlinear operator $\mathcal{B}: V \longrightarrow V^{\prime}$ defined by

$$
<\mathcal{B} \phi, v>=\int_{\Omega} \nabla \phi \cdot \nabla v-\int_{\Omega} G\left(\phi-\phi_{e}-\beta\right) v+\int_{\Omega} G\left(-\phi_{e}-\beta\right) v \quad \text { for all } \quad v \in V
$$

where $<, . .>$ is the duality pairing between V and its dual V^{\prime}. The operator \mathcal{B} is bounded and weakly continuous. Moreover, since G is a decreasing function then $\int_{\Omega}\left(G\left(-\phi_{e}-\beta\right)-\right.$ $\left.G\left(\phi-\phi_{e}-\beta\right)\right) \phi \geq 0$ and

$$
\frac{\langle\mathcal{B} \phi, \phi>}{\|\phi\|_{V}} \geq\|\phi\|_{V} \rightarrow \infty \quad \text { as } \quad\|\phi\|_{V} \rightarrow \infty
$$

Then the operator \mathcal{B} is coercive. Thanks to [4], for any element of V^{\prime} (in particular for $\left.G\left(-\phi_{e}-\beta\right) \in L^{\infty}(\Omega)\right)$ there exists $\phi \in V$, such that $\left\langle\mathcal{B} \phi, v>=<G\left(-\phi_{e}-\beta\right), v>\right.$ for all $v \in V$.

2.1 Dependence of the solution on the total mass

Now, we study the dependence of the solution with respect to the total mass M, and we derive a comparison principle between M and the Lagrange multiplier β.

Proposition 2.3 Let ϕ_{1} and ϕ_{2} be two solutions to Problem (5) corresponding to β_{1} and β_{2} respectively.

$$
\text { If } \beta_{1} \geq \beta_{2} \quad \text { then } \quad \phi_{1} \geq \phi_{2} \quad \text { in } \Omega \text {. }
$$

Poof: Let ϕ_{1} et ϕ_{2} be two solutions corresponding respectively to β_{1} and β_{2} in the sense of the proposition 2.2, we have

$$
\int_{\Omega} \nabla\left(\phi_{1}-\phi_{2}\right) \cdot \nabla \xi=\int_{\Omega}\left(G\left(\phi_{1}-\phi_{e}-\beta_{1}\right)-G\left(\phi_{2}-\phi_{e}-\beta_{2}\right)\right) \xi
$$

Taking $\xi=\left(\phi_{2}-\phi_{1}\right)^{+}$as a test function in this formulation, then

$$
\int_{\Omega} \nabla\left(\phi_{1}-\phi_{2}\right) \cdot \nabla\left(\phi_{2}-\phi_{1}\right)^{+}=\int_{\Omega}\left(G\left(\phi_{1}-\phi_{e}-\beta_{1}\right)-G\left(\phi_{2}-\phi_{e}-\beta_{2}\right)\right)\left(\phi_{2}-\phi_{1}\right)^{+} .
$$

We have

$$
\int_{\Omega} \nabla\left(\phi_{1}-\phi_{2}\right) \cdot \nabla\left(\phi_{2}-\phi_{1}\right)^{+}=-\int_{\Omega}\left|\nabla\left(\phi_{2}-\phi_{1}\right)^{+}\right|^{2} \leq 0
$$

and

$$
\begin{aligned}
G\left(\phi_{1}-\phi_{e}-\beta_{1}\right)-G\left(\phi_{2}-\phi_{e}-\beta_{2}\right) & =\left(G\left(\phi_{1}-\phi_{e}-\beta_{2}\right)-G\left(\phi_{2}-\phi_{e}-\beta_{2}\right)\right) \\
& +\left(G\left(\phi_{1}-\phi_{e}-\beta_{1}\right)-G\left(\phi_{1}-\phi_{e}-\beta_{2}\right)\right) .
\end{aligned}
$$

The second term on the right-hand side is positive because $\beta_{1} \geq \beta_{2}$ and G is a decreasing function. Using again the monotonicity of G, we have

$$
\int_{\Omega}\left(G\left(\phi_{1}-\phi_{e}-\beta_{2}\right)-G\left(\phi_{2}-\phi_{e}-\beta_{2}\right)\right)\left(\phi_{2}-\phi_{1}\right)^{+} \geq 0
$$

then

$$
\int_{\Omega}\left(G\left(\phi_{1}-\phi_{e}-\beta_{1}\right)-G\left(\phi_{2}-\phi_{e}-\beta_{2}\right)\right)\left(\phi_{2}-\phi_{1}\right)^{+} \geq 0
$$

Hence

$$
-\int_{\Omega}\left|\nabla\left(\phi_{2}-\phi_{1}\right)^{+}\right|^{2} \geq 0
$$

and therefore

$$
\nabla\left(\phi_{2}-\phi_{1}\right)^{+}=0
$$

then $\left(\phi_{2}-\phi_{1}\right)^{+}=$const. Since $\left(\phi_{2}-\phi_{1}\right)^{+}=0$ on $\Gamma_{1} \cup \Gamma_{2}$, we deduce that $\left(\phi_{2}-\phi_{1}\right)^{+}=0$ and $\phi_{1} \geq \phi_{2}$.

Theorem 2.4 Let ϕ and ϕ_{e} be given by the solution of problem (5). Define the mapping

$$
\begin{aligned}
\mu: \mathbb{R}^{+} & \longrightarrow \mathbb{R}^{+} \\
\beta & \longmapsto M=\int_{\Omega} G\left(\phi-\phi_{e}-\beta\right) d x .
\end{aligned}
$$

Then, μ is a nondecreasing, one to one and onto mapping.
Proof: Let $\beta_{1}, \beta_{2} \in \mathbb{R}^{+}$, with $\beta_{1} \geq \beta_{2}$ then for $i=1,2$, we have

$$
\begin{aligned}
& -\Delta \phi_{i}=\rho_{i} \\
& \rho_{i}=G\left(\phi_{i}-\phi_{e}-\beta_{i}\right) \quad \text { and } \quad M_{i}=\int_{\Omega} G\left(\phi_{i}-\phi_{e}-\beta_{i}\right) d x .
\end{aligned}
$$

We subtract two equations and taking $w=\phi_{1}-\phi_{2}$, then

$$
\begin{cases}-\Delta w=\rho_{1}-\rho_{2} & \text { in } \Omega \\ w=0 & \text { on } \Gamma_{1} \cup \Gamma_{2} \\ \frac{\partial w}{\partial \nu}=0 & \text { on } \Gamma_{3},\end{cases}
$$

in other words, for any $\xi \in V$, we have

$$
\int_{\Omega} \nabla w \cdot \nabla \xi=\int_{\Omega}\left(\rho_{1}-\rho_{2}\right) \xi
$$

Let us take $\xi=\mathcal{H}_{\varepsilon}^{+}(w)$ as a test function in the previous equality, where $\mathcal{H}_{\varepsilon}^{+}($.$) is the$ approximation of the Heaviside function $\mathcal{H}^{+}($.$) defined as$

$$
\mathcal{H}_{\varepsilon}^{+}(r)=\left\{\begin{array}{rll}
1 & \text { if } & r>\varepsilon \\
\frac{1}{\varepsilon} r & \text { if } & 0 \leq r \leq \varepsilon \\
0 & \text { if } & r<0
\end{array}\right.
$$

then

$$
-\int_{\Omega}|\nabla w|^{2} \mathcal{H}_{\varepsilon}^{\prime+}(w)=\int_{\Omega}\left(\rho_{2}-\rho_{1}\right) \mathcal{H}_{\varepsilon}^{+}(w)
$$

Now, letting $\varepsilon \rightarrow 0$, we get

$$
\int_{\Omega}\left(\rho_{2}-\rho_{1}\right) \mathcal{H}^{+}(w) \leq 0
$$

Using the proposition 2.3, we have $\beta_{1} \geq \beta_{2}$ then $w=\phi_{1}-\phi_{2} \geq 0$ and $\mathcal{H}^{+}(w)=1$. Finally, we have

$$
M_{1}:=\int_{\Omega} \rho_{1} \geq \int_{\Omega} \rho_{2}:=M_{2}
$$

Let us introduce the spaces Φ_{p} defined by

$$
\Phi_{p}=\left\{v \in W^{1, p}(\Omega) ; \Delta v \in L^{p}(\Omega), v=0 \text { on } \Gamma_{1} \cup \Gamma_{2}\right\}
$$

endowed with the norm $\|\cdot\|_{\Phi_{p}}$ where

$$
\|u\|_{\Phi_{p}} \sim\|\Delta u\|_{L^{p}(\Omega)} \quad \text { for all } u \in \Phi_{p}
$$

Lemma 2.5 Let f the solution of the problem (4). Then $\rho[f] \in L^{\infty}(\Omega)$ and $\phi[f] \in \Phi_{p}$.
Proof: We know that the function f satisfying

$$
f(x, v)=\gamma\left(\frac{1}{2}|v|^{2}+\phi[f](x)-\phi_{e}(x)-\beta\right) \quad \text { and } \quad \int_{\Omega \times \mathbb{R}^{2}} f(x, v)=M
$$

Using the weak maximum principle, we find $\phi[f](x) \geq 0$ in Ω. On the other hand, thanks to $\left(H_{1}\right)$ we have $\rho_{e} \in L^{p}(\Omega)$ and $\phi_{i n} \in W^{1-1 / p, p}\left(\Gamma_{2}\right) \cap L^{\infty}\left(\Gamma_{2}\right)$, then $\phi_{e} \in W^{1, p}(\Omega) \subset L^{\infty}(\Omega)$. Using the fact that γ is a decreasing function, we have

$$
f(x, v) \leq \gamma\left(\frac{1}{2}|v|^{2}-\phi_{e}(x)-\beta\right) \leq \gamma\left(\frac{1}{2}|v|^{2}-\left\|\phi_{e}\right\|_{\infty}-\beta\right) .
$$

Integrating this inequality of the variable v and using the monotonicity of γ, we have

$$
\rho[f](x) \leq 2^{\frac{N}{2}-1}\left|S^{N-1}\right| \int_{0}^{+\infty} s^{\frac{N}{2}-1} \gamma\left(s-\left\|\phi_{e}\right\|_{\infty}-\beta\right) d s
$$

According to $\left(H_{2}\right)$, we deduce that $\rho[f] \in L^{\infty}(\Omega)$ and $\phi[f] \in \Phi_{p}$.

3 Corner behavior ($\mathrm{N}=2$)

In this section we consider the case where Ω is a polygonal domain of \mathbb{R}^{2} and denote by S the vertex of the re-entrant corner in Γ_{1}, let $\frac{\pi}{\alpha}$ be the interior angle of Ω at the vertex and (r, θ) the polar coordinates centered at S. Using Grisvard's results [5], then for all $\phi \in \Phi_{p}$ with $1<p<\infty$, there exists λ_{m}, such that

$$
\phi-\sum_{0<m \alpha<2-2 / p} \lambda_{m} \chi(r) r^{m \alpha} \sin (m \alpha \theta) \in W^{2, p}(\Omega)
$$

with $m \geq 1$ and $\chi \in \mathcal{C}^{\infty}\left(\mathbb{R}^{+}\right)$is a cut-off function defined by

$$
\chi(r)=\left\{\begin{array}{lll}
1 & \text { if } & 0 \leq r<\eta \\
0 & \text { if } & r \geq \eta
\end{array}\right.
$$

where η is small enough. In particular, for $p \in] \frac{2}{2-\alpha}, \frac{1}{1-\alpha}\left[\right.$ we have $\phi, \phi_{e} \in \Phi_{p}$ then its can be decomposed into the regular part $W^{2, p}(\Omega)$ and a singular part as follows:

$$
\begin{aligned}
\phi & =\phi_{\mathcal{R}}+\lambda \chi(r) r^{\alpha} \sin (\alpha \theta) \\
\phi_{e} & =\phi_{\mathcal{R}}^{e}+\lambda_{e} \chi(r) r^{\alpha} \sin (\alpha \theta)
\end{aligned}
$$

where $\lambda=\int_{\Omega} \rho P_{s} d x$ and $\lambda_{e}=\int_{\Omega} \rho_{e} P_{s} d x$ with

$$
\begin{array}{r}
-\Delta P_{s}=0 \quad \text { in } \Omega, P_{s}=0 \quad \text { on } \Gamma_{1} \cup \Gamma_{2} \text { and } \frac{\partial P_{s}}{\partial \nu}=0 \quad \text { on } \Gamma_{3} \text { and } \\
P_{s}=P_{p}+\tilde{P} \text { where } P_{p}=\frac{1}{\pi} r^{-\alpha} \sin (\alpha \theta),
\end{array}
$$

and $\tilde{P} \in H^{1}(\Omega)$ is the solution of

$$
-\Delta \tilde{P}=\Delta P_{p}=0, \quad \tilde{P}=0 \quad \text { on } \Gamma_{1} \text { and } \tilde{P}=P_{p} \quad \text { on } \Gamma_{2} \cup \Gamma_{3} .
$$

Let U be a bounded open subset of \mathbb{R}^{+}, we denote by $L_{\tau}^{p}(U)$ the space

$$
L_{\tau}^{p}(U):=\left\{u: \text { measurable such that }\|u\|_{L_{\tau}^{p}(U)}^{p}=\int_{U}|u(t)|^{p} t^{\tau} d t<\infty\right\} .
$$

We denote $W_{\tau}^{1, p}(U)$ the space of functions u of $L_{\tau}^{p}(U)$ such that $\frac{\partial u}{\partial t} \in L_{\tau}^{p}(U)$ where we denote the norm

$$
\|u\|_{W_{\tau}^{1, p}(U)}=\left(\int_{U}|u(t)|^{p} t^{\tau} d t\right)^{1 / p}+\left(\int_{U}\left|\frac{\partial u}{\partial t}\right|^{p} t^{\tau} d t\right)^{1 / p}
$$

Let \mathcal{H} and \mathcal{L} the linear operators defined by:

$$
\mathcal{H} u(t)=\frac{1}{t} \int_{0}^{t} u(s) d s
$$

$$
\mathcal{L} u(t)=\frac{1}{t} \int_{t}^{\infty} u(s) d s
$$

Thanks to [8] we have:
If $\tau<p-1$ then

$$
\begin{equation*}
\|\mathcal{H} u\|_{L_{\tau}^{p}(U)} \leq C\|u\|_{L_{\tau}^{p}(U)} \tag{6}
\end{equation*}
$$

If $\tau>p-1$ then

$$
\begin{equation*}
\|\mathcal{L} u\|_{L_{\tau}^{p}(U)} \leq C\|u\|_{L_{\tau}^{p}(U)} \tag{7}
\end{equation*}
$$

where C is a constant which depends only on τ and p.
Taking

$$
w=\chi \phi_{\mathcal{R}} \text { and } F=-\Delta w
$$

where $F=-\chi \Delta \phi_{\mathcal{R}}-2 \nabla \chi \nabla \phi_{\mathcal{R}}-\phi_{\mathcal{R}} \Delta \chi$. For all $\left.p \in\right] \frac{2}{2-\alpha}, \frac{1}{1-\alpha}\left[\right.$, we have $F \in L^{p}(\Omega)$ and $w \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$, then $\nabla w \in\left[W^{1, p}(\Omega)\right]^{2}$ and $\frac{\partial w}{\partial \tau}=0$, where $\tau(x)$ is a tangent vector at a point $x \in \Gamma_{1}$.

Theorem 3.1 Let $p \in] \frac{2}{2-\alpha}, \frac{1}{1-\alpha}\left[\right.$, ϕ be the solution to Problem (5) and $\phi_{\mathcal{R}} \in W^{2, p}(\Omega)$ the regular part, then there exists $g \in L^{\infty}(\Omega)$ such that

$$
\chi(r) \phi_{\mathcal{R}}(r, \theta)=r \sin (\alpha \theta) g(r, \theta), \quad\|g(r, \theta)\|_{L^{\infty}(\Omega)} \leq C\left\|\phi_{\mathcal{R}}\right\|_{W^{2, p}(\Omega)}
$$

where C is a constant which depends only on α, p and Ω.
Proof: Let $\left.p \in] \frac{2}{2-\alpha}, \frac{1}{1-\alpha}\right]$, we have $w \in W^{2, p}(\Omega)$ then using the polar coordinates, it is not difficult to see that $\frac{\partial^{2} w}{\partial r^{2}}, \frac{1}{r} \frac{\partial^{2} w}{\partial r \partial \theta}-\frac{1}{r^{2}} \frac{\partial w}{\partial \theta}, \frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}}-\frac{1}{r} \frac{\partial w}{\partial r} \in L^{p}(\Omega)$. We have $\nabla w \in\left[W^{1, p}(\Omega)\right]^{2}$ with $p>\frac{2}{2-\alpha} \geq 2$, then $\nabla w \in[C(\bar{\Omega})]^{2}$. Since $w=0$ in $\partial \Omega$, then $\frac{\partial w}{\partial \tau}=0$ and the normal components of the gradient is perpendicular to line segment Γ_{1}. By continuity, the gradient of w vanishes at $r=0$ and $\frac{\partial w}{\partial r}(0,0)=0$, then

$$
r^{-1} \frac{\partial w(r, \theta)}{\partial r}=\frac{1}{r} \int_{0}^{r} \frac{\partial^{2} w(\tilde{r}, \theta)}{\partial r^{2}} d \tilde{r}
$$

Applying (6) with $\tau=1$ and we integrate at θ, we obtain

$$
\begin{equation*}
\int_{0}^{\omega} \int_{0}^{R}\left|\frac{\partial w(r, \theta)}{\partial r}\right|^{p} r^{1-p} d r d \theta \leq C \int_{0}^{\omega} \int_{0}^{R}\left|\frac{\partial^{2} w(r, \theta)}{\partial r^{2}}\right|^{p} r d r d \theta \tag{8}
\end{equation*}
$$

Similarly, we have $w(0, \theta)=0$ and thanks to (6) we have

$$
\begin{equation*}
\int_{0}^{\omega} \int_{0}^{R}\left|\frac{w(r, \theta)}{r^{2}}\right|^{p} r d r d \theta \leq C \int_{0}^{\omega} \int_{0}^{R}\left|\frac{\partial w(r, \theta)}{\partial r}\right|^{p} r^{1-p} d r d \theta<\infty \tag{9}
\end{equation*}
$$

Thanks to (8) and (9), we have

$$
\frac{\partial}{\partial r}\left(\frac{w}{r}\right)=\frac{1}{r} \frac{\partial w}{\partial r}-\frac{w}{r^{2}} \in L^{p}(\Omega) \quad \text { and } \quad \frac{w}{r} \in W_{1}^{1, p}\left(0, R ; L^{p}(] 0, \omega[)\right) .
$$

Now, we have

$$
\Delta w=\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}} \in L^{p}(\Omega)
$$

then $\frac{\partial^{2}}{\partial \theta^{2}}\left(\frac{w}{r^{2}}\right)=\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}} \in L^{p}(\Omega)$. Thanks to the Nirenberg inequality (see [9]), we have

$$
\left\|\frac{1}{r} \frac{\partial}{\partial \theta}\left(\frac{w}{r}\right)\right\|_{L^{p}(\Omega)}=\left\|\frac{\partial}{\partial \theta}\left(\frac{w}{r^{2}}\right)\right\|_{L^{p}(\Omega)} \leq C(p, \Omega)\left\|\frac{w}{r^{2}}\right\|_{L^{p}(\Omega)}^{1 / 2}\left\|\frac{\partial^{2}}{\partial \theta^{2}}\left(\frac{w}{r^{2}}\right)\right\|_{L^{p}(\Omega)}^{1 / 2}
$$

then $\frac{w}{r} \in W^{1, p}(\Omega) \subset C(\bar{\Omega})$ and therefore $\frac{w}{r}$ is bounded on $\bar{\Omega}$. Now, let us we prove that

$$
\frac{1}{r} \frac{\partial w}{\partial \theta} \in W^{1, p}(\Omega)
$$

Indeed, we have $\frac{1}{r} \frac{\partial}{\partial \theta}\left(\frac{1}{r} \frac{\partial w}{\partial \theta}\right)=\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}} \in L^{p}(\Omega)$. Since $w \in W^{1, p}(\Omega)$, then $\frac{1}{r} \frac{\partial w}{\partial \theta} \in L^{p}(\Omega)$. On the other hand, we have $w \in W^{2, p}(\Omega)$ then

$$
\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial w}{\partial \theta}\right)=\frac{1}{r} \frac{\partial^{2} w}{\partial r \partial \theta}-\frac{1}{r^{2}} \frac{\partial w}{\partial \theta} \in L^{p}(\Omega)
$$

hence $\frac{1}{r} \frac{\partial w}{\partial \theta} \in W^{1, p}(\Omega) \subset C(\bar{\Omega})$ and $\left\|\frac{1}{r} \frac{\partial w}{\partial \theta}\right\|_{L^{\infty}(\Omega)} \leq C\left\|\frac{1}{r} \frac{\partial w}{\partial \theta}\right\|_{W^{1, p}(\Omega)}$. We have $\frac{w}{r}(r, 0)=$ 0 , then

$$
\frac{w(r, \theta)}{r}=\int_{0}^{\theta} \frac{\partial}{\partial \theta}\left(\frac{w(r, \tilde{\theta})}{r}\right) d \tilde{\theta}
$$

and

$$
\left|\frac{w(r, \theta)}{r \theta}\right| \leq\left\|\frac{\partial}{\partial \theta}\left(\frac{w}{r}\right)\right\|_{L^{\infty}(\Omega)} \leq C\left\|\frac{1}{r} \frac{\partial w}{\partial \theta}\right\|_{W^{1, p}(\Omega)} .
$$

Near $\theta=0$, we have $\theta \sim \frac{\sin (\alpha \theta)}{\alpha}$ and

$$
\begin{equation*}
\left|\frac{w(r, \theta)}{r \sin (\alpha \theta)}\right| \leq \frac{C}{\alpha}\left\|\frac{1}{r} \frac{\partial w}{\partial \theta}\right\|_{W^{1, p}(\Omega)} \tag{10}
\end{equation*}
$$

In the same manner, we have $\frac{w}{r}\left(r, \frac{\pi}{\alpha}\right)=0$, then $\left|\frac{w(r, \theta)}{r(\alpha \theta-\pi)}\right| \leq \frac{C}{\alpha}\left\|\frac{1}{r} \frac{\partial w}{\partial \theta}\right\|_{W^{1, p}(\Omega)}$. Near $\theta=\frac{\pi}{\alpha}$, we have $\alpha \theta-\pi \sim \sin (\alpha \theta-\pi)=-\sin (\alpha \theta)$ and then (10) is satisfied. For $\theta \in$ $\left[\theta_{0}, \frac{\pi}{\alpha}-\theta_{0}\right]$ with θ_{0} small enough, there exists a constant $c>0$ such that $|\sin (\alpha \theta)| \geq c|\alpha \theta|$ and the inequality (10) is satisfied. This completes the proof of Theorem.

Theorem 3.2 Let ϕ_{1} and ϕ_{2} be two solutions of problem (5) corresponding to M_{1} and M_{2} respectively.

$$
\text { If } M_{1} \geq M_{2} \text {, then } \lambda_{1} \geq \lambda_{2}
$$

where λ_{1} and λ_{2} are the singularity coefficients of ϕ_{1} and ϕ_{2} respectively.
Proof: Thanks to Theorem 3.1, we have

$$
\phi_{1}-\phi_{2} \sim\left(\lambda_{1}-\lambda_{2}\right) r^{\alpha} \sin (\alpha \theta) \text { in a neighbourhood of the corner. }
$$

Thanks to Theorem 2.4, we have $\beta_{1} \geq \beta_{2}$, then using the proposition 2.2 we obtain $\phi_{1} \geq \phi_{2}$ and therefore $\lambda_{1} \geq \lambda_{2}$.

Remark 3.3 1) Taking $\psi=\phi-\phi_{e}$ and let λ and λ_{e} the singularity coefficients of ϕ and ϕ_{e} respectively. If $\lambda \geq \lambda_{e}$ then $\psi^{-} \in H^{2}(\Omega)$. Indeed,

$$
\phi-\phi_{e} \sim\left(\lambda-\lambda_{e}\right) r^{\alpha} \sin (\alpha \theta) \quad \forall(r, \theta) \in \mathcal{V}
$$

where \mathcal{V} is the neighborhood of the corner. Since $\lambda \geq \lambda_{e}$, then $\psi^{-}=\left(\phi-\phi_{e}\right)^{-}=0$ in \mathcal{V}. Consequently $\psi^{-}=\left(\phi_{\mathcal{R}}-\phi_{\mathcal{R}}^{e}\right)^{-} \in H^{2}(\Omega)$.
2) For $\rho_{e} \in L^{\infty}(\Omega)$ and $\beta \geq-G^{-1}\left(\left\|\rho_{e}\right\|_{\infty}\right)$, we have $\phi \geq \phi_{e}$ in Ω. Subtracting the two equations verified by ϕ and ϕ_{e}, we have

$$
-\Delta\left(\phi-\phi_{e}\right)-\left(G\left(\phi(x)-\phi_{e}(x)-\beta\right)-G(-\beta)\right)=G(-\beta)-\rho_{e}
$$

Taking $\left(\phi_{e}-\phi\right)^{+}$as a test function in the weak formulation of this equation, using the same arguments as in the proposition 2.2, the monotonicity of the function γ and we find the desired result.

3.1 Behavior of Maxwell-Boltzmann Problem

In the case of Maxwellian velocity distribution e.g. $\gamma(s)=\exp (-s)$ the problem becomes:

$$
\begin{cases}-\Delta \phi=\kappa \exp \left(-\phi+\phi_{e}\right):=\rho, & \text { in } \Omega \tag{11}\\ \phi=0 & \text { on } \Gamma_{1} \cup \Gamma_{2} \\ \frac{\partial \phi}{\partial \nu}==0 & \text { on } \Gamma_{3}\end{cases}
$$

and $\int \rho[f]=M$, where $\kappa=\exp (\beta)$.
Theorem 3.4 Let ϕ, ϕ_{e}, M and κ be given by the solution of the problem (11) and λ be the singularity coefficient of ϕ. As $M \rightarrow 0$, we have

$$
\kappa \sim M\left(\int_{\Omega} \exp \left(\phi_{e}\right) d x\right)^{-1} \quad \text { and } \lambda \sim \kappa \int_{\Omega} \exp \left(\phi_{e}\right) P_{s} d x
$$

Proof: We recall that $\rho=\kappa \exp \left(\phi_{e}-\phi\right)$ and $\kappa=M\left(\int_{\Omega} \exp \left(\phi_{e}-\phi\right) d x\right)^{-1}$, then

$$
M\left(\int_{\Omega} \exp \left(\phi_{e}\right) d x\right)^{-1} \leq \kappa \leq M \exp \left(\|\phi\|_{\infty}\right)\left(\int_{\Omega} \exp \left(\phi_{e}\right) d x\right)^{-1}
$$

We have

$$
\Phi_{2} \subset H^{1+\alpha-\varepsilon}(\Omega) \subset C(\bar{\Omega}) \subset L^{\infty}(\Omega)
$$

then

$$
\|\phi\|_{\infty} \leq C\|\phi\|_{\Phi_{2}} \leq C\|\rho\|_{L^{2}(\Omega)}
$$

On the other hand, we have

$$
\|\rho\|_{L^{2}(\Omega)} \leq\|\rho\|_{L^{1}(\Omega)}^{1 / 2}\|\rho\|_{\infty}^{1 / 2}=M^{1 / 2} \cdot\|\rho\|_{\infty}^{1 / 2} \text { and }\|\rho\|_{\infty} \leq \kappa \exp \left(\left\|\phi_{e}\right\|_{\infty}\right)
$$

Then, $\|\phi\|_{\infty} \leq C\left(M \kappa \exp \left(\left\|\phi_{e}\right\|_{\infty}\right)\right)^{1 / 2}$ and

$$
M\left(\int_{\Omega} \exp \left(\phi_{e}\right) d x\right)^{-1} \leq \kappa \leq M \exp \left(C M \kappa \exp \left(\left\|\phi_{e}\right\|_{\infty}\right)^{1 / 2}\right)\left(\int_{\Omega} \exp \left(\phi_{e}\right) d x\right)^{-1}
$$

Since κ is nondecreasing with respect to M, then for $M \rightarrow 0$, we have $\kappa \rightarrow \kappa_{0} \geq 0$ and $C M \kappa \exp \left(\left\|\phi_{e}\right\|_{\infty}\right) \rightarrow 0$, therefore

$$
\kappa \sim M\left(\int_{\Omega} \exp \left(\phi_{e}\right) d x\right)^{-1}
$$

Now, we prove that $\lambda \sim \kappa \int_{\Omega} \exp \left(\phi_{e}\right) P_{S} d x$. We have

$$
\lambda=\int_{\Omega} \rho P_{s} d x=\kappa \int_{\Omega} \exp \left(\phi_{e}-\phi\right) P_{s} d x .
$$

As $M \rightarrow 0$, we have $\kappa \rightarrow 0,\|\rho\|_{\infty} \rightarrow 0$ and $\phi \rightarrow 0$ a.e. in Ω, then

$$
\exp \left(\phi_{e}-\phi\right) \rightarrow \exp \left(\phi_{e}\right)
$$

Since $\left|\exp \left(\phi_{e}-\phi\right)\right| \leq \exp \left(\phi_{e}\right)$, the Lebesgue's Dominated Convergence Theorem give $\exp \left(\phi_{e}-\phi\right) \rightarrow \exp \left(\phi_{e}\right)$ in $L^{2}(\Omega)$ and therefore we obtain

$$
\frac{\lambda}{\kappa}=\int \exp \left(\phi_{e}-\phi\right) P_{s} \rightarrow \int \exp \left(\phi_{e}\right) P_{s} \quad \text { as } M \rightarrow 0
$$

Which concludes the proof.
Now, We explicit the dependence of ϕ and ρ with respect to the parameter κ and taking

$$
w_{\kappa}=\frac{\phi_{\kappa}}{\kappa} \text { and } f_{\kappa}=\frac{\rho_{\kappa}}{\kappa} .
$$

Proposition 3.5 We have $\frac{1}{\sqrt{\kappa}} \frac{\nabla \rho_{\kappa}}{\rho_{\kappa}}$ and $\frac{1}{\sqrt{\kappa}} \nabla \phi_{\kappa}$ are uniformly bounded in $L^{2}(\Omega)$.
Proof: The problem (11) can be rewritten in f_{κ} as:

$$
\begin{cases}f_{\kappa}-\frac{1}{\kappa} \Delta \log \left(f_{\kappa}\right)=\frac{1}{\kappa} \rho_{e}, & \text { in } \Omega \tag{12}\\ f_{\kappa}=1 & \text { on } \Gamma_{1} \\ f_{\kappa}=\exp \left(\phi_{i n}\right) & \text { on } \Gamma_{2} \\ \frac{\partial f_{\kappa}}{\partial \nu}=0 & \text { on } \Gamma_{3}\end{cases}
$$

Taking $\log \left(f_{\kappa}\right)$ as a test function in the weak formulation of (12), then

$$
\int_{\Omega} f_{\kappa} \log \left(f_{\kappa}\right)+\frac{1}{\kappa} \int_{\Omega}\left|\frac{\nabla f_{\kappa}}{f_{\kappa}}\right|^{2}=\frac{1}{\kappa} \int_{\Omega} \rho_{e} \log \left(f_{\kappa}\right)
$$

Using the Young inequality, we obtain

$$
\int_{\Omega} f_{\kappa} \log \left(f_{\kappa}\right)+\frac{1}{\kappa} \int_{\Omega}\left|\frac{\nabla f_{\kappa}}{f_{\kappa}}\right|^{2} \leq \frac{C_{p}}{2 \kappa} \int_{\Omega} \rho_{e}^{2}+\frac{1}{2 \kappa C_{p}} \int_{\Omega}\left|\log \left(f_{\kappa}\right)\right|^{2} .
$$

Thanks to the Poincaré inequality, we have $\left\|\log \left(f_{\kappa}\right)\right\|_{L^{2}(\Omega)} \leq C\left\|\frac{\nabla f_{\kappa}}{f_{\kappa}}\right\|_{L^{2}(\Omega)}$ and then

$$
\frac{1}{\kappa}\left(1-\frac{C^{2}}{2 C_{p}}\right) \int_{\Omega}\left|\frac{\nabla f_{\kappa}}{f_{\kappa}}\right|^{2} \leq \frac{C_{p}}{2 \kappa} \int_{\Omega} \rho_{e}^{2}-\int_{\Omega} \rho_{\kappa} \log \left(f_{\kappa}\right)
$$

Taking $C_{p}=C^{2}$, we obtain

$$
\frac{1}{\kappa} \int_{\Omega}\left|\frac{\nabla f_{\kappa}}{f_{\kappa}}\right|^{2} \leq \frac{C^{2}}{\kappa} \int_{\Omega} \rho_{e}^{2}-2 \int_{\Omega} \rho_{\kappa} \log \left(f_{\kappa}\right)
$$

On the other hand, we have $\int_{\Omega} f_{\kappa} \log \left(f_{\kappa}\right) \geq|\Omega| \min _{x \in \mathbb{R}}(x \log (x))$ and consequently

$$
\left\|\frac{1}{\sqrt{\kappa}} \frac{\nabla f_{\kappa}}{f_{\kappa}}\right\|_{L^{2}(\Omega)} \leq C_{1}
$$

and this shows the first estimate. Now, we have $\phi_{\kappa}=\phi_{e}-\log \left(f_{\kappa}\right)$, then

$$
\left\|\frac{1}{\sqrt{\kappa}} \nabla \phi_{\kappa}\right\|_{L^{2}(\Omega)} \leq\left\|\frac{1}{\sqrt{\kappa}} \nabla \phi_{e}\right\|_{L^{2}(\Omega)}+\left\|\frac{1}{\sqrt{\kappa}} \frac{\nabla f_{\kappa}}{f_{\kappa}}\right\|_{L^{2}(\Omega)} \leq C_{2} .
$$

and the second estimate follows immediately.

Theorem 3.6 As $\kappa \rightarrow \infty$, we have

$$
\phi \rightarrow \infty \quad \text { a.e. in } \Omega, \frac{\phi}{\kappa} \rightarrow 0 \quad \text { in } H^{1}(\Omega) \cap C(\bar{\Omega}) \text { and }
$$

$$
\frac{\rho}{\kappa} \rightarrow 0 \quad \text { in } L^{p}(\Omega), \forall p<\infty \text { and uniformly in every compact of } \Omega .
$$

Proof: We recall that

$$
-\Delta w_{\kappa}=f_{\kappa}, f_{\kappa}=\exp \left(-\kappa w_{\kappa}+\phi_{e}\right),-\Delta \phi_{e}=\rho_{e} .
$$

Thanks to proposition 2.3, for all x the sequence $f_{\kappa}(x)$ is a decreasing and bounded from below by 0 , then there exists $f \geq 0$ such that

$$
f_{\kappa} \rightarrow f \quad \text { a.e. in } \Omega .
$$

We have $w_{\kappa} \geq 0$ and $\phi_{e} \in L^{\infty}(\Omega)$, then

$$
\begin{equation*}
\left|f_{\kappa}(x)\right| \leq \exp \left(\phi_{e}(x)\right) \quad \text { a.e. in } \quad \Omega \quad \text { and } \quad \exp \left(\phi_{e}\right) \in L^{\infty}(\Omega) \tag{13}
\end{equation*}
$$

using Lebesgue's Dominated Convergence Theorem, we have $f_{\kappa} \rightarrow f$ in $L^{p}(\Omega)$ for all $p<\infty$. On the other hand, we have $\left\|w_{\kappa}\right\|_{\Phi_{p}}=\left\|f_{\kappa}\right\|_{L^{p}(\Omega)}$ then there exists $w \in \Phi_{p}$ such that

$$
w_{\kappa} \rightarrow w \quad \text { in } \Phi_{p} .
$$

We have

$$
\Phi_{p} \subset H^{1+\alpha-\varepsilon}(\Omega) \Subset H^{\frac{3}{2}+\varepsilon}(\Omega) \subset C(\bar{\Omega})
$$

then

$$
w_{\kappa} \rightarrow w \quad \text { in } C(\bar{\Omega}) \quad \text { and } \quad-\Delta w=f .
$$

Now, we will show that $f=0$ and $w=0$. Thanks to proposition 3.5, we have

$$
\left\|\nabla w_{\kappa}\right\|_{L^{2}(\Omega),} \leq \frac{C}{\sqrt{\kappa}},
$$

then $f=w=0$ in Ω and therefore

$$
w_{\kappa} \rightarrow 0 \quad \text { in } \Phi_{p} .
$$

Consequently, we have $\phi_{\kappa} \rightarrow+\infty$ a.e. in Ω.
Now, using Dini's Theorem [10], we have $f_{\kappa} \rightarrow 0$ uniformly in every compact of Ω.

References

[1] N. Ben Abdallah and J. Dolbeault, Relative entropies for kinetic equations in bounded domain (irreversibility, stationary solution, uniqueness), Arch. Rational Mech. Anal. 168 (2003) 253-298
[2] M.J. Cáceres, J.A. Carrillo, J. Dolbeault, Nonlinear stability in L^{p} for a confined system of charged particles, SIAM J. Math. Anal. 34 (2002) 478-494
[3] J. Dolbeault, Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: External potential and confinement (large time behavior and steady states), J. Math. Pures Appl. (9), 78 (1999) 121157.
[4] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Paris, 1969
[5] P. Grisvard, Singularities in Boundary Value Problems, Masson, Paris 1992
[6] P. Grisvard, Espaces intermédiaires entre espaces de Sobolev avec poids, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, Sér. 3, 17 no. 3 (1963) 255-296
[7] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics. 24 Pitman, Boston, 1985
[8] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge1934
[9] L. Nirenberg, On elliptic partial differential equations, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Sér. 3, 13 no. 2 (1959) 115-162
[10] W. Rudin, Principles of Mathematical Analysis, McGraw Hill, third edition, 1976

[^0]: *Email : karami@iecn.u-nancy.fr
 ${ }^{\dagger}$ Email : labrunie@iecn.u-nancy.fr
 ${ }^{\ddagger}$ Email : pincon@iecn.u-nancy.fr

