
HAL Id: hal-00501807
https://hal.science/hal-00501807

Submitted on 12 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Testing for unit root processes in random coefficient
autoregressive models

Walter Distaso

To cite this version:
Walter Distaso. Testing for unit root processes in random coefficient autoregressive models. Econo-
metrics, 2007, 142 (1), pp.581. �10.1016/j.jeconom.2007.09.002�. �hal-00501807�

https://hal.science/hal-00501807
https://hal.archives-ouvertes.fr


Editors:

TAKESHI AMEMIYA
A. RONALD GALLANT

JOHN F. GEWEKE
CHENG HSIAO

PETER ROBINSON
ARNOLD ZELLNER

Associate Editors:

YACINE AïT-SAHALIA
BADI H. BALTAGI

M.W. BRANDT
MARCUS J. CHAMBERS

SONGNIAN CHEN
MANFRED DEISTLER
MIGUEL A. DELGADO

JEAN-MARIE DUFOUR
SYLVIA FRUHWIRTH-

-SCHNATTER
ERIC GHYSELS

JOHN C. HAM
JAVIER HIDALGO

HAN HONG
YONGMIAO HONG

BO E. HONORÉ
MAXWELL L. KING
YUICHI KITAMURA

G.M. KOOP
CHUNG-MING KUAN
NAOTO KUNITOMO

KAJAL LAHIRI
Q. LI

TONG LI
OLIVER LINTON

JAMES G. MacKINNON
ROBERT McCULLOCH

ROSA L. MATZKIN
FRANZ C. PALM

DALE J. POIRIER
NICHOLAS POLSON

B.M. PÖTSCHER
INGMAR PRUCHA

PETER C. REISS
ERIC RENAULT

FRANK SCHORFHEIDE
ROBIN SICKLES

FALLAW SOWELL
G.J. VAN DEN BERG

HERMAN VAN DIJK
QUANG H. VUONG

EDWARD VYTLACIL
TOM WANSBEEK
ANDREW WEISS

TAO ZHA

www.elsevier.com/locate/jeconom

Author’s Accepted Manuscript

Testing for unit root processes in random coefficient
autoregressive models

Walter Distaso

PII: S0304-4076(07)00176-5
DOI: doi:10.1016/j.jeconom.2007.09.002
Reference: ECONOM 2986

To appear in: Journal of Econometrics

Cite this article as: Walter Distaso, Testing for unit root processes in random coefficient au-
toregressive models, Journal of Econometrics (2007), doi:10.1016/j.jeconom.2007.09.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/jeconom
http://dx.doi.org/10.1016/j.jeconom.2007.09.002


Acc
ep

te
d m

an
usc

rip
t 

Testing for unit root processes in random coefficient autoregressive

models

Walter Distaso∗

Imperial College London

July 2007

Abstract

This paper proposes new tests for simple unit root and unit root with a possibly nonzero drift processes,

in the context of a random coefficient autoregressive model. The asymptotic distributions of the tests are

derived, and their properties are investigated through a Monte-Carlo experiment. The tests have good

power properties, and in many cases they perform better than the competing univariate tests available

in the literature, despite testing for a multiple joint hypothesis. In particular, for moderate to large

sample sizes, very small values of the variance of the random coefficient variable are needed in order for

the tests to reach some power against roots very close to unity. Finally, the proposed tests are applied

to the US GDP series.
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1 Introduction

A great deal of the econometric literature of the last twenty years has focused on the issue of testing for

the unit root hypothesis in economic time series. This has been typically done by using autoregressive

models with fixed coefficients and then testing for the autoregressive parameter being equal to one (see,

e.g., Dickey and Fuller, 1979, 1981; Evans and Savin, 1981; Phillips, 1987). More recently, some attention

has been dedicated to random coefficient autoregressive models. This way of handling the data allows for

large shocks in the dynamic structure of the model, and also for some flexibility in the features of the

volatility of the series, which are not available in fixed coefficient autoregressive models.

Extensive analysis of the stationary random coefficient autoregressive models has been provided by

Nicholls and Quinn (1982); McCabe and Tremayne (1995) and, subsequently, Leybourne et al. (1996) have

proposed a test for difference stationarity, given that the series has a randomized unit root. In their case

the random autoregressive coefficient has a mean equal to one and the test is based on deciding whether

its variance is equal to zero. They justify the randomized unit root approach by arguing that macroeco-

nomic time series result from aggregating different micro-level regimes and that the aggregation process

often induces some heterogeneity in the macro series. Their approach then allows to model the described

heterogeneity phenomenon. Abadir (2004) has analytically shown that the time-varying aggregation of

autoregressive processes gives rise to a random coefficient autoregressive model.

Granger and Swanson (1997) have provided a general analysis of stochastic unit root processes, focusing

also on estimation issues. They rely on the testing procedure proposed by Leybourne et al. (1996), showing

that the test has power against their class of stochastic unit root processes. They argue that stochastic

unit root processes are consistent with economic theory and cite, as a leading example, the theory of the

permanent income hypothesis (see, e.g., Hall, 1978).

In the paper, the series {yt} is generated by the mechanism

yt = ρtyt−1 + εt, (1)

where ρt is i.i.d.
(
ρ, ω2

)
, εt is IN

(
0, σ2

ε

)
, κ2

ε ≡ E
((

ε2
t − σ2

ε

)2
)

= 2σ4
ε and {εt}, {ρt} are stochastically

independent.

The aim of this paper is to extend the testing procedure proposed by Leybourne et al. (1996), by

allowing the mean of the random autoregressive coefficient ρt to be unknown (instead of having it fixed to

one). Then, tests for the hypotheses that: (i) the variance of ρt is zero; (ii) the mean of ρt is equal to one;

(iii) the mean of ρt is equal to one and its variance equal to zero are derived. Under the first hypothesis,

the series follows an autoregressive model with a possible unit root; under the second hypothesis, the series

follows a possibly stochastic unit root process; finally, when the joint hypothesis is true, the series has an

exact unit root. Under the alternative hypothesis the series can be generated by either a stochastic unit
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root process or a random coefficient process (where the mean of the random autoregressive coefficient is

less than one in absolute value).

The joint hypothesis probably represents the most interesting case. In fact, when testing for a unit

root in random coefficient autoregressive models, ω2 represents a typical nuisance parameter. McCabe and

Tremayne (1995) and Leybourne et al. (1996) have circumvented this problem by assuming prior knowledge

that the autoregressive parameter is either equal to one, or randomly distributed around a mean of unity.

But if one does not know whether ρ = 1 or |ρ| < 1, then standard conventional Dickey-Fuller type tests are

not valid, even asymptotically (see Granger and Swanson, 1997). Hence, the usefulness of the joint testing

approach.

The paper is organized as follows. In Section 2 the model is explained in some detail. In Section 3

the test statistics and their limiting distribution under the null hypothesis are derived. In Section 4 the

properties of the tests are investigated, by means of a Monte-Carlo experiment. Section 5 contains an

empirical example and Section 6 concludes. All the proofs are provided in the Appendix.

The following notation and abbreviations will be frequently used throughout the paper. W (s), B (s),
w−→,

p−→, ∼, Ft, i.i.d.
(
0, σ2

)
, IN

(
0, σ2

)
and ∆ will denote respectively the standard Brownian motion

and the Brownian motion with variance σ2 on s ∈ [0, 1], weak convergence of the associated probability

measure, convergence in probability, equality in distribution, filtration at time t, distributed identically

and independently with mean 0 and variance σ2, normally and independently distributed with mean 0 and

variance σ2, and a generic constant. θ̃ will denote the value of the vector of parameters θ implied by the

null hypothesis. The indicator function 1K gives 1 if condition K is satisfied and zero otherwise. DGP,

AR (p), LM, CMT and OLS will denote, respectively, Data Generating Process, AutoRegressive model of

order p, Lagrange Multiplier, Continuous Mapping Theorem and Ordinary Least Squares.

2 The model

This section explains the main analytical features of the chosen random coefficient autoregressive model

in detail.

Treating y0 as equal to zero,1 model (1) can be solved by backward substitution yielding

yt =
t−1∑

j=1

(
j−1∏

i=0

ρt−i

)
εt−j + εt.

The first two unconditional moments of the series and the formula for the autocovariances are given
1This is only needed for simplifying the subsequent exposition. One can allow for y0 = O(1) or y0 = Op(1) without affecting

the asymptotic results given in the paper.
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respectively by

E (yt) = 0, var (yt) = σ2
ε




t−1∑

j=0

(
ρ2 + ω2

)j




and

cov (yt, yt+l) = σ2
ερ

l




t−1∑

j=0

(
ρ2 + ω2

)j


 . (2)

Therefore the series is not covariance stationary for ρ2 + ω2 ≥ 1. However, the impulse response function

is finite when |ρ| < 1.

Analysis of (2) highlights further features of the model. In fact (2) can be expanded as

cov (yt, yt+l) =





σ2
ερ

l 1−(ρ2+ω2)t

1−(ρ2+ω2)
, if

(
ρ2 + ω2

) 6= 1

σ2
ερ

lt, if
(
ρ2 + ω2

)
= 1

and in the (asymptotically) stationary case

lim
t→∞ cov (yt, yt+l) =

σ2
ε

1− ρ2 − ω2
ρl.

Therefore, for small l and 1− ρ2 − ω2 sufficiently close to 0, the model can accomplish large initial values

of autocovariances, but the decay is still exponentially fast. This can also be seen by looking at the

autocorrelation function, defined by

corr (yt, yt+l) ≡ cov (yt, yt+l)√
var (yt) var (yt+l)

=





ρl 1−(ρ2+ω2)t

√
(1−(ρ2+ω2)t)(1−(ρ2+ω2)t+l)

, if
(
ρ2 + ω2

) 6= 1

ρl t√
t(t+l)

, if
(
ρ2 + ω2

)
= 1.

If
(
ρ2 + ω2

) ≤ 1, then

lim
t→∞ corr (yt, yt+l) = ρl.

Instead, if
(
ρ2 + ω2

)
> 1, then

lim
t→∞ corr (yt, yt+l) =

ρl

√
(ρ2 + ω2)l

.

A special subcase occurs when the series is not covariance stationary. When ρ2 + ω2 ≥ 1 but |ρ| < 1,

the series is (covariance) nonstationary, but its impulse response function is finite and the decay of the

autocorrelation function is exponential. Also, covariance nonstationarity is not removed when the series is

differenced.
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Simulations reported by Yoon (2002) show that if one lets yt = log (St), where St represents the price

of a financial asset, and rt = yt − yt−1 the return at time t, then autoregressive random coefficient models

are capable of allowing for high persistence in the autocorrelation function of {|rt|} and
{
r2
t

}
, two stylized

facts discovered and analyzed by Ding et al. (1993) and Ding and Granger (1996) (see also Granger, 1980,

on the relationship between long memory models and the aggregation of random coefficient autoregressive

models).

Another interesting feature of random coefficient autoregressive models is that, similarly to conditional

heteroskedastic models, they can be successfully used with financial data, which are characterized by fat

tails and volatility clustering. As a matter of fact, random coefficient models can be considered as a

particular case of a conditional heteroskedastic model. Indeed, model (1) can be equivalently written as

yt = ρyt−1 + ut, (3)

where2

E (ut| yt−1) = 0, var (ut| yt−1) = σ2
εht (θ) and ht (θ) = 1 + ω2/σ2

εy
2
t−1. (4)

For a discussion of the several similarities arising between random coefficient autoregressive and conditional

heteroskedastic models, see Tsay (1987) and Leybourne et al. (1996).

In the context of model (1), it can be of interest to test the following set of hypotheses:

(i)

H0 : ω2 = 0, (5)

versus

H1 : ω2 6= 0.

Under the hypothesis defined in (5), the series follows a possibly nonstationary autoregressive process;

(ii)

H0 : ρ = 1, (6)

versus

H1 : |ρ| < 1.

Under the null hypothesis defined in (6), the series follows a (possibly stochastic) unit root process;

(iii)

H0 : ρ = 1 and ω2 = 0, (7)
2This was kindly pointed out by a referee.
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versus the general alternative defined by

H1 : |ρ| < 1 or ω2 6= 0.

The alternative hypothesis above is quite general and allows the series to have a randomized unit

root (as in the case investigated by Leybourne et al., 1996) or to be an asymptotically stationary

random coefficient autoregressive process, or lastly to be non stationary but with an exponentially

decaying autocorrelation function (more precisely when |ρ| < 1, ω2 6= 0, and ρ2 +ω2 ≥ 1). Under the

null hypothesis in (7), the process generating the time series has an exact unit root and therefore is

a simple random walk.

In the next section the relevant test statistics are derived, and their properties assessed.

3 Derivation of the test statistic

3.1 The Gaussian case

Conditioning on the information set up to time (t− 1) yields

E (yt|Ft−1) = yt−1 E (ρt|Ft−1) + E (εt|Ft−1) ,

var (yt|Ft−1) = y2
t−1 var (ρt|Ft−1) + var (εt|Ft−1) + 2yt−1 cov (εt, ρt|Ft−1) .

The following assumption specifies the properties of {ρt} and {εt}.

Assumption 1.

(i) ρt is i.i.d.
(
ρ, ω2

)
;

(ii) εt is IN
(
0, σ2

ε

)
;

(iii) {εt} and {ρt} are stochastically independent.

The Gaussianity assumption is removed in the next subsection, where robust tests are considered. The

log-likelihood function takes the form of

` (θ) = const− 1
2

n∑

t=2

log
(
y2

t−1ω
2 + σ2

ε

)− 1
2

n∑

t=2

(yt − ρyt−1)
2

y2
t−1ω

2 + σ2
ε

, (8)

where θ′ ≡ [
ρ ω2 σ2

ε

]′. The score vector is defined by q (θ) ≡ ∂` (θ) /∂θ, and its components are given by

q1 (θ) ≡ ∂` (θ)
∂ρ

=
n∑

t=2

yt−1 (yt − ρyt−1)
$2

t−1

, q2 (θ) ≡ ∂` (θ)
∂ω2

=
1
2

n∑

t=2

(yt − ρyt−1)
2 (

y2
t−1

)
(
$2

t−1

)2 − 1
2

n∑

t=2

y2
t−1

$2
t−1

,

6
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q3 (θ) ≡ ∂` (θ)
∂σ2

ε

=
1
2

n∑

t=2

(yt − ρyt−1)
2

(
$2

t−1

)2 − 1
2

n∑

t=2

1
$2

t−1

,

where $2
t−1 ≡ y2

t−1ω
2 +σ2

ε . The elements of the Hessian matrix, defined by H (θ) ≡ ∂2` (θ) / (∂θ∂θ′), take

the form of

H11 (θ) ≡ ∂2` (θ)
∂ρ2

= −
n∑

t=2

y2
t−1

$2
t−1

, H12 (θ) ≡ ∂2` (θ)
∂ρ∂ω2

= −
n∑

t=2

y3
t−1 (yt − ρyt−1)(

$2
t−1

)2 ,

H13 (θ) ≡ ∂2` (θ)
∂ρ∂σ2

ε

= −
n∑

t=2

yt−1 (yt − ρyt−1)(
$2

t−1

)2 , H22 (θ) ≡ ∂2` (θ)
∂ω4

=
1
2

n∑

t=2

y4
t−1(

$2
t−1

)2−
n∑

t=2

y4
t−1 (yt − ρyt−1)

2

(
$2

t−1

)3 ,

H23 (θ) ≡ ∂2` (θ)
∂ω2∂σ2

ε

=
1
2

n∑

t=2

y2
t−1(

$2
t−1

)2 −
n∑

t=2

y2
t−1 (yt − ρyt−1)

2

(
$2

t−1

)3 ,

H33 (θ) ≡ ∂2` (θ)
∂σ4

ε

=
1
2

n∑

t=2

1(
$2

t−1

)2 −
n∑

t=2

(yt − ρyt−1)
2

(
$2

t−1

)3 .

The formulae given above need to be evaluated at particular values of the unknown parameters, in order

for the test statistics to be operational. In this paper the score vector and the Hessian matrix are evaluated

at the parameter values implied by the null hypotheses. The proposed test statistic is, therefore, an LM

type test.

The choice of the LM test is motivated by the fact that in this case it is particularly convenient to

work under the null hypothesis, because the score vector and the Hessian matrix are then available in an

analytic form. Therefore, when the null hypothesis is true, the limiting distribution of the test statistics

can be derived.

It is worth mentioning that, under the unit root hypothesis, there is no uniformly most powerful test

(see Anderson, 1948), since the minimal sufficient statistic is not one-dimensional, even asymptotically and

in the simplest case of no deterministic components.3

The conventional LM test, using the Hessian matrix as a normalizing factor, takes the general form of

ALM = q
(
θ̃
)′ (

−H
(
θ̃
))−1

q
(
θ̃
)

.

Here the suffix ‘A’ stands for approximate and reflects the fact that the random Hessian matrix has been

used for normalizing the score vector, as opposed to its deterministic counterpart, the exact information

matrix, which is defined by I (θ) ≡ E (−H (θ)). This choice has not been arbitrary, and finds some

justification in the fact that LM test statistics based on the exact information matrix have low power when

testing for a unit root (see Abadir, 1993).
3Following related work by Dufour and King (1991), Elliott et al. (1996) and Xiao (2001), in fixed coefficient models it is

possible to derive point optimal tests for the unit root hypothesis, namely tests that are tangent to the power envelope at

least for that point alternative.
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The test for hypothesis (5) will be considered first. Its formula is given by

ALM(ω2) =
q2

(
θ̃
)2

−H22

(
θ̃
) =

(∑n
t=2 y2

t−1

[
(yt − ρ̃yt−1)

2 − σ̃2
])2

2σ̃2
∑n

t=2 y4
t−1

[
2 (yt − ρ̃yt−1)

2 − σ̃2
] , (9)

where

ρ̃, σ̃2 = arg max
ρ,σ2

` (θ) |ω2=0.

Theorem 1 shows that the two cases where ρ = 1 and |ρ| < 1 give rise to two different limiting distributions

for the test statistic. Important precedents to the statistic in (9) include the paper by Cai et al. (1998).

They consider tests for homoskedasticity in wavelet regression models. Starting from the model formulation

given in (4), they construct LM tests for the absence of heteroskedasticity, similarly to the approach followed

by Breusch and Pagan (1979). Although very similar in spirit to the LM test for homoscedasticity, the

test proposed in this paper differs from the one by Cai et al. (1998) in two respects: first, as shown in

(9), only the elements of the score vector corresponding to the parameters of interest are selected; second,

the score is standardized by (minus) the Hessian matrix, rather than by the information matrix. This

has been done purely for the purpose of maximizing the power of the proposed tests and is justified by

previous findings in the literature on low power of tests based on the information matrix when the data

are nonstationary. The results of the Monte-Carlo experiment, reported in Section 4, reveal the full extent

of the power improvements. Of course, the test in (9) reduces to the one of Cai et al. (1998) if: (i) the full

score vector is used, and (ii) the score is standardized by the information matrix.

The statistic for testing hypothesis (6) is given by

ALM(ρ) =
q1

(
θ̃
)

√
−H11

(
θ̃
) =

∑n
t=2

yt−1(yt−yt−1)
ω̃2y2

t−1+σ̃2

√∑n
t=2

y2
t−1

ω̃2y2
t−1+σ̃2

.

Theorem 1 shows that the test statistic above has a standard normal limiting distribution if the nuisance

parameter ω2 6= 0, and a nonstandard limiting distribution if ω2 = 0.

Finally, for the joint hypothesis (7), a modification to the conventional LM statistic will be proposed,

in order to exploit the partially one-sided nature (in the autoregressive parameter ρ) of the alternative

hypothesis and derive more powerful tests.

The method applied is the general one derived in Abadir and Distaso (2006). By incorporating the

nature of the alternative hypothesis in the construction of the test statistic and therefore providing more

information to the statistic, uniform power gains are achieved with respect to the unmodified counterparts.

This is shown analytically when the components of the test are (at least asymptotically) normally dis-

tributed, and by Monte-Carlo simulations in nonstandard setups, such as the present one. An application

to the modification of the LM test is given below.

8
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The modified LM test statistic can be derived in the following way. After having partitioned the score

vector

q (θ) =


 q1 (θ)

q2 (θ)


 ,

where q2 (θ) =


 q2 (θ)

q3 (θ)


 and the Hessian matrix accordingly

H (θ) =


 H11 (θ) h21 (θ)′

h21 (θ) H22 (θ)


 ,

it is possible to modify the score vector

q⊥ (θ) ≡

 q1 (θ)

q2⊥1 (θ)


 =


 q1 (θ)

q2 (θ)− h21(θ)
H11(θ)q1 (θ)


 ,

such that the modified Hessian matrix is given by

−H⊥ (θ) = −

 H11 (θ) 0′

0 H2⊥1 (θ)


 = −


 H11 (θ) 0′

0 H22 (θ)− 1
H11(θ)h21 (θ) h21 (θ)′


 ,

and implying that q1 (θ) and q2⊥1 (θ) are orthogonal. Then the modified test statistic is given by

AMLM = 1 q1(θ̃)
n

<0

[(
1 0 0

)(
−H

(
θ̃
))(

1 0 0
)′]−1 (

q1

(
θ̃
))2

+


q2

(
θ̃
)
−
H12

(
θ̃
)

H11

(
θ̃
)q1

(
θ̃
)



2 [(
−H21(θ̃)
H11(θ̃) 1 0

)(
−H

(
θ̃
)) (

−H21(θ̃)
H11(θ̃) 1 0

)′]−1

= 1∑
yt−1(yt−yt−1)

nσ̃2 <0

(
∑

yt−1 (yt − yt−1))
2

σ̃2
∑

y2
t−1

+

(∑
y2

t−1

(
(yt − yt−1)

2 − σ̃2
))2

2σ̃2
(
2

∑
y4

t−1 (yt − yt−1)
2 − σ̃2

∑
y4

t−1

) ,

where the ‘M’ after the ‘A’ stands for modified. By considering only the cases where the score takes

negative values, the test is specifically tailored to incorporate the direction of the alternative hypothesis of

interest. This modification leads to power improvements, as shown in Section 4.

The next theorem states the limiting densities of the test statistics under the null hypothesis.

Theorem 1. Let Assumption 1 hold. In model (1):

(i) when hypothesis (5) is true and ρ = 1, the following holds

ALM(ω2) w−→

(∫ 1
0 W1 (s)2 dW2 (s)− ∫ 1

0 W1 (s)2 dsW2 (1)
)2

∫ 1
0 W1 (s)4 ds

,

where W1 (s) and W2 (s) are independent standard Brownian motions;

9
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(ii) when hypothesis (5) is true and |ρ| < 1, the following holds

ALM(ω2) d−→ χ2
1;

(iii) when hypothesis (6) is true and ω2 = 0, the following holds

ALM(ρ) w−→

(
W1 (1)2 − 1

)

2
√∫ 1

0 W1 (s)2 ds
; (10)

(iv) when hypothesis (6) is true and ω2 6= 0, the following holds

ALM(ρ) d−→ N(0, 1) ;

(v) finally, when hypothesis (7) is true, then

AMLM w−→ 1 1
2(W1(1)2−1)<0

(
W1 (1)2 − 1

)2

4
∫ 1
0 W1 (s)2 ds

+

(∫ 1
0 W1 (s)2 dW2 (s)− ∫ 1

0 W1 (s)2 dsW2 (1)
)2

∫ 1
0 W1 (s)4 ds

.

The presence of a unit root in the DGP gives rise to a nonstandard limiting distribution of the statistic

for testing (5). In addition, when ω2 = 0, the limiting distribution of the statistic for hypothesis (6) is given

in terms of Wiener processes, rather than standard normal.4 This raises the important point of using the

correct critical values in empirical work. For example, if one had a priori information that ω2 = 0, he would

use the critical values of the distribution given in (10) for ALM(ρ). Otherwise, he would use the quantiles

of the standard normal. However, this information on ω2 is not available. There are three possible ways

to address this problem: the first method, which is valid for ALM(ω2), consists in estimating ρ, which can

be done consistently under both the null and alternative hypothesis (since the information matrix is block

diagonal, see Breusch and Pagan, 1979), and then use the critical value corresponding to ρ̂. For ALM(ρ),

one has two available options: the first is to use always the critical values of the nonstandard distributions,

which are larger than the normal ones. This implies a conservative testing strategy for hypothesis (6).5

The second option is to use model selection criteria, such as those by Phillips and Ploberger (1996), which

allow for potentially nonstationary data.

Finally, asymptotic critical values can be obtained by simulation methods, using a very large sample

size, since the limiting distributions are not known in close form. This approach is followed in Section 4,

where asymptotic critical values are obtained by fixing n = 1000 (see Tables 6 and 8).
4Notice that this result is in contrast with what happens in unit root processes with GARCH innovations. There, unit

root tests have the usual Dickey-Fuller distribution. Here, the limiting distribution changes according to the value of ω2. The

reason for this difference lies in the fact that, from (4), the conditional variance is nonstationary when ω2 6= 0 and therefore

the standard proof for the validity of the Dickey-Fuller distribution in unit root models with GARCH innovations cannot be

applied.
5The implied size distortion is not severe, as confirmed by the results of Section 4.
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Inspection of the formulae for the limiting distributions just derived reveals some similarities with

results obtained in the literature. The first part of the formula for the limiting density of AMLM is the

positively censored and then squared equivalent of the limiting distribution of the LM test for a unit root

in a simple AR(1) model (see Phillips, 1987, equation (11), p.283). The numerator in the formula for the

second component of AMLM is the same as the one derived by Leybourne et al. (1996); the difference

lies in the choice of the normalizing factor, which in their case is a deterministic factor ensuring that

the (normalized) score has a non-degenerate limiting distribution, whereas in the present paper it is the

Hessian matrix.

Analysis of the probabilistic orders of magnitude of the Hessian matrix suggests a further useful result.

Corollary 1. Let Assumption 1 hold. In model (1), when hypothesis (7) is true, the test statistics

1 q1(θ̃)
n

<0

(
q1

(
θ̃
))2

−H11

(
θ̃
) = 1∑

yt−1(yt−yt−1)
nσ̃2 <0

(
∑

yt−1 (yt − yt−1))
2

σ̃2
∑

y2
t−1

and
q2

(
θ̃
)2

−H22

(
θ̃
) =

(∑n
t=2 y2

t−1

[
(yt − yt−1)

2 − σ̃2
])2

2σ̃2
∑n

t=2 y4
t−1

[
2 (yt − yt−1)

2 − σ̃2
]

are asymptotically uncorrelated.

Then, in applied work, provided that the sample size is large, one can use the simpler version of the

joint test, given by the sum of the (censored and then squared) test on ρ and the test on ω2, without

orthogonalizing the two components. Of course, in small samples, this simpler test could suffer from some

loss of power.

In fact, the nature of the alternative hypothesis regarding ω2 is not really two-sided, since variances can

only take non-negative values. However, there is no need to make any correction or modification for this

in the joint test statistic, since the test statistic on ω2 is virtually one-sided (see McCabe and Tremayne,

1995; Leybourne et al., 1996).

Several extensions to the above setup are possible. The first one is allowing for a non-zero correlation

between ρt and εt (i.e. setting cov (εt, ρt|Ft−1) = %ω2). This does not alter the limiting distribution of the

test statistics, as the terms involving % turn out to be of a smaller probabilistic order and therefore can be

asymptotically neglected (see Leybourne et al., 1996).6 A possible intuition behind this result is the sim-

ilarity between random coefficient autoregressive models and conditionally heteroskedastic autoregressive
6In this case, the score for the parameter ω2 would take the form of

q2

(
θ̃
)

=

∑
y2

t−1

(
ε2

t − σ̃2
)

+ 2%
∑

yt−1

(
ε2

t − σ̃2
)

2σ̃4
,

which is clearly dominated by the first component. A similar result holds for the elements of the Hessian matrix.

11
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models, where the parameters of the mean and variance are asymptotically uncorrelated.7 This property

is verified in a small Monte-Carlo exercise in Section 4.

It would certainly be of interest to relax the i.i.d. assumption on {ρt}, by modeling it as an autoregres-

sive process, and then proceed to estimate the model, taking into account serial dependence (e.g. Kalman

filter). However, one of the main points of the paper is to provide a test on the mean of the autoregressive

random variable being equal to one. Then, it would not be clear what to test in this case, since the mean

of the process {ρt} would depend on the initial value of the process. Therefore, this extension is not

considered in the paper.

Also, deterministic components can be added to the model, to cover more general data generating

processes. This paper considers a constant and a linear trend, though extension to higher order trends is

straightforward.8 Model (1) can then be extended in the following way

y1 = α + β + ε1

yt − α− βt = ρt (yt−1 − α− β (t− 1)) + εt, t = 2, . . . , n. (11)

Notice that the constant and trend term are included in the model following the work of Bhargava (1986);

this achieves the advantage that the resulting test statistics are invariant to the values of the nuisance

parameters in the DGP, as shown by results from DeJong et al. (1992) and Distaso (2002). This fact sets

a marked difference with respect to the widely used linear (Dickey-Fuller) specification, where different

limiting distributions arise according to the value of the nuisance parameters in the DGP (for a detailed

discussion about the differences about the two models and an intuition about why different distributions

arise, see Schmidt and Phillips, 1992).

The log-likelihood in the augmented model takes the form of

` (θa) = const− 1
2

log
(
σ2

ε

)− 1
2σ2

ε

(y1 − α− β)2 − 1
2

n∑

t=2

log
(
y∗

2

t−1ω
2 + σ2

ε

)
− 1

2

n∑

t=2

(
y∗t − ρy∗t−1

)2

y∗2t−1ω
2 + σ2

ε

,

where θ′a ≡
[
ρ ω2 σ2

ε α β
]′ and y∗t ≡ yt − α− βt.

Suitable test statistics (denoted by ALMa and AMLMa) for hypotheses (5), (6) and (7) can be con-

structed in a similar way to the case analyzed above.

Under the null hypothesis (5), the series becomes an autoregressive model with a possible unit root;

under (6), the series behaves like a (possibly randomized) unit root process plus a drift. Finally, under

(7) it simplifies to a random walk with with a possibly nonzero drift. In particular, the test statistics are
7This is not the case, though, for some GARCH specifications, such as GARCH in mean.
8Similarly to results obtained by Elliott et al. (1996), Phillips and Xiao (1998) and Pere (2003), the limiting distributions

of the test statistics on ρ are not affected by the presence of constants or slowly trending regressors. Therefore, the case where

only an intercept α is included in the model gives rise to the same limiting distributions as in Theorem 1.
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given by

ALM(ω2)
a =

(∑
y∗2t−1

((
y∗t − ρ̃y∗t−1

)2 − σ̃2
))2

2σ̃2
(
2

∑
y∗4t−1

(
y∗t − ρ̃y∗t−1

)2 − σ̃2
∑

y∗4t−1

) , (12)

ALM(ρ)
a =

∑ y∗t−1(y∗t−y∗t−1)
ω̃2y∗2t−1+σ̃2

√∑ y∗2t−1

ω̃2y∗2t−1+σ̃2

(13)

and

AMLMa = 1∑
y∗t−1(y∗t−y∗t−1)<0

(∑
y∗t−1

(
y∗t − y∗t−1

))2

σ̃2
∑

y∗2t−1

+

(∑
y∗2t−1

((
y∗t − y∗t−1

)2 − σ̃2
))2

2σ̃2
(
2

∑
y∗4t−1

(
y∗t − y∗t−1

)2 − σ̃2
∑

y∗4t−1

) . (14)

In order to use the statistics above in practical work, one needs to substitute in (12), (13) and (14) some

consistent estimators for α and β.

Analytical results and simulations reported in Distaso (2002) reveal that for testing hypothesis (7), if

one chooses the fully restricted estimators (i.e. obtained imposing the restriction implied by the hypotheses

ω2 = 0 and ρ = 1) for α and β, then the power of the test is substantially (often dramatically) reduced.

Therefore the partially restricted estimators, namely α̂ and β̂, resulting from

α̂, β̂, ρ̂, σ̂2
ε = arg max

α,β,ρ,σ2
ε

` (θa) |ω2=0

will be used in the construction of the statistic. Since the function to be minimized is nonlinear in the

parameters, the following stepwise (iterative) least squares estimation procedure is used:

1) Start from an estimator of ρ and then estimate α and β from

y1 = α + β + ε1,

yt − ρ̂yt−1 = α (1− ρ̂) + β [t− ρ̂ (t− 1)] + εt, t = 2, . . . , n

by OLS.

2) Having obtained an estimate of α and β, the estimate of ρ can be updated from

yt − α̂− β̂t = ρ
(
yt−1 − α̂− β̂ (t− 1)

)
+ εt, t = 2, . . . , n

again using OLS.

3) Return to step 1 and repeat until convergence.

Convergence of the estimation procedure is established in Distaso (2002). The limiting distribution of the

test statistics are derived in the following theorem.

Theorem 2. Let Assumption 1 hold. In model (11):
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(i) when hypothesis (5) is true and ρ = 1, the following holds

ALM(ω2)
a

w−→

(∫ 1
0 (W1 (s)− sξ)2 dW2 (s)− ∫ 1

0 (W1 (s)− sξ)2 ds W2 (1)
)2

∫ 1
0 (W1 (s)− sξ)4 ds

,

where ξ denotes the limiting distribution of n
1
2

(
β̂ − β

)
/σε. The asymptotic behaviour of ξ and η,

where η denotes the limiting distribution of n (ρ̂− 1), is determined jointly by the following stochastic

differential equations

ξ =

∫ 1
0 (1− ηs) dW1 (s)− η

∫ 1
0 (1− ηs) W1 (s) ds∫ 1

0 (1− ηs)2 ds
,

η =
1/2

(
W1 (1)2 − 1

)
− ξ

(∫ 1
0 sdW1 (s) +

∫ 1
0 (W1 (s)− ξs) ds

)

∫ 1
0 (W1 (s)− ξs)2 ds

.

There is no analytic solution to these equations, and the limiting distributions are obtained by nu-

merical methods;

(ii) when hypothesis (5) is true and |ρ| < 1, the following holds

ALM(ω2)
a

d−→ (N (0, Va))
2 ,

where

Va = plim
var

(
1/
√

n
∑

y∗2t−1

(
ε2
t − σ2

ε

))

2σ4
ε

∑
y∗4t−1/n

;

(iii) when hypothesis (6) is true and ω2 = 0, the following holds

ALM(ρ)
a

w−→
∫ 1
0 (W1 (s)− sξ) dW1 (s)− ξ

∫ 1
0 (W1 (s)− sξ) ds√∫ 1

0 (W1 (s)− sξ)2 ds
;

(iv) when hypothesis (6) is true and ω2 6= 0, the following holds

ALM(ρ)
a

d−→ N(0, 1) ;

(v) finally, when hypothesis (7) is true the following holds

AMLMa
w−→ 1[

∫ 1
0 (W1(s)−sξ) dW1(s)−ξ

∫ 1
0 (W1(s)−sξ) ds]<0

×

(∫ 1
0 (W1 (s)− sξ) dW1 (s)− ξ

∫ 1
0 (W1 (s)− sξ) ds

)2

∫ 1
0 (W1 (s)− sξ)2 ds

+

(∫ 1
0 (W1 (s)− sξ)2 dW2 (s)− ∫ 1

0 (W1 (s)− sξ)2 dsW2 (1)
)2

∫ 1
0 (W1 (s)− sξ)4 ds

.
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3.2 Robust tests

In this subsection, the Gaussianity assumption is removed and some dependence is allowed for {εt}. In

particular, ρt and ζt ≡
(
εt, ε

2
t − σ2

ε

)′ satisfy the following assumption.

Assumption 2.

(i) ρt is i.i.d.
(
ρ, ω2

)
;

(ii) E (εt) = 0;

(iii) supt E |εt|γ+ν < ∞, for some γ > 4 and ν > 0;

(iv) limn→∞ n−1 var (
∑n

t=1 ζt) = Σζ, having elements equal respectively to σ2, ψσκ and κ2 and admitting

a decomposition of the kind Σ
−1/2
ζ

(
Σ
−1/2
ζ

)′
= Σ−1

ζ ;

(v) {εt} is strong mixing with mixing coefficients ιm satisfying

∞∑

m=1

ι1−2/γ
m < ∞.

(vi) {εt} and {ρt} are stochastically independent.

It is clear that, under Assumption 2, the martingale difference sequence hypothesis E (εt|Ft−1) = 0 does

not hold any more. The parameters of the model can still be estimated consistently maximizing (8), using

a quasi maximum likelihood argument. However, in order to conduct correct inference, the standardizing

factor needs to be changed. In particular, the general form of the robust approximate LM statistic becomes

ALMR = q
(
θ̃
)′ (

−H
(
θ̃
))−1 (

V
(
θ̃
))−1 (

−H
(
θ̃
))−1

q
(
θ̃
)

,

where ‘R’ stands for robust, V
(
θ̃
)

=
(
−H

(
θ̃
))−1

A
(
θ̃
)(
−H

(
θ̃
))−1

and A
(
θ̃
)

denotes the outer

product of the gradient matrix. Define mn = o
(
n1/4

)
, the truncation lag. Let mn → ∞ as n → ∞, and

the corresponding weights satisfy |wnτ | ≤ ∆, n = 2, . . . , τ = 1, . . . , mn, such that wnτ → 1 as n →∞, for

each τ . Then, the generic elements of A (θ) are given by

A11 (θ) =
n∑

t=2

y2
t−1 (yt − ρyt−1)

2

(
$2

t−1

)2 + 2
mn∑

τ=1

wnτ

n∑

t=τ+2

yt−1 (yt − ρyt−1)
$2

t−1

yt−τ−1 (yt−τ − ρyt−τ−1)
y2

t−τ−1ω
2 + σ2

ε

,

A12 (θ) =
n∑

t=2

y3
t−1 (yt − ρyt−1)

[
(yt − ρyt−1)

2 − (
$2

t−1

)]

2
(
$2

t−1

)3

+
mn∑

τ=1

wnτ

n∑

t=τ+2

yt−1 (yt − ρyt−1)
$2

t−1

y2
t−τ−1

[
(yt−τ − ρyt−τ−1)

2 − (
$2

t−τ−1

)]

2
(
$2

t−τ−1

)2
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+
mn∑

τ=1

wnτ

n∑

t=τ+2

yt−τ−1 (yt−τ − ρyt−τ−1)
$2

t−τ−1

y2
t−1

[
(yt − ρyt−1)

2 − (
$2

t−1

)]

2
(
$2

t−1

)2 ,

A13 (θ) =
n∑

t=2

yt−1 (yt − ρyt−1)
[
(yt − ρyt−1)

2 − (
$2

t−1

)]

2
(
$2

t−1

)3

+
mn∑

τ=1

wnτ

n∑

t=τ+2

yt−1 (yt − ρyt−1)
$2

t−1

(yt−τ − ρyt−τ−1)
2 − (

$2
t−τ−1

)

2
(
$2

t−τ−1

)2

+
mn∑

τ=1

wnτ

n∑

t=τ+2

yt−τ−1 (yt−τ − ρyt−τ−1)
$2

t−τ−1

(yt − ρyt−1)
2 − (

$2
t−1

)

2
(
$2

t−1

)2 ,

A22 (θ) =
n∑

t=2

y4
t−1

[
(yt − ρyt−1)

2 − (
$2

t−1

)]2

4
(
$2

t−1

)4

+2
mn∑

τ=1

wnτ

n∑

t=τ+2

y2
t−1

[
(yt − ρyt−1)

2 − (
$2

t−1

)]

2
(
$2

t−1

)2

y2
t−τ−1

[
(yt−τ − ρyt−τ−1)

2 − (
$2

t−τ−1

)]

2
(
$2

t−τ−1

)2 ,

A23 (θ) =
n∑

t=2

y2
t−1

[
(yt − ρyt−1)

2 − (
$2

t−1

)]2

4
(
$2

t−1

)4

+
mn∑

τ=1

wnτ

n∑

t=τ+2

y2
t−1

[
(yt − ρyt−1)

2 − (
$2

t−1

)]

2
(
$2

t−1

)2

(yt−τ − ρyt−τ−1)
2 − (

$2
t−τ−1

)

2
(
$2

t−τ−1

)2

+
mn∑

τ=1

wnτ

n∑

t=τ+2

y2
t−τ−1

[
(yt−τ − ρyt−τ−1)

2 − (
$2

t−τ−1

)]

2
(
$2

t−τ−1

)2

(yt − ρyt−1)
2 − (

$2
t−1

)

2
(
$2

t−1

)2 ,

A33 (θ) =
n∑

t=2

[
(yt − ρyt−1)

2 − (
$2

t−1

)]2

4
(
$2

t−1

)4 +2
mn∑

τ=1

wnτ

n∑

t=τ+2

(yt − ρyt−1)
2 − (

$2
t−1

)

2
(
$2

t−1

)2

(yt−τ − ρyt−τ−1)
2 − (

$2
t−τ−1

)

2
(
$2

t−τ−1

)2 .

The outer product of the score matrix has been constructed in order to take into account the amount of

serial dependence in {εt}. Under Assumption 2, the limiting distributions of the proposed test statistics

change, since they depend on some unknown nuisance parameters, namely σ2
ε , σ2, κ2, κ2

ε and υ = E
(
ε3
t

)
.

The following Lemma reports convergence results for the elements of the score, the Hessian and the outer

product of the score matrix, under hypothesis (7). Convergence results under hypotheses (5) and (6) (and

for the augmented model (11)) can be obtained using similar arguments and are omitted for space reasons.

Lemma 1. Let Assumption 2 hold. Then in model (1) the following holds

q1

(
θ̃
)

n

w−→ 1
σ2

ε

∫ 1

0
B1 (s) dB1 (s);
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q2

(
θ̃
)

n3/2

w−→ κσ2

2σ4
ε

∫ 1

0

(
W1 (s)2 −

∫ 1

0
W1 (s)2 ds

)
dW ∗ (s)

=
κσ2

2σ4
ε

(∫ 1

0
W1 (s)2 dW ∗ (s)−

∫ 1

0
W1 (s)2 dsW ∗ (1)

)
,

where W ∗ (s) = ψW1 (s) +
(
1− ψ2

)1/2
W2 (s), W1 (s) and W2 (s) are independent standard Brownian mo-

tions;

q3

(
θ̃
)

= 0; −
H11

(
θ̃
)

n2

w−→ 1
σ2

ε

∫ 1

0
B1 (s)2 ds =

σ2

σ2
ε

∫ 1

0
W1 (s)2 ds;

−
H12

(
θ̃
)

n2

w−→ 1
σ4

ε

∫ 1

0
B1 (s)3 dB1 (s); −

H13

(
θ̃
)

n

w−→ 1
σ4

ε

∫ 1

0
B1 (s) dB1 (s);

−
H22

(
θ̃
)

n3

w−→ 1
2σ4

ε

∫ 1

0
B1 (s)4 ds =

σ4

2σ4
ε

∫ 1

0
W1 (s)4 ds;

−
H23

(
θ̃
)

n2

w−→ 1
2σ4

ε

∫ 1

0
B1 (s)2 ds =

σ2

2σ4
ε

∫ 1

0
W1 (s)2 ds;

−
H33

(
θ̃
)

n

p−→ 1
2σ4

ε

;
A11

(
θ̃
)

n2

w−→ 1
σ2

ε

∫ 1

0
B1 (s)2 ds =

σ2

σ2
ε

∫ 1

0
W1 (s)2 ds;

A12

(
θ̃
)

n5/2

w−→ υ

2σ6
ε

∫ 1

0
B1 (s)3 ds;

A22

(
θ̃
)

n3

w−→ κ2
ε

4σ8
ε

∫ 1

0
B1 (s)4 ds.

Then, the limiting distributions of the robust versions of the tests can be obtained in a straightforward

way just applying the continuous mapping theorem.

The Lemma reveals some interesting results. First, the order of magnitude of A12

(
θ̃
)

differs from

its corresponding element of the Hessian matrix. This is due to allowing for possible asymmetry in the

marginal distribution of {εt}. Also, under (7), in the outer product of the score matrix, the cross terms

(for capturing the serial dependence in {εt}) are of a smaller order then the contemporaneous elements,

and the effect of allowing for some serial correlation in {εt} comes from the long run variance parameter

σ2. The parameter ψ measures the limiting correlation between {εt} and
{
ε2
t − σ2

ε

}
, and is zero when {εt}

is symmetric, as in the simulation study of Section 4.

From the limit results above it is immediate to see that, if the conditional innovation error is Gaussian,

then A (θ) = −H (θ) and robust tests simplify to those obtained in the previous section. As mentioned

above, the limit theory of Lemma 1 depends on the unknown nuisance parameters σ2
ε , σ2, κ2, κ2

ε and υ. In

order to obtain a feasible limit theory, the following correction is proposed. As for the first component of

the score, it is possible to use the nonparametric correction proposed by Phillips (1987) (see also Phillips

and Perron, 1988) and consider the modified score

σ̃2

σ̂2

q1

(
θ̃
)

n
− 1

2
σ̃2 − σ̂2

σ̂2

w−→
∫ 1

0
W1 (s) dW1 (s),
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where σ̂2 is a consistent estimator of σ2, which has a nuisance parameters free limiting distribution.

As for the second component, the modification is more straightforward. It suffices to use

σ̃4

κ̂σ̂2

q2

(
θ̃
)

n3/2
,

where κ̂2 is any consistent estimator of and κ2. Similar standardizations are possible for the components

of the Hessian and outer product of the score matrix. Then one obtains nuisance parameters free limiting

distributions, under the more stringent assumption that supt E |εt|γ+ν < ∞, for some γ > 8, ν > 0, which

ensures a consistent estimation of κ2.

Derivation of an analytic formula for the exact densities of the proposed tests does not seem to be

tractable; therefore in small samples the quantiles and power properties of the proposed test statistics have

to be simulated. That is the content of the next section.

4 Simulation results

A Monte-Carlo experiment, based on 100,000 replications, has been conducted for different values of the

parameters and sample size, assuming that α, β = 0, εt ∼ IN (0, 1), ρt ∼ IN
(
ρ, ω2

)
, with {εt}, {ρt}

independent.

Tables 1 and 2 report the simulated quantiles of ALM(ω2) and ALM(ω2)
a under (5), for different values

of ρ. For small to moderate sample sizes, critical values do not vary too much as ρ changes. Therefore, in

practical work, using the critical value obtained for ρ = 1 would not produce a severe size distortion.

Tables 3 and 4 report quantiles of ALM(ρ) and ALM(ρ)
a under (6), for different values of ω2. Starting

from Table 3, one can see that, when ω2 = 0, the resulting critical values are virtually identical to those

of the standard t-test for a unit root in linear models (see, e.g., Fuller, 1995). As ω2 increases, critical

values start to converge to those of a standard normal. Unreported simulations for larger (but unrealistic)

values of ω2 show an almost perfect correspondence to the standard normal quantiles. Again, for small

to moderate sample sizes the critical values of the test when ω2 = 0 are similar to those when ω2 6= 0.

The same pattern can be observed for Table 4, with the warning remark that critical values of the test

when ω2 = 0 cannot be compared with those of a t-test for a unit root in the linear model with a trend,

but rather with those of the t-test in the (nonlinear) Bhargava model. Also, here the difference between

critical values when ω2 = 0 and those when ω2 6= 0 becomes more marked as n increases.

Finally, Table 5 reports the quantiles of AMLM and AMLMa under (7). The simulated quantiles of

AMLM appear to be quite stable for different values of the sample size; there is very little change (especially

for the middle quantiles) even for substantially different values of n.
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Table 6 reports the power of ALM(ω2) and ALM(ω2)
a for ρ = 1.9 The results of the simulation exercise

highlight the potential benefit of using sample information when constructing test statistics. In fact,

ALM(ω2) and ALM(ω2)
a dominate almost everywhere the competing tests ZT and ĤT proposed respectively

by McCabe and Tremayne (1995) and Leybourne et al. (1996) (whose power figures are reported in columns

5 and 6), based on the deterministic normalization factor n3/2. Being a locally best invariant test, ZT does

better than ALM(ω2) in the vicinity of the null hypothesis and for small to moderate sample sizes (for

ω2 = 0.001, 0.072 vs. 0.058 when n = 50; 0.107 vs. 0.073 when n = 100; 0.207 vs. 0.157 when n = 200),

but then it is clearly dominated, the difference in power being sometimes considerable (e.g. when ω2 = 0.1

and n = 100 the power of ZT is 0.43 and that of ALM(ω2) is 0.976). ALM(ω2)
a seems to dominate everywhere

ĤT , but the differences in power are less marked. Also, the Monte-Carlo experiment reveals the extent of the

power gains obtained by selecting only the components of the score vector corresponding to the parameter

of interest and by using the Hessian matrix. In fact, just to cite a few examples, if one constructs the test

statistic using the full score vector and the information matrix, then he gets a power of 0.084 for ω2 = .1

and n = 25 (compared with 0.429 of ALM(ω2)); a power of 0.189 for ω2 = .1 and n = 50 (compared with

0.787 of ALM(ω2)); finally, a power of 0.440 for ω2 = .05 and n = 100 (compared with 0.910 of ALM(ω2)).

Of course, in finite samples, the Hessian matrix is not guaranteed to be positive definite, and therefore

there might be problems when trying to invert it. But this case never occurred in the simulations and in

the empirical example of the next Section.

Table 7 reports the size distortions of ALM(ω2) induced by conditional heteroskedasticity; data are

generated by a unit root process with GARCH(1,1) innovations, through

yt = yt−1 + et, et ∼ N(0, ht),

where

ht = (1− ϑ− ϕ) + ϕht−1 + ϑe2
t−1,

with ϑ, ϕ > 0 and ϑ + ϕ < 1. The unconditional variance is, therefore, always equal to one. In the

exercise, three cases are considered: (i) almost no GARCH: ϑ+ϕ = .1; (ii) moderate GARCH: ϑ+ϕ = .5;

(iii) strong GARCH: ϑ + ϕ = .9. In case (i), empirical sizes are very close to correct ones; there is a small

distortion in case (ii) and seems to be decreasing in ϕ. Finally, in case (iii) size distortions appear to be

more pronounced. This seems to confirm the discussion of Section 2 about the similarities between random

coefficient and conditional heteroskedastic models.

Table 8 reports the power of ALM(ρ)
a for ω2 = 0. Figures relative to ALM(ρ) are equal to those of the

standard t-test for a unit root in simple autoregressive models and have been tabulated already by Dickey
9With a slight abuse of notation, the subscript (∞) denotes tests whose powers are based on asymptotic critical values.

Also, all the powers are calculated at the 5% level.
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and Fuller (1979).

Tables 9 and 10 contain the powers of of AMLM and AMLMa, for different values of the sample size

and for values of the parameters of interest typically used in similar work in the literature (e.g. Dickey and

Fuller, 1979; Leybourne et al., 1996). Analysis of the power figures reveals some interesting properties of

the considered tests.

First, the tests are not biased, in contrast to some evidence to the contrary reported in the literature

on unit root testing (e.g. Dickey and Fuller, 1979). The justification for the presence of bias, and more

generally for the poor power figures against alternative values of ρ very close to one, is the stochastic

discontinuity between the null and alternative hypothesis.

The power of AMLM and AMLMa increases when violation of the null occurs in both directions (namely

ρ and ω2), but not uniformly. In fact, for n greater than 50, the power is higher when violation of the null

hypothesis is on the ω2 component with ρ = 1, than in cases when ρ is close to one. This may be due to

the stochastic discontinuity between the null and alternative hypothesis described above.

Interestingly, for alternatives quite distant from the null hypothesis, AMLM and AMLMa reach higher

power figures than those of ZT and ĤT , despite the fact that the tests used here are inefficient, since they

do not make use of the information that ρ = 1.

If one knew that the DGP is a simple asymptotically stationary AR(1), the powers of AMLM and

AMLMa display very similar values respectively to the Dickey-Fuller type t-test and to the t-test in Bhar-

gava’s model, although the former tests are designed for an (inefficient) joint restriction. Apart from small

difference due to rounding, there are no substantial discrepancies between the two pair of tests. This is an

indication of the gain (in terms of power) provided by the modification to the conventional LM statistic;

the proposed test recovers the loss of power involved in using a two-sided test, when in fact the direction

of the alternative hypothesis is one-sided.

Again, just to cite a few examples, if one constructs the test statistic using the full score vector and the

information matrix, then he gets a power of 0.120 for ω2 = .01, ρ = .8 and n = 25 (compared with 0.323

of AMLM); a power of 0.283 for ω2 = .1, ρ = .8 and n = 50 (compared with 0.886 of AMLM); finally, a

power of 0.333 for ω2 = .05, ρ = .99 and n = 100 (compared with 0.869 of AMLM).

It is worth noting the potential power gains provided by the present testing procedure even for very

small values taken by ω2. For example for the AMLM test, when n = 200 and ρ = 0.99, it suffices a value

of ω2 equal to 0.01 to get a satisfactory power value (0.660), compared to the low value of 0.130 when ω2

takes the value of zero. Given the evidence reported by Leybourne et al. (1996), who estimated a large

sample of macroeconomic time series frequently used in applied work and found that the majority of them

had a value of ω̂2 between 0.01 and 0.1, one can expect some power gains in using the suggested testing

procedure.
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The powers of tests based on asymptotic critical values, reported in Tables 6 and 8, are generally higher

than those based on exact critical values, since the distribution of the tests tend to shrink when n increases.

However, in several cases using asymptotic critical values induces severe size distortions. This is not the

case for AMLM, which remains fairly constant as the sample size changes. The power results of AMLM

and AMLMa based on asymptotic critical values are not reported for space reasons and are available upon

request.

Since the asymptotic distributions of the proposed tests do not have a close form, in order to compute

approximate P values for these tests one can follow the approach of MacKinnon (1994).

5 Empirical Example

The tests derived in Section 3 have been applied to the quarterly series of US GDP. Data refer to seasonally

adjusted quarterly GDP values, expressed in billions of dollars at 2000 prices. The series is available from

the first quarter of 1947 to the fourth quarter of 2003, for a total of 228 observations. The obtained series

has been transformed taking logarithms and then tests for hypotheses (5), (6) and (7) have been performed.

The plot of the series is reported in Figure 1 and suggest that the suitable version of the tests to use

are those with deterministic components. In particular, in order to allow for non-normality, conditional

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005

7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25 logusgdp 

Figure 1: Actual values of US log(GDP)

heteroskedasticity and serial dependence in {εt}, the robust versions of ALM(ω2)
a , ALM(ρ)

a and and AMLMa

have been calculated. Furthermore, the tests the tests have been modified according to the discussion in

Section 3, to remove the effect of the unknown nuisance parameters.
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The parameters of the conditional mean of the model have been estimated using the method described

in Section 3. As for the parameters entering the conditional variance, they have been estimated according

to equation (5) in Amemiya (1977). When testing hypotheses (5) and (7), σ4
ε has been estimated by the

robust method proposed in Cai et al. (1998). Point estimates for the parameters of interest are given below

α̂ = 7.352, β̂ = 0.0085, ρ̂ = 0.982, ω̂2 = 0.0005.

The obtained values of the statistics are

ALMR(ω2)
a = 1.89e− 10, ALMR(ρ)

a = −1.048, ALMRa = 1.194.

In order to make an asymptotically valid inference, the subsampling method of Romano and Wolf (2001)

has been used, with the block size determined through their data dependent procedure for each (1%, 5%

and 10%) considered level of confidence. To comply with the assumptions of Romano and Wolf (2001),

serial dependence in {εt} has been accounted for parametrically, using augmented regressions containing

lagged values of first differences of data. Finally, σ2 and κ2 have been estimated using, respectively,

an heteroskedasticity-consistent and an heteroskedasticity and autocorrelation-consistent estimator with 8

lags. The null hypotheses are never rejected.

Therefore, the outcome of the testing procedure is that the hypothesis of US log(GDP) evolving as a

unit root process with a drift is consistent with data, at least when the null hypothesis is directed against

short memory trending processes.

6 Concluding remarks

This paper has proposed new tests for unit root processes with a possibly nonzero drift, in the context of

a random coefficient autoregressive model. The novelty of the approach lies in the fact that here the mean

of the random coefficient variable is not fixed to unity, as in previous papers, but it is left unknown. Then

joint and single restrictions on the mean and variance of the random coefficient are tested. The limiting

distributions of the tests are derived and their properties are studied through the results of a Monte-Carlo

experiment.

The proposed tests have good power properties and in several cases perform much better than the

univariate tests available in the literature. This highlights the potential benefit of using sample information

in the construction of tests statistics.

Finally, the proposed testing procedure has been applied to the US GDP quarterly series.
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Table 1: Simulated quantiles of ALM(ω2) under hypothesis (5) for different n and ρ
ρ 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

n = 25
.8 1e-4 0.001 0.003 0.010 0.260 1.158 1.558 1.989 2.969
.9 8e-5 0.001 0.002 0.010 0.259 1.193 1.616 2.075 2.969
.95 8e-5 0.001 0.002 0.009 0.242 1.168 1.604 2.035 2.771
.99 1e-4 0.001 0.003 0.009 0.253 1.181 1.623 2.060 2.831
1 8e-5 0.001 0.002 0.009 0.251 1.180 1.620 2.143 2.921

n = 50
.8 9e-5 0.001 0.002 0.009 0.258 1.286 1.844 2.361 3.534
.9 8e-5 0.001 0.002 0.010 0.268 1.332 1.840 2.433 3.727
.95 8e-5 0.001 0.002 0.009 0.258 1.311 1.816 2.416 3.594
.99 6e-5 4e-4 0.002 0.008 0.244 1.300 1.830 2.506 3.597
1 9e-5 0.001 0.002 0.008 0.241 1.270 1.759 2.338 3.280

n = 100
.8 1e-4 0.001 0.003 0.010 0.277 1.456 2.046 2.746 3.863
.9 8e-5 0.001 0.002 0.010 0.272 1.465 2.092 2.836 3.973
.95 1e-4 0.001 0.002 0.010 0.261 1.391 1.973 2.584 3.657
.99 7e-5 4e-4 0.002 0.008 0.229 1.314 1.877 2.424 3.339
1 6e-5 4e-4 0.002 0.008 0.230 1.336 1.903 2.565 3.531

n = 200
.8 1e-4 0.001 0.003 0.011 0.275 1.550 2.245 2.940 4.036
.9 9e-5 0.001 0.003 0.010 0.281 1.549 2.155 2.932 4.224
.95 1e-4 0.001 0.002 0.009 0.270 1.560 2.199 2.902 4.101
.99 8e-5 5e-4 0.002 0.009 0.238 1.384 2.013 2.663 3.791
1 1e-4 0.001 0.002 0.008 0.229 1.332 1.894 2.505 3.384

n = 500
.8 1e-4 0.001 0.003 0.012 0.291 1.718 2.474 3.244 4.336
.9 1e-4 0.001 0.003 0.011 0.283 1.619 2.302 3.054 4.510
.95 1e-4 0.001 0.003 0.010 0.292 1.646 2.299 3.091 4.340
.99 9e-5 0.001 0.002 0.010 0.265 1.531 2.221 2.854 3.870
1 5e-5 5e-4 0.002 0.008 0.221 1.378 1.964 2.632 3.360

n = 1000
.8 7e-5 0.001 0.003 0.011 0.298 1.717 2.426 3.257 4.475
.9 1e-4 0.001 0.003 0.011 0.297 1.729 2.411 3.118 4.226
.95 1e-4 0.001 0.003 0.010 0.289 1.724 2.482 3.272 4.460
.99 9e-5 0.001 0.002 0.010 0.286 1.648 2.285 3.130 4.172
1 8e-5 5e-4 0.002 0.008 0.212 1.367 1.964 2.618 3.634

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = ρyt−1 + εt, t = 1, 2, . . . , n.
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Table 2: Simulated quantiles of ALM(ω2)
a under hypothesis (5) for different n and ρ

ρ 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%
n = 25

.8 8e-5 0.001 0.001 0.008 0.252 1.128 1.502 1.836 2.549

.9 9e-5 0.001 0.002 0.009 0.253 1.154 1.526 1.950 2.781
.95 1e-4 0.001 0.002 0.010 0.258 1.142 1.503 1.898 2.697
.99 9e-5 0.001 0.002 0.010 0.257 1.145 1.521 1.914 2.676
1 1e-4 0.001 0.002 0.010 0.253 1.137 1.507 1.942 2.759

n = 50
.8 1e-4 0.001 0.002 0.009 0.273 1.333 1.798 2.391 3.256
.9 8e-5 0.001 0.002 0.009 0.262 1.328 1.790 2.364 3.387
.95 1e-4 0.001 0.002 0.011 0.266 1.318 1.830 2.408 3.509
.99 1e-4 0.001 0.002 0.009 0.251 1.305 1.781 2.369 3.405
1 9e-5 0.001 0.001 0.008 0.262 1.317 1.800 2.362 3.313

n = 100
.8 6e-5 0.001 0.002 0.009 0.271 1.457 2.049 2.661 3.823
.9 1e-4 0.001 0.002 0.010 0.281 1.502 2.069 2.705 3.897
.95 9e-5 0.001 0.002 0.009 0.266 1.420 1.998 2.644 3.854
.99 8e-5 0.001 0.002 0.009 0.262 1.409 2.024 2.715 3.955
1 8e-5 0.001 0.002 0.010 0.268 1.383 1.936 2.602 3.512

n = 200
.8 1e-4 0.001 0.002 0.011 0.292 1.555 2.209 2.920 4.019
.9 9e-5 0.001 0.002 0.009 0.278 1.583 2.233 2.962 4.108
.95 1e-4 0.001 0.002 0.009 0.271 1.554 2.192 2.942 4.252
.99 9e-5 0.001 0.002 0.008 0.255 1.504 2.158 2.834 3.864
1 1e-4 0.001 0.002 0.009 0.262 1.510 2.143 2.824 3.931

n = 500
.8 1e-4 0.001 0.002 0.009 0.284 1.680 2.424 3.117 4.262
.9 1e-4 0.001 0.002 0.009 0.286 1.702 2.388 3.153 4.250
.95 1e-4 0.001 0.002 0.009 0.277 1.588 2.329 3.057 4.101
.99 8e-5 0.001 0.002 0.009 0.279 1.627 2.284 3.007 4.033
1 8e-5 0.001 0.002 0.009 0.256 1.537 2.199 2.827 3.804

n = 1000
.8 1e-4 0.001 0.002 0.010 0.293 1.693 2.381 3.131 4.151
.9 1e-4 0.001 0.002 0.009 0.288 1.719 2.488 3.305 4.628
.95 1e-4 0.001 0.003 0.011 0.288 1.709 2.484 3.202 4.271
.99 9e-5 0.001 0.002 0.009 0.279 1.653 2.355 3.081 4.128
1 1e-4 0.001 0.002 0.009 0.271 1.579 2.251 2.894 3.774

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = ρyt−1 + εt, t = 1, 2, . . . , n.
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Table 3: Simulated quantiles of ALM(ρ) under hypothesis (6) for different n and ω2

ω2 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%
n = 25

0 -2.479 -2.150 -1.891 -1.560 -0.478 0.903 1.321 1.620 2.004
.001 -2.505 -2.144 -1.870 -1.553 -0.452 0.910 1.317 1.667 2.080
.005 -2.434 -2.102 -1.853 -1.530 -0.447 0.933 1.336 1.665 2.047
.01 -2.446 -2.129 -1.819 -1.531 -0.443 0.935 1.357 1.707 2.128
.05 -2.383 -2.066 -1.791 -1.473 -0.345 1.095 1.493 1.867 2.239
.1 -2.494 -2.120 -1.803 -1.457 -0.275 1.115 1.535 1.896 2.251

n = 50
0 -2.505 -2.166 -1.876 -1.561 -0.472 0.870 1.233 1.576 1.994

.001 -2.513 -2.169 -1.895 -1.596 -0.476 0.905 1.323 1.667 2.038

.005 -2.475 -2.194 -1.911 -1.586 -0.452 0.926 1.352 1.667 2.139
.01 -2.494 -2.147 -1.880 -1.566 -0.406 0.989 1.364 1.742 2.123
.05 -2.460 -2.145 -1.859 -1.507 -0.284 1.119 1.488 1.806 2.222
.1 -2.449 -2.107 -1.794 -1.449 -0.234 1.139 1.527 1.857 2.290

n = 100
0 -2.536 -2.203 -1.901 -1.587 -0.480 0.892 1.261 1.592 1.952

.001 -2.464 -2.162 -1.885 -1.573 -0.453 0.944 1.334 1.651 2.115

.005 -2.472 -2.170 -1.881 -1.542 -0.421 0.977 1.409 1.740 2.145
.01 -2.555 -2.204 -1.918 -1.577 -0.385 1.053 1.468 1.842 2.277
.05 -2.469 -2.111 -1.808 -1.460 -0.238 1.142 1.554 1.931 2.307
.1 -2.469 -2.102 -1.766 -1.415 -0.162 1.151 1.530 1.900 2.236

n = 200
0 -2.510 -2.216 -1.949 -1.616 -0.507 0.878 1.245 1.588 2.029

.001 -2.539 -2.149 -1.893 -1.582 -0.452 0.971 1.382 1.701 2.049

.005 -2.530 -2.201 -1.923 -1.567 -0.382 1.063 1.496 1.826 2.175
.01 -2.553 -2.183 -1.900 -1.581 -0.373 1.075 1.493 1.833 2.228
.05 -2.534 -2.118 -1.810 -1.454 -0.180 1.137 1.556 1.886 2.210
.1 -2.349 -2.036 -1.737 -1.395 -0.128 1.162 1.554 1.859 2.275

n = 500
0 -2.563 -2.217 -1.905 -1.596 -0.496 0.916 1.302 1.645 1.991

.001 -2.588 -2.247 -1.915 -1.592 -0.430 1.016 1.406 1.759 2.154

.005 -2.534 -2.190 -1.888 -1.536 -0.313 1.103 1.528 1.920 2.280
.01 -2.509 -2.149 -1.858 -1.501 -0.229 1.127 1.497 1.853 2.194
.05 -2.430 -2.073 -1.773 -1.426 -0.139 1.141 1.506 1.825 2.185
.1 -2.386 -2.016 -1.710 -1.359 -0.069 1.176 1.550 1.849 2.246

n = 1000
0 -2.641 -2.290 -1.965 -1.621 -0.512 0.867 1.301 1.649 2.042

.001 -2.479 -2.165 -1.898 -1.586 -0.420 1.027 1.461 1.815 2.190

.005 -2.478 -2.163 -1.860 -1.487 -0.249 1.097 1.504 1.825 2.183
.01 -2.543 -2.158 -1.811 -1.460 -0.184 1.141 1.494 1.854 2.239
.05 -2.404 -2.044 -1.738 -1.393 -0.091 1.191 1.547 1.860 2.223
.1 -2.398 -2.035 -1.685 -1.323 -0.040 1.207 1.579 1.924 2.279

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = ρtyt−1 + εt, ρt ∼ IN(1, ω2), t = 1, 2, . . . , n.
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Table 4: Simulated quantiles of ALM(ρ)
a under hypothesis (6) for different n and ω2

ω2 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%
n = 25

0 -3.518 -3.225 -2.972 -2.689 -1.677 -0.890 -0.753 -0.657 -0.556
.001 -3.542 -3.257 -3.015 -2.702 -1.697 -0.899 -0.751 -0.657 -0.556
.005 -3.605 -3.296 -3.067 -2.749 -1.731 -0.893 -0.742 -0.643 -0.519
.01 -3.713 -3.384 -3.138 -2.824 -1.730 -0.863 -0.701 -0.590 -0.484
.05 -4.638 -3.927 -3.459 -3.019 -1.718 -0.670 -0.450 -0.269 0.155
.1 -4.652 -3.997 -3.471 -3.006 -1.607 -0.428 -0.139 0.250 1.628

n = 50
0 -3.672 -3.338 -3.046 -2.715 -1.666 -0.925 -0.777 -0.679 -0.587

.001 -3.654 -3.341 -3.040 -2.746 -1.674 -0.917 -0.761 -0.651 -0.544

.005 -3.841 -3.428 -3.126 -2.793 -1.700 -0.882 -0.711 -0.602 -0.486
.01 -4.077 -3.668 -3.284 -2.919 -1.706 -0.820 -0.642 -0.520 -0.381
.05 -4.920 -4.062 -3.520 -3.002 -1.525 -0.367 -0.086 0.270 1.454
.1 -4.641 -3.774 -3.291 -2.780 -1.280 0.030 0.491 1.111 1.674

n = 100
0 -3.568 -3.242 -2.961 -2.643 -1.626 -0.900 -0.772 -0.666 -0.577

.001 -3.633 -3.316 -3.037 -2.713 -1.667 -0.894 -0.741 -0.646 -0.546

.005 -4.080 -3.621 -3.241 -2.863 -1.686 -0.825 -0.645 -0.523 -0.386
.01 -4.568 -3.885 -3.435 -2.979 -1.682 -0.701 -0.488 -0.327 -0.132
.05 -4.979 -3.960 -3.370 -2.788 -1.218 0.033 0.463 1.032 1.572
.1 -4.091 -3.424 -2.928 -2.469 -0.960 0.453 0.927 1.311 1.867

n = 200
0 -3.566 -3.206 -2.881 -2.585 -1.633 -0.921 -0.785 -0.697 -0.609

.001 -3.678 -3.333 -3.040 -2.709 -1.663 -0.896 -0.731 -0.624 -0.509

.005 -4.454 -3.809 -3.374 -2.896 -1.618 -0.681 -0.467 -0.282 -0.077
.01 -4.987 -4.031 -3.443 -2.927 -1.496 -0.438 -0.174 0.057 0.701
.05 -4.275 -3.489 -2.934 -2.420 -0.907 0.501 0.985 1.368 2.121
.1 -3.578 -3.010 -2.601 -2.159 -0.692 0.685 1.101 1.457 2.143

n = 500
0 -3.496 -3.179 -2.900 -2.605 -1.640 -0.915 -0.776 -0.681 -0.598

.001 -3.953 -3.505 -3.170 -2.767 -1.659 -0.820 -0.647 -0.509 -0.362

.005 -4.984 -4.004 -3.431 -2.869 -1.455 -0.351 -0.071 0.265 1.370
.01 -4.586 -3.737 -3.189 -2.619 -1.147 0.120 0.600 1.223 1.815
.05 -3.358 -2.767 -2.383 -1.966 -0.582 0.826 1.228 1.650 2.225
.1 -3.019 -2.532 -2.161 -1.793 -0.444 0.870 1.223 1.552 2.092

n = 1000
0 -3.400 -3.131 -2.852 -2.564 -1.622 -0.929 -0.793 -0.693 -0.594

.001 -4.407 -3.710 -3.237 -2.807 -1.613 -0.683 -0.474 -0.315 -0.134

.005 -4.438 -3.666 -3.068 -2.610 -1.184 0.090 0.535 1.107 1.607
.01 -4.163 -3.289 -2.781 -2.308 -0.860 0.549 1.047 1.504 2.239
.05 -3.040 -2.529 -2.153 -1.757 -0.392 0.899 1.274 1.631 2.149
.1 -2.819 -2.369 -2.002 -1.633 -0.304 0.896 1.224 1.516 1.915

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = ρtyt−1 + εt, ρt ∼ IN(1, ω2), t = 1, 2, . . . , n.
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n 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%
AMLM

25 0.001 0.004 0.015 0.054 0.769 3.227 4.564 6.147 8.524
50 0.001 0.003 0.015 0.053 0.796 3.400 4.725 6.222 8.454
100 0.001 0.004 0.014 0.051 0.805 3.459 4.769 6.196 8.224
200 0.001 0.003 0.013 0.049 0.805 3.470 4.749 6.107 7.931
500 0.001 0.003 0.014 0.051 0.818 3.426 4.681 5.975 7.719
1000 0.001 0.003 0.014 0.049 0.815 3.485 4.755 6.004 7.674

AMLMa

25 0.532 0.697 0.898 1.223 3.741 9.364 11.742 14.392 18.507
50 0.517 0.677 0.872 1.187 3.479 8.932 11.299 13.744 17.460
100 0.504 0.669 0.867 1.187 3.355 8.376 10.565 12.886 15.924
200 0.511 0.672 0.875 1.186 3.303 7.887 9.826 11.869 14.540
500 0.503 0.672 0.877 1.191 3.289 7.634 9.337 11.086 13.448
1000 0.494 0.666 0.873 1.181 3.263 7.490 9.205 10.847 13.006

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = yt−1 + εt, t = 1, 2, . . . , n.

27



Acc
ep

te
d m

an
usc

rip
t 

Table 6: Simulated power values of ALM(ω2), ALM(ω2)
(∞) , ALM(ω2)

a , ALM(ω2)
a,(∞), ZT and ĤT for ρ = 1, different

values of ω2 and n

ω2 ALM(ω2) ALM(ω2)
(∞) ALM(ω2)

a ALM(ω2)
a,(∞) ZT ĤT

n = 25
0 0.051 0.349 0.051 0.140 0.052 0.050

.001 0.055 0.358 0.051 0.145 0.057 0.049

.005 0.063 0.377 0.061 0.149 0.084 0.051
.01 0.084 0.392 0.067 0.167 0.115 0.057
.05 0.265 0.619 0.155 0.309 0.251 0.131
.1 0.429 0.778 0.252 0.411 0.300 0.231

n = 50
0 0.050 0.356 0.049 0.102 0.052 0.051

.001 0.058 0.366 0.053 0.111 0.072 0.052

.005 0.109 0.423 0.072 0.143 0.128 0.062
.01 0.183 0.522 0.106 0.191 0.197 0.086
.05 0.603 0.895 0.373 0.490 0.343 0.341
.1 0.787 0.967 0.565 0.676 0.362 0.538

n = 100
0 0.050 0.368 0.050 0.076 0.049 0.050

.001 0.073 0.383 0.064 0.091 0.108 0.063

.005 0.279 0.612 0.147 0.195 0.233 0.132
.01 0.482 0.799 0.281 0.333 0.354 0.213
.05 0.910 0.996 0.754 0.783 0.475 0.587
.1 0.979 0.999 0.906 0.921 0.424 0.737

n = 200
0 0.050 0.359 0.050 0.065 0.048 0.052

.001 0.157 0.512 0.102 0.116 0.215 0.101

.005 0.618 0.905 0.377 0.406 0.422 0.295
.01 0.885 0.982 0.599 0.624 0.508 0.454
.05 0.999 1.000 0.959 0.961 0.580 0.819
.1 1.000 1.000 0.989 0.987 0.497 0.908

n = 500
0 0.050 0.363 0.050 0.056 0.053 0.051

.001 0.556 0.856 0.329 0.331 0.428 0.232

.005 0.968 1.000 0.810 0.815 0.643 0.641
.01 1.000 1.000 0.940 0.945 0.711 0.811
.05 1.000 1.000 0.997 0.998 0.679 0.969
.1 1.000 1.000 1.000 1.000 0.495 0.908

n = 1000
0 0.051 0.050 0.050 0.050 0.051 0.049

.001 0.876 0.876 0.637 0.637 0.612 0.450

.005 1.000 1.000 0.967 0.967 0.813 0.912
.01 1.000 1.000 0.989 0.989 0.853 0.986
.05 1.000 1.000 1.000 1.000 0.745 1.000
.1 1.000 1.000 1.000 1.000 0.568 1.000

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = ρtyt−1 + εt, ρt ∼ IN(1, ω2), t = 1, 2, . . . , n.
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Table 7: Empirical size of ALM(ω2) against a GARCH(1,1) for ρ = 1, different values of the parameters
and n

ϑ = 0.1− ϕ ϑ = 0.5− ϕ ϑ = 0.9− ϕ
n ϕ = 0.01 ϕ = 0.05 ϕ = 0.09 ϕ = 0.1 ϕ = 0.25 ϕ = 0.4 ϕ = 0.1 ϕ = 0.45 ϕ = 0.8
25 0.064 0.055 0.050 0.108 0.092 0.069 0.163 0.139 0.070
50 0.062 0.055 0.052 0.120 0.106 0.070 0.196 0.206 0.099
100 0.071 0.064 0.055 0.140 0.123 0.081 0.227 0.273 0.147
200 0.068 0.052 0.047 0.153 0.125 0.075 0.278 0.313 0.189
500 0.068 0.062 0.051 0.167 0.142 0.088 0.284 0.353 0.236
1000 0.067 0.063 0.055 0.186 0.149 0.092 0.305 0.389 0.266

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = yt−1 + et, et ∼ N(0, ht), ht = (1− ϑ− ϕ) + ϕht−1 + ϑe2
t−1.

Table 8: Simulated power values of ALM(ρ)
a and ALM(ρ)

a,(∞) for ω2 = 0, different values of ρ and n

ρ ALM(ρ)
a ALM(ρ)

a,(∞) ALM(ρ)
a ALM(ρ)

a,(∞) ALM(ρ)
a ALM(ρ)

a,(∞)

n = 25 n = 50 n = 100
.8 0.117 0.166 0.284 0.399 0.832 0.880
.9 0.080 0.110 0.107 0.172 0.303 0.383
.95 0.070 0.089 0.072 0.109 0.122 0.163
.99 0.056 0.074 0.051 0.075 0.054 0.071
1 0.052 0.069 0.047 0.075 0.051 0.064

n = 200 n = 500 n = 1000
.8 1.000 1.000 1.000 1.000 1.000 1.000
.9 0.835 0.876 1.000 1.000 1.000 1.000
.95 0.318 0.353 0.956 0.963 1.000 1.000
.99 0.068 0.073 0.119 0.126 0.327 0.327
1 0.056 0.060 0.048 0.056 0.051 0.051

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = ρyt−1 + εt, t = 1, 2, . . . , n.
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Table 9: Simulated power values of AMLM for different values of the parameters and n
ρ ω2 = 0 ω2 = 0.001 ω2 = 0.005 ω2 = 0.01 ω2 = 0.05 ω2 = 0.1

n = 25
.8 0.306 0.311 0.315 0.323 0.389 0.474
.9 0.145 0.156 0.155 0.158 0.232 0.336
.95 0.093 0.092 0.095 0.099 0.173 0.291
.99 0.055 0.055 0.059 0.066 0.141 0.261
1 0.049 0.050 0.055 0.061 0.137 0.255

n = 50
.8 0.747 0.745 0.751 0.760 0.820 0.886
.9 0.315 0.317 0.331 0.353 0.549 0.747
.95 0.151 0.153 0.166 0.186 0.436 0.694
.99 0.064 0.066 0.083 0.094 0.400 0.676
1 0.051 0.051 0.061 0.087 0.399 0.675

n = 100
.8 0.997 0.997 0.996 0.996 0.996 0.997
.9 0.745 0.748 0.765 0.786 0.947 0.996
.95 0.318 0.323 0.361 0.420 0.881 0.988
.99 0.078 0.091 0.131 0.233 0.869 0.986
1 0.050 0.053 0.119 0.243 0.878 0.987

n = 200
.8 1.000 1.000 1.000 1.000 1.000 1.000
.9 0.997 0.997 0.997 0.997 1.000 1.000
.95 0.753 0.758 0.809 0.882 0.998 1.000
.99 0.130 0.142 0.342 0.660 0.998 1.000
1 0.051 0.070 0.395 0.709 0.998 1.000

n = 500
.8 1.000 1.000 1.000 1.000 1.000 1.000
.9 1.000 1.000 1.000 1.000 1.000 1.000
.95 1.000 1.000 1.000 1.000 1.000 1.000
.99 0.319 0.399 0.944 1.000 1.000 1.000
1 0.050 0.329 0.964 1.000 1.000 1.000

n = 1000
.8 1.000 1.000 1.000 1.000 1.000 1.000
.9 1.000 1.000 1.000 1.000 1.000 1.000
.95 1.000 1.000 1.000 1.000 1.000 1.000
.99 0.755 0.894 1.000 1.000 1.000 1.000
1 0.051 0.806 1.000 1.000 1.000 1.000

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = ρtyt−1 + εt, ρt ∼ IN(ρ, ω2), t = 1, 2, . . . , n.

30



Acc
ep

te
d m

an
usc

rip
t 

Table 10: Simulated power values of AMLMa for different values of the parameters and n
ρ ω2 = 0 ω2 = 0.001 ω2 = 0.005 ω2 = 0.01 ω2 = 0.05 ω2 = 0.1

n = 25
.8 0.095 0.093 0.095 0.098 0.121 0.154
.9 0.062 0.065 0.065 0.065 0.086 0.123
.95 0.054 0.055 0.054 0.056 0.079 0.117
.99 0.051 0.051 0.053 0.054 0.077 0.117
1 0.050 0.051 0.052 0.054 0.078 0.116

n = 50
.8 0.257 0.255 0.262 0.270 0.345 0.453
.9 0.102 0.106 0.110 0.117 0.300 0.388
.95 0.064 0.067 0.070 0.077 0.250 0.363
.99 0.053 0.052 0.055 0.062 0.251 0.369
1 0.050 0.050 0.053 0.063 0.265 0.414

n = 100
.8 0.796 0.800 0.805 0.812 0.872 0.936
.9 0.276 0.282 0.295 0.317 0.573 0.815
.95 0.108 0.113 0.125 0.142 0.471 0.774
.99 0.055 0.055 0.067 0.093 0.485 0.775
1 0.050 0.051 0.068 0.130 0.584 0.775

n = 200
.8 1.000 1.000 1.000 1.000 1.000 1.000
.9 0.818 0.821 0.831 0.854 0.981 1.000
.95 0.294 0.300 0.340 0.424 0.944 1.000
.99 0.061 0.065 0.119 0.298 0.925 0.981
1 0.051 0.055 0.243 0.418 0.958 0.988

n = 500
.8 1.000 1.000 1.000 1.000 1.000 1.000
.9 1.000 1.000 1.000 1.000 1.000 1.000
.95 0.959 0.960 0.978 0.993 1.000 1.000
.99 0.118 0.136 0.548 0.891 0.995 1.000
1 0.050 0.165 0.648 0.875 0.993 1.000

n = 1000
.8 1.000 1.000 1.000 1.000 1.000 1.000
.9 1.000 1.000 1.000 1.000 1.000 1.000
.95 1.000 1.000 1.000 1.000 1.000 1.000
.99 0.302 0.404 0.980 1.000 1.000 1.000
1 0.050 0.384 0.926 0.977 1.000 1.000

Notes: Results are based on 100,000 replications using Gauss.
The simulated model is

yt = ρtyt−1 + εt, ρt ∼ IN(ρ, ω2), t = 1, 2, . . . , n.
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A Appendix

A.1 Proof of Theorem 1

(i) The numerator of the test statistic can be expanded as follows

1
2σ̃4

n∑

t=2

y2
t−1

[
(yt − ρ̃yt−1)

2 − σ̃2
]

=
1

2σ̃4

n∑

t=2

y2
t−1

(
ε2
t − σ̃2

)

︸ ︷︷ ︸
A

(1)
n

− 1
σ̃4

(ρ̃− 1)
n∑

t=2

y3
t−1εt

︸ ︷︷ ︸
A

(2)
n

+
1

2σ̃4
(ρ̃− 1)2

n∑

t=2

y4
t−1

︸ ︷︷ ︸
A

(3)
n

.

Now, given that in this case

ρ̃ =
∑

ytyt−1∑
y2

t−1

and therefore (ρ̃− 1) = Op

(
n−1

)
, it is straightforward to show that

A(1)
n = Op

(
n3/2

)
, A(2)

n = Op (n) , A(3)
n = Op (n) .

Therefore the dominant term of the numerator is A
(1)
n . Similarly, the denominator is given by

1
2σ̃6

n∑

t=2

y4
t−1

[
2 (yt − ρ̃yt−1)

2 − σ̃2
]

=
1
σ̃6

n∑

t=2

y4
t−1

(
ε2
t − σ̃2

)

︸ ︷︷ ︸
B

(1)
n

− 2
σ̃6

(ρ̃− 1)
n∑

t=2

y5
t−1εt

︸ ︷︷ ︸
B

(2)
n

+
1
σ̃6

(ρ̃− 1)2
n∑

t=2

y6
t−1

︸ ︷︷ ︸
B

(3)
n

+
1

2σ̃4

n∑

t=2

y4
t−1

︸ ︷︷ ︸
B

(4)
n

.

Again, it is straightforward to show that

B(1)
n = Op

(
n5/2

)
, B(2)

n = Op

(
n2

)
, B(3)

n = Op

(
n2

)
, B(4)

n = Op

(
n3

)
.

Therefore the dominant term of the denominator is B
(4)
n . The asymptotic distribution of the test

statistic follows by the CMT and by (16) and (17) below.

(ii) Immediate, given normality of {εt}.

(iii) Start from

q1

(
θ̃
)

=
n∑

t=2

yt−1 (yt − yt−1)
ω̃2y2

t−1 + σ̃2
.

Using simple algebra and noting that, when ω2 = 0,

yt − yt−1 = εt
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the score can be rewritten as

q1

(
θ̃
)

=
n∑

t=2

yt−1εt

(ω̃2 − ω2) y2
t−1 + ω2y2

t−1 + (σ̃2 − σ2) + σ2
.

There are different methods to estimate the parameter ω2 (see, e.g., Amemiya, 1977). The different

estimators have the same rate of convergence but different asymptotic variance. Concentrating on

the estimator given in Amemiya (1977, equation (5)), it is easy to show that
(
ω̃2 − ω2

)
= Op

(
n−3/2

)
.

Also, by consistency of σ̃2,
(
σ̃2 − σ2

ε

)
= op (1) and

q1

(
θ̃
)

n

w−→
∫ 1

0
W1 (s) dW1 (s).

The Hessian matrix can be analyzed similarly. In fact,

−H11

(
θ̃
)

=
n∑

t=2

y2
t−1

(ω̃2 − ω2) y2
t−1 + ω2y2

t−1 + (σ̃2 − σ2) + σ2

and, using the same argument as above,

−
H11

(
θ̃
)

n2

w−→
∫ 1

0
W1 (s)2 ds.

The limit distribution is then obtained by applying the CMT and (18).

(iv) Start from

q1

(
θ̃
)

=
n∑

t=2

yt−1 (yt − yt−1)
ω̃2y2

t−1 + σ̃2
.

Noting that

yt − yt−1 = (ρt − 1) yt−1 + εt

the score can be rewritten as

q1

(
θ̃
)

=
n∑

t=2

y2
t−1 (ρt − 1)

ω̃2y2
t−1 + σ̃2

︸ ︷︷ ︸
C

(1)
n

+
n∑

t=2

yt−1εt

ω̃2y2
t−1 + σ̃2

︸ ︷︷ ︸
C

(2)
n

.

Clearly, C
(1)
n is of a larger order of probability than C

(2)
n . Then, using simple algebra

C(1)
n =

1
ω̃2

n∑

t=2

(ρt − 1)

︸ ︷︷ ︸
C

(3)
n

− σ̃2

ω̃2

n∑

t=2

(ρt − 1)
ω̃2y2

t−1 + σ̃2

︸ ︷︷ ︸
C

(4)
n

.

The dominant term is given by C
(3)
n and it is easy to show that

ω̃√
n− 1

C(3)
n

d−→ N(0, 1).
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The Hessian matrix can be analyzed similarly.

−H11

(
θ̃
)

=
n∑

t=2

y2
t−1

ω̃2y2
t−1 + σ̃2

=
n∑

t=2

y2
t−1 + σ̃2/ω̃2

ω̃2y2
t−1 + σ̃2

︸ ︷︷ ︸
D

(1)
n

− σ̃2

ω̃2

n∑

t=2

1
ω̃2y2

t−1 + σ̃2

︸ ︷︷ ︸
D

(2)
n

.

The dominant term is D
(1)
n = n−1

ω̃2 . This completes the proof.

(v) The elements of the score vector, evaluated at the values of the parameters implied by hypothesis

(7) are given by

q1

(
θ̃
)

=
1
σ̃2

∑
yt−1 (yt − yt−1) ,

q2

(
θ̃
)

=
1

2σ̃4

∑
y2

t−1 (yt − yt−1)
2 − 1

2σ̃2

∑
y2

t−1 =
1

2σ̃4

∑
y2

t−1

(
ε2
t − σ̃2

)
, (15)

q3

(
θ̃
)

= 0,

where hereafter the sums go from 2 to n and σ̃2 =
∑

(yt − yt−1)
2 / (n− 1). When H0 is true,

σ̃2 p−→ σ2
ε and

yt =
t−1∑

j=0

εt−j .

With appropriate standardization, and applying the functional central limit theorem, the following

convergence results can be established

q1

(
θ̃
)

n

w−→
∫ 1

0
W1 (s) dW1 (s)

and

q2

(
θ̃
)

n3/2

w−→ κεσ
2
ε

2σ4
ε

∫ 1

0

(
W1 (s)2 −

∫ 1

0
W1 (s)2 ds

)
dW ∗ (s)

=
1√
2

(∫ 1

0
W1 (s)2 dW ∗ (s)−

∫ 1

0
W1 (s)2 dsW ∗ (1)

)
, (16)

where the last result is due to McCabe and Tremayne (1995).

Similarly the following convergence results can be established for the elements of the Hessian matrix,

appropriately standardized

−
H11

(
θ̃
)

n2
=

1
n2σ̃2

∑
y2

t−1
w−→

∫ 1

0
W1 (s)2 ds,

−
H12

(
θ̃
)

n2
=

1
n2σ̃4

∑
y3

t−1 (yt − yt−1)
w−→

∫ 1

0
W1 (s)3 dW1 (s),

−
H13

(
θ̃
)

n
=

1
nσ̃4

∑
yt−1 (yt − yt−1)

w−→ 1
σ2

ε

∫ 1

0
W1 (s) dW1 (s),
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−
H22

(
θ̃
)

n3
=

1
n3

(
1
σ̃6

∑
y4

t−1 (yt − yt−1)
2 − 1

2σ̃4

∑
y4

t−1

)
w−→ 1

2

∫ 1

0
W1 (s)4 ds, (17)

−
H23

(
θ̃
)

n2
=

1
n2

(
1
σ̃6

∑
y2

t−1 (yt − yt−1)
2 − 1

2σ̃4

∑
y2

t−1

)
w−→ 1

2σ2
ε

∫ 1

0
W1 (s)2 ds,

−
H33

(
θ̃
)

n
=

1
n

(
1
σ̃6

∑
(yt − yt−1)

2 − n− 1
2σ̃4

)
p−→ 1

2σ4
ε

.

Then it suffices to apply the CMT and to use the following result
∫ 1

0
W1 (s) dW1 (s) =

1
2

(
W1 (1)2 − 1

)
(18)

to obtain the stated formula. ¥

A.2 Proof of Corollary 1

In order to prove the Corollary, it suffices to look at the probabilistic orders of magnitude of the components

of the test statistic.

Then
H12

(
θ̃
)

H11

(
θ̃
)q1

(
θ̃
)

= op

(
q2

(
θ̃
))

,

H22

(
θ̃
)

= H2⊥1

(
θ̃
)

= Op

(
n3

)
, and finally

(
H21

(
θ̃
))2

/H11

(
θ̃
)

= op

(
n3

)
.

¥

A.3 Proof of Theorem 2

(i) Follows immediately, by a similar argument to that in Theorem 1, part (i) and by part (v) below.

(ii) Follows immediately, by a similar argument to that in Theorem 1, part (ii).

(iii) Follows immediately, by a similar argument to that in Theorem 1, part (iii) and by part (v) below.

(iv) Follows immediately, by a similar argument to that in Theorem 1, part (iv).

(v) In order to prove this part, recourse is made to the result of Corollary 1, which holds trivially when

deterministic components are included in the model.

In fact
H12

(
θ̃a

)

H11

(
θ̃a

)q1

(
θ̃a

)
= op

(
q2

(
θ̃a

))

and (
H21

(
θ̃a

))2

H11

(
θ̃a

) = op

(
H22

(
θ̃a

))
.

35



Acc
ep

te
d m

an
usc

rip
t 

Then the limiting distribution of AMLMa is given by the sum of the squared test statistics on ρ and

on ω2. The limiting distribution of the first component of the test statistic can be readily obtained

using the result of Phillips and Xiao (1998, p.433), by substituting for c (the local to unity parameter)

equal to zero and specializing the reported formulae to the case of a constant and linear trend.

The score and the Hessian for ω2 evaluated at the value of the parameters implied by H0 and using

the unrestricted estimators of the nuisance parameters α and β are given respectively by

q2

(
θ̃a

)
=

1
2σ̃4

∑(
ŷ∗t − ŷ∗t−1

)2
ŷ∗

2

t−1 −
1

2σ̃2

∑
ŷ∗

2

t−1 =
1

2σ̃4

∑[
ŷ∗

2

t−1

(
ε̂2
t − σ̃2

)]
(19)

and

−H22

(
θ̃a

)
=

1
σ̃6

∑
ŷ∗

4

t−1

(
ŷ∗t − ŷ∗t−1

)2 − 1
2σ̃4

∑
ŷ∗

4

t−1 =
1

2σ̃6

[
2

∑
ŷ∗

4

t−1

(
ε̂2
t − σ̃2

)
+ σ̃2

∑
ŷ∗

4

t−1

]
,

where ŷ∗t = yt − α̂− β̂t and ε̂t = ŷ∗t − ŷ∗t−1. When H0 is true, then

yt = α + βt +
t−1∑

j=0

εt−j .

Therefore the partial sum process of

∑
ŷ∗t−1 =

∑

(α− α̂) +

(
β − β̂

)
(t− 1) +

t−2∑

j=0

εt−j−1


 ,

appropriately standardized by n3/2, converges weakly to

σε

∫ 1

0
(W1 (s)− sξ) ds,

since (α− α̂) = Op (1) (for more details, see Distaso, 2002).

Applying the functional central limit theorem, the following convergence results can be established

q2

(
θ̃a

)

n3/2

w−→ κεσ
2
ε

2σ4
ε

∫ 1

0

(
(W1 (s)− sξ)2 −

∫ 1

0
(W1 (s)− sξ)2 ds

)
dW ∗ (s)

=
1√
2

(∫ 1

0
(W1 (s)− sξ)2 dW ∗ (s)−

∫ 1

0
(W1 (s)− sξ)2 dsW ∗ (1)

)
,

and

−
H22

(
θ̃a

)

n3

w−→ 1
2

∫ 1

0
(W1 (s)− sξ)4 ds.

Then it suffices to apply the CMT to obtain the stated formula. ¥
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A.4 Proof of Lemma 1

Immediate, by Herrndorff’s functional central limit theorem (Herrndorff, 1984). ¥
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