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The calculation of likelihood functions of many econometric models requires

the evaluation of integrals without analytical solutions. Approaches for extend-

ing Gaussian quadrature to multiple dimensions discussed in the literature are

either very specific or suffer from exponentially rising computational costs in

the number of dimensions. We propose an extension that is very general and

easily implemented, and does not suffer from the curse of dimensionality. Monte

Carlo experiments for the mixed logit model indicate the superior performance

of the proposed method over simulation techniques.
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1 Introduction

Many econometric models imply likelihood functions that involve multidimensional inte-

grals without analytically tractable solutions. This problem arises frequently in microe-

conometric latent dependent variable (LDV) models in which all or some of the endogenous

variables are only partially observed. Other sources include unobserved heterogeneity in

nonlinear models and models with dynamically optimizing agents.

There are different approaches for numerical integration. It is well known that Gaussian

quadrature can perform very well in the case of one-dimensional integrals of smooth func-

tions as suggested by Butler and Moffit (1982). Quadrature can be extended to multiple

dimensions. The direct extension is a tensor product of one-dimensional quadrature rules.

However, computing costs rise exponentially with the number of dimensions and become

prohibitive for more than four or five dimensions. This phenomenon is also known as the

curse of dimensionality of deterministic numerical integration.

The main problem of this product rule is that the class of functions in which it delivers

exact results is not restricted to polynomials of a given total order. Unlike in the univariate

case, general efficient quadrature rules for this class are much harder to directly derive and

often intractable (Cools 2003, Judd 1998, Ch. 7.5). They are therefore usually considered

impractical for applied research (Bhat 2001, Geweke 1996).

These problems led to the advancement and predominant use of simulation techniques for

the numerical approximation of multidimensional integrals in the econometric literature,

see for example McFadden (1989) or Börsch-Supan and Hajivassiliou (1993) and Geweke,

Keane and Runkle (1997). Hajivassiliou and Ruud (1994) and Geweke (1996) provide an

overview over the general approaches of simulation and Train (2003) provides a textbook

treatment with a focus on discrete choice models, one of the major classes of models for

which these methods were developed and frequently used.

This paper proposes and investigates the performance of a different approach to this

class of problems. It can be traced back to Smolyak (1963) who provides a general rule
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how to extend univariate operators to multiple dimensions. In the economics literature,

Krüger and Kübler (2004) have used this approach for the approximation of macroeconomic

models. Winschel (2005) uses a Smolyak-based strategy for a nonlinear Kalman filter.

Integration based on Smolyak’s rule has been advanced in recent research in numerical

mathematics, for an overview see Bungartz and Griebel (2004).

The class of functions for which it is exact is confined to polynomials of a given total

order. This dramatically decreases computational costs in higher dimensions compared

to Gaussian quadrature extended to multiple dimensions by the product rule. It is based

on one-dimensional quadrature but extends it to higher dimensions in a more careful way

than the tensor product rule. This implies that it is easily implemented and very general

since only one-dimensional quadrature nodes and weights have to be derived.

We start by introducing notation and presenting the problem of likelihood approximation

and solutions commonly used in the literature in section 2. Section 3 introduces integration

on sparse grids and discusses its features and implementation. Section 4 presents the Monte

Carlo design and results and section 5 concludes.

2 Common Approaches to Likelihood Approximation

2.1 The problem

The likelihood function of many econometric models cannot be calculated analytically but

is instead expressed as an expected value over one or several random variables. Leading

examples are limited dependent or other nonlinear models for panel data with unobserved

heterogeneity, different error components or multinomial choice models.

Let x = [x1, ..., xD] denote a vector of random variables and write a general integration

problem as

ID[g] =

∫
Ω1

· · ·
∫

ΩD

g(x) w̃(x) dxD · · · dx1, (1)
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where w̃(x) represents the joint p.d.f. of x, and g(x) is a function which is in the nontrivial

case nonlinear in x. The integral ID[g] represents the expected value of g.

It will be convenient to assume that the integral is expressed in a way so that the weight

function w̃(x) can be decomposed as

w̃(x) =
D∏

d=1

w(xd) (2)

and where Ωd = Ω for all d = 1, ..., D. In the interpretation with x representing a vector

of random variables and w̃(x) their joint p.d.f., this restriction is equivalent to assuming

that the random variables are independently and identically distributed. Independence is

crucial for the remainder of this paper, while identical distributions are merely assumed

for notational convenience to save on another subscript.

This structure of the weighting function is less restrictive than it might seem. If inde-

pendence is violated in the original formulation of the problem, a change of variables often

leads to such a structure. If for example z denotes a vector of jointly normally distributed

random variables with mean μ and covariance matrix Σ, then x = L−1(z−μ) is distributed

i.i.d. standard normal if L is the Cholesky decomposition of Σ such that LL′ = Σ. Note,

however, that the problem of the calculation of joint posterior distributions for Bayesian

inference cannot in general be easily expressed in this fashion. This is the reason why for

these problems, it is not possible to directly draw values from the joint distribution but

one has to resort to MCMC or similar methods.

Since for nonlinear functions g(x) the integral has in general no closed-form solution, it

has to be approximated numerically.

2.2 Simulation

Monte Carlo simulation is the most commonly used technique in the econometric literature

for the numerical approximation of integrals of the form (1) in the multivariate case D > 1.

Given a number R of replications, a set of random numbers or “nodes” [x1, ...,xR] is
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generated such that each xr is a draw from the distribution characterized by w̃(x). The

simulated integral is then equal to

SD,R[g] =
1

R

R∑
r=1

g(xr). (3)

Under very weak conditions, the simulated value is unbiased and
√

R-consistent by a law

of large numbers, independent of the dimension D of the problem. Hajivassiliou and Ruud

(1994) discuss approaches and properties of simulation-based estimation.

There are different ways to generate the set of draws [x1, ...,xR]. Restriction (2) is

useful, since the draws can be made independently across the dimensions. The generation

of pseudo-random draws is implemented in all major software packages. The resulting

values are independent across draws. Quasi-Monte Carlo methods and antithetic sampling

algorithms distribute the nodes more evenly and create some sort of negative correlation

between draws. Therefore, they generally achieve both a better approximation quality with

a given number of replications and in many cases also faster convergence rates. Sándor

and András (2004) discuss various approaches in the setting of likelihood simulation for

multinomial probit models.

2.3 Univariate Quadrature

In cases where the integral is univariate, Gaussian quadrature and related approaches are

potentially powerful alternatives to simulation. A leading example are random effects (RE)

models like the RE probit model discussed by Butler and Moffit (1982). In this case, the

scalar random variable x represents the individual random effect and g(x) is the probability

of the sequence of observed outcomes conditional on the explanatory variables, parameters

and x. The integral I1[g] is the marginal (with respect to x) probability.

Quadrature rules depend on the distribution of x and deliver the exact value of the

integral if g(x) is a polynomial of a given order. Define a sequence of quadrature rules

V = {Vi : i ∈ N} so that the order of polynomial exactness increases with i. Each rule Vi
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specifies a set of Ri nodes Xi = [x1, ..., xR] and a corresponding weight function w : Xi → R

that is appropriate for the distribution of x characterized by w and Ω.

The quadrature approximation of I1[g] by Vi is then given as

Vi[g] =
∑
x∈Xi

g(x)wi(x). (4)

Given nodes and weights, quadrature rules are straightforward to implement, since equation

(4) merely requires to calculate a weighted sum of function values. While they are not

trivial to determine, for the most common cases they are tabulated in the literature and

efficient software is available, see for example Press, Flannery, Teukolsky and Vetterling

(1993) and Miranda and Fackler (2002).

Gaussian quadrature rules are especially efficient in univariate integration. If Vi is a

Gaussian rule with Ri nodes, then Vi[g] = I1[g] if g is a polynomial of order 2Ri −1 or less.

The Weierstrass approximation theorem states that any function can be approximated by

a polynomial arbitrarily closely under mild regularity conditions. This makes Gaussian

quadrature attractive for general functions g. The sequence of approximations Vi[g] con-

verges to I1[g] under weak assumptions as the number of function evaluations rises with

i. A sufficient condition is that g is bounded and Riemann-integrable. There are various

results concerning the speed of convergence for additional smoothness properties. For ex-

ample if g has n bounded derivatives, many Gaussian quadrature approximations converge

to the true value at a rate of R−n. This is much better than the
√

R-consistency of Monte

Carlo simulation if g(x) is sufficiently smooth. A more detailed discussion of Gaussian

quadrature can be found in the literature, see for example Davis and Rabinowitz (1984).

It will be useful below to use nested sequences of quadrature rules in the sense that

the set of nodes used by some rule is a subset of those used by one with a higher accu-

racy, so that Xi ⊆ Xj if i < j. This is not the case for classical Gaussian rules – they

generally use completely different nodes for each accuracy level i. An example for nested se-

quences of univariate quadrature rules are Kronrod-Patterson sequences (Patterson 1968).

A Kronrod-Patterson rule with accuracy level i adds a number of points to the set of
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nodes Xi−1 of the preceding accuracy level and updates the weights. So by design, they

are nested. The additional nodes are chosen such that a maximum polynomial exactness

is achieved. Because of the restriction that all nodes in Xi−1 are to be reused, Kronrod-

Patterson rules generally require a higher number of nodes to achieve the same univariate

polynomial exactness as Gaussian quadrature rules which optimally choose the nodes with-

out the requirement of nested sets.1

2.4 Multivariate Quadrature

In multiple dimensions, the general approach to approximate an integral with a rule which

is exact for polynomials of a given order works the same way as in the univariate case. The

definition of the order of a multivariate polynomial deserves some qualification since it is

less obvious than in the univariate case. The most commonly used definition is the total

order, see Judd (1998, Ch. 6.12). Consider a D-variate polynomial

g(x1, ..., xD) =
T∑

t=1

at

D∏
d=1

x
jt,d

d (5)

for some T ∈ N, [a1, ..., aT ] ∈ R
T and [jt,1, ..., jt,D] ∈ N

D for all t = 1, ..., T . The total order

of g is defined as the maximal sum of exponents maxt=1,...,T

∑D
d=1 jt,d.

Multivariate polynomials with a bounded total order are also known as complete polyno-

mials. They play an important role in function approximation – for example multivariate

Taylor series approximations are complete polynomials. Consider a second-order Taylor

approximation in two dimensions. It involves the terms x1, x2, x2
1, x2

2, and x1x2. It is a

polynomial of total order 2, since the sums of exponents do not exceed 2.

Unlike in the univariate case, general efficient quadrature rules for complete polynomials

in the multivariate case are much harder to directly derive, Judd (1998, Ch. 7.5) provides

1With one or three integration nodes, the Kronrod-Patterson rule and the Gaussian rule coincide. With

2R − 1 nodes for R > 1, Gaussian rules are exact for polynomials up to order 2(2R − 1) − 1, whereas

Kronrod-Patterson rules are only exact for polynomials up to order 3 · 2R−1 − 1. So the ratio of both

approaches 3/4 as m rises.
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an introduction to this topic. One of the earlier and best known examples is the paper

of Radon (1948) which provides a two-dimensional rule which is exact for polynomials of

total order 5 or less on a rectangular region with uniform weight. Since then, a large

literature on very specific problems for different numbers of dimensions, orders of poly-

nomial exactness, integration region, and weight function has evolved. For a collection of

these rules, see Stroud (1971) and Cools (2003). Because of their limitation to narrowly

defined problems, they are usually considered impractical for applied econometric research

(Bhat 2001, Geweke 1996).

A much simpler approach is to view a multivariate integral as a sequence of nested

univariate integrals and combine univariate quadrature rules in a tensor product fashion.

Define the tensor product of univariate quadrature rules with potentially different accuracy

levels in each dimension indicated by the multi-index i = [i1, ..., iD] as

(Vi1 ⊗ · · · ⊗ ViD)[g] =
∑

x1∈Xi1

...
∑

xD∈XiD

g(x1, ..., xD)
D∏

d=1

wid(xd), (6)

where the nodes Xi1 , ...XiD and weights wi1 , ..., wiD are those implied by the underlying

one-dimensional quadrature rules Vi1 , ..., ViD . The product rule TD,k for D-variate Gaussian

quadrature with accuracy level k is simply this tensor product with the same accuracy in

each dimension (Vk ⊗ · · · ⊗ Vk) [g].

This rule is widely known and often taken to be the multivariate quadrature rule. For

likelihood approximations, it has been used for example by Naylor and Smith (1988). A well

known fact is that the product rule suffers from a “curse of dimensionality”: It evaluates

the function g at the full grid of points Xk ⊗ · · · ⊗ Xk. In D dimensions, the product rule

therefore requires RD evaluations of the function g if the underlying univariate rule Vk is

based on R nodes. This exponential growth of computational costs with the number of

dimensions makes the product rule inefficient in a moderate number of dimensions and

infeasible in high dimensions. While for example Gaussian quadrature exactly evaluates a

univariate polynomial of order 7 with 4 function evaluations, the corresponding product

rule with 20 dimensions requires 420 = 1, 099, 511, 627, 776 evaluations.

8
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The reason for this exponential growth lies in the fact that the product rule is not exact

in a class of polynomials of a bounded total order but for a tensor product of univariate

polynomials. Coming back to the two-dimensional example with order two, in addition to

complete polynomials of order two involving the terms x1, x2, x2
1, x2

2, and x1x2, it is also

exact for polynomials involving the higher-order terms x2
1x2, x1x

2
2, and x2

1x
2
2. The total

number of these terms rises exponentially which drives the “curse of dimensionality”. At

the same time, the intuition from Taylor series approximation suggests that the additional

terms do not increase the speed of convergence of the approximated to the true function

since they vanish at a higher rate.

Integration on sparse grids will be discussed in section 3. It shares advantages from

specifically designed multivariate quadrature rules and the product rule. Since it combines

univariate rules, it is as general and simple to use as the product rule. Since it aims

to be exact in the class of complete polynomials instead of tensor products of univariate

polynomials, it does not suffer from exponentially growing computational costs.

2.5 Efficient Change of Variables

If the integrand in a numerical integration problem is not well-behaved, all algorithms can

perform poorly. For an example of such problems of simulation, see Lee (1997) and for a

similar problem of univariate quadrature see Lee (2000). For all these problems, a change

of variables can make the integrand better suited for numerical analysis.

There are different approaches to automatically analyze the integration problem and

perform such a change of variables which can improve the approximation performance

considerably. If the integral is simulated, this corresponds to an importance sampling

algorithm with a clever choice of the sampling distribution, see Richard and Zhang (2005).

A similar trick can be used in deterministic numerical integration, see Naylor and Smith

(1988), Liu and Pierce (1994), and Rabe-Hesketh, Skrondal and Pickles (2005).

For the remainder of this paper, these improvements are not used. The main reason is to

level the playing field between different algorithms by ensuring that relative performance

9
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differences can be attributed to the algorithms and not to potentially different integration

problems.

3 Quadrature on Sparse Grids

3.1 The algorithm

The integration rule discussed in this section will be exact for complete polynomials of a

given order in multiple dimensions. Like the product rule, it combines univariate quadra-

ture rules, so it is very general and easy to implement. But unlike the product rule, its

computational costs do not rise exponentially but considerably slower. The basic idea goes

back to Smolyak (1963) and is a general method for multivariate extensions of univariate

operators.

The Smolyak approach has attracted attention in numerical mathematics. For a survey of

this literature, see Bungartz and Griebel (2004). In the economics literature, the Smolyak

construction has been used for the numerical approximation of macroeconomic models by

Krüger and Kübler (2004) and Winschel (2005).

For deterministic integration, the construction can be defined as follows. For an under-

lying sequence of univariate quadrature rules, define V0[g] = 0 and the difference of the

approximation when increasing the level of accuracy from i − 1 to i as

Δi[g] = Vi[g] − Vi−1[g] ∀i ∈ N. (7)

With i = [i1, ..., iD], define for any nonnegative integer q

N
D
q =

{
i ∈ N

D :
D∑

d=1

id = D + q

}
(8)

and N
D
q = ∅ for q < 0. For example, N

2
2 = {[1, 3], [2, 2], [3, 1]}. The Smolyak rule with

accuracy level k ∈ N for D-dimensional integration is defined as

AD,k[g] =
k−1∑
q=0

∑
i∈ND

q

(Δi1 ⊗ · · · ⊗ ΔiD) [g]. (9)

10
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The rule starts with a crude product rule – note that AD,1[g] = (V1 ⊗ · · · ⊗ V1)[g]. With a

higher value of k, it sequentially incorporates the effect of increasing the accuracy in each

dimensions in a particular way.

It is instructive to express AD,k[g] directly in terms of the univariate quadrature rules

instead of their differences. Wasilkowski and Woźniakowski (1995) show that it can be

written as

AD,k[g] =
k−1∑

q=k−D

(−1)k−1−q

(
D − 1

k − 1 − q

) ∑
i∈ND

q

(Vi1 ⊗ · · · ⊗ ViD)[g]. (10)

This rule is a weighted sum of product rules with different combinations of accuracy levels

i = [i1, ..., iD]. Their sum is bounded which has the effect that the tensor product rules

with a relatively fine sequence of nodes in one dimension are relatively coarse in the other

dimensions. This is analogous to the bound on the sum of exponents for multivariate

polynomials of a total order.

Figure 1 demonstrates the construction of the sparse grid by the Smolyak rule for a

simple example with D = 2 and k = 3. The nodes for a sequence of univariate quadrature

rules X1, X2, and X3 are shown in the top of the figure. The product rule X3⊗X3 evaluates

the function at all two-dimensional combinations of nodes prescribed by X3 which are

shown in the upper right part of the figure. As equation (10) shows, the sparse grids rule

combines tensor products of lower order Xi ⊗ Xj such that 3 ≤ i + j ≤ 4. The nodes of

these products as well as the resulting sparse grid are shown in the lower part of the figure.

3.2 Properties

Quadrature on sparse grids is exact for polynomials of a given total order, as discussed for

example by Bungartz and Griebel (2004) and stated in Theorem 1. This is of interest for

general integrands since any well-behaved functions can be approximated by polynomials

arbitrarily closely.

11
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Theorem 1 Assume that the sequence of univariate quadrature rules V = {Vi : i ∈ N} is

defined such that Vi is exact for Ω, w, and all univariate polynomials of order 2i − 1 or

less. This implies the Smolyak rule AD,k using V as the univariate basis sequence is exact

for D-variate polynomials of total order 2k − 1 or less.

A proof of this theorem is provided in the appendix.

The set of nodes used by the sparse grids rule (10) can be written as

XD,k =
k−1⋃

q=k−D

⋃
i∈ND

q

(Xi1 ⊗ · · · ⊗ XiD). (11)

The number of nodes in XD,k depends on the univariate nodes X1, ..., Xk and can in general

not be easily calculated – in general, the number of nodes increases polynomially in the

number of dimensions (Bungartz and Griebel 2004). We discuss the case if Gaussian

quadrature is used for the sequence of underlying univariate rules. Remember that the

product rule TD,k with underlying Gaussian quadrature rules which uses k nodes in each

dimension needs a total number of kD nodes so that the logarithm of the nodes is of order

O(D) as D → ∞.

Theorem 2 Consider the sparse-grids rule AD,k with underlying Gaussian quadrature

rules V = {Vi : i ∈ N} such that each Xi used by Vi has i nodes. For a given accu-

racy k and rising D, the logarithm of nodes in XD,k is of order O(log(D)).

We give a proof in the appendix. At least asymptotically, the number of nodes (its loga-

rithm) does not rise exponentially (linearly) as for the product rule, but only polynomially

(logarithmically). This is of course only of limited use in practice since realistic values for

D are far from infinity. We therefore give precise numbers for different dimensions below.

Before, we discuss alternatives to Gaussian quadrature as the underlying univariate rules.

Theorem 1 requires that in the sequence of quadrature rules V1, V2... each Vi is exact for

all univariate polynomials of order 2i−1 or less. As discussed above, Gaussian quadrature

rules achieve this requirement on univariate exactness with a minimal number of i nodes

12
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for each Vi. Obviously, a low number of univariate quadrature nodes helps to obtain a low

total number of nodes in the sparse grids rule.

In the example presented in Figure 1, the sets of univariate nodes are nested in the sense

that Xi ⊆ Xj if i ≤ j. Because the nodes are nested, the sets X1 ⊗ X2 and X2 ⊗ X1 do

not add any distinct nodes to the sparse grid and also the other sets share a substantial

number of points. This makes the union of the tensor products a much smaller set than in

the other extreme case in which each set contains different nodes so Xi ∩ Xj = ∅ if i 
= j.

Gaussian quadrature rules are close to the latter case – generally, only the midpoint is

shared by rules with an odd number of nodes.

As discussed above, Kronrod-Patterson rules have nested sets of nodes. While they

are less efficient in one dimension, this feature makes them more efficient for the use in

quadrature on sparse grids. Petras (2003) discusses this problem for the case of unweighted

integration (Gauss-Legendre equivalent) and Genz and Keister (1996) for the normal p.d.f.

weights (Gauss-Hermite equivalent).

Table 1 shows the number of function evaluations required by different multivariate in-

tegration rules to achieve a given degree of polynomial exactness. The product rule suffers

from the curse of dimensionality. The number of nodes for the Smolyak rule also rises with

the number of dimensions, but substantially slower. As discussed, while in one dimension

Gaussian quadrature is more efficient, in higher dimensions the Kronrod-Patterson rules

need fewer nodes. As already mentioned in section 2.4, there are deterministic integration

rules specifically designed for combinations of the number of dimensions, degree of polyno-

mial exactness, integration region, and weight function. These can be more efficient than

the Smolyak rule. For example, Stroud (1971) provides rules for a level 7 of polynomial

exactness which need 141 and 9,961 nodes in 5 and 20 dimensions, respectively. These

numbers are slightly smaller than the corresponding 151 and 10,001 nodes needed by the

Kronrod-Patterson version of the Smolyak rule.

13
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3.3 Implementation

Sparse grids integration can be easily implemented in practice. Equation (10) can be

written explicitly with the definition in (6) as

AD,k[g] =
k−1∑

q=k−D

∑
i∈ND

q

∑
x1∈Xi1

...
∑

xD∈XiD

g(x1, ..., xD)(−1)k−1−q

(
D − 1

k − 1 − q

) D∏
d=1

wid(xd).

(12)

This formula boils down to a weighted sum of function evaluations g(x). The sets of

nodes x = [x1, ..., xD] are determined by the relevant combinations of nodes of univariate

quadrature rules Vi, where the levels of accuracy in each dimension are determined by

i ∈ N
D
q and k−D ≤ q < k. The corresponding weights are (−1)k−1−q

(
D−1

k−1−q

) ∏D
d=1 wid(xd).

Especially if nested quadrature rules are used, the same vectors x will appear multiple

times for different combinations of values of i. Instead of evaluating g several times for the

same values, it suffices to do this once and sum up the respective weights beforehand.

To come back to the simple example with D = 2 and k = 3, equation 12 works out

as follows: q takes the values 1 and 2. For q = 1, N
D
q = {[1, 2], [2, 1]}. So the nodes of

the quadrature rule with accuracy level 1 in dimension 1 and level 2 in dimension 2 are

combined as well the other way around. The weight for each of these combined nodes

is the product of the one-dimensional quadrature weights times (−1)k−1−q
(

D−1
k−1−q

)
= −1.

For q = 2, N
D
q = {[1, 3], [2, 2], [3, 1]}. The nodes resulting from a combination of the

univariate rule of accuracy level 1 in dimension 1 with level 3 in dimension 2, those from a

combination of the levels 2 and 2, and those from a combination of levels 3 and 1 are added

to the set of nodes used for the Smolyak rule. Their weight is obtained as the product of

the corresponding univariate weights times (−1)k−1−q
(

D−1
k−1−q

)
= 1.

In the application for estimation, integrals have to be evaluated many times. Since

the nodes and weights do not depend on g, they can be calculated once for the relevant

underlying quadrature rule, number of dimensions D, and accuracy level k. The result is

a set of nodes xr,d and weights wr with d = 1, ..., D and r = 1, ..., R, where R denotes
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the number of nodes after removing duplicates. For each evaluation of the integral, simply

calculate

AD,k[g] =
R∑

r=1

g(xr,1, ..., xr,D)wr. (13)

In practice, the only difference to using the product rule is the way the nodes and weights

are determined. The only additional difference to simulation is, that weighted instead of

unweighted means have to be calculated.

We provide the readily calculated matrices of nodes and weights for Gaussian and nested

quadrature rules both for unweighted integrals and integrals with Gaussian weights and

for many combinations of the number of dimensions and accuracy levels. Furthermore,

we provide code for the software packages Matlab and Stata to generate these for general

problems. All downloads can be found at http://www.sparse-grids.de. This makes

integration on sparse grids straightforward to implement.

3.4 Discussion and Extensions

As univariate quadrature, all multivariate quadrature rules rely on a polynomial approx-

imation of the integrand. In all cases, ill-behaved integrands such as functions with dis-

continuities can be expected to hamper a satisfactory approximation. Simulation meth-

ods do not require smoothness of the integrand, although with a finite number of sim-

ulation draws, smooth integrands also help to improve the approximation performance

(Stern 1992). Transformations of an ill-behaved integrand like an adaptively determined

change of variables can be expected to work as well for sparse grids integration as for the

product rule for which it is suggested by Naylor and Smith (1988).

While the computational costs do only rise polynomially instead of exponentially, this

increase is noticeable with a high number of dimensions. The speed of convergence of

simulation approximations does not depend on the number of dimensions. This however

does not imply that the level of simulation error given a number of simulation draws

is independent of the number of dimensions. With a high number of dimensions, also
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accurate approximation by simulation can be computationally very costly, see for example

Lee (1997).

One potential drawback of the integration on sparse grids approach is that – as equation

(10) shows – some of the weights implied by the Smolyak rule can become negative. This

feature is shared with many specially designed multivariate quadrature rules (Cools 2003).

While we did not encounter this problem in our simulations, it is theoretically possible that

the approximated integral becomes negative even if the integrand is positive everywhere.

This effect can be seen as evidence that the approximation is extremely crude for the given

level of accuracy and should disappear for higher accuracy levels.

Quadrature on sparse grids as it is defined above takes as an input an accuracy level

for all dimensions which translates into an order of polynomial exactness. It can be easily

changed to be more accurate in some dimensions than in others which might be useful if

it is clear a priori that accuracy in some dimensions is especially crucial for exact likeli-

hood approximations. The simplest approach is to use different sequences of underlying

univariate quadrature rules for each dimension.

There is no general rule which accuracy level is needed for a specific problem. Instead

of setting it to a fixed number, the error of approximation can be estimated by comparing

the results with different accuracy levels. This is especially efficient with nested univariate

rules since the set of nodes for a given accuracy level is a subset of those for a higher

level. When increasing the accuracy, g(·) has to evaluated at the additional nodes only

and the other values obtained during the calculations for the lower level can be reused.

Gerstner and Griebel (2003) suggest a ‘dimension adaptive’ algorithm based on sparse

grids integration which uses a similar approach but searches for a sufficient accuracy level

in each dimension separately.
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4 Monte Carlo Simulations: Mixed Logit Models

4.1 The Model

In this section we present Monte Carlo experiments to assess the relative performance of the

numerical integration algorithms. Different random parameters logit or mixed multinomial

logit (MML) models are implemented. This model is widely used in applied econometrics

for studying choices between a finite set of alternatives, see for example Revelt and Train

(1998) and Brownstone and Train (1999). McFadden and Train (2000) provide an intro-

duction to this model and a discussion of its estimation by simulation methods. Chiou and

Walker (2007) discuss the identification and estimation of the MML model. This model

has also been used before to study the performance of different general simulation methods

(Bhat 2001, Hess, Train and Polak 2006).

Consider a random sample of N individuals. The data has a panel structure, so that

for each of the subjects T choices are observed. In each of these choice situations, the

individual is confronted with a set of J alternatives and chooses one of them. These

alternatives are described by K strictly exogenous attributes. The (K × 1) vectors xitj

collect these attributes of alternative j = 1, ..., J in choice situation t = 1, ..., T of individual

i = 1, ..., N .

Random utility maximization (RUM) models of discrete choices assume that the individ-

uals pick the alternative which results in the highest utility. The researcher obviously does

not observe these utility levels. They are modeled as latent variables for which the observed

choices provide an indication. Let the utility that individual i attaches to alternative j in

choice situation t be represented by the random parameters specification

Uitj = x′
itjβi + eitj. (14)

It is given by a linear combination of the attributes of the alternative, weighted with

individual-specific taste levels βi. These individual taste levels are distributed across the

population according to a parametric joint p.d.f. f(βi; θ) with support Ψ ⊆ R
K . The i.i.d.
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random variables eitj capture unobserved utility components. They are assumed to follow

an Extreme Value Type I (or Gumbel) distribution.

Our goal is to estimate the parameters θ of the taste level distribution. Let yitj denote

an indicator variable that has the value 1 if individual i chooses alternative j in choice

situation t and 0 otherwise. Denote the vector of observed individual outcomes as yi =

[yitj; t = 1, ..., T, j = 1..., J ] and the matrix of all strictly exogenous variables as xi =

[xitj; t = 1, ..., T, j = 1..., J ]. The probability that the underlying random variable Yi

equals the observed realization yi conditional on xi and the individual taste levels βi can

be expressed as

P ∗
i (βi) = Pr(Yi = yi|xi, βi) =

T∏
t=1

∏J
j=1 exp(x′

itjβi)
yitj∑J

j=1 exp(x′
itjβi)

. (15)

The likelihood contribution of individual i is equal to the joint outcome probability as a

function of θ. It can be written as

Pi(θ) = Pr(Yi = yi|xi, θ) =

∫
Ψ

P ∗
i (βi)f(βi; θ) dβi. (16)

A solution for this K-dimensional integral does in general not exist in closed form and has

to be approximated numerically.

4.2 Approximation of Outcome Probabilities

For illustration purposes, we start with a simple case of the general model. Let J = 2 so

that the model simplifies to a binary choice model. Also let there only be K = 1 attribute

of the alternatives for which xit2 − xit1 = 1 for all t. Consequently, the individual taste

parameter βi is a scalar. Assume it is normally distributed over the population with mean

1 and variance σ2. Let the individual have chosen T1 times alternative 1 and T2 times

alternative 2, so that there are in total T1 + T2 observations. The likelihood contribution

in equation (16) can then be simplified to

Pi(θ) =

∫ ∞

−∞
P ∗

i (z)φ(z) dz

with P ∗
i (z) = (1 + exp(−1 − σz))−T1(1 + exp(1 + σz))−T2 . (17)
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This univariate integral can either be simulated or approximated using standard Gaussian

quadrature. Figure 2 shows the function P ∗
i (z) for two different cases and depicts the

numerical approaches to its integration. The simulated probability with R simulation

draws can be represented as the sum of R rectangles each of which has a width of 1/R and

a height that corresponds to the function value at randomly chosen points. Quadrature

exactly integrates a polynomial of a given degree that represents an approximation to the

integrand.

How well P ∗
i (z) is approximated by a low-order polynomial depends on the parameters.

With high T and σ2, the function has large areas in which it is numerically zero (or unity).

These areas create a problem for the polynomial fit. In Figure 2, two cases are presented.

In the simple case of Model 1 with T1 = 0, T2 = 1, and σ2 = 1, the function P ∗
i (z) –

and therefore its integral – is already well approximated by a third-order polynomial. A

ninth-order polynomial is indistinguishable from the original function. In order to integrate

this ninth-order polynomial exactly, Gaussian quadrature rules only need R = 5 function

evaluations.

In the second model with T = 20, T1 = 8, T2 = 12, and σ2 = 5, the problem of large

tails with zero conditional probability is evident. A third-order polynomial does a poor

job in approximating the function and there are noticeable differences between the original

function and its ninth-order polynomial approximation. A 19th-order polynomial for which

Gaussian quadrature needs 10 function evaluations however is again indistinguishable from

the true function. This can of course be arbitrarily problematic with even higher σ2 and T .

With a sharp and narrow peak, approximation by simulation can have poor properties, too.

Intuitively, this is since only a small fraction of simulation draws are within the nonzero

area. As discussed in section 2.5, a change of variables can help to make the function

better suited for numerical integration regardless of the integration method.

For the two models depicted in Figure 2 and two more extreme cases, Table 2 presents

performance measures of simulation and Gaussian quadrature approximations of the choice

probabilities (17). The numbers presented are absolute errors for the quadrature approx-
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imations and root mean squared errors for simulations which have been performed 1,000

times for each model and number of draws. All errors are defined relative to the value

obtained by a Riemann sum with 10,000 grid points. For all models, Gaussian quadrature

with 10 nodes performs better than simulation with 1,000 draws.

To study more complex models, we turn to a setup where J = T = 5. The number

of explanatory variables K determines the dimensionality of the integration problem. We

chose K = 3, 5, 10, and 20 for the Monte Carlo studies reported in Table 3. The individual

taste levels are specified as i.i.d. normal random variables with mean 1 and variance 2/K

to hold the total variance of Uitj constant as K changes. Instead of using one predefined

data set, we draw 1,000 samples from the joint distribution of yi and xi, where the xitj

are specified as independent uniform random variables and the conditional distribution of

the Bernoulli random variables yitj is given in equation (15). For each of these draws, we

approximate the joint outcome probability using simulation and Smolyak integration with

different numbers of nodes. For the calculation of the mean squared errors, we approximate

the true value by simulation with 200,000 draws.

The rows denoted as “simulation” represent simulated probabilities using a standard

random number generator. They perform worst in all cases. The “quasi Monte Carlo”

results are obtained using modified latin hypercube sequences (MLHS) which are shown

to work well for the estimation of MML models by Hess et al. (2006).2 This method works

much better than the standard simulation. The product rule performs better than both

simulation methods in low dimensions, especially K = 3. In five dimensions, its advantage

disappears and in ten dimensions, it is clearly the worst method. For K = 20, we did not

obtain results since it is not computationally feasible. In all cases, the sparse grids method

clearly outperforms all other methods. Table 5 in the appendix shows results for the more

difficult case σ2 = 5/K and J = T = 5. While all errors rise, the relative performances

remain unchanged.

2We also experimented with Halton sequences which do not seem to make too much of a difference

compared to MLHS. Results can be requested from the authors.
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4.3 MSL Estimation

One of the main reasons why approximations of the outcome probabilities are interesting

is that they are required for most estimators of the parameters θ. We discuss maximum

simulated (or approximated) likelihood estimation such that the estimators are defined as

θ̂ = arg max
θ

∑
i

log
(
P̃i(θ)

)
,

where P̃i(θ) is some approximation of the individual joint outcome probability Pi(θ). Al-

ternatively, estimators could be based on simulated scores or moments. For a discussion

of the various approaches, see for example Hajivassiliou and Ruud (1994). We chose this

estimator since it is easy to implement and by far the most widely used for these kinds of

models, see for example Brownstone and Train (1999), McFadden and Train (2000), and

Chiou and Walker (2007).

It is intuitive that the quality of approximation of P̃i(θ) translates into the properties

of the estimators. We specify a number of different models and estimate the parameters

using simulation, antithetic sampling, and deterministic integration using different degrees

of accuracy. As a starting point, a reference model is specified with N = 1000, T = 5,

J = 5, K = 10, μ = 1, and σ = 0.5. These numbers are chosen to represent a typical

application in applied choice analysis. In order to cover a wide range of realistic values

and to assess their impact on the approximation errors of the different methods, each of

these numbers is varied separately. For each of these settings, estimates were obtained for

100 artificial data sets. The K-dimensional vectors of properties of the alternatives xitj

were drawn from a standard uniform distribution. The model parameters μ and σ are

constrained to be equal for all properties to simplify the estimation and estimated for each

data set. We used the same methods as discussed in the previous section pseudo-random

Monte Carlo (PMC), quasi-random Monte Carlo (QMC) and sparse grids integration (SGI).

Table 4 shows results for different dimensions of integration. The simulation-based

estimates are much better for μ than for σ. This can be explained by the fact that

while the simulated probabilities P̃i(μ, σ) are unbiased for the true values Pi(μ, σ), the log
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transformation introduces downward bias. This bias depends on the simulation variance

which in turn depends on σ. This tends to bias σ̂ downwards. As predicted from the

results for the approximated probabilities, standard simulation is dominated by quasi-

random simulation. SGI is again clearly the best method and for example in ten dimensions

requires only 21 nodes for the same accuracy for which QMC needs 201 and PMC 1201

function evaluations.

In the appendix, results for other model parameter choices are presented. Table 6 shows

variations of μ and σ and Table 7 varies N, T, and J . The basic findings are unaffected

by these changes. As σ increases, the approximation error rises and therefore all methods

perform worse.3 With a larger number of i.i.d. cross-sectional observation units N or

longitudinal observations T , the estimators improve. Their relative advantages remain

unaffected.

5 Conclusions

Smolyak (1963) introduced a general rule for extending univariate operators to multivari-

ate problems. This approach has attracted recent interest in the numerical mathematics

literature for function approximation and numerical integration.

We discuss this approach for the prevalent problem of likelihood approximation by nu-

merical integration in multiple dimensions. The main advantage of this sparse grids inte-

gration (SGI) rule over the well known product rule extension of univariate quadrature is

that it does not impose exponentially increasing computational costs with a rising number

of dimensions. As opposed to quadrature rules explicitly derived for multivariate integra-

tion problems, this approach is very general and straightforward to implement.

After introducing the method and discussing its properties, we present extensive Monte

Carlo evidence for the likelihood approximation of the mixed logit model. The results

3If σ has a very large value, all methods fail to give reasonable estimation results. As discussed above,

adaptive rescaling might solve this problem.
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suggest that SGI works very well for a wide range of model parameterizations. The com-

putational costs to achieve a negligible approximation error are considerably lower than

with simulation estimators. Together with suggested refinements, SGI is a promising can-

didate for the efficient likelihood approximation of a large class of econometric models.
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Appendix

Proof of Theorem 1

Note that

AD,k

[
T∑

t=1

at

D∏
d=1

x
jt,d

d

]
=

T∑
t=1

atAD,k

[
D∏

d=1

x
jt,d

d

]
.

Therefore, it suffices to establish polynomial exactness for any of the T monomials. Con-

sider g =
∏D

d=1 xjd

d for some sequence j1, ..., jD with

(i)
∑D

d=1 jd ≤ 2k − 1.

The theorem states that this implies AD,k [g] = ID[g]. For the sequence of underlying

univariate quadrature rules V1, V2, ... we have by assumption

(ii) Vk[x
j] = I1[x

j] if j ≤ 2k − 1.

For the univariate case D = 1, the sparse grids rule simplifies to the univariate quadrature

rule:

A1,k[g] =
k∑

i=1

(Vi[g] − Vi−1[g]) = Vk[g], (18)

so the theorem follows immediately from (ii). For the multivariate case, a proof is presented

via induction over D. Suppose that polynomial exactness has been established for D − 1

dimensions:

(iii) AD−1,k̃

[∏D−1
d=1 xjd

d

]
= ID−1

[∏D−1
d=1 xjd

d

]
if

∑D−1
d=1 jd ≤ 2k̃ − 1

It remains to be shown that this implies polynomial exactness for D dimensions.

First note that because of the multiplicative structure of the monomial integrand,

(Δi1 ⊗ · · · ⊗ ΔiD)

[
D∏

d=1

xjd

d

]
=

D∏
d=1

Δid [x
jd

d ].

Rewrite the general Smolyak rule (9) by separating the sum over the Dth dimension:

AD,k[g] =
k∑

iD=1

k−iD∑
q̃=0

∑
i∈N

D−1
q̃

(Δi1 ⊗ · · · ⊗ ΔiD) [g].
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Combining these two expressions, we get

AD,k

[
D∏

d=1

xjd

d

]
=

k∑
iD=1

ΔiD

[
xjD

D

]
AD−1,k−iD+1

[
D−1∏
d=1

xjd

d

]
.

By (ii), we know that whenever 2(iD − 1) > jD, ViD

[
xjD

D

]
= ViD−1

[
xjD

D

]
= I

[
xjD

D

]
. There-

fore, ΔiD

[
xjD

D

]
and the summands are zero unless jD ≥ 2(iD − 1). This in turn implies

together with (i) that for nonzero summands
∑D−1

d=1 jd ≤ 2(k − iD + 1) − 1 and therefore

AD−1,k−iD+1

[∏D−1
d=1 xjd

d

]
= ID−1

[∏D−1
d=1 xjd

d

]
by (iii).

With i∗D = .5(jD + 1) for odd jD and i∗D = .5jD for even jD, it follows that

AD,k

[
D∏

d=1

xjd

d

]
= ID−1

[
D−1∏
d=1

xjd

d

] i∗D∑
iD=1

ΔiD

[
xjD

D

]

= ID−1

[
D−1∏
d=1

xjd

d

]
Vi∗D

[
xjD

D

]

By (ii), Vi∗D

[
xjD

D

]
= I1

[
xjD

D

]
and the theorem follows.

Proof of Theorem 2

Let RD,k denote the number of distinct nodes in XD,k. For D ≥ k, it can be bounded as

RD,k ≤
k−1∑
q=0

∑
i∈ND

q

D∏
d=1

id, (19)

since the univariate quadrature rule Vi has i nodes. The inequality comes from the fact

that the midpoints appear repeatedly in the underlying quadrature rules. Note that the

average element of i ∈ N
D
q is D+q

D
and that the product is maximized if all elements have

the same value. Therefore

D∏
d=1

id ≤
(

D + q

D

)D

∀i ∈ N
D
q .

The number of vectors i ∈ N
D
q is

(
D−1+q

D−1

)
. So

RD,k ≤ R̃D,k = k

(
D − 1 + k

D − 1

) (
D + k

D

)D

.
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As D → ∞,
(

D+k
D

)D → exp(k),
(

D−1+k
D−1

) → Dk

k!
and therefore log

(
R̃D,k

)
→ k − log((k −

1)!) + k log(D) = O(log(D)).
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Tables

Table 1: Number of function evaluations

Product rule Smolyak rule
Dimensions Gaussian Gaussian KP
Level k = 2, Polynomial exactness = 3
D = 1 2 2 3
D = 5 32 11 11
D = 10 1,024 21 21
D = 20 1,048,576 41 41
Level k = 3, Polynomial exactness = 5
D = 1 3 3 3
D = 5 243 61 51
D = 10 59,049 221 201
D = 20 3,486,784,401 841 801
Level k = 4, Polynomial exactness = 7
D = 1 4 4 7
D = 5 1,024 241 151
D = 10 1,048,576 1,581 1,201
D = 20 1,099,511,627,776 11,561 10,001
Level k = 5, Polynomial exactness = 9
D = 1 5 5 7
D = 5 3,125 781 391
D = 10 9,765,625 8,761 5,281
D = 20 95,367,431,640,625 120,321 90,561
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Table 2: Approximating probabilities in one dimension: RMSE

R = 2 R = 5 R = 10 R = 100 R = 1000
Model 0: T = 1, T0 = 0, T1 = 1, σ2 = .25

Simulation 0.0944 0.0569 0.0421 0.0130 0.0043
Quadrature 0.0046 0.0008 0.0002 0.0000 –

Model 1: T = 1, T0 = 0, T1 = 1, σ2 = 1
Simulation 0.1846 0.1111 0.0822 0.0253 0.0085
Quadrature 0.0102 0.0012 0.0002 0.0000 –

Model 2: T = 20, T0 = 8, T1 = 12, σ2 = 4
Simulation 1.0206 0.6745 0.4841 0.1516 0.0484
Quadrature 0.8115 0.2472 0.0024 0.0000 –

Model 3: T = 30, T0 = 10, T1 = 20, σ2 = 9
Simulation 1.5222 0.9658 0.6591 0.2121 0.0677
Quadrature 1.0000 0.6336 0.0402 0.0000 –

The reported numbers are root mean squared errors relative to the “true” value
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Table 3: RMSE of probabilities: σ5 = 2/K, J = T = 5

K = 3, R = 7 8 87 125 495 512
Simulation 0.3373 0.2971 0.0879 0.0776 0.0372 0.0382
Quasi MC 0.2287 0.1802 0.0382 0.0331 0.0161 0.0152
Product rule 0.0669 0.0112 0.0048
Sparse grids 0.0303 0.0050 0.0020

K = 5, R = 11 32 151 243 903 1024
Simulation 0.2663 0.1448 0.0705 0.0536 0.0303 0.0278
Quasi MC 0.1486 0.0796 0.0310 0.0257 0.0127 0.0130
Product rule 0.0567 0.0277 0.0171
Sparse grids 0.0243 0.0049 0.0043

K = 10, R = 21 201 1024 1201
Simulation 0.1987 0.0654 0.0284 0.0255
Quasi MC 0.1076 0.0317 0.0135 0.0128
Product rule 0.0420
Sparse grids 0.0173 0.0211 0.0035

K = 20, R = 41 801 10001
Simulation 0.1428 0.0324 0.0095
Quasi MC 0.0795 0.0156 0.0048
Sparse grids 0.0125 0.0160 0.0027

The reported numbers are root mean squared errors relative to the “true” value
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Table 4: Errors of the estimated parameters with different K

RMSE (μ̂) RMSE (σ̂)
R PMC QMC SGI PMC QMC SGI

Dimension K = 2
9 0.0486 0.0458 0.0448 0.3648 0.1648 0.1177

45 0.0458 0.0452 0.0448 0.1712 0.1246 0.1177
961 0.0449 0.0449 0.0448 0.1179 0.1170 0.1177

Dimension K = 4
9 0.0411 0.0361 0.0340 0.3857 0.1985 0.0902

81 0.0341 0.0340 0.0339 0.1319 0.0963 0.0923
1305 0.0338 0.0339 0.0339 0.0921 0.0916 0.0923

Dimension K = 10
21 0.0481 0.0353 0.0272 0.2951 0.1554 0.0668

201 0.0298 0.0277 0.0272 0.0874 0.0708 0.0654
1201 0.0276 0.0271 0.0271 0.0691 0.0662 0.0654

Dimension K = 14
29 0.0507 0.0348 0.0240 0.2493 0.1321 0.0601

393 0.0252 0.0247 0.0252 0.0665 0.0618 0.0632
3361 0.0251 0.0252 0.0249 0.0629 0.0637 0.0631

Dimension K = 20
41 0.0655 0.0465 0.0290 0.2323 0.1390 0.0620

801 0.0298 0.0285 0.0276 0.0634 0.0599 0.0564
10001 0.0289 0.0291 0.0291 0.0594 0.0585 0.0585

The reported numbers are RMSEs relative to the true value
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Table 5: RMSE of probabilities: σ2 = 5, J = T = 10

K = 3, R = 7 8 87 125 495 512
Simulation 0.7284 0.8184 0.2093 0.1860 0.0902 0.0923
Quasi MC 0.6234 0.5849 0.1498 0.1147 0.0636 0.0600
Product rule 0.2060 0.0480 0.0221
Sparse grids 0.2696 0.0217 0.0055

K = 5, R = 11 32 151 243 903 1024
Simulation 0.6628 0.3921 0.2264 0.1652 0.0807 0.0726
Quasi MC 0.5226 0.3517 0.1550 0.1106 0.0653 0.0564
Product rule 0.1828 0.0917 0.0566
Sparse grids 0.2434 0.0567 0.0151

K = 10, R = 21 201 1024 1201
Simulation 0.6708 0.2025 0.0950 0.0816
Quasi MC 0.5278 0.1783 0.0784 0.0713
Product rule 0.1574
Sparse grids 0.1798 0.1058 0.0573

K = 20, R = 41 801 10001
Simulation 0.4928 0.1169 0.0348
Quasi MC 0.3971 0.1176 0.0286
Product rule
Sparse grids 0.1034 0.0756 0.0395

The reported numbers are root mean squared errors relative to the “true” value
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Table 6: Errors of the estimated parameters with different μ and σ

RMSE (μ̂) RMSE (σ̂)
R PMC QMC SGI PMC QMC SGI

Parameters μ = 0.5, σ = 0.5
21 0.0268 0.0226 0.0208 0.2922 0.1533 0.0625

201 0.0211 0.0208 0.0209 0.0813 0.0638 0.0603
1201 0.0209 0.0209 0.0209 0.0631 0.0625 0.0605
Parameters μ = 2, σ = 0.5

21 0.0842 0.0598 0.0460 0.3050 0.1545 0.0712
201 0.0510 0.0470 0.0475 0.1034 0.0767 0.0738

1201 0.0478 0.0475 0.0472 0.0803 0.0732 0.0735
Parameters μ = 1, σ = 0.25

21 0.0264 0.0253 0.0257 0.1759 0.0984 0.0919
201 0.0250 0.0252 0.0255 0.0929 0.0888 0.0893

1201 0.0255 0.0256 0.0256 0.0868 0.0955 0.0923
Parameters μ = 1, σ = 1

21 0.1070 0.0867 0.0490 0.4095 0.3053 0.1754
201 0.0409 0.0363 0.0343 0.0994 0.0824 0.0746

1201 0.0316 0.0309 0.0303 0.0614 0.0597 0.0553

The reported numbers are RMSEs relative to the true value
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Table 7: Errors of the estimated parameters with different N , T , and J

RMSE (μ̂) RMSE (σ̂)
R PMC QMC SGI PMC QMC SGI

N = 500
21 0.0511 0.0441 0.0417 0.2993 0.1792 0.1101

201 0.0416 0.0414 0.0418 0.1284 0.1102 0.1126
1201 0.0413 0.0417 0.0417 0.1023 0.1109 0.1121
N = 2000

21 0.0417 0.0275 0.0165 0.3124 0.1530 0.0547
201 0.0185 0.0171 0.0166 0.0769 0.0575 0.0515

1201 0.0168 0.0166 0.0166 0.0548 0.0517 0.0512
T = 3

21 0.0513 0.0414 0.0374 0.3254 0.1836 0.1157
201 0.0378 0.0369 0.0383 0.1283 0.1220 0.1253

1201 0.0380 0.0381 0.0381 0.1208 0.1240 0.1234
T = 10

21 0.0195 0.0189 0.0281 0.2284 0.1375 0.0457
201 0.0253 0.0269 0.0291 0.0572 0.0466 0.0377

1201 0.0284 0.0288 0.0294 0.0393 0.0385 0.0376
J = 3

21 0.0619 0.0456 0.0363 0.2996 0.1485 0.0845
201 0.0389 0.0362 0.0370 0.1080 0.0931 0.0978

1201 0.0376 0.0372 0.0371 0.0972 0.0960 0.0964
J = 10

21 0.0339 0.0271 0.0214 0.2638 0.1415 0.0540
201 0.0226 0.0215 0.0216 0.0705 0.0563 0.0561

1201 0.0215 0.0215 0.0215 0.0569 0.0558 0.0559

The reported numbers are RMSEs relative to the true value
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Figures

Figure 1: Construction of the sparse grid in two dimensions

Univariate nodes:
X1 X2 X3

Product rule:
X3 ⊗ X3

X1 ⊗ X2 X1 ⊗ X3

X2 ⊗ X1 X2 ⊗ X2

X3 ⊗ X1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Sparse grid:
X2,3
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Figure 2: Approximating probabilities in one dimension

Model 1: T = 1, T1 = 0, T2 = 1, σ2 = 1
Simulation (R = 20) Quadrature (R = 2, 5, 10)

Model 2: T = 20, T1 = 8, T2 = 12, σ2 = 4
Simulation (R = 20) Quadrature (R = 2, 5, 10)
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