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an empirical solution
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Abstract

This paper proposes a new method for estimating true cost-of-living (Koniis) indices, for
large numbers of commodities, using data only on prices, aggregate budget shares and
aggregate expenditure. Conventional chain indices are path-dependent unless income
elasticities are (implausibly) all equal to one. The method allows this difficulty to be
overcome. I show that to estimate a Koniis index, only income and not price elasticities are
required. The method is applied to estimate a Koniis price index for 70 products covering
nearly all the U.K.’s Retail Prices Index over 1974-2004, using the Quadratic Almost Ideal
Demand System. The choice of base year for utility has a significant effect on the index.

JEL Classification: C43, D12, E31
Key words: Index number, cost of living, Divisia, Koniis, Chain, Path-dependence,

Almost Ideal Demand System

Address for correspondence
Centre for Economic Performance
London School of Economics
Houghton Street

London WC2A 2AE

UNITED KINGDOM

Email: n.oulton@]lse.ac.uk



1. Introduction!

The purpose of this paper is to propose an empirically feasible method for correcting what I
shall call the path-dependence bias of chain indices of the cost of living. This bias (see below
for a precise definition) arises because chain indices are discrete approximations to Divisia
indices which, despite their other desirable properties, are known to be path-dependent except
under implausible restrictions on consumer preferences. The proposed method employs the
“Quadratic Almost Ideal Demand System” of Banks, Blundell, and Lewbel (1997), a flexible
system that is fully consistent with economic theory.

Chain indices have become increasingly popular with national statistical agencies in
recent years. In the U.K. the Retail Prices Index (RPI) is an annually chain-linked Laspeyres
index (at least approximately: see Office for National Statistics, 1998, for details). The EU’s
Harmonised Index of Consumer Prices, which under the name Consumer Prices Index (CPI)
is used as the Bank of England’s inflation target, is also chained Laspeyres. In the United
States, one of the CPI measures published since 2002 by the Bureau of Labor Statistics is a
chained Toérnqvist index; this followed criticism by the Boskin Commission (1996) of the
fixed base approach. The 1993 System of National Accounts came down in favour of chain-
linking for GDP (Commission of the European Communities — Eurostat et al., 1993).
Following that, Eurostat now requires that in all EU countries GDP and its components on
both the output and expenditure sides should be annually chain-linked Laspeyres. The U.S.
adopted chain-linking, using Fisher indices, in 1997 (Landefeld and Parker, 1997). Canada,
Australia and Japan also use chain-linking in their national accounts.

Chain indices have the obvious intuitive justification that the weights are kept up-to-date.
A more theoretical justification is that, if the aim is to measure the cost of living, then by
comparison to fixed base indices they reduce substitution bias. Chain indices can also be
justified as discrete approximations to continuous Divisia indices which have many desirable

properties. For example, the product of a Divisia price index and a Divisia quantity index is

' I owe thanks to Chuck Hulten for a stimulating discussion on the path-dependence

problem. I am also grateful to Simon Price for advice on econometric issues, to Andrew
Leicester of the Institute for Fiscal Studies for supplying me with his data on retail prices and
budget shares and for answering my queries, and to Bert Balk, John Van Reenen, Kevin Fox,
Robert Hill, Hamish Low, and two anonymous referees for a number of helpful comments.
This paper also benefited from the comments of seminar participants at St Andrews, the
London School of Economics, the Bank of England, and the Centre for Applied Economic
Analysis at the University of New South Wales.



the value index. And Divisia indices are consistent in aggregation: a one-stage Divisia index
of food prices computed for (say) apples, oranges, lamb and beef is equal to a two-stage
index computed first for fruit and meat and then for food as a whole from the sub-indices for
fruit and meat.

But chain indices suffer from a drawback that was noted and discussed by Irving Fisher
(Fisher (1927), who refers to much earlier work by Walsh and Westergaard): they fail the
transitivity, or circularity, test (Diewert, 1987; Balk, 1995). Suppose that we are making
comparisons over four periods and that prices and quantities return to their original values in
the fourth period. Then we want the price index (and the quantity index) for the fourth period
relative to the first to equal one. But simple algebra shows that none of the chain indices in
common use (Laspeyres, Paasche, Tornqvist or Fisher) can satisfy the circularity test for a
comparison over four or more periods. More generally, it can be shown that no chain index
which also satisfies other properties which we require of an index number can satisfy the
circularity test (see Balk (1995) for a formal proof). This failure of chain indices is well-
known to practitioners as chain index drift; it is the main reason why chain-linking is not
recommended for monthly price indices, where due to seasonal factors or promotions “price
bounce” is quite common.

The proof that no chain index can satisfy all the desirable tests assumes that prices and
quantities can vary freely and independently of each other. But if quantities are constrained to
respond to prices as economic theory requires, then it is possible that the impossibility result
could be avoided. However, it turns out that this is the case if and only if all income
elasticities are equal to one (Hulten, 1973; Samuelson and Swamy, 1974). But this is a very
unattractive assumption to make about consumer demand. After all, one of the oldest
empirical findings in this area is Engel’s Law: the share of the budget spent on food declines
as income rises.”

Divisia indices suffer from a related problem to that of their discrete counterparts: path-
dependence. Path-dependence means that the level of a Divisia index at some time period 7,
relative to its level in the base period 0, depends not just on the price relatives p,(7T)/ p,(0) of
the commodities in the index over this time span, but also on the path that prices have

followed between the endpoints. Different paths, even if they begin and finish at the same

points, produce different values of the Divisia index. So what credence can we give to

> Engel’s Law is still apparently flourishing in the U.K. Blow et al. (2004) find that the

proportion of the household budget spent on food declined from 25% to 15% between 1975
and 1999.



comparisons across countries of the average rate of inflation or the average rate of growth of
real output if the results are influenced by the particular paths that the countries have
followed within the period studied?

Theory gives us a standard by which to judge any real world consumer price index: the
true cost-of-living or Koniis index (Koniis, 1939). The Koniis price index is defined as the
ratio of the cost of buying some reference utility level at the prices of time ¢ to the cost of
buying the same utility level in the base period (period 0). It has been shown that a Divisia
price index and the Koniis price index are equal if and only if the Koniis index is independent
of the particular reference level of utility, which implies that the utility function is
homothetic. Another way of putting this is that the two indices are equal if and only if the
income elasticities of all goods are equal to one, a parallel result to the one for discrete index
numbers; see Balk (2005) for a formal proof. So even if chain indices have alleviated one sort
of bias, substitution bias, they have brought in another sort, which may be called path-
dependence bias.’

The fact that the Koniis price index generally varies with the reference utility level can be
given a simple intuitive justification. Consider a household with a very low standard of living
spending 60% of its budget on food.* Suppose the price of food rises by 20%, with other
prices constant. Then money income will probably have to rise by close to (0.60 x 20% =)
12%, to leave utility unchanged, due to the limited possibilities for substituting clothing and
shelter for food. Compare this household to a modern day British one, spending 15% of its
budget on food (Blow et al., 2004). Now the maximum rise in income required is only (0.15
x 20 =) 3% and probably a good bit less as substitution opportunities are greater (eg by
reducing the order from jumbo fries to regular fries).

The solution to the path-dependence problem seems at first sight simple: estimate the
expenditure function and then compute the Koniis price index. But this appears to be

impossible in practice. Cost-of-living indices are usually computed from hundreds of

3 My term “path-dependence bias” is meant to be exactly analogous to the term

“substitution bias”. Both refer to the difference between an index number and a specific
Koniis index (with a particular reference level for utility). “Substitution bias” refers to the
difference between a fixed base index like the Laspeyres and a Koniis index. Path
dependence bias refers to the difference between a Divisia index (and so also its chain index
approximations) and a Koniis index. So “bias” only has meaning with reference to this
standard and other standards are conceivable.

*  Quoting the work of Engel, Marshall (1920, chapter IV) reports that in Saxony in 1857
households headed by a “workman with an income of £45 to £60 a year” spent 62% of their
income on food.



components. For example, the U.K.’s RPI contains around 650 “items”. And usually
statistical agencies have only aggregate data on budget shares, prices and expenditure. A
demand system which is consistent with economic theory and is sufficiently flexible to be a
good fit to the data, such as the Quadratic Almost Ideal Demand System (QAIDS) of Banks
et al. (1997), contains (N> +5N —6)/2 independent parameters, where N is the number of

commodities. If this were estimated for the RPI on annual data,” with all the cross-equation
restrictions imposed, at a minimum over 328 years of data would be required for each
product! Clearly this is out of the question. It is true that household data are also available, eg
in the U.K. the Family Expenditure Survey, and these sorts of data are used in practice to
estimate systems like the QAIDS. Even so, such systems are usually estimated for only half a
dozen or so commodity groups. One reason for this is that the expenditure shares derived
from these surveys are at a relatively high level of aggregation, and are really for commodity
groups, not individual commodities.® The corresponding prices are therefore themselves
index numbers. Also, these surveys yield less data than at first appears. The households in the
sample keep expenditure diaries for only two weeks. So for many products a household’s
expenditure is recorded as zero (eg expenditure on summer holidays if the household’s diary
is kept for two weeks in winter). The upshot is that any attempt to correct the path-
dependence bias in conventional consumer price indices using the theory of demand, at the
level of detail at which these indices are constructed, seems impossible in practice.

The purpose of this paper is to show that this last conclusion is wrong. We can in fact
estimate a true cost-of-living index using only the aggregate data commonly available to
national statistical agencies — the same data as these agencies use to estimate conventional
index numbers. Testing the economic theory of demand requires a huge amount of data. But
this is not the point of the present exercise. Here we accept that some demand system like the
QAIDS is a good approximation to consumer behaviour. Then subject to this assumption we
can compute a correction to a conventional chain index of the cost-of-living. It turns out that
this requires not very much data at all. The reason is that the correction involves estimating
only the parameters relating to income elasticities and this can be done quite parsimoniously
provided one does not attempt to recover all the other parameters (ie those relating to price

elasticities).

> The prices in the RPI are collected monthly but the budget shares are only available

annually.
% The Family Expenditure divides household expenditure into 14 major categories and 77
sub-categories.



The plan of the paper is as follows. In section 2 I consider the path-dependence problem
for Divisia indices in more detail and characterise the difference between the growth rates of
a Koniis index and of a Divisia index. Section 3 shows how this difference between the two
indices can be estimated in practice, using the QAIDS as a maintained hypothesis. Section 4
then applies this method to actual data, the U.K.’s Retail Prices Index (RPI), at the level of 70

commodities over the period 1974-2004. Finally, section 5 concludes.

2. The Path-Dependence Problem for Cost-of-Living Indices

The Koniis price index is defined as the ratio of the cost of buying the reference utility level
at the prices of time 7 to the cost of buying the same utility level at the prices prevailing in the
base period. Without loss of generality we can number time periods so that the base period is

period 0. Then the Koniis price index, or true cost of living index, 1s defined as:

P (1,0) _ E[p(1),u(0)] (1)
P*(0,0)  E[p(0),u(0)]

where E[-,-] is the expenditure function and p(¢) = (p,, p,,..., py) 1s the price vector at time 7.

(Usually, we would normalise so that P*(0,0)=1). At least for economists, the Koniis index
is the theoretical ideal, to-which real world price indices aspire. The connection between
Koniis and Divisia price indices can be seen by differentiating equation (1) logarithmically

with respect to time and applying Shephard’s Lemma:’

dln PX(¢,0) _ dIn E[p(t),u(0)] _ 5 on E[p(t),u(0)] dIn p,(7)
d dt S~ Blnp,(1) dt

)

_ 0, dInp,(1)
=280

where

7 Shephard’s Lemma states that 0/ op; = q,, where ¢, is the quantity demanded of the ith

commodity at prices p and utility level u: g, = ¢,(p,u), the Hicksian demand function.



O = oln E[p(t),u(0)]  pi(t)q, (1) —L.N

olmp, Y p(Og @)’

and ¢/ (¢) is the quantity of the ith commodity that would be demanded at prices p(?) if utility

were held constant at the base period level. The s’ are the hypothetical shares in total

expenditure, if utility were held constant at the base period level but prices were at their
actual, observed levels. These shares could also be called compensated shares, by analogy
with compensated (or Hicksian) elasticities.

By contrast, a Divisia price index® is defined by:

dInP°(r) dln p,(1)
— - D (z){—dt } 3)

p,(0q,(t) _ Oln E[p(t),u(1)]
Y. pg () dlnp©®)

where s,(¢) =

applying again Shephard’s Lemma. The weights in the Divisia index are observed, actual
shares, as opposed to the unobserved, compensated shares of the Koniis index (see Balk

2005) for this way of characterising the two indices).’ So, intuitively, for the two price
y g y p

indices to be equal, the two sets of shares have to be equal: s/ (¢) = 5,(t). This means that the

For a general discussion of Divisia indices, including the path-dependence problem, see
Hulten (1973).
’  Previous results on the relationship between chain, Divisia and Koniis indices include
Diewert (1981), Feenstra and Reinsdorf (2000) and Balk (2004). Suppose a utility function
exists which rationalises the data but may be non-homothetic. Diewert (1981) showed that
there exists a utility level which is intermediate between the levels at the endpoints of the
interval under study such that a Koniis price index over this interval, with utility fixed at the
intermediate level, is bounded below by the Paasche and above by the Laspeyres. Balk (2004)
showed that when the growth of prices is piecewise log linear a chained Fisher price index
approximates a Koniis price index over an interval when the reference utility level is fixed at
that of some intermediate point in the interval. A somewhat more precise result for the
Almost Ideal demand system is due to Feenstra and Reinsdorf (2000). If prices are growing at
constant rates, they show that the Divisia index between two time periods equals the Koniis
price index when the reference utility level is a weighted average of utility levels along the
path.



value shares have to be independent of the utility level, which implies that the utility function
is homothetic, ie all income elasticities are equal to one."

If income elasticities are not all equal to one, then in general compensated and actual
shares differ. But there is more to it than that, for in this case the Divisia index is path
dependent. This means that its level at some time period 7, relative to its level in the base

period 0, depends not just on the price relatives p,(T)/ p,(0), but also on the path that prices

have followed between the endpoints. So different paths, even if they begin and finish at the
same points, produce different values of the Divisia index. In comparing the cost of living in
period 7 with the cost in period 0, only prices at 0 and 7 would seem to be relevant. Any
prices strictly within the interval [0,7] would seem irrelevant. And the path between the
endpoints should not influence the comparison between the situations at the two endpoints.
Suppose that prices in periods 0 and T are identical, and also that quantities are identical.
Then we should certainly want the Divisia price index P”(T)/P”(0) (and also the Divisia
quantity index) to equal one for this period. But this is not guaranteed unless all income
elasticities equal one.

Despite its apparent similarity to the Divisia index, the Koniis index is not path-

dependent. That is to say, we can recover the level of the price index by integration:

Jmzlnpk(t,o) " :Irz_{alnE[p(t),u(O)]}Edlnpijdt
o 4t 0 & ol p, dt

_ Jr[a’ lnE[p(t),u(O)]} "
0 dt

=In E[p(T),u(0)] - In E[p(0),u(0)]

=1In P*(T,0)—1n P*(0,0)

The reason this works is that the compensated shares depend only on prices, since by

definition utility is being held constant. The actual shares on the other hand depend not only

" Here I ignore the trivial case where all prices grow at the same rate, in which case any
pattern of weights which sum to one will produce the same value for the price index. Balk
(2005) provides a formal proof that the two indices are equal if and only if the utility function
is homothetic (his Theorem 1).



on prices but also on the level of utility which varies over the path, unless utility is
homothetic, in which case shares depend only on prices.

Path-dependence or -independence is a mathematical concept, a property of line integrals
like equations (2) and (3) above. The main mathematical result is that a line integral like (3)

is path-independent if and only if there exists a potential function ¢(p) such that

_Olng(p()) LN
olnp.(t)

5,(1)
ie shares depend only on prices.'" But this is equivalent to requiring the utility function to be
homothetic. If this condition holds, the expenditure function can be written as

E[p@®),u(t)]= E[p(?),1]u() and then the potential function ¢(p) is in fact the expenditure
function, since now s,(t) =0Iln E(p(¢),1)/0ln p,(¢) .

The size of the path-dependence bias in a Divisia index is a function of the gap between
actual and compensated budget shares, s, (f)—s’ (). But it s also and primarily an empirical

question. After all, if all prices rise at the same rate, then the bias would be zero, since the
Koniis and Divisia price indices would be equal, whatever the difference between
compensated and actual budget shares. To estimate the bias, we need a theory of consumer

demand that fits the facts empirically, the topic of the next section.'?

3. The Quadratic Almost Ideal Demand System

A good starting point is the almost ideal (Al) demand system of Deaton and Muellbauer
(1980a) and (1980b, chapter 3). This is fully consistent with economic theory and also
possesses the property of exact aggregation. Most importantly in the present context, income
elasticities can differ from one. Applying Shephard’s Lemma to the Al expenditure function

leads to a set of share equations:

""" See Hulten (1973), with references to the mathematical literature, eg Apostol (1957),

chapter 10.

2" An alternative approach, complementary to the present one, has been proposed by Hill
(1999) and (2004). Roughly speaking, he suggests using a chain index (for intertemporal,
cross-country or panel comparisons) but choosing the links in the chain so that on average the
growth of prices between any two links is as close to proportional as possible.



Si(t):ai+zjyij Inp,+pInz(r), i=1..,N 4)

Here z is deflated expenditure: z(¢) = x(¢)/P(¢), where x(¢) is total expenditure,

x(f) = Zi p:(H)q,(¢), and P is a price index defined by:

InP(t)=a,+ 0, Inp () +4Y, > 7, Inp,(O)np, (1) (5)

We normalise by setting p,(0) =1, all i. Consistency with economic theory requires that the

parameters of the system satisfy the following adding-up and symmetry restrictions:
2=k Z,Vz‘j =0,Vi: 3 B,=0: 7, =7, Vi* ]

The “Quadratic Almost Ideal Demand System” of Banks, Blundell and Lewbel (1997), or
QAIDS, is a generalisation of the Al system. It too is consistent with economic theory and
exactly aggregable. Empirically, its strength is that it allows Engel curves to be quadratic
which provides a much better fit to the data; it turns out that for many commodities Engel
curves are not linear in the log of deflated expenditure as would be required by the Al system
(Banks et al., 1997; Blow et al., 2004). The share equations corresponding to the QAIDS are
similar to those of the Al system, except that there is an additional term in the square of

deflated expenditure:

A

s,(t)=q, +zjy,.j Inp,()+p, lnz(t)+1_Lpiﬂ’ B [Inz()]", i=1..,N (6)

In addition to the previous parameter restrictions, consistency with economic theory also

requires that

>4 =0.

The indirect utility function for the QAIDS is given by Banks ef al. (1997) as:



Inz(?)

T2/ =03 Alnp @)

Inu(t) =

(applying my notation to their equation (3))."* Let us pick a particular year as the base year
for utility, say year R. Now, by appropriate choice of currency and quantity units, we can

normalise so that Inz(R)=0. Then Inu(R) =0 also. Equivalently, we can choose utility
units so that Inu(R)=0; then Inz(R)=0. So by setting the left hand side of equation (7)
equal to 0, we can solve for the level of deflated expenditure required to keep utility at the

base year level (zero), when the prices of year ¢ prevail; this is denoted by z*(#):

0 Inz*(¢)
[l @+ @) 4 1np ()

—Inz"(t)=0 (8)

For the QAIDS, the compensated shares (the budget shares that would prevail if utility

were held constant at its base year level) are obtained from equation (6):

sfO=a+ y,np, )+ fIn Z’*(t)+ﬁ[lnzk(t)]2

i 1

)
R .
=q,; +Zj;/l.jlnpj(t), i=1..,N

using (8). I now write & rather than simply «, since the values of the @, depend on the
normalisation adopted for Inz(R): see the next sub-section below. Plugging (9) into (6) and
solving,

s () =s,(t)= B In z(1) - H&?-ﬁ’ [lnz)]*, i=1,..,N (10)

i

B By setting all the A, equal to zero, we obtain the indirect utility function and the

expenditure function of the Al system.

10



This is the relationship between compensated and actual shares that we are seeking and on

which we shall rely for the empirical analysis. Also, by setting # =R in (10), we obtain:

sf(R)=s,(R), i=1,.,N (11)

since Inz(R)=Inz"(R)=0 by normalisation. That is, compensated and actual shares are

equal in the base year. Actually, this result is independent of any normalisations as follows

from consideration of the expenditure function:
s"(R)=0In E[p(R),u(R)]/2In p, = 5,(R)
In the empirical work reported below it proves convenient to. make the base year for

utility the same as the reference year for the price index, ie we set R =0."* So (10) and (11)

then become

S0 =5,(0)— B In 2(0) - Hﬂ"‘p@ [ =),

(12)
57(0) = 5,(0), i=1L..,.N

since Inz(0) =0 by normalisation.

3.1 A new interpretation of the Al and QAIDS price index P

The Al price index P defined by equation (5) has never till now been given a clear
interpretation. The fact that it depends only on prices and not on utility or deflated
expenditure suggests that it might have some connection with the Koniis price index. The
following argument shows that the connection is a very close one: the price index P is in fact

the Koniis price index for the Al system and the QAIDS.

'* A further natural normalisation is to choose currency and quantity units so that x(0)=1.

Together with the other normalisations this then implies that P(0) =1, which fixes ¢, :

a, = 0. However, this is not required for any of the results in the present paper.

11



As before choose year R as the base year. Then from (8) we have that Inz"(¥)=0.
Corresponding to deflated expenditure z*(¢) there is also a level of nominal expenditure

required to keep utility at its level in year R which we can write as x*(¢). So from the

definition of z(#) we have:

0=Inz"(t)=In[x"(t)/ P(t,R)], ie x"(t)/ P(t,R)=1 (13)

I now write the Al price index P as P(¢,R) since as I am about to show it depends on the
base year R. Now x”(¢) is the cost of purchasing the period R level of utility at the prices of

period ¢, so x"(¢)/x*(0) is an index of the cost of purchasing the period R level of utility, at

the prices prevailing in year ¢, relative to the expenditure required at period 0 prices. In other

words:

x*(6)/x"(0) = E[p(1),u(R)}/ E[p(0),u(R)] = P*(#,R)/ P* (O, R)

Since equation (13) holds for # =0 too, we have by division that

x®(t)/ x"(0) = P(t,R)/ P(0,R)

So the last result shows that the price index P of the Al system and the QAIDS, given by

equation (5), is not just any old price index but is identical to the Koniis price index with base

period R:

PX(t,R)/ P*(0,R) = P(t,R)/ P(0,R) (14)

Surprisingly, as far as I know this result has not been pointed out before. The result may
appear puzzling at first sight since we know that there is a different Koniis price index for
each choice of base year for utility (unless tastes are homothetic), while there seems to be
only one Al system price index, given by equation (5). The paradox is resolved by noting that

the «, parameters which partly determine the growth rate of P depend on the choice of base

year for utility. By setting t = R in (9) and using (11):

12



af =s, (R)—Zi;/ijlnpj(R), i=1..,N (15)

(When R =0, &’ =s,(0)). However the values of the other parameters in the definition of the
price index in equation (5), the y,, are invariant to the choice of base year since these are

semi-elasticities of budget shares with respect to prices, with utility held constant. Thus, as
asserted, the Al system (and QAIDS) price index P is identical to the Koniis price index if
demand is correctly described by this system. And the growth rate of this price index varies

with the choice of base year, through the ¢, parameters.

3.2 Estimating the compensated shares empirically

An empirical counterpart to the share equations can be written by transforming equations (6)

to discrete time and adding an error term:

se=al+ > yyIn(p, I p)+BInz+ Ay He,  i=1.,N; t=0,.,T=1 (16)

Here &, is the error term, we have put Iny, =[Inz,]*/ H,- p?, and we have used the fact that

21174’1 =0,Vi, to express the share equations in terms of relative prices (taking the first

good as the numeraire).

In the QAIDS, there are (N° — N)/2 independent 7, parameters and the ¢, [, and 4,

number a further 3(N —1) independent parameters, for a total of (N° +5N —6)/2. So if the
number of commodities is at all large, it is quite impractical to estimate such a system,

because the number of y, parameters explodes. But for the purpose of estimating a cost-of-
living (Koniis) index, we don’t need to! The trick is to find a parsimonious way of estimating

ZL 7;In(p,/p,) as a linear combination of parameters and variables, without trying to

recover the individual parameters. There are two ways to do this. The first way comes from
noting that according to equation (10) we only need estimates of the parameters relating to

income elasticities (the S, and A,) in order to derive compensated shares from actual shares;
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we do not need estimates of the parameters relating to price elasticities."® If we had access to
household survey data for one or more periods, we could estimate these income elasticity
parameters econometrically, assuming that all households face the same prices in a given
period. Here however we follow a second approach which only requires aggregate data on
budget shares and prices.

First we can note a special case in which the effects of relative prices can be exactly
captured by just one variable. Suppose that all relative prices are growing at constant but

possibly different rates:
ln(pjt/p“):,ujt, j=2,..,N

where the ; are the growth rates of the relative prices and the first product is taken as the
. N N ;

numeraire. Then Z_,=27/fj In(p,/p,)= t[zjzz Vi ,uj} =0, say. In this case the effect of

relative prices is captured entirely by a time trend, with a different coefficient in each share

equation (subject to the cross-equation restriction that Z,- 0. =0). A more general case can be

treated by using principal components as a data reduction technique.'® We can collapse the
relative price data into M principal components, where M <N -1 is to be chosen

empirically. Then the share equations (16) can be written as:

sp=a+ > " O, PC, + Bz + A4y +e,  i=1.,N;1=0,.T-1 (17)

k=1 ik

where PC,, is the kth principal component of the N —1 relative prices and the 6, are
coefficients subject to the cross-equation restrictions Zﬁik =0, Vk."” The success of this

strategy will depend on whether the variation in relative prices can be captured by a fairly
small number of principal components — small that is in relation to the number of time series

observations, 7. We have now reduced the problem to estimating a system of equations, each

5 T ignore here the fact that the AI system price index P used to estimate deflated

expenditure is a function of these parameters. The iterative procedure explained below gets
round this difficulty.

' For a textbook exposition of principal components, see Johnson and Wichern (2003,
chapter 8).

7" The special case just discussed is where the whole variation in relative prices can be
captured by one principal component, a time trend.
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of which contains only M + 3 coefficients (the 8,,a,, 5,, and 4,). We must also take account

of the cross-equation restrictions:

D=Ly B=0> 4=0;) 6,=0,Vk

These adding-up restrictions are automatically satisfied if the system is estimated equation-
by-equation using OLS, though if the regressors are endogenous or the errors are non-normal
this might not be the best method. There is one loss from using principal components: we can
no longer impose the symmetry restrictions.'® Finally, we must recognise that z,.and y, are
measured with error, since both involve initially unknown parameters. We can proceed here
in the same way as do empirical workers who are seeking to estimate all the parameters of the

QAIDS (eg Banks ef al., 1997): that is, use iteration. Start with an initial estimate of z, and
»,, and then estimate the system of (17). Use the regression estimates of the unknown
coefficients to obtain updated estimates of z, and y,. Then re-estimate the system (17) using

these updated estimates, and continue to iterate till convergence is reached.
In more detail, we can generate an initial estimate of the price index P using a chained

Tornqvist index (a chained Laspeyres or chained Fisher index would serve as well):
Aln PV = %2, (s +5,)Anp; BV =1

where a superscript number in parentheses denotes the number of the estimation round; in

this case (1) denotes the first round. Initially, we can set our estimates of the /3, to zero. Then

Inz" =1n[x,/P"] and Iny" = {In[x, / P"]}?

t

In the next round, we can update the price index by

'8 For example, suppose that N =3 and that the special case of all relative prices changing

at constant rates applies. Then, dropping the third equation, taking the first product as the
numeraire, and imposing all the constraints, the relationship between the &, and the y, is as

follows: O, =y, tt, — (7, + Vi)t s Oy = Voo tdy — (V15 + ¥ )45 . These relationships imply no
further restrictions on &, and 0, .
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AlnP? =1%" (5" +5,)Alnp,, P =1

it it-1

Here the s, are the first round predictions of the compensated shares from (17), derived as:

20 =60 +3 " Q0PC,,  i=1,.,N; 1=0,.,T -1

it k=1 ik kt >

where a hat (%) denotes a regression estimate. Then we can update z, and y, by

Inz® =1In[x,/P®] and Iny® ={In[x, /1’,(2)]}2/ l_p.ﬁ"m

: it

Assuming convergence, the final estimate of P will be (an approximation to) the Koniis
price index, when period 0 is the base year for utility. It will be a chain index number, but it
will be path-independent. This method could be applied by national statistical agencies, using
exactly the same data as they employ to construct real world consumer price indices. Though
I do not pursue this point in the present paper, the same method could also be applied to the

construction of cross-country price indices (international comparisons of purchasing

power)."”
3.3 Changing the base year
Once we have estimated a Koniis price index with zero as the base, we can use the following

relationships to estimate a Koniis price index with some other period, say R, as the base.

Taking first differences in equation (9), we obtain:
AS,.R(t)=Zj7/U.Alnpj(t)=As;)(t), i=1,..,N (18)

ie the changes in compensated share are independent of the choice of base year. Also,
according to (11), s/(R)=s,(R),i=1,..,N, ie the compensated and actual shares are equal

in the base year. Hence from (18)

19 Neary (2004) uses the QAIDS to estimate Koniis price indices and real income for 60
countries in 1980, based on 11 commodity groups.
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sfO=s,(R)+Y.  As'(z),  T-12t>R; i=1..,N
(19)
=s5,(R) =X As'(1), 0<t<R; i=1..,N

Once we have estimated the compensated share changes with 0 as the base year (from the

estimated s’

. » see above), we can then recover the levels of the compensated shares when R is
the base year from (19). These compensated shares can then be used to estimate a Koniis
price index with period R rather than period O as the base. So we only need to estimate the
parameters of interest once, for one base year. Then we can calculate a Koniis price index

with any other year as the base; there is no need for any further econometric estimation.

4. The Method in Practice

The results reported here are based on a dataset of prices and budget shares for 70 products in
the U.K.’s Retail Prices Index (RPI) over the period 1974-2004. The dataset was originally
put together by the Institute for Fiscal Studies: see the Data Appendix in Oulton (2007) for
more detail and for descriptive statistics.”” These 70 products account for virtually 100% of
the items in the RPI in the earlier years though the coverage gradually falls after 1992 to
reach 91% in 2004. Total expenditure (x) is measured on a per capita basis. It is estimated as
total final consumers’ expenditure by U.K. households in the U.K. and abroad in current
prices (ONS code: ABJQ), multiplied by the proportion of total expenditure on the “All
items” RPI (ie the-overall index of retail prices) that is covered by the prices included in the
present study, divided by the population. The mean inflation rate as measured by a number of
conventional price indices is shown in Table 1. All the chained measures are similar to each
other; indeed, the chained Fisher and Térnqvist indices are identical to two decimal places.
However the fixed weight indices, which use either the first year (1974) or the last (2004),
differ more markedly. Interestingly, the Paasche index grew more rapidly than the Laspeyres,

contrary to the normal expectation.

*® The data on U.K. retail prices and budget shares were kindly supplied by Andrew
Leicester of the Institute for Fiscal Studies (IFS). A very similar dataset underlies Blow ef al.
(2004).

17



The first step was to estimate the principal components of the 69 log relative prices.”! The
proportion of the variation explained by successive components is given in Table 2. The first
six principal components account for 97.8% of the variation. With 13 components the
cumulative proportion rises to 99.7%. On this basis, it was decided to employ six principal
components (see below for the effect of including more or fewer principal components).
However a potential problem for the empirical analysis is the high degree of multicollinearity
between the principal components, deflated expenditure (In(z)) and deflated expenditure
squared (In(y)). The multiple correlation coefficient between the six principal components
and In(z) is 0.995 and that between the six principal components and In(y) is 0.994; the
simple correlation coefficients between the first principal component and In(z) and In(y) are
respectively 0.982 and 0.955.

Next, equation (17) was estimated for each of the 70 products over the period 1975-2004
by OLS.” Convergence of the estimates of equation (17) was rapid. There was very little
change in the estimated growth rate of the Koniis price index (with 1974 as the base) after
three iterations; nevertheless a further five iterations were carried out by which time the mean
growth rate was stable up to the 7™ decimal place. Once convergence was reached, Koniis
price indices were then constructed with each of the years 1974 to 2004 in turn serving as the
base, using equations (19) to generate the compensated shares for the reference years 1975-
2004.%

The results of the eighth and final round of estimates appear in Table 3.* On the whole
the model fits quite well, as measured by R (last column). The Breusch-Godfrey LM test for
serial correlation suggests that at the 5% level first-order serial correlation is present in only
15 of the 70 equations. Still, as a precaution, the ¢ ratios are based on Newey-West standard
errors which are robust to serial correlation. On the basis of a Wald test, the six principal
components of log relative prices are jointly significant (non-zero) at the 5% level in 64 out

of 70 equations.

21 . . . . . .
Since the variables to be summarised are log relative prices and so have the same units,

the principal components were based on the covariance matrix, not the correlation matrix, ie
the variables were not standardised. Estimation was done by Stata’s pca command, with the
covariance option.

2 Since the regressors are the same in each share equation, estimation by SUR would lead
to identical results.

» These Koniis price indices were estimated using the Toérnqvist formula.

** In a small number of cases, affecting nine products, the estimated compensated shares
were negative in a few years. In these cases the estimates of the compensated shares were set
to zero and the sum of the shares was constrained to equal one.
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A Wald test shows that the coefficients on In(z) and In(y), the S and A, are jointly non-

zero at the 5% level for 37 products; that is, for each of these 37 products the income
elasticity differs significantly from one, while for the other 33 products it does not (Table 3).
(On the basis of # tests, In(z) is individually significant at the 5% level for 25 products, In(y)
for 36 products). So despite the high multicollinearity we have already noted between the
principal components, In(z) and In(y), income elasticities are still found to differ significantly

from one in the majority of cases. The importance of the A, parameters is apparent in the

Engel curves. These show budget shares as a function of log real income per capita with
prices held constant. Only in 14 out of 70 cases are the Engel curves approximately linear
even when attention is confined to the range of real income observed over the study period
1974-2004.

As explained in the previous section, these regression results can be used to generate 31
different Koniis price indices, one for each possible base year forutility over 1974-2004. The
average growth rates of these 31 Koniis price indices over three intervals, 1974-1990, 1990-
2004 and the whole period 1974-2004, appear in the left hand panel of Table 4. The mean of
the average growth rates of these 31 indices is close to the conventional chained Laspeyres
index of the 70 component prices. In fact, over the whole period the mean of the 31 average
growth rates, 6.20 per cent per annum, is almost exactly the same as that of the chained
Laspeyres, 6.21 per cent per annum (Table 1); at 6.15 per cent per annum, the values for the
chained Fisher and chained Tornqvist indices are also close. This is in accordance with the
theoretical predictions of Balk (2004) and Feenstra and Reinsdorf (2000), even though these
were established under more restrictive conditions than apply here.

Nevertheless there is quite a lot of variation between indices with different base years.
Thus over the whole 31 year period the minimum average growth rate is 5.91 per cent per
annum (using 2004 as the base)® while the maximum is 6.39 per cent per annum (with 1978
as the base), a difference of 0.48 percentage points. Surprisingly, there is almost as much
variation between indices with different base years in the more recent, low-inflation period
1990-2004 as there is in the high-inflation period 1974-1990. In the low-inflation period, the
maximum average growth rate (2.97 per cent per annum) is found when 1993, 1995 or 1996

are used as the base year, the minimum (2.34 per cent per annum) when 2004 is the base; the

> Recall that “5.91 per cent per annum” is the answer to the following question: given the

money income of the average household in 2004, what is the change in its money income
between 1974 and 2004 (expressed as an annual percentage rate) which would have allowed
the household to enjoy its 2004 utility level in 19747
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difference between minimum and maximum is 0.63 percentage points. By contrast the
difference between minimum and maximum average growth rates in the high-inflation period
is 0.69 percentage points (comparing 2002 with 1978 or 1979 as the base).

Table 4 in conjunction with Table 1 also reveals the size of the path-dependence bias of a
conventional index number like the chained Laspeyres. Depending on the base year for utility
and the time period, this can be as large as +0.45 or -0.43 per cent per annum (Table 5).

The relationship between the average growth rates of the Koniis indices and the base year
can be seen more clearly in Figures 1-3. Over the first sub-period, 1979-1990, and over the
whole period, 1974-2004, the relationship between the average rate of inflation and the base
year is roughly linear and negative. Over the second sub-period, 1990-2004, there is still a
negative relationship but only for base years later than 1996. Since on average real income
rose steadily over 1974-2004, a negative relationship means that the less well off were more
adversely affected by inflation than were the more prosperous. This is an interesting
empirical finding though not one that would necessarily generalise to other periods and other

countries.

4.1 TV estimates

As mentioned earlier, estimation by OLS might be questioned since the real expenditure
variables (z and y) are measured with error (given that the QAIDS price index P is itself an
estimate) and also may be endogenous: a rise in the price of some good may lead households
to draw down their liquid reserves. The share equations were therefore also estimated by IV
(2SLS), using as instruments one lag of In(z) and of In(y) and the chained Laspeyres measure
of the overall inflation rate.*® The rationale for using the latter as an instrument is that
households are more likely to suffer unwelcome surprises and so are more likely to draw
down their savings when inflation is high. In fact, the partial R statistics of Shea (1997) and
Bound et al. (1995) are both quite high when all three instruments are included. But when
only the lags of In(z) and In(y) are included the same statistics suggest that these two
instruments by themselves are weak. With all three instruments included, Hansen’s J statistic
suggests that we can reject the null of no correlation between the instruments and the errors at

the 5% level in only 9 out of 70 cases.

*® The use of GMM is likely not justified due to the small number of time series
observations on each share (Baum et al., 2003).
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The resulting IV estimates of the 31 Koniis price indices were remarkably similar to the
OLS ones as the right hand panel of Table 4 shows.*” The correlation coefficient between the
OLS and IV estimates of the mean growth rates of the 31 indices over 1974-2004 is 0.991.
However, the problem noted earlier — the tendency for some of the estimated compensated
shares to be negative after 1990 — is a bit more serious now. After the negative shares are set
to zero (but prior to the sum of the shares being constrained to sum to one), the sum of the IV
estimates of the compensated shares rises steadily to reach 1.103 in 2004; the same sum is
only 1.050 for the OLS estimates. So in this case nothing much seems to be gained by
moving from OLS to IV. But at any rate it is reassuring that the OLS and IV estimates of the

Koniis price indices are so similar.

4.2 Varying the number of principal components

The decision to include just six principal components in the estimation of equation (17) might
be criticised as arbitrary. So I also estimated this equation and the resulting Koniis indices
using alternately one through nine principal components (ie setting M equal to successively

1,2,...,9 in equation (17)). The effect on the mean inflation rate over 1974-2004 (using either

1974 or 2004 as the base year for utility) is illustrated in Table 6. Here a different kind of
convergence is apparent. For example, with just one principal component included, the mean
inflation rate with 2004 as the base year is 6.20 % p.a., while with six included it is 5.91%. In
this case the inflation rate falls as the number of principal components is increased, but with
little further effect once four are included. A similar comment applies when 1974 is the base:
there is again little further effect on the estimated inflation rate once four principal
components have been included (though now the inflation rate rises as the number of
principal components is increased). Hence the use of six principal components as in Table 3
can be defended as a reasonable compromise between the desire to account for as much of the

variation of relative prices as possible and the need to conserve degrees of freedom.

" The IV estimates were produced within Stata by the ivreg2 command written by Baum et
al. (2003).
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5. Conclusions

I have argued that chain indices typically suffer from path-dependence bias by comparison
with true cost-of-living indices. I have proposed a method of removing this bias, using a
flexible model of consumer demand that is known to fit the data well (at least at a high level
of aggregation), the QAIDS. Although testing the QAIDS requires a large amount of data,
using it to remove the bias requires much less data.

I have applied this method to estimate Koniis price indices for 70 products covering most
of the U.K.’s Retail Prices Index over 1974-2004, with each year in turn as the base. In this
case it turns out that annual data sufficient to estimate nine coefficients for each commodity
are all that is required. The choice of base year is found to have a significant effect on the
index, even in the low inflation period since 1990. For example, with 1993 as the base year
for utility, the average growth rate of the Koniis price index over 1990-2004 is 2.97 per cent
per annum; with 2004 as the base year it is 2.34 per cent per annum, a difference of 0.63
percentage points. The path-dependence bias of a conventional index number like the chained
Laspeyres index of the RPI can be as large as +0.45 or -0.43 per cent per annum (depending
on the base year for utility and the time period).

Judging by these results, the method proposed here could be implemented in practice on
the consumer price index at a detailed level by any statistical agency possessing 30 years or
more of annual data on prices and budget shares. It could also be used to improve the
measurement of cross-country differences in living standards, using the kind of data
generated by the World Bank’s International Comparison Program.

These results do however point to an issue that as far as [ am aware is unresolved: what is
the “best” base year for utility? Fixed base indices, where it is the weights (prices or
quantities) that are fixed, are no longer popular with statistical agencies. But now the problem
of a fixed base for the weights seems to reappear in the guise of a fixed base for utility. A
closely related issue has been discussed extensively in the literature on international
comparisons of purchasing power and real income (see eg Caves ef al., 1982; Diewert, 1987,
Hill, 1999 and 2004; Neary, 2004). In the cross-country context, the base country plays the
same role as does the base year in the time series context. It is widely held that the index
number for real income should be invariant to the choice of base country. One could take the
purchasing pattern of a single country, eg the United States, as the base but it is far from clear

that this is appropriate if we want to compare the real incomes of Albania and Zambia. So the
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index numbers commonly employed for international comparisons (Geary, EKS, or the
measure proposed by Caves et al. (1982)) represent some sort of average of the bilateral
indices based on each country in turn as the base. However, it is not clear that the arguments
for base-country invariance carry over to the time series context, the concern of the present
paper. Here the choice of base would seem to depend on the purpose at hand. The choice for
a central bank targeting inflation might be different from the choice of a statistical agency or

an economic historian measuring real GDP.
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Table 1

Conventional price indices: average annual growth rates, % p.a.

1974-1990 1990-2004 1974-2004

Chained Tornqvist 9.38 2.46 6.15
Chained Fisher 9.38 2.46 6.15
Chained Laspeyres 9.42 2.54 6.21
Chained Paasche 9.34 2.38 6.10
Laspeyres (base 1974) 9.68 3.21 6.66
Paasche (base 2004) 10.11 3.40 6.98

Source Office for National Statistics, Institute for Fiscal Studies and own calculations. All indices are for 70
products covering most of the items in the RPI.
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Table 2
Principal component analysis of 69 log relative prices:
U.K. Retail Prices Index, 1974-2004

Eigenvalue Difference Proportion Cumulative
Component 1 2.8454 2.6303 0.8482 0.8482
Component 2 0.2150 0.1421 0.0641 0.9122
Component 3 0.0729 0.0028 0.0217 0.9340
Component 4 0.0701 0.0212 0.0209 0.9549
Component 5 0.0489 0.0215 0.0146 0.9694
Component 6 0.0273 0.0082 0.0082 0.9776
Component 7 0.0192 0.0011 0.0057 0.9833
Component 8 0.0180 0.0085 0.0054 0.9887
Component 9 0.0096 0.0025 0.0029 0.9915
Component 10 0.0071 0.0011 0.0021 0.9937
Component 11 0.0060 0.0028 0.0018 0.9954
Component 12 0.0032 0.0010 0.0009 0.9964
Component 13 0.0022 0.0003 0.0006 0.9970

Note  The principal components were estimated from the logs of the prices forthe 70 products within the
U.K. RPI listed in Table 3, with the first product (“Bread”) taken as the numeraire; each relative price takes the
value 1 in 1974 (0 in logs).
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Table 4
Comparison of mean growth rates of Koniis price indices with different base years:
1974-1990, 1990-2004 and 1974-2004 (per cent per annum)

OLS estimates 1V estimates

Base year 1974-1990 1990-2004 1974-2004 1974-1990 1990-2004 1974-2004
1974 9.57 2.61 6.32 9.58 2.61 6.33
1975 9.52 2.62 6.30 9.52 2.62 6.30
1976 9.53 2.55 6.27 9.52 2.55 6.27
1977 9.61 2.58 6.33 9.58 2.58 6.31
1978 9.66 2.66 6.39 9.63 2.66 6.38
1979 9.66 2.59 6.36 9.68 2.59 6.37
1980 9.59 2.56 6.31 9.64 2.56 6.34
1981 9.62 2.56 6.32 9.63 2.56 6.33
1982 9.59 2.59 6.32 9.55 2.59 6.30
1983 9.54 2.62 6.31 9.46 2.62 6.27
1984 9.54 2.56 6.28 9.47 2.56 6.25
1985 9.53 2.56 6.28 9.47 2.56 6.25
1986 9.51 2.54 6.26 9.46 2.54 6.23
1987 9.51 2.64 6.30 9.45 2.64 6.27
1988 9.36 2.61 6.21 9.32 2.61 6.19
1989 9.30 2.65 6.20 9.28 2.65 6.19
1990 9.21 2.63 6.14 9.19 2.62 6.12
1991 9.24 2.72 6.20 9.22 2.70 6.18
1992 9.12 2.83 6.18 9.10 2.81 6.16
1993 9.06 2.97 6.22 9.04 2.93 6.18
1994 9.03 2.94 6.19 9.01 2.89 6.15
1995 9.08 2.97 6.23 9.06 2.92 6.20
1996 9.11 2.97 6.24 9.09 291 6.20
1997 9.03 2.84 6.14 9.01 2.78 6.10
1998 9.06 2.67 6.08 9.04 2.61 6.04
1999 9.04 2.55 6.01 9.02 2.50 5.98
2000 9.02 2.49 597 9.00 2.44 5.94
2001 9.06 2.47 5.99 9.04 2.45 597
2002 8.97 2.48 5.94 8.95 2.52 5.95
2003 9.04 2.47 5.98 9.02 2.52 5.99
2004 9.02 2.34 5.91 9.00 2.36 5.90
Mean 9.31 2.64 6.20 9.29 2.63 6.18

Minimum 8.97 2.34 591 8.95 2.36 5.90

Maximum 9.66 2.97 6.39 9.68 2.93 6.38

Source Office for National Statistics and Institute for Fiscal Studies; own calculations.

Note  The Koniis price indices are aggregates over 70 U.K. retail prices, using the Térnqvist formula; the
weights are the estimated compensated shares, derived from estimates of equation (17). The IV estimates use
three instruments: one lag of In(z), one lag of In(y), and the chained Laspeyres measure of the inflation rate. See
text for further explanation.
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Table 5

Path dependence bias of a chained Laspeyres price index (the RPI)

Greatest absolute bias 1974-1990 1990-2004 1974-2004
Positive bias +0.45 +0.20 +0.30
Negative bias -0.24 -0.43 -0.18
Source Tables 1 and 4. The bias is the difference between the growth rate of the chained Laspeyres index

and either the maximum or the minimum growth rate of the Koniis indices over the same period.
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Table 6
Average inflation rates of Koniis price indices over 1974-2004, % p.a.:
effect of including different numbers of principal components

Base year

Number of

principal components 1974 2004
1 6.12 6.20
2 6.06 6.25
3 6.09 6.18
4 6.30 5.96
5 6.30 5.94
6 6.32 5.91
7 6.31 5.90
8 6.33 5.88
9 6.30 5.90

Note  Each Koniis price index is estimated from equation (17), but using a different number of principal
components, from one through nine.
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Figure 1

Average growth rate of Konus price index, 1974-1990
by base year (per cent per annum)
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Figure 2
Average growth rate of Konus price index, 1990-2004
by base year (per cent per annum)
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Figure 3
Average growth rate of Konus price index, 1974-2004
by base year (per cent per annum)
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Note  The Koniis price indices are aggregates over 70 U.K. retail prices, using the Térnqvist formula; the
weights are the estimated compensated shares, derived from OLS estimates of equation (17): see Table 3.
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