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Stationary Solutions to the Vlasov-Poisson

System

Fahd Karami ∗ Simon Labrunie † Bruno Pinçon ‡

july 12, 2010

Abstract

In this paper, we present an existence and uniqueness result for stationary Vlasov
Poisson system and we study the asymptotic behavior of the solution near the corner.

Keywords: Vlasov-Poisson, Plasma physics, Polygonal domains, Asymptotic analy-
sis.

1 Introduction.

We consider a gas of charged particles. This particles are described by their distribution
function f(x, v) where x ∈ Ω ⊂ R

N is the position of the particle and v its velocity.
We consider the Stationary Vlasov-Poisson system which governs the motion of charged
particles under the influence of an electrostatic field. The stationary Vlasov equation reads

v.∇x f − E(x).∇vf = 0, (x, v) ∈ Ω × R
N , (1)

where the electric field E(x) is given by the equations

E(x) = −∇x (φ[f ] − φe), −∆φ[f ] =

∫

f(x, v) dv := ρ[f ] and − ∆φe = ρe.

where ρ[f ] is a spatial density of particles, φ the self-consistent electrostatic potential, ρe

is the density of the fixed charges and φe is the external potential. Denoted by ν(x) the
outward normal vector of Ω at a point x ∈ ∂Ω and we assume that ∂Ω := Γ1 ∪ Γ2 ∪ Γ3

where

φ[f ] = φe = 0 on Γ1

φ[f ] = 0, φe = φin on Γ2

∂φ[f ]

∂ν
=
∂φe

∂ν
= 0 on Γ3.

(2)
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1.1 Assumptions

Throughout this paper, we assume that

(H1) ρe ∈ Lp(Ω) and φin ∈ L∞(Γ2) ∩W 1−1/p, p(Γ2) for some p > N .

(H2) γ ≥ 0 is a strictly decreasing function such that ∀δ > 0

s
N
2
−1 γ(s− δ) ∈ L1(0,+∞).

(H3) Assume that σ(r) = −
∫ r

0
γ−1(s) ds with σ ∈ C2(R+)∪ C0(R+

0 ) bounded from below

and strictly convex

sup
x∈Ω

∫ ∞

0
σ(h(x, s))ds <∞ and lim

s→∞

σ(s)

s
= +∞

where h(x, s) = s
N
2
−1 γ(s− φe(x)).

1.2 Preliminaries

We consider the spaces V and W of functions defined by:

V = {w ∈ H1(Ω) such that w = 0 on Γ1 ∪ Γ2}

W = {w ∈ H1(Ω) such that w = 0 on Γ1 and w = φin on Γ2}.
Let f ∈ L1(Ω×R

N ). If ρ[f ] ∈ V ′ then there exists φ ∈ V solution of −∆φ = ρ[f ] satisfying

∫

Ω
∇φ · ∇ξ dx =

∫

Ω
ρ[f ] ξ dx, for any ξ ∈ V.

We define a mapping Φ and φ by Φ[ρ] = Φ[ρ[f ]] = φ and φ[f ] = φ, we have

∫

Ω
|∇φ[f ]|2 <∞.

If ρ[f ] ∈ L1(Ω) \V ′ then, the solution φ ∈ V does not exist, and in this case, we agree that

∫

Ω
|∇φ[f ]|2 = ∞.

Indeed, by density there exists a sequence ρn ∈ L1(Ω)∩ V ′ such that ρn converges to ρ in
L1(Ω). Then, as n→ ∞ we have

∫

Ω
|∇Φ[ρn]|2 ∼ ||ρn||2V ′ → ∞,
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otherwise there exists a subsequence will be noted by ρn which converges weakly to ρ in
V ′ and this is contradictory because ρ /∈ V ′.
Similarly, we agree that

∫

Ω×RN

σ(f) = ∞ if σ(f) /∈ L1(Ω × R
N ).

It is clear that the operator φ is a linear and satisfies
∫

Ω×RN

fφ[g] d(x, v) =

∫

Ω×RN

gφ[f ] d(x, v) and

∫

Ω×RN

fφ[f ] d(x, v) =

∫

Ω
|∇φ[f ]|2 dx.

In the next section, we prove existence and uniqueness of the solution of the stationary
problem (1-2). For that, we use some techniques for nonlinear optimization in L1 and we
give also some preliminary properties that will be used afterwards. In the third section, we
study the asymptotic of the solution near the corner. Then, we establish some interesting
properties for the singularity coefficient. The last section is devoted to the asymptotic of
the solution of Maxwell-Boltzmann problem with respect to the total mass.

2 Existence and uniqueness

Thanks to (H1), there exists a unique φe ∈W 1, p(Ω) solution to problem



















−∆φe = ρe in Ω
φe = 0 on Γ1

φe = φin on Γ2

∂φe

∂ν
= 0 on Γ3.

(3)

Now, any function f satisfying

f(x, v) = γ
(1

2
| v |2 + φ[f ](x) − φe(x) − β

)

and

∫

Ω×RN

f(x, v) = M (4)

is a stationary solution to problem (1-2), where β is unknown constant and M is the total
mass. Now, we consider the space L1

M (Ω × R
N ) defined by:

L1
M (Ω × R

N ) := {f ∈ L1(Ω × R
N ) :

∫

Ω×RN

f dx dv = M}.

To prove the existence of a solution to problem (4), we use some similar argument in [1],
[2] and [3].

Proposition 2.1 Assume that the Hypothesis (H1 − H3) are satisfied. There exists a
unique function f solution to problem (4). The function f is the minimum on L1

M (Ω×R
N )

of the functional:

J [f ] =

∫

Ω×RN

(

σ(f) + (
1

2
|v|2 − φe) f

)

dxdv +
1

2

∫

Ω
| ∇φ[f ]|2dx.
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Proof: It is not difficult to see that J is convex and lower semi-continuous, then J is

weakly l.s.c. Taking g(x, v) = γ(
1

2
|v|2 − φe(x)) by (H2), we have g(x, v) ∈ L1(Ω × R

N ).

Thanks to the fact that σ(s) − σ(r) − (s− r)σ′(r) ≥ 0 for any r, s ≥ 0, we have

J [f ] ≥
∫

Ω×RN

(

σ(g) + (
1

2
|v|2 − φe) g

)

d(x, v)

≥ 2
N
2
−1|SN−1|

∫

Ω

∫ ∞

0
σ(s

N
2
−1γ(s− φe))d(s, x) − ||φe||L∞(Ω) ||g||L1(Ω×RN )

where |SN−1| is the measure of the unit sphere in R
N . Using (H2) and (H3) we have

J [f ] is bounded from below on L1
M (Ω × R

N ). Let (fn) ∈ L1
M (Ω × R

N ) is a minimizing
sequence for J . Now, using the Dunford-Pettis compactness criterion, we can extract a
subsequence still noted (fn) such that

fn ⇀ f weakly in L1(Ω × R
N ) as n→ ∞.

Since J is weakly l.s.c, then

J [f ] ≤ lim inf
n→∞

J [fn] = inf
L1

M

J .

Then the function f is a global minimum of J , that satisfies

∫

Ω
| ∇φ[f ]|2dx <∞ and

−γ−1(f) + φ[f ] +
1

2
| v |2 − φe(x) − β = 0,

where β is the Lagrange multiplier associated to the constraint

∫

Ω×RN

f(x, v) = M . Fi-

nally, the uniqueness of the solution follows by the strict convexity of the function σ.

Now, let the function G defined by

G(r) =

∫

RN

γ(
1

2
|v|2 + r) dv = 2

N
2
−1|SN−1|

∫ +∞

0
s

N
2
−1γ(s+ r) ds

then the problem (4) is equivalent to solving:



























−∆φ = ρ, ρ = G(φ− φe − β) in Ω

φ = 0 on Γ1 ∪ Γ2

∂φ

∂ν
= 0 on Γ3

(5)

where β is defined implicitly by:
∫

Ω
G(φ − φe − β) = M.



Stationary Solutions to the Vlasov-Poisson 5

Proposition 2.2 For any fixed β, there exists a unique solution to Problem (5) satisfying

∫

Ω
∇φ · ∇ξ =

∫

Ω
G(φ− φe − β) ξ for all ξ ∈ V.

Poof: We consider the nonlinear operator B : V −→ V ′ defined by

< Bφ, v >=

∫

Ω
∇φ · ∇v −

∫

Ω
G(φ− φe − β) v +

∫

Ω
G(−φe − β) v for all v ∈ V

where < ., . > is the duality pairing between V and its dual V ′. The operator B is bounded

and weakly continuous. Moreover, since G is a decreasing function then

∫

Ω
(G(−φe−β)−

G(φ− φe − β)) φ ≥ 0 and

< Bφ, φ >
||φ||V

≥ ||φ||V → ∞ as ||φ||V → ∞.

Then the operator B is coercive. Thanks to [4], for any element of V ′ (in particular for
G(−φe − β) ∈ L∞(Ω)) there exists φ ∈ V , such that < Bφ, v >=< G(−φe − β), v > for
all v ∈ V .

2.1 Dependence of the solution on the total mass

Now, we study the dependence of the solution with respect to the total mass M , and we
derive a comparison principle between M and the Lagrange multiplier β.

Proposition 2.3 Let φ1 and φ2 be two solutions to Problem (5) corresponding to β1 and
β2 respectively.

If β1 ≥ β2 then φ1 ≥ φ2 in Ω.

Poof: Let φ1 et φ2 be two solutions corresponding respectively to β1 and β2 in the sense
of the proposition 2.2, we have

∫

Ω
∇(φ1 − φ2) · ∇ξ =

∫

Ω

(

G(φ1 − φe − β1) −G(φ2 − φe − β2)
)

ξ.

Taking ξ = (φ2 − φ1)
+ as a test function in this formulation, then

∫

Ω
∇(φ1 − φ2) · ∇(φ2 − φ1)

+ =

∫

Ω

(

G(φ1 − φe − β1) −G(φ2 − φe − β2)
)

(φ2 − φ1)
+.

We have
∫

Ω
∇(φ1 − φ2) · ∇(φ2 − φ1)

+ = −
∫

Ω
|∇(φ2 − φ1)

+|2 ≤ 0,
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and

G(φ1 − φe − β1) −G(φ2 − φe − β2) =
(

G(φ1 − φe − β2) −G(φ2 − φe − β2)
)

+
(

G(φ1 − φe − β1) −G(φ1 − φe − β2)
)

.

The second term on the right-hand side is positive because β1 ≥ β2 and G is a decreasing
function. Using again the monotonicity of G, we have

∫

Ω

(

G(φ1 − φe − β2) −G(φ2 − φe − β2)
)

(φ2 − φ1)
+ ≥ 0,

then
∫

Ω

(

G(φ1 − φe − β1) −G(φ2 − φe − β2)
)

(φ2 − φ1)
+ ≥ 0.

Hence

−
∫

Ω
|∇(φ2 − φ1)

+|2 ≥ 0

and therefore
∇(φ2 − φ1)

+ = 0

then (φ2 −φ1)
+ = const. Since (φ2 −φ1)

+ = 0 on Γ1 ∪Γ2, we deduce that (φ2 −φ1)
+ = 0

and φ1 ≥ φ2.

Theorem 2.4 Let φ and φe be given by the solution of problem (5). Define the mapping

µ : R
+ −→ R

+

β 7−→M =

∫

Ω
G(φ− φe − β)d x.

Then, µ is a nondecreasing, one to one and onto mapping.

Proof: Let β1, β2 ∈ R
+, with β1 ≥ β2 then for i = 1, 2, we have

−∆φi = ρi

ρi = G(φi − φe − βi) and Mi =

∫

Ω
G(φi − φe − βi)d x.

We subtract two equations and taking w = φ1 − φ2, then











−∆w = ρ1 − ρ2 in Ω
w = 0 on Γ1 ∪ Γ2

∂w

∂ν
= 0 on Γ3,
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in other words, for any ξ ∈ V , we have
∫

Ω
∇w · ∇ξ =

∫

Ω
(ρ1 − ρ2) ξ.

Let us take ξ = H+
ε (w) as a test function in the previous equality, where H+

ε (.) is the
approximation of the Heaviside function H+(.) defined as

H+
ε (r) =







1 if r > ε
1
εr if 0 ≤ r ≤ ε
0 if r < 0,

then

−
∫

Ω
|∇w|2H′+

ε (w) =

∫

Ω
(ρ2 − ρ1)H+

ε (w).

Now, letting ε→ 0, we get
∫

Ω
(ρ2 − ρ1)H+(w) ≤ 0.

Using the proposition 2.3, we have β1 ≥ β2 then w = φ1−φ2 ≥ 0 and H+(w) = 1. Finally,
we have

M1 :=

∫

Ω
ρ1 ≥

∫

Ω
ρ2 := M2.

Let us introduce the spaces Φp defined by

Φp = {v ∈W 1,p(Ω); ∆v ∈ Lp(Ω), v = 0 on Γ1 ∪ Γ2}
endowed with the norm ||.||Φp

where

||u||Φp
∼ ||∆u||Lp(Ω) for all u ∈ Φp.

Lemma 2.5 Let f the solution of the problem (4). Then ρ[f ] ∈ L∞(Ω) and φ[f ] ∈ Φp.

Proof: We know that the function f satisfying

f(x, v) = γ
(1

2
| v |2 + φ[f ](x) − φe(x) − β

)

and

∫

Ω×R2

f(x, v) = M.

Using the weak maximum principle, we find φ[f ](x) ≥ 0 in Ω. On the other hand, thanks to
(H1) we have ρe ∈ Lp(Ω) and φin ∈W 1−1/p, p(Γ2)∩ L∞(Γ2), then φe ∈W 1, p(Ω) ⊂ L∞(Ω).
Using the fact that γ is a decreasing function, we have

f(x, v) ≤ γ
(1

2
| v |2 − φe(x) − β

)

≤ γ
(1

2
| v |2 − ||φe||∞ − β

)

.

Integrating this inequality of the variable v and using the monotonicity of γ, we have

ρ[f ](x) ≤ 2
N
2
−1|SN−1|

∫ +∞

0
s

N
2
−1γ

(

s − ||φe||∞ − β
)

ds.

According to (H2), we deduce that ρ[f ] ∈ L∞(Ω) and φ[f ] ∈ Φp.
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3 Corner behavior (N=2)

In this section we consider the case where Ω is a polygonal domain of R
2 and denote by

S the vertex of the re-entrant corner in Γ1, let
π

α
be the interior angle of Ω at the vertex

and (r, θ) the polar coordinates centered at S. Using Grisvard’s results [5], then for all
φ ∈ Φp with 1 < p <∞, there exists λm, such that

φ−
∑

0<mα<2−2/p

λmχ(r)rmα sin(mαθ) ∈W 2,p(Ω)

with m ≥ 1 and χ ∈ C∞(R+) is a cut-off function defined by

χ(r) =







1 if 0 ≤ r < η

0 if r ≥ η,

where η is small enough. In particular, for p ∈]
2

2 − α
,

1

1 − α
[ we have φ, φe ∈ Φp then its

can be decomposed into the regular part W 2,p(Ω) and a singular part as follows:

φ = φR + λ χ(r)rα sin(αθ)

φe = φe
R + λe χ(r)rα sin(αθ)

where λ =

∫

Ω
ρ Ps dx and λe =

∫

Ω
ρe Ps dx with

−∆Ps = 0 in Ω, Ps = 0 on Γ1 ∪ Γ2 and
∂Ps

∂ν
= 0 on Γ3 and

Ps = Pp + P̃ where Pp =
1

π
r−α sin(αθ),

and P̃ ∈ H1(Ω) is the solution of

−∆P̃ = ∆Pp = 0, P̃ = 0 on Γ1 and P̃ = Pp on Γ2 ∪ Γ3.

Let U be a bounded open subset of R
+, we denote by Lp

τ (U) the space

Lp
τ (U) :=

{

u : measurable such that ||u||p
Lp

τ (U)
=

∫

U
|u(t)|ptτdt <∞

}

.

We denote W 1,p
τ (U) the space of functions u of Lp

τ (U) such that
∂u

∂t
∈ Lp

τ (U) where we

denote the norm

||u||
W 1,p

τ (U)
=

(

∫

U
|u(t)|ptτdt

)1/p
+

(

∫

U
|∂u
∂t

|ptτdt
)1/p

.

Let H and L the linear operators defined by:

Hu(t) =
1

t

∫ t

0
u(s)ds
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Lu(t) =
1

t

∫ ∞

t
u(s)ds

Thanks to [8] we have:
If τ < p− 1 then

||Hu||Lp
τ (U) ≤ C||u||Lp

τ (U). (6)

If τ > p− 1 then
||Lu||Lp

τ (U) ≤ C||u||Lp
τ (U) (7)

where C is a constant which depends only on τ and p.
Taking

w = χφR and F = −∆w

where F = −χ∆φR − 2 ∇χ∇φR − φR∆χ. For all p ∈]
2

2 − α
,

1

1 − α
[, we have F ∈ Lp(Ω)

and w ∈W 2,p(Ω) ∩W 1,p
0 (Ω), then ∇w ∈ [W 1,p(Ω)]2 and

∂w

∂τ
= 0, where τ(x) is a tangent

vector at a point x ∈ Γ1.

Theorem 3.1 Let p ∈]
2

2 − α
,

1

1 − α
[, φ be the solution to Problem (5) and φR ∈W 2,p(Ω)

the regular part, then there exists g ∈ L∞(Ω) such that

χ(r)φR(r, θ) = r sin(αθ)g(r, θ), ||g(r, θ)||L∞(Ω) ≤ C ||φR||W 2,p(Ω)

where C is a constant which depends only on α, p and Ω.

Proof: Let p ∈]
2

2 − α
,

1

1 − α
], we have w ∈ W 2,p(Ω) then using the polar coordinates,

it is not difficult to see that
∂2w

∂r2
,

1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ
,

1

r2
∂2w

∂θ2
− 1

r

∂w

∂r
∈ Lp(Ω). We have

∇w ∈ [W 1,p(Ω)]2 with p >
2

2 − α
≥ 2, then ∇w ∈ [C(Ω)]2. Since w = 0 in ∂Ω, then

∂w

∂τ
= 0 and the normal components of the gradient is perpendicular to line segment Γ1.

By continuity, the gradient of w vanishes at r = 0 and
∂w

∂r
(0, 0) = 0, then

r−1∂w(r, θ)

∂r
=

1

r

∫ r

0

∂2w(r̃, θ)

∂r2
d r̃.

Applying (6) with τ = 1 and we integrate at θ, we obtain

∫ ω

0

∫ R

0
|∂w(r, θ)

∂r
|pr1−p d rd θ ≤ C

∫ ω

0

∫ R

0
|∂

2w(r, θ)

∂r2
|pr d rd θ. (8)

Similarly, we have w(0, θ) = 0 and thanks to (6) we have

∫ ω

0

∫ R

0
|w(r, θ)

r2
|pr d rd θ ≤ C

∫ ω

0

∫ R

0
|∂w(r, θ)

∂r
|pr1−p d rd θ <∞. (9)
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Thanks to (8) and (9), we have

∂

∂r
(
w

r
) =

1

r

∂w

∂r
− w

r2
∈ Lp(Ω) and

w

r
∈W 1,p

1

(

0, R;Lp(]0, ω[)
)

.

Now, we have

∆w =
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2
∂2w

∂θ2
∈ Lp(Ω)

then
∂2

∂θ2
(
w

r2
) =

1

r2
∂2w

∂θ2
∈ Lp(Ω). Thanks to the Nirenberg inequality (see [9]), we have

||1
r

∂

∂θ
(
w

r
)||Lp(Ω) = || ∂

∂θ
(
w

r2
)||Lp(Ω) ≤ C(p,Ω)||w

r2
||1/2

Lp(Ω) ||
∂2

∂θ2
(
w

r2
)||1/2

Lp(Ω)

then
w

r
∈W 1,p(Ω) ⊂ C(Ω) and therefore

w

r
is bounded on Ω. Now, let us we prove that

1

r

∂w

∂θ
∈W 1,p(Ω).

Indeed, we have
1

r

∂

∂θ
(
1

r

∂w

∂θ
) =

1

r2
∂2w

∂θ2
∈ Lp(Ω). Since w ∈W 1,p(Ω), then

1

r

∂w

∂θ
∈ Lp(Ω).

On the other hand, we have w ∈W 2,p(Ω) then

∂

∂r
(
1

r

∂w

∂θ
) =

1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ
∈ Lp(Ω)

hence
1

r

∂w

∂θ
∈W 1,p(Ω) ⊂ C(Ω) and ||1

r

∂w

∂θ
||L∞(Ω) ≤ C||1

r

∂w

∂θ
||W 1,p(Ω). We have

w

r
(r, 0) =

0, then
w(r, θ)

r
=

∫ θ

0

∂

∂θ
(
w(r, θ̃)

r
)d θ̃,

and

|w(r, θ)

r θ
| ≤ || ∂

∂θ
(
w

r
)||L∞(Ω) ≤ C||1

r

∂w

∂θ
||W 1,p(Ω).

Near θ = 0, we have θ ∼ sin(αθ)

α
and

| w(r, θ)

r sin(αθ)
| ≤ C

α
||1
r

∂w

∂θ
||W 1,p(Ω). (10)

In the same manner, we have
w

r
(r,

π

α
) = 0, then | w(r, θ)

r (αθ − π)
| ≤ C

α
||1
r

∂w

∂θ
||W 1,p(Ω). Near

θ =
π

α
, we have αθ − π ∼ sin(αθ − π) = − sin(αθ) and then (10) is satisfied. For θ ∈

[θ0,
π

α
− θ0] with θ0 small enough, there exists a constant c > 0 such that | sin(αθ)| ≥ c|αθ|

and the inequality (10) is satisfied. This completes the proof of Theorem.
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Theorem 3.2 Let φ1 and φ2 be two solutions of problem (5 ) corresponding to M1 and
M2 respectively.

If M1 ≥M2, then λ1 ≥ λ2

where λ1 and λ2 are the singularity coefficients of φ1 and φ2 respectively.

Proof: Thanks to Theorem 3.1, we have

φ1 − φ2 ∼ (λ1 − λ2)r
α sin(αθ) in a neighbourhood of the corner.

Thanks to Theorem 2.4, we have β1 ≥ β2, then using the proposition 2.2 we obtain φ1 ≥ φ2

and therefore λ1 ≥ λ2.

Remark 3.3 1) Taking ψ = φ− φe and let λ and λe the singularity coefficients of φ and
φe respectively. If λ ≥ λe then ψ− ∈ H2(Ω). Indeed,

φ− φe ∼ (λ− λe)r
α sin(αθ) ∀ (r, θ) ∈ V,

where V is the neighborhood of the corner. Since λ ≥ λe, then ψ− = (φ− φe)
− = 0 in V.

Consequently ψ− = (φR − φe
R)− ∈ H2(Ω).

2)For ρe ∈ L∞(Ω) and β ≥ −G−1(||ρe||∞), we have φ ≥ φe in Ω. Subtracting the two
equations verified by φ and φe, we have

−∆(φ− φe) −
(

G(φ(x) − φe(x) − β) −G(−β)
)

= G(−β) − ρe.

Taking (φe − φ)+ as a test function in the weak formulation of this equation, using the
same arguments as in the proposition 2.2, the monotonicity of the function γ and we find
the desired result.

3.1 Behavior of Maxwell-Boltzmann Problem

In the case of Maxwellian velocity distribution e.g. γ(s) = exp(−s) the problem becomes:


























−∆φ = κ exp(−φ+ φe) := ρ, in Ω

φ = 0 on Γ1 ∪ Γ2

∂φ

∂ν
== 0 on Γ3

(11)

and

∫

ρ[f ] = M, where κ = exp(β).

Theorem 3.4 Let φ, φe, M and κ be given by the solution of the problem (11) and λ be
the singularity coefficient of φ. As M → 0, we have

κ ∼M
(

∫

Ω
exp(φe)dx

)−1
and λ ∼ κ

∫

Ω
exp(φe)Psdx.
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Proof: We recall that ρ = κ exp(φe − φ) and κ = M
(

∫

Ω
exp(φe − φ)dx

)−1
, then

M
(

∫

Ω
exp(φe)dx

)−1
≤ κ ≤M exp(||φ||∞)

(

∫

Ω
exp(φe)dx

)−1
.

We have
Φ2 ⊂ H1+α−ε(Ω) ⊂ C(Ω) ⊂ L∞(Ω),

then
||φ||∞ ≤ C||φ||Φ2

≤ C||ρ||L2(Ω).

On the other hand, we have

||ρ||L2(Ω) ≤ ||ρ||1/2
L1(Ω)

||ρ||1/2
∞ = M1/2.||ρ||1/2

∞ and ||ρ||∞ ≤ κ exp(||φe||∞).

Then, ||φ||∞ ≤ C(M κ exp(||φe||∞))1/2 and

M
(

∫

Ω
exp(φe)dx

)−1
≤ κ ≤M exp (C M κ exp(||φe||∞)1/2)

(

∫

Ω
exp(φe)dx

)−1
.

Since κ is nondecreasing with respect to M , then for M → 0, we have κ → κ0 ≥ 0 and
C M κ exp(||φe||∞) → 0, therefore

κ ∼M
(

∫

Ω
exp(φe)dx

)−1
.

Now, we prove that λ ∼ κ

∫

Ω
exp(φe)Psdx. We have

λ =

∫

Ω
ρPsdx = κ

∫

Ω
exp(φe − φ)Psdx.

As M → 0, we have κ→ 0, ||ρ||∞ → 0 and φ→ 0 a.e. in Ω, then

exp(φe − φ) → exp(φe).

Since | exp(φe − φ)| ≤ exp(φe), the Lebesgue’s Dominated Convergence Theorem give
exp(φe − φ) → exp(φe) in L2(Ω) and therefore we obtain

λ

κ
=

∫

exp(φe − φ)Ps →
∫

exp(φe)Ps as M → 0.

Which concludes the proof.

Now, We explicit the dependence of φ and ρ with respect to the parameter κ and taking

wκ =
φκ

κ
and fκ =

ρκ

κ
.
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Proposition 3.5 We have
1√
κ

∇ρκ

ρκ
and

1√
κ

∇φκ are uniformly bounded in L2(Ω).

Proof: The problem (11) can be rewritten in fκ as:


























fκ − 1

κ
∆ log(fκ) =

1

κ
ρe, in Ω

fκ = 1 on Γ1

fκ = exp(φin) on Γ2

∂fκ

∂ν
= 0 on Γ3

(12)

Taking log(fκ) as a test function in the weak formulation of (12), then
∫

Ω
fκ log(fκ) +

1

κ

∫

Ω

∣

∣

∣

∇fκ

fκ

∣

∣

∣

2
=

1

κ

∫

Ω
ρe log(fκ).

Using the Young inequality, we obtain
∫

Ω
fκ log(fκ) +

1

κ

∫

Ω

∣

∣

∣

∇fκ

fκ

∣

∣

∣

2
≤ Cp

2κ

∫

Ω
ρ2

e +
1

2κCp

∫

Ω
| log(fκ)|2.

Thanks to the Poincaré inequality, we have || log(fκ)||L2(Ω) ≤ C
∥

∥

∥

∇fκ

fκ

∥

∥

∥

L2(Ω)
and then

1

κ

(

1 − C2

2Cp

)

∫

Ω

∣

∣

∣

∇fκ

fκ

∣

∣

∣

2
≤ Cp

2κ

∫

Ω
ρ2

e −
∫

Ω
ρκ log(fκ).

Taking Cp = C2, we obtain

1

κ

∫

Ω

∣

∣

∣

∇fκ

fκ

∣

∣

∣

2
≤ C2

κ

∫

Ω
ρ2

e − 2

∫

Ω
ρκ log(fκ).

On the other hand, we have

∫

Ω
fκ log(fκ) ≥ |Ω|min

x∈R

(x log(x)) and consequently

∥

∥

∥

1√
κ

∇fκ

fκ

∥

∥

∥

L2(Ω)
≤ C1

and this shows the first estimate. Now, we have φκ = φe − log(fκ), then
∥

∥

∥

1√
κ
∇φκ

∥

∥

∥

L2(Ω)
≤

∥

∥

∥

1√
κ
∇φe

∥

∥

∥

L2(Ω)
+

∥

∥

∥

1√
κ

∇fκ

fκ

∥

∥

∥

L2(Ω)
≤ C2.

and the second estimate follows immediately.

Theorem 3.6 As κ→ ∞, we have

φ→ ∞ a.e. in Ω,
φ

κ
→ 0 in H1(Ω) ∩ C(Ω)and

ρ

κ
→ 0 in Lp(Ω), ∀p <∞ and uniformly in every compact of Ω.
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Proof: We recall that

−∆wκ = fκ, fκ = exp(−κwκ + φe), −∆φe = ρe.

Thanks to proposition 2.3, for all x the sequence fκ(x) is a decreasing and bounded from
below by 0, then there exists f ≥ 0 such that

fκ → f a.e. in Ω.

We have wκ ≥ 0 and φe ∈ L∞(Ω), then

|fκ(x)| ≤ exp(φe(x)) a.e. in Ω and exp(φe) ∈ L∞(Ω), (13)

using Lebesgue’s Dominated Convergence Theorem, we have fκ → f in Lp(Ω) for all
p < ∞. On the other hand, we have ||wκ||Φp

= ||fκ||Lp(Ω) then there exists w ∈ Φp such
that

wκ → w in Φp.

We have
Φp ⊂ H1+α−ε(Ω) ⋐ H

3

2
+ε(Ω) ⊂ C(Ω),

then
wκ → w in C(Ω) and − ∆w = f.

Now, we will show that f = 0 and w = 0. Thanks to proposition 3.5, we have

∥

∥

∥
∇wκ

∥

∥

∥

L2(Ω),
≤ C√

κ
,

then f = w = 0 in Ω and therefore

wκ → 0 in Φp.

Consequently, we have φκ → +∞ a.e. in Ω.
Now, using Dini’s Theorem [10], we have fκ → 0 uniformly in every compact of Ω.
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