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Diagnostic Testing for Cointegration

P.M. Robinson�

London School of Economics

May 14, 2007

Abstract

We develop a sequence of tests for specifying the cointegrating rank of, pos-

sibly fractional, multiple time series. Memory parameters of observables are

treated as unknown, as are those of possible cointegrating errors. The individ-

ual test statistics have standard null asymptotics, and are related to Hausman

speci�cation test statistics: when the memory parameter is common to several

series, an estimate of this parameter based on the assumption of no cointe-

gration achieves an e¢ ciency improvement over estimates based on individual

series, whereas if the series are cointegrated the former estimate is generally

inconsistent. However, a computationally simpler but asymptotically equiva-

lent approach, which avoids explicit computation of the "e¢ cient" estimate, is

instead pursued here. Two versions of it are initially proposed, followed by

one that robusti�es to possible inequality between memory parameters of ob-

servables. Throughout, a semiparametric approach is pursued, modelling serial

dependence only at frequencies near the origin, with the goal of validity under

�Corresponding author: Department of Economics, London School of Economics, Houghton

Street, London WC2A 2AE, UK; tel. +44-20-7955-7516; fax: +44-20-7955-6592. Email address:

p.m.robinson@lse.ac.uk
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broad circumstances and computational convenience. The main development

is in terms of stationary series, but an extension to nonstationary ones is also

described. The algorithm for estimating cointegrating rank entails carrying out

such tests based on potentially all subsets of two or more of the series, though

outcomes of previous tests may render some or all subsequent ones unnecessary.

A Monte Carlo study of �nite sample performance is included.

JEL Classi�cation: C32.

Keywords: Fractional cointegration; Diagnostic testing; Speci�cation test-

ing; Cointegrating rank; Semiparametric estimation.
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1. INTRODUCTION

The potential for detecting cointegration in economic and �nancial time series has

expanded with a wider realization that the phenomenon is not restricted to the "unit

root setting" of I(1) observable series, where cointegrating errors are I(0) (or to its

familiar extensions to I(2) series, or I(1) series with deterministic trends). Fractional

processes provide a signi�cant mathematical extension of these. We say that a p� 1

vector zt of jointly dependent I(�) processes, for some positive, real integration order

� that need not be an integer, is cointegrated if there exists a linear combination of

elements of zt that is I(
), for some real 
 2 [0; �). Indeed, zt can even be stationary,

in which case � < 1
2
. As in the traditional unit root setting, there could be up to

p�1 cointegrating relations, however we permit these to have real-valued and possibly

di¤erent integration orders.

It is useful to estimate cointegrating relations; these can be used to test hypothe-

ses of interest (such as PPP) and to improve the precision of forecasts, for example.

However, important initial questions are the existence of cointegration, and the cointe-

grating rank, that is the number of cointegrating relations. These have been addressed

in the unit root setting, e.g. by Johansen (1988, 1991, 1995), Phillips and Ouliaris

(1988, 1990). Here it has been usual to take for granted the I(1) assumption on zt,

albeit with the presumption of pre-testing. Procedures based on known integration

orders can be invalidated if they are mis-speci�ed. With su¢ ciently long series, it may

thus seem more satisfactory to adopt an agnostic approach, by estimating integration

orders from the data, though estimates of course cannot be taken as synonymous with

true values, and it seems desirable to investigate the existence of cointegration in the

presence of unknown � (and 
). There has been some, rather limited, theoretical

investigation of this problem (see e.g. Robinson and Yajima, 2002).

The present paper studies a conceptually and computationally simple diagnostic
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statistic, based on the Hausman speci�cation testing idea, for testing the null hy-

pothesis of no cointegration. A version of it was previously proposed (in bivariate

series) by Marinucci and Robinson (2001), but though they applied it empirically its

theoretical properties were only heuristically discussed. Here we not only provide a

more formal treatment of its asymptotic null distribution, but also discuss its consis-

tency properties, and its robustness to departures from mainstream assumptions; this

in particular leads us to propose a robusti�ed version. We propose an algorithm for

estimating cointegrating rank in series of dimension 3 or more, which uses one of our

tests in a sequential manner on each step. To prevent the discussion becoming too

complicated we do not incorporate deterministic trends, indeed for partly expository

purposes the main discussion is in terms of stationary observables, though we later

describe an extension to nonstationary series.

The following section describes a stationary setting in which cointegration, with

some rank, may or may not occur. Section 3 de�nes two basic test statistics, which

assume integration orders of all observables are equal. Their asymptotic null distri-

butions, and the consistency properties of one of them, are presented in Section 4.

Section 5 introduces and justi�es a robusti�ed statistic which avoids the assumption

of a equality of all integration orders, and includes an asymptotic local power com-

parison. Section 6 presents the algorithm for estimating cointegrating rank. Section 7

describes an extension to nonstationary series. A Monte Carlo study of �nite-sample

performance is reported in Section 8. Section 9 o¤ers some brief �nal comments.

2. FRACTIONAL COINTEGRATION

We assume initially an observable p-dimensional column vector zt, t = 0;�1; :::, of

jointly stationary series that all have the same, unknown, integration order � 2 (0; 1
2
).

By this we mean, denoting by fz(�), � 2 (��; �], the spectral density matrix of zt,
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that

fz(�) � G0�
�2�; as �! 0+; (2.1)

where "�" means throughout that the ratio of real parts, and of imaginary parts, of

corresponding elements on the left- and right-hand side, tends to 1, and the p�p real

matrix G0 is positive semi-de�nite with positive diagonal elements.

We say that zt is cointegrated with rank r < p if there exist r linearly independent

p � 1 vectors �i such that for i = 1; :::; r, uit = �0izt has spectral density fui(�)

satisfying

fui(�) � !ii�
�2
i ; as �! 0+; (2.2)

where

0 � 
1; 
2; :::; 
r < �; !ii > 0; i = 1; :::; r: (2.3)

For the convenience of a simple notation for all relevant integration orders, we also

introduce


i = �; i = r + 1; :::; p: (2.4)

We can embed the cointegration within a non-singular system of degree p, writing

Bzt = ut; (2.5)

where ut = (u1t; :::; upt)
0 with uit = zit for i > r, and

B =

24 B1 B2

0 Ip�r

35 (2.6)

with 0 a vector of zeroes, de�ning Ik to be the k� k identity matrix, and with B1; B2
being r � r and r� (p � r) matrices respectively, such that �0i is the i-th row of

(B1; B2), and it is assumed that elements of zt have been arranged such that B1 is

non-singular. The �i are not uniquely de�ned, but we are not concerned with their

estimation, or with estimation of the 
i; while � will be estimated purely for the
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purpose of testing for the existence of cointegration or for the value of r: It is possible

to justify (2.5) from an additive representation of the zit with unobserved components

having di¤erent integration orders.

The elements of ut can in general be cross-correlated and coherent at all frequencies.

We assume the spectral density matrix fu(�) of ut satis�es

fu(�) � �(�ei�; 
)�1
�(�e�i�; 
)�1; as �! 0+; (2.7)

where � is a p � p diagonal matrix such that for a scalar a and p � 1 vector b =

(b1; :::; bp)
0,

�(a; b) = diag
�
ab1 ; :::; abp

	
; (2.8)

while � is real, 
 has ith-element 
i; and 
 is a p� p real positive de�nite matrix.

The parameter � introduces the possibility of phase shift. The property (2.7) occurs

when, for example, ut is generated from an underlying p�1 vector of jointly dependent

I(0) processes et by

ut = diag
�
��
1 ; :::;��
p

	
et; (2.9)

where � is the �rst di¤erence operator. In that case, denoting by fe(�) the spectral

density matrix of et, we have precisely

fu(�) = �(1� ei�; 
)�1fe(�)�(1� e�i�; 
)�1: (2.10)

From

1� ei� � �e�i�=2 as �! 0+; (2.11)

we deduce (2.7) with 
 = fe(0). In this case � = ��=2. This is assumed by Robin-

son and Yajima (2002), for example. Another possibility is � = 0, in which case

quadrature spectra of ut are zero at zero frequency. The value of � has no e¤ect on

diagonal elements of fu(�) (power spectra) but it does a¤ect o¤-diagonal elements

(cross-spectra) when integration orders vary. We adopt an approach that is valid
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for all � and also does not require estimating �. It follows from (2.7) that if zt is

cointegrated of rank r then (2.1) holds with G0 of rank p� r, in particular

G0 =

24 B�1
1 B2

�Ip�r

35
22
24 B�1

1 B2

�Ip�r

350 ; (2.12)

in which 
22 is the lower right (p � r) � (p � r) sub-matrix of 
, which has full

rank; the error in the approximation in (2.1) is O
�
��maxi 
i��

�
. The more detailed

structure indicated by (2.7) will be relevant to power considerations.

3. DIAGNOSTIC STATISTICS FOR TESTING

NON-COINTEGRATION

Our approach to testing starts from the speci�cation test of Hausman (1978): a

parameter estimate that is relatively e¢ cient under the null hypothesis of correct

speci�cation, but inconsistent under the alternative of incorrect speci�cation, is com-

pared to one that is relatively ine¢ cient under the null, but consistent in both circum-

stances. The main parameter of interest that arises under both the null hypothesis

of no cointegration, and the alternative, is the integration order � of the observables,

see (2.1). We thus seek suitable estimates of �.

Local Whittle estimation provides a common approach under both hypotheses (see

e.g. Künsch, 1987, Robinson, 1995, Lobato, 1999, Shimotsu, 2007). For a general

vector sequence v1; :::; vn de�ne the discrete Fourier transform

wv(�) =
1

(2�n)
1
2

nP
t=1

vte
it� (3.1)

and the periodogram matrix

Iv(�) = wv(�)w
0
v(��): (3.2)

Given observations z1; :::; zn we can estimate � and G0 in (2.1) by

(�̂; Ĝ) = argmin
d;G

mP
j=1

�
log det

�
G��2dj

	
+ trfIz(�j)G�1�2dj g

�
; (3.3)
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where �j = 2�j=n, m is a bandwidth number satisfying

p < m <
n

2
(3.4)

and increasing slowly with n, the minimization with respect to G is over the space

of positive de�nite matrices, and the minimization with respect to d is over a closed

sub-interval U of (0; 1
2
). (The latter choice re�ects a supposition that � > 0, as is

relevant in the present setting, though the method of estimating � to be described is

asymptoticaly valid also for � 2 (�1
2
; 0], when U is chosen to include it.) Then �̂ is

readily seen to satisfy

�̂ = argmin
d2U

S(d); (3.5)

where

S(d) = log det
n
Ĝ(d)

o
� 2pd

m

mP
j=1

log �j; (3.6)

Ĝ(d) =
1

m

mP
j=1

Re fIz(�j)g�2dj : (3.7)

The real part operator is needed in (3.7) because Iz(�j) can have complex-valued

o¤-diagonal elements. It is justi�ed by the fact that the summands in (3.3) are

automatically all real-valued, and so the real part operator could have been initially,

if redundantly, applied there to Iz(�j). We take �̂ to be our "e¢ cient" estimate.

An "ine¢ cient" estimate of � is de�ned in terms of scalar local Whittle estimates,

based on the observations on individual zit. Denoting by Izi(�) the i-th diagonal

element of Iz(�), we introduce

~�(i) = argmin
d2U

(
log ĝii(d)�

2d

m

mP
j=1

log �j

)
; (3.8)

where

ĝii(d) =
1

m

mP
j=1

Izi(�j)�
2d
j : (3.9)
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Then our "ine¢ cient" estimate of � is

~� =
pP
i=1

ai~�(i); (3.10)

where the ai are arbitrarily chosen weights satisfying

pP
i=1

ai = 1: (3.11)

For example, we might take

ai � 1=p; (3.12)

so the arithmetic mean of the ~�(i) is used, or

aj = 1; ai = 0; i 6= j; some j; (3.13)

so that ~� = ~�(j). In the latter case only ~�(j) need be computed, but in practice all

the ~�(i) are useful in pre-testing the hypothesis of a common memory parameter in zt

(see Robinson and Yajima, 2002).

From asymptotic theory of Robinson (1995), Lobato (1999) we expect that under

the null hypothesis of non-cointegration m
1
2 (�̂�~�) will converge in distribution under

suitable conditions to a normal variate with zero mean. We stress a computationally

simpler approach that will also lend itself to robusti�cation. The implicitly-de�ned

estimate �̂ can be approximated by a single Newton step based on (3.6) and starting

from the root-m-consistent estimate ~�, in the sense that the limit distribution of

m
1
2 (�̂ � �) (and thence of m

1
2 (�̂ � ~�)) is achieved. In particular, the approximate

estimate can be de�ned as �� = ~� +
n
(@2=@d2)S(e�)o�1 s(~�), where

s(~�) =
1

2

@S(~�)

@d
= tr

n
Ĝ(~�)�1Ĥ(~�)

o
(3.14)

with

Ĥ(d) =
1

m

mP
j=1

�j Re fIz(�j)g�2dj ; (3.15)
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�j = log j �
1

m

mP
i=1

log i: (3.16)

We thus use a scaled s(~�) as test statistic. We also introduce a modi�ed version:

de�ne

Ĝ�(d) =
1

m

mP
j=1

Iz(�j)�
2d
j ; Ĥ�(d) =

1

m

mP
j=1

�jIz(�j)�
2d
j ; (3.17)

and consider

s�(~�) = tr
n
Ĝ�(~�)�1Ĥ�(~�)

o
: (3.18)

Though both Ĝ�(d) and Ĥ�(d) have complex-valued o¤-diagonal elements, s�(~�) is

always real-valued since both are Hermitian. Though s(~�) and s�(~�) are not numer-

ically equivalent, they turn out to have the same null limit distribution, while s�(~�)

has advantages discussed below.

We introduce

X = ms(~�)2�
n
p2tr(R̂AR̂A)� p

o
; (3.19)

X� = ms�(~�)2�
n
p2tr(R̂�AR̂�A)� p

o
; (3.20)

where

R̂ = D̂� 1
2 Ĝ(~�)D̂� 1

2 ; R̂� = D̂� 1
2 Ĝ�(~�)D̂� 1

2 ;

D̂ = diag fĝ11; :::; ĝppg ; A = diag fa1; :::; apg ;

where ĝii is the i-th diagonal element of Ĝ(~�) (and of Ĝ�(~�)). Though R̂� has complex-

valued o¤-diagonal elements it is Hermitian, and thus tr
n
R̂�AR̂�A

o
is real. More-

over, by the same property, writing A
1
2 R̂�A

1
2 = U + iV for real matrices U and V , we

have U = U 0 and V = �V 0, and then

tr
n
R̂�AR̂�A

o
= tr

�
(U + iV ) (U � iV )0

	
= tr(U2) + tr(V V 0) + i ftr(V U)� tr(UV 0)g

� tr(U2) = tr
n
R̂AR̂A

o
; (3.21)

10



Acc
ep

te
d m

an
usc

rip
t 

since V V 0 is positive semi-de�nite and tr(V U) = tr(U 0V 0) = tr(UV 0). Moreover,

since R̂ has unit diagonal elements

tr(U2) � trfA2g =
pX
i=1

a2i : (3.22)

It follows from the Cauchy inequality and (3.1) that the denominators in (3.9) and

(3.20) are guaranteed non-negative and ordered:

p2tr
n
R̂�AR̂�A

o
� p � p2tr

n
R̂AR̂A

o
� p � p2

pP
i=1

a2i � p � 0: (3.23)

Under (3.12) the denominators reduce to tr(R̂2) � p and tr(R̂�2) � p respectively,

where tr(R̂2) � tr(R̂�2) � p2, and under (3.13) both are p(p� 1), which is data-free.

4. ASYMPTOTIC NULL DISTRIBUTION AND CONSISTENCY

We now establish the asymptotic distributions ofX andX� under the non-cointegrated

null hypothesis, introducing regularity conditions which are similar to ones of Robin-

son (1995), Lobato (1999), Shimotsu (2007). These conditions are capable of some

modi�cation and extension but their use allows us to apply some basic results. We

assume that zt has representation

zt = Ezt +
1P
j=0

Cj"t�j; t 2 Z;
1P
j=0

kCjk2 <1; (4.1)

where the Cj are p�p matrices, k:k denotes Euclidean norm, and the matrix function

C(�) =
1P
j=0

Cje
�ij� (4.2)

is di¤erentiable in a neighbourhood of � = 0 and satis�es the conditions

��C(�) = Q0 +O(��); as �! 0+; some � 2 (0; 2]; (4.3)
dC(�)

d�
= O(����1); as �! 0+; (4.4)
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where Q is a p � p full rank matrix such that Q0Q = G0, "O" applies here to each

element of a matrix, and the "t are p� 1 vectors satisfying

E ("t jFt�1 ) = 0; E ("t"
0
t jFt�1 ) = Ip; a:s:; (4.5)

and all third and fourth conditional (onFt�1) moments and cross-moments of elements

of "t are a.s. constant, where Ft is the �-�eld of events generated by "s, s � t. These

conditions imply that zt is a non-cointegrated I(�) vector, satisfying (2.1) with positive

de�nite G0. We assume that � is an interior point of U . We assume that

(log n)2m1+2�

n2�
+
(log n)8

m
! 0; as n!1: (4.6)

Theorem 1 Under the assumptions in the previous paragraph,

X;X� !d �
2
1; as n!1: (4.7)

Proof. The mean value theorem gives

s�(~�) = s�(�) +
ds�(��)

dx
(~� � �); (4.8)

where
���� � �

�� � ���~� � �
���. Denote by ĜR (ĜI) and ĤR (ĤI) the real (imaginary) parts

of Ĝ�(�) and Ĥ�(�). We have

Ĝ�(�)�1 =
�
Ip � iĜ�1R ĜI

��
ĜR + ĜIĜ

�1
R ĜI

��1
: (4.9)

Then since Ĝ�(�) and Ĥ�(�) are Hermitian it follows that

s�(�) = tr

��
ĜR + ĜIĜ

�1
R ĜI

��1 �
ĤR + ĤIĜ

�1
R ĜI

��
; (4.10)

imaginary parts cancelling. It follows from arguments routinely extending those used

to establish (4.8) of Robinson (1995) (see also Lobato (1999), Appendix C) that

Ĝ�(�) = m�1
mP
j=1

Q0I"(�j)Q+ op(m
� 1
2 ); (4.11)

Ĥ�(�) = m�1
mP
j=1

�jQ
0I"(�j)Q+ op(m

� 1
2 ): (4.12)
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The imaginary parts of the leading terms on the right of (4.11) and (4.12) are easily

seen to be Op(m� 1
2 ), so that ĜI = Op(m

� 1
2 ), ĤI = Op(m

� 1
2 ), and thus

s�(�) = s(�) + op(m
� 1
2 ): (4.13)

Applying (4.11), (4.12) again we have ĜR = G0 + op(m
� 1
2 ) and then

m
1
2 s(�) = m� 1

2 tr

"
G�10

mP
j=1

Q0�j Re fI"(�j)gQ
#
+ op(1)

= m� 1
2 tr

(
mP
j=1

�jI"(�j)

)
+ op(1): (4.14)

In addition, denoting by qi the i-th column of Q, it is straightforward to show that

~�(i) � � = �1
2

mP
j=1

�jIzi(�j)�
2�
j =

mP
j=1

Izi(�j)�
2�
j + op(m

� 1
2 )

= � 1

2m

mP
j=1

�j
q0iI"(�j)qi
q0iqi

+ op(m
� 1
2 ); i = 1; :::; p; (4.15)

proceeding much as in Robinson (1995), the only di¤erence being that in the present

case the scalar sequences zit each depend on the vector white noise sequence "t. Also,

for scalar argument x;

ds(x)

dx
= tr

(
Ĝ(x)�1

 
dĤ(x)

dx
� dĜ(x)

dx
Ĝ(x)�1Ĥ(x)

!)
: (4.16)

Now (4.15) implies that �� = � +Op(m
� 1
2 ), whence arguments like those in Robinson

(1995) give

Ĝ(��) !p G0; Ĥ(��) !p 0;

and also
dĤ(��)

dx
=
2

m

mP
j=1

�j(log �j) Re fIz(�j)g�2
��
j = 2G0 + op(1): (4.17)

It follows that
ds(��)

dx
!p 2p: (4.18)

13
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Similarly
ds�(��)

dx
!p 2p: (4.19)

Thus, using (4.14), (4.15), (4.18) and (4.19), it is straightforwardly shown that both

m
1
2 s(~�) and m

1
2 s�(~�) di¤er by op(1) from

m� 1
2 tr

(
mP
j=1

�jI"(�j)
�
Ip � pQAD�1Q0

�)
; (4.20)

where D = diagfg11; :::; gppg, with gij the (i; j)-th element of G0. Then after a

martingale approximation, as in Robinson (1995), we deduce that (4.20) converges

in distribution to a N
�
0; tr

n
(Ip � pQAD�1Q0)

2
o�

variate, where (since diagonal

matrices commute) the variance equals

tr
�
Ip � 2pA+ p2RARA

	
= p (ptr fRARAg � 1) ; (4.21)

whereR = D� 1
2G0D

� 1
2 . The proof is completed by noting that Ĝ(~�) !p G0, Ĝ

�(~�) !p G0

imply R̂ !p R, R̂
� !p R.

We now consider the consistency of the test implied by Theorem 1 for X�, against

�xed cointegrated alternatives. We adopt for convenience the same assumptions as

for Theorem 1 above, with the exception that zt is given by (2.5) with ut having a

representation of form (4.1), and (2.7) holds with (2.3), (2.4), (4.3), (4.5). De�ne

also ! = diag f!11; :::; !ppg, where !ij is the (i; j)th element of 
, and write � =

!�
1
2
!�

1
2 . Also de�ne the p� p matrices E and F with (i; j)-th elements given in

E =

�
1

2� � 
i � 
j + 1

�
; F =

�
2� � 
i � 
j

(2� � 
i � 
j + 1)
2

�
; (4.22)

and write e = diag
�
(2� � 2
1 + 1)�1; :::; (2� � 2
p + 1)�1

	
. Denote by � the Hadamard

product operator.

14
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Theorem 2 Under the assumptions in the previous paragraph, as n!1

m�1X� !p

�
tr
�
(E ��)�1 (F ��)

	�2
p2tr

�h
e�

1
2 (E ��) e� 1

2A
i2�

� p

: (4.23)

Proof. From (2.5),

s�(�) = tr

8<:
 

mP
j=1

�2�j Iu(�j)

!�1
mP
j=1

�j�
2�
j Iu(�j)

9=; : (4.24)

By an approximation analogous to that used in (2.8) of Robinson (1994a)

� (�m; 
)
1

m

mP
j=1

�sj

�
�

m

�2� n
Iu(�j)� �

�
�je

i�; 

��1


�
�
�je

�i�; 

��1o

�(�m; 
) = op(1);

(4.25)

for s = 0; 1. Then because �(:; :) is diagonal and �jei� = j � (2�=n) � ei�, we have

also �
�
�je

i�; 

�
= �(j; 
)�

�
2�
n
; 

�
�
�
ei�; 


�
, where all factors are non-singular, and

thence there is cancellation of the last two factors, to give

s�(�) = tr

8<:
 

mP
j=1

(
j

m
)2��(

j

m
; 
)�1��(

j

m
; 
)�1

!�1
mP
j=1

�j

�
j

m

�2�
�(

j

m
; 
)�1��(

j

m
; 
)�1

9=;
+op(1): (4.26)

Using the approximations

m�1�a
mP
j=1

ja � 1

a+ 1
; m�1�a

mP
j=1

�jj
a � a

(a+ 1)2
; (4.27)

valid for all a > �1, we deduce that as m!1

m�1
mP
j=1

�
j

m

�2�
�

�
j

m
; 


��1
��

�
j

m
; 


��1
! E ��; (4.28)

m�1
mP
j=1

�j

�
j

m

�2�
�

�
j

m
; 


��1
��

�
j

m
; 


��1
! F ��; (4.29)
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from which it follows that

s�(�)!p tr
�
(E ��)�1(F ��)

	
: (4.30)

Now for s = 0,




� (�m; 
) 1m
mX
j=1

�sj

(�
j

m

�2e�
�
�
j

m

�2�)
Iu(�j)� (�m; 
)







� 8

���~� � �
��� (logm)2tr(� (�m; 
) 1

m

mX
j=1

�
j

m

�2�
Iu(�j)� (�m; 
)

)
; (4.31)

using an inequality like that near the bottom of p.133 of Robinson (1994a). Now since

�̂ is m
1
2 -consistent for �, and the trace is Op(1) from the above arguments, it follows

that (4.31) = op(1). Routine arguments then give s�(~�)� s(�)!p 0. The arguments

above imply that R̂� !p e
� 1
2 (E ��)e� 1

2 ; to complete the proof.

Since the denominator of (4.23) is always �nite, the test is consistent when the

numerator is non-zero. Whether this is the case appears in general to depend on �,

as well as 
. Take p = 2 for example. Write � = � � 
1 and � for the o¤-diagonal

element of �. Then

tr
�
(E ��)�1(F ��)

	
= 2�

(2� + 1)�2 � �2(� + 1)�3

(2� + 1)�1 � �2(� + 1)�2
: (4.32)

The denominator of (4.32) is �nite (and nonzero for j�j � 1 and � 2 (0; 1
2
)), and the

numerator can be zero only when �2 = (� + 1)3=(2� + 1)2. The right side of this is

decreasing in � and thus we can say, for example, that whenever �2 � 27=32; that is,

j�j � 0:918 , (4.32) is non-zero for any � 2 (0; 1
2
). Of course power will be poor when

(4.32) is close to zero.

The right hand side of (4.23) is desirably free of �, and also of B. It would be

possible to extend Theorem 2 to allow variation in integration orders and elements of

zt. In the simplest case, the upper-triangular B�1 is also block-diagonal, with blocks
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corresponding to the varying zt integration orders. This is the situation studied by

Robinson and Yajima (2002), where zt was partitioned into subsets with common

integration orders, and cointegration studied only within subsets. We again achieve a

limit of m�1X� which is also free of B and (possibly varying) phase parameters, yet

depends on all the integration orders of zt; ut.

5. A ROBUSTIFIED STATISTIC

There is always a di¢ culty drawing conclusions from a test rejection, because tests

can have power against unanticipated departures from the null hypothesis. We would

like to take rejection as evidence of cointegration. The statistics X, X� take for

granted that all elements of zt have the same integration order, �. Suppose, however,

that zit is an I(�i) process, 0 � �i <
1
2
, i = 1; :::; p, where not all the �i are equal, so

that

fz(�) � �
�
�ei�; �

��1

�
�
�e�i�; �

��1
; (5.1)

where � = (�1; :::; �p)
0. Then zt is not cointegrated, but under otherwise similar

conditions to those of Theorem 2, we deduce that

m�1X� !p

h
tr
n�
Ey ��

��1 �
F y ��

�oi2
p2tr

�h
ey�

1
2 (Ey ��) ey� 1

2A
i2�

� p

; (5.2)

where

Ey =

�
1

2� � �i � �j + 1

�
; F y =

 
2� � �i � �j

(2� � �i � �j + 1)
2

!
; (5.3)

with now � =
Pp

i=1 ai�i; denoting the probability limit of ~�; and e
y = diagf(2� �

2�1 + 1)
�1; :::; (2� � 2�p + 1)�1g. If not all �i are equal the right side of (5.2) can be

non-zero. By some alternative de�nitions (see below) it is possible that cointegration

can exist without all �i being equal, so long as at least 2 are. But equally it may
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not exist in these circumstances, and if p = 2 it cannot exist unless �1 = �2. It

is anticipated that a pre-test of equality of the �i would be carried out; tests that

do not presume the existence or non-existence of cointegration were introduced by

Robinson and Yajima (2002), Hualde (2004). But non-rejection of equality may not

be su¢ ciently reassuring. Thus we propose a test that is robust to inequalities in the

�i.

De�ne

Ĝ��(x) =
1

m

mP
j=1

�(�j;x)Iz(�j)�(�j;x); Ĥ��(x) =
1

m

mP
j=1

�j�(�j;x)Iz(�j)�(�j;x)

(5.4)

for x = (x1; :::; xp)0. Denote ~� =
�
~�(1); :::; ~�(p)

�0
, with the ~�(i) de�ned as in Section 3.

Finally, denote by ĝ��ii the i-th diagonal element of Ĝ
��(~�), and introduce

s��(x) = tr
n
Ĝ��(x)�1Ĥ��(x)

o
; (5.5)

D̂�� = diag
�
ĝ��11; :::; ĝ

��
pp

	
; R̂�� = D̂��� 1

2 Ĝ��(~�)D̂��� 1
2 ; (5.6)

X�� = ms��(~�)2�
�
tr
n
R̂��2

o
� p
�
: (5.7)

We impose the same conditions as for Theorem 1, except that (4.3) and (4.4) are

replaced respectively by

�
�
�ei�; �

�
C(�) = Q0 +O(��); as �! 0+; some � 2 (0; 2]; (5.8)

�
�
�ei�; �

� d

d�
C(�) = O(��1); as �! 0 + : (5.9)

Theorem 3 Under the assumptions in the previous paragraph,

X�� !d �
2
1; as n!1: (5.10)

Proof. We have

s��(~�) = s��(�) +
@s��(��)0

@x
(~� � �); (5.11)
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where


�� � �



 � 


~� � �



. Much as in the proof of Theorem 1 (cf (4.11), (4.12)), we

have

Ĝ��(�) = �
�
ei�; �

�
m�1

mP
j=1

Q0I"(�j)Q�(e
�i�; �) + op(m

�1=2); (5.12)

Ĥ��(�) = �
�
ei�; �

�
m�1

mP
j=1

�jQ
0I"(�j)Q�(e

�i�; �) + op(m
�1=2): (5.13)

The factors �
�
ei�; �

�
cancel on inserting these approximations in s��(�), and we get

m
1
2 s��(�) = m� 1

2 tr

(
mP
j=1

�jI"(�j)

)
+ op(1); (5.14)

c.f. (4.14). Also, proceeding similarly to the proof of Theorem 1,

@s��(��)

@x0
!p (2; :::; 2): (5.15)

Then applying (4.15) leads to

m
1
2 s��(~�) = m� 1

2 tr

(
mP
j=1

�jI"(�j)
�
Ip �QD�1Q0

�)
: (5.16)

But the right side is just a special case of (4.20), so it converges to aN
�
0; tr

n
(Ip �QD�1Q0)

2
o�

variate. The limiting variance equals tr(R2) � p, and from previous arguments

R̂�� !p R, to complete the proof.

While our statistics all have the same null limit distribution, their powers can di¤er,

and there follows a derivation of local power properties. Consider the p � 1 vector

process ut, with i-th element uit, satisfying the same conditions as zt did in Theorem

1. Introduce the triangular array p � 1 vector process u(m)t , whose i-th element is

�cim
� 1
2 uit for i � r, and uit for i > r, where ci > 0, i = 1; :::; r. Then z

(m)
t = B�1u

(m)
t ,

with B as in (2.6), exhibits locally, rank r; cointegrated alternatives (of Pitman type,

but of order m� 1
2 ), from the non-cointegration null. The approach taken here is

analogous to one employed in a fractional context by Robinson (1994b), though there

the topic was testing for integration order in a parametric setting, with departures
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of order n�
1
2 . Partly because of this reference, and to save the space required by

a detailed proof, we only brie�y sketchderivations. Considering X�, we begin from

(4.8), and then deduce

m
1
2 s�(�) = m

1
2 tr

8<:
 

mX
j=1

Iu(m)(�j)�
2�
j

!�1 mX
j=1

�jIu(m)(�j)�
2�
j

9=; ; (5.17)

where Iu(m)(:) is the periodogram of the u(m)t . De�ning the p� 1 vector process v(m)t

having i-th element v(m)it = cim
� 1
2 (log�)�cim

� 1
2 uit for i � r, and zero for i > r, an

argument like that in the proof of Theorem 2 of Robinson (1994b) indicates that the

e¤ect of replacing the u(m)t by the ut + v
(m)
t is negligible. Further, the e¤ect of then

replacing the v(m)it by the cim� 1
2 (log�)uit is negligible, and then, by frequency-domain

approximation the discrete Fourier transform at frequency � of the latter quantity

can be replaced by that of uit times cim� 1
2 log (1� ei�). Thence we can approximate

m
1
2 s�(�) by

m� 1
2 tr

(
G�1

mX
j=1

�jIu(�j)�
2�
j

)
+ 2

mX
j=1

ci; (5.18)

using also m�1�mj=1�j log(1 � ei�j) � m�1�mj=1�
2
j � 1. From the proof of Theorem

1, m
1
2 s�(e�) is asymptotically distributed as N (2�ri=1ci; p2tr(RARA)� p), and thence

we deduce

X� !d �
02
1

0@4 rX
i=1

ci

!2
=
�
p2tr(RARA)� p

	1A ; (5.19)

�021 (:) indicating a non-central �
2
1 variate with non-centrality parameter in parentheses.

By a similar derivation to that of (5.19), but using the proof of Theorem 3,

X�� !d �
02
1

0@4 rX
i=1

ci

!2
=
�
tr(R2)� p

	1A : (5.20)

Note also that (5.19) and (5.20) re�ect an increase in power with increasing r.
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6. ESTIMATING COINTEGRATING RANK

It is possible to use our tests in a sequential way in order to estimate cointegrating

rank. Let us suppose that the full set of variables we wish to consider are the elements

of the P � 1 vector xt = (x1t; :::; xPt)
0, for P � 3. As in the previous section they

need not all have the same integration order, so we will apply the X�� statistic; under

the assumption of identical integration orders X or X� might be used instead. The

cointegrating rank of xt is denoted R. We introduce new notation to allow zt and p

to refer to a subset of xt and its dimension in a particular test, so these vary over our

sequential procedure.

Consider the null hypothesis

H0p(j1; :::; jp) : xj1t; :::; xjpt are not cointegrated, (6.1)

for some integers p, j1; :::; jp, where these satisfy

1 � j1 < j2 < ::: < jp � P; 2 � p � P: (6.2)

Taking zt = (xj1t; :::; xjpt)
0, we reject H0p(j1; :::; jp) if X�� is signi�cant at some pre-

scribed level, applying the large sample approximation in Theorem 3.

For given k, j1; :::; jk, place the
�
P
k

�
hypotheses H0k(j1; :::; jk) in (say) lexicographic

order. (There is sensitivity to the ordering.) Then form an ordering of all 2P �P � 1

hypotheses (6.1) satisfying (6.2) such that for k < ` the ordered H0k precede the

ordered H0`. The hypotheses are tested in this order, but some can be omitted, as

we now describe.

For some k, j1; :::; jk, if H0k(j1; :::; jk) is the i-th hypothesis to be rejected, for

some i � 1, de�ne the set Si = fj1; :::; jkg. Now suppose that q hypotheses have

already been rejected when we consider whether to test H0`(j1; :::; j`), for some `,

j1; :::; j`. We do not test it if the set S = fj1; :::; j`g satis�es either S � (S1 [ ::: [ Sq)

or Si � S, some i = 1; :::; q. The reason is as follows. If S � (S1 [ ::: [ Sq) then a
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linear combination of the q cointegrating relations whose existence has already been

"established" is a linear combination of xj1t; :::; xj`t. If Si � S for some i = 1; :::; q

then the i-th cointegrating relation implies xj1t; :::; xj`t are also cointegrated (e.g., if

necessary we can give zero weights to the j1; :::; j` that are not in Si). Thus, in some

circumstances there will be "gaps" in the sequence of hypothesis tests, and in some

cases termination with no need to consider further hypotheses. The estimate of the

cointegrating rank R is the total number of rejections.

In view of the sequential nature of the procedure and the varying possible outcomes

there is a di¢ culty in attaching probability statements to the event that R is correctly

determined given the signi�cance levels used in the individual tests. One approach,

which applies Bonferroni�s inequality, is to assign signi�cance levels to the individual

tests so as to approximately yield a desired size, � (e.g. � = 0:05), for testing the

non-cointegration hypothesis H�
0 : R = 0 against H

�
1 : R > 0. Since we only have the

opportunity to not reject H�
0 by carrying out all 2

P �P �1 tests, the usual Bonferroni

argument and Theorem 3 suggests using a �=(2P � P � 1) signi�cance level based

on the �21 distribution for each. Ignoring the approximation in null distribution, this

actually corresponds to a signi�cance level for testing H�
0 of less than �.

It may be helpful to illustrate how the algorithm operates for small values of P .

Take P = 3. The ordered hypotheses are H02(1; 2), H02(1; 3), H02(2; 3), H03(1; 2; 3).

If H02(1; 2) and H02(1; 3) are rejected we estimate R to be 2 and stop. Otherwise we

test H02(2; 3). We only test H03(1; 2; 3) if all the H02 have not been rejected. "Gaps"

are not possible when P = 3, but they are when P = 4. In this case, supposeH02(1; 2)

and H03(1; 3) are rejected, but H02(1; 4) is not rejected. Then we skip H02(2; 3), but

test H02(2; 4), and if that is not rejected, H02(3; 4). If either is rejected we stop,

estimating R to be 2. If both are not rejected we skip H03(1; 2; 3), H03(1; 2; 4) and

H03(1; 3; 4), but test H03(2; 3; 4), and then stop whatever the outcome. On the other

hand if all 6 H02 are rejected then even if H02(1; 2; 3) is rejected we test H03(1; 2; 4)
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(as makes sense because non-cointegration of x1t; x2t has already been "established").

But if H02(1; 2; 4) is also rejected we estimate R to be 2 and stop; this is the maximum

possible estimate we can conclude given non-rejection of all H02.

Alternative sequential rules can be determined. The most obvious operates in the

opposite direction, testing H0P (1; :::; P ) �rst, which is able to immediately deter-

mine non-cointegration. Various approaches for determining cointegrating rank have

been developed, for both non-fractional (nonstationary) and fractional series. Our

algorithm is in one sense laborious, but on the other hand desirably allows lack of

knowledge of, and inequalities in, integration orders, and does not require estima-

tion of any cointegrating relations or any user-chosen tuning numbers beyond the

bandwidth m.

Though in Section 5 we motivated the allowance for variable integration orders from

the perspective of test size, we can also extend the de�nition of cointegration, and

cointegrating rank, to such circumstances, and indeed the algorithm just described is

still suitable for estimating cointegrating rank. We adopt the set-up of Robinson and

Yajima (2002).

Partition the P � 1 vector xt into s > 1 sub-vectors x(i)t of dimension Pi, such that

each element of x(i)t has the same integration order �(i), i = 1; :::; s, so
Ps

i=1 Pi = P .

In the sense described in Section 2, suppose that x(i)t has cointegrating rank Ri < Pi,

where Ri = 0 when x
(i)
t is not cointegrated. Then we say that xt has cointegrating

rank R =
Ps

i=1Ri. It is possible that Pi = 1 for some i, in which case Ri = 0.

It is also possible for the x(i)t to be cross-correlated. Now a routine extension of

the consistency discussion of Section 4 indicates that X��, with zt = xt, can detect

cointegration when at least one of the x(i)t is cointegrated, subject to the caveat in

the paragraph following the proof of Theorem 2. Furthermore, our algorithm for

estimating cointegrating rank is just as relevant - its description made no reference

to equality of integration orders. This is the case whether it is applied to the full
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vector xt, or separately to the x
(i)
t for those i such that Pi � 3. The latter approach

is arguably the less expensive except insofar as the partition of xt is based on pre-

testing of equalities between integration orders (as in Robinson and Yajima, 2002).

If xt is over-partitioned, such that there is actually equality between some �
(`), there

is potential for under-estimating R.

When there is variation in integration orders there are other de�nitions of cointe-

grating rank, as reviewed by Robinson and Yajima (2002). One phenomenon that

our algorithm cannot detect is the extension of what has been called "polynomial

cointegration" in the integer integration order literature (see Johansen, 1996, p.39).

This occurs if a cointegrating error for x(i)t is cointegrated with elements of xt, and

its investigation would require a more re�ned analysis.

7. EXTENSION TO NONSTATIONARY SERIES

Velasco (1999) showed that a modi�ed local Whittle estimate for scalar series re-

tains its m
1
2 -consistency and asymptotic normality properties in the presence of quite

general nonstationarity. (See also Shimotsu and Phillips, 2005). The nonstation-

arity is de�ned by partial summation of stationary fractional series, describing I(�)

processes for all � > 0 such that � 6= 1
2
; 3
2
; :::. The modi�cations consist of data taper-

ing and "skipping" of Fourier frequencies. One anticipates that similar modi�cations

of our statistics can provide tests for non-cointegration of non-stationary vector series.

We consider a sequence ht = ht;n, t = 1; :::; n. Following Velasco (1999) we say

that fhtg is a taper of order q � 1 if it is symmetric about [n=2], if (for simplicity)

N = n=q is an integer, and if

wh(�) =
cn(�)

nq�1

�
sin(n�=2q)

sin(�=2)

�q
; (7.1)

where for all su¢ ciently large n, cn(�) has modulus bounded and bounded away from
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zero, and q � 1 derivatives that are bounded, and also
nP
t=1

h2t � Kn; as n!1; K 2 (0;1): (7.2)

Velasco (1999) described examples of such sequences. For q � 2, ht is roughly constant

for central values of t but tapers to zero at the ends, with smoothness indexed by q.

In case q = 1 we may take ht � 1, t = 1; :::; n, so there is no tapering. Velasco (1999)

also noted that such a taper can eliminate polynomial trends of degree q � 1 or less.

De�ne also

 n =

�
nP
t=1

h2t

��2P
j

0
�

nP
t=1

h2t cos t�j

�2
; (7.3)

where the primed sum is over j = q; 2q; :::; n.

We discuss an extension only of our robusti�ed statistic X��. De�ne the product

yt = htzt, and thence

Ĝ��h (x) =
1

m

P
j

0�(�j;x)Iy(�j)�(�j;x); (7.4)

Ĥ��
h (x) =

1

m

P
j

0�j�(�j;x)Iy(�j)�(�j;x); (7.5)

s��h (x) = tr
n
Ĝ��h (x)

�1Ĥ��
h (x)

o
: (7.6)

Denoting by yit the i-th element of yt, de�ne

~�(i)h = argmin
d2U

(
log ĝiih(d)�

2dq

m

P
j

00 log �j

)
; (7.7)

where

ĝiih(d) =
q

m

P
j

00Iyi(�j)�
2d
j ; (7.8)P00

j is a sum over j = q; 2q; :::;m and U = [r1;r2] is now a compact interval on

the positive real line. Writing ~�h =
�
~�(1)h; :::; ~�p(h)

�0
and denoting by ĝ��iih the i-th

diagonal element of Ĝ��y (~�h), we de�ne

D̂��
h = diag

�
ĝ��11h; ::; ĝ

��
pph

	
; R̂��h = D̂

��� 1
2

h Ĝ��h (
~�)D̂

��� 1
2

h ;

X��
h = (m=q n)s

��
h (
~�)2�

�
tr
n
R̂��2h

o
� p
�
: (7.9)
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We de�ne a non-cointegrated, possibly nonstationary zt as follows. Let vt be a p�1

vector stationary process with zero mean such that

vt =
1P
j=0

Cj"t�j;
1P
j=0

kCjk2 <1; (7.10)

where the "t satisfy the conditions stated before Theorem 1. For �i > 0, i = 1; :::; p,

de�ne si = [�i +
1
2
], �i = �i � si, so that �i = �i for 0 < �i <

1
2
, �i = �i � 1 for

1
2
<�i <

3
2
, and so on. We suppose that C(�) de�ned as in (4.2) satis�es (5.8) and

(5.9) with � replaced by � = (�1; :::; �p)0 and � 2 (1; 2]. Finally de�ne

zit = �
�siv�it; t � 1; i = 1; :::; p; (7.11)

where v�it is the i-th element of vt, for t � 1, and zero for t � 0. Then we may call zit
an I(�i) process, for all �i > 0 except �i = 1

2
; 3
2
; :::. Finally we assume that for all i,

�0i 2 [r1;r2] where r1 > 0, and
�
r2 +

1
2

�
+ 1 � q.

Theorem 4 Under the assumptions in the previous paragraph,

X��
h !d �

2
1; as n!1: (7.12)

The proof combines ideas from Velasco (1999) and the proofs of Theorems 1 and

3 too straightforwardly to warrant discussion. By virtue of the full rank assumption

on Q, zt is not cointegrated irrespective of whether there is equality among any �i.

We can de�ne a cointegrated zt by means of (2.5) with ut generated similarly to vt

above, but such that vit is I(
i) with 0 � 
i � �i for all i, and 
i < �i for some

i; again cointegration requires equality of at least two �i. Since Theorem 4 covers

integer values of the �i; 
i, it would be possible to conduct a test in the often-assumed

situation that observables are I(1) and any cointegrating errors are I(0). Procedures

which use this information (or other prior information on integration orders, either
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stationary or nonstationary ones) would be expected to perform much better when

it is correct. The sequential algorithm described in the previous section can still be

applied to estimate cointegrating rank in nonstationary environments.

8. MONTE CARLO STUDY OF FINITE-SAMPLE PROPERTIES

A Monte Carlo study was carried out to investigate �nite-sample performance of

the procedures. All the experiments reported employed 1000 replications.

Our �rst experiments compare size and power of the tests based on X;X� and

X�� (see Sections 3-5) when p = 2. With respect to size we employ bivariate non-

cointegrated sequences

zt = �
�0:35et; t = 1; 2; :::; n; (8.1)

where the et are independent bivariate normal vectors, whose �rst and second ele-

ments have mean zero, have standard deviations 1 and
p
65 respectively; and corre-

lation 8=
p
65: Thus we are considering X�� in a setting in which the robusti�cation

is unnecessary. We generated series of lengths n = 128, 512 and 1024: In the �rst

place, the estimates e�(1) and e�(2) (3.8) of � = 0:35 were computed, for m = 10; 20;

40 when n = 128; m = 20; 40; 80; 150 when n = 512; and m = 80; 150 and 300

when n = 1024. Then e� (3.10) was computed in the equal-weights case (3.12): Table
1 reports empirical size of tests based on Theorem 1 with nominal sizes � = 0:01 and

0:05; along with Monte Carlo mean-squared error (MSE) of e�.
(Table 1 about here)

Empirical sizes are clearly too small when m = 10 and n = 128, but in other

cases they are not too bad, if mainly too small especially for X��; though there is

similarity acrossX; X�. On the whole, sizes do not vary greatly over n, though there is

sensitivity to m; m is a measure of e¤ective degrees of freedom, so the approximation

to asymptotic behaviour does not seem too bad in the circumstances. The MSE of e�
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decays with increasing n, and also with increasingm, due in part to low bias resulting

from the simple monotonically decaying spectrum in this experiment.

We next generated cointegrated series zt; by (2.5), (2.9) with 
1 = 0:05; 
2 = � =

0:35; the et as in the previous experiment, and

B =

0@1 �1

0 1

1A : (8.2)

The results, with otherwise the same speci�cations as before, are presented in Table 2.

The most striking feature is the abysmal performance of X, except for the largest m

when n = 512 and 1024, indeed the powers are actually mostly less than the empirical

sizes reported in Table 1. The fact that we did not include a consistency proof for

X does not imply it is not consistent, indeed powers do dramatically increase as m

goes from 80 to 150. Looking at a single replicate, we found the denominators of X

and X� to be almost identical, whereas s(~�) = �0:0025 and s�(~�) = �0:1974, this

substantial di¤erence being due to the imaginary parts of G�(~�) and H�(e�) (which
in the latter case are slightly larger than the real parts of the corresponding o¤-

diagonal elements). In Table 2, X�� performs disappointingly against X�; given that

the derivations in Section 5 indicate comparable local power; we can only suggest that

our departure from non-cointegration should not be interpreted as local. However,

X�� mainly does substantially better than X, except for the largest m. The powers

increase monotonically with m except for n = 1024 where they fall then rise. Even

the powers of X� are poor for small m with n = 128 and 512, but they increase quite

rapidly with m, and are uniformly high with n = 1024. Its performance seems quite

satisfactory, especially as one expects cointegration with gap ��
1 = 0:3 to be much

harder to detect than, say, with I(1) observables and I(0) cointegrating errors, where

� � 
1 = 1.

(Table 2 about here)

We now go on to study performance of the algorithm for choosing r described in
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Section 6, using X��. We generated a trivariate system with cointegrating rank 1.

Speci�cally, we used (2.5), (2.9), where the et are independent trivariate normal with

zero mean and covariance matrix 26664
1 8 1

8 65 9

1 9 3

37775 ; (8.3)

while

B =

26664
1 1 0

0 1 0

0 0 1

37775 (8.4)

and


1 = 0:1; 
2 = 0:4; 
3 = 0:2: (8.5)

Thus, zt has elements that do not all have the same integration order, as discussed

in the penultimate paragraph of Section 6. In the notation there, zt = xt, s = 2,

P1 = 2, P2 = 1, P = 3, R1 = 1, R2 = 0, R = 1; the �rst two elements of zt are I(0:4),

the last one is I(0:2), and the cointegrating error is I(0:1). This setting illustrates

the need for our robusti�ed test statistic X��, which was employed in precisely the

algorithm described for the case P = 3 in Section 6 . Two di¤erent rules for choosing

the �2 nominal sizes were employed. In one (see Table 3) we used 0.05 and 0.01 for

each of the (up to 4) tests needed in the algorithm to estimate R from a given data

set. In the other (see Table 4) we approximated these sizes (for testing R = 0 over

the whole algorithm) by means of Bonferroni�s inequality, as described in Section 6;

thus, nominal sizes 0:05=4 = 0:0125 and 0:01=4 = 0:0025) were used for each �2 test.

Relative frequencies of R̂ for these two rules are displayed in Tables 3 and 4, with the

same choices of n and m as before.

(Tables 3 and 4 about here)
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Throughout, we see a clear tendency to underestimateR; it is seldom over-estimated.

This is especially notable for n = 128, but the results improve markedly with increas-

ing n: For n = 512 there is de�nite improvement with increasingm, while for n = 1024

the opposite e¤ect is observed. Of course the choice of nominal signi�cance level is

always arbitrary in any case. While the use or not of Bonferroni does not make a

huge di¤erence to the results, it is obvious that were we to choose a somewhat larger

nominal size, say 0.1, especially in Table 4, the results would improve. Bearing in

mind the stress we have placed on computational simplicity in developing tests, the

results overall do not seem disappointing.

We also examined the performance of the tapered statistic X��
h in a nonstationary

setting. To examine size, we generated bivariate vectors

vt = �
�0:2et; t = 1; 2; :::; n; (8.6)

where the et were as in (8.1). Then we formed the partial sums

zt =
tP
i=1

vi (8.7)

(i.e. (7.11) with s1 = s2 = 1). Thus the elements of zt are non-cointegrated I(1:2)

series. We formed the tapered vectors yt = htzt, where ht = h
�
(t� 1

2
)=n
�
in which

h(u) is the cosine bell

h(u) =
1

2
(1� cos(2�u)) ; 0 � u � 1: (8.8)

In this case q = 3, and we constructed the estimates ~�(1)h; ~�(2)h, and thence the

statisticX��
h , on this basis, as described in the previous section. We took n = 129 with

m = 12; 21; 42; n = 513 withm = 21; 42; 81; 150; and n = 1023 withm = 81; 150; 300.

Once again nominal sizes � = 0:01 and 0.05 were employed in the test justi�ed in

Theorem 4.

(Table 5 about here)
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Empirical sizes, and MSE of ~�(1)h; ~�(2)h, are presented in Table 5. Sizes are almost

uniformly too small, seriously so for small m, though when n = 512 and 1024 with

� = 0:05 they seem satisfactory for the largest m. MSEs of the � estimates are worse

than those in Table 1, perhaps predictably in view of the tapering, and this may be

partly to blame for the more disappointing of the results.

Finally, the power of the X��
h test was examined in bivariate nonstationary cointe-

grated series. We generated

vt = diag
�
��0:4;��0:2	 et; t = 1; 2; :::; n; (8.9)

with et as before, then

u1t = v1t, (8.10)

u2t =
tP
i=1

v2i; (8.11)

,and �nally zt = B�1ut with B as in (8.2). Thus the elements of zt are cointegrated

I(1:2) series with I(0:4) cointegrating errors. Then ~�(1)h; ~�(2)h andX��
h were computed

as before.

(Table 6 about here)

The results are presented in Table 6. When n = 129 the powers are extremely

poor, and except for m = 150 they are disappointing also when n = 513. This must

at least in part be due to the under-sizing. When n = 1023 power is not too bad with

m = 150, and high with m = 300. In the latter case there is over-sizing, but this is

only substantial when � = 0:01. It is important to recall that (to reduce correlation

across frequencies induced by tapering) we skip two Fourier frequencies between each

included one (q = 3), so in Tables 5 and 6 the actual number of frequencies used is

only about m=3.

Looking back at all our Monte Carlo results, an overall conclusion is that, except

perhaps in case of the X� statistic, n = 128 is too short a series for these semipara-
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metric procedures. On the other hand, results for the largest n are in several instances

promising.

A notable feature of the Monte Carlo results is sensitivity to bandwidth, m. This

is common in smoothed estimation, and a popular reaction is to employ a data-

dependent bandwidth that has some optimality properties. We have deliberately

avoided pursuing this approach on several grounds.

The �rst is due to ambiguity about how to base such a choice. For the series zit,

for given i; we could employ an approximate minimum-MSE rule (see e.g. Henry and

Robinson, 1996) to estimate its integration order (though strictly such rules do not

seem to have been explicitly studied in the nonstationary case). But this would not

be optimal for some other element of zt, while on the other hand if we used di¤erent

m�s for each series this could a¤ect the limit distribution of our test statistics. Nor

is the viability of employing a bandwidth choice procedure based on the multivariate

local Whittle function (see e.g. Lobato, 1999) assuming common integration order

clear, because its properties vary depending on whether or not there is cointegration

(cf Robinson and Yajima, 2002).

Another kind of problem with "optimal" bandwidth choices, is that the simplest

ones assume twice di¤erentiability near frequency zero of the ratio between the spec-

tral density and its power law approximation. As noted earlier in this section, this

smoothness property is violated when, as is plausible for cointegrated systems, se-

ries contain components of di¤erent integration orders. Thus, the usual rules may

lead to over-smoothing. More elaborate procedures that take account of the lesser

smoothness in a systematic way can be developed, but at additional computational

cost.

Furthermore, the relevance of using a minimum-MSE bandwidth for integration

order estimation in our statistics is dubious. What seems more appropriate is an m

that somehow makes the error in the null �2 distribution small. It would be possible
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to develop a theory that could lead to a data-dependent m of this type but it would

require considerable work, involving Edgeworth expansion (cf. Giraitis and Robinson,

2003).

Finally, as is common, our asymptotics are all based on data-freem, and asymptotic

behaviour with data-dependent m cannot be taken for granted. Rather than encour-

age the practitioner to rely on the outcome provided by a data-dependent bandwidth

selection rule, we prefer to recommend in these circumstances a more informal ap-

proach, in which the test statistic is computed across a grid of m values. Sensitivity

can then be assessed and quali�ed judgements made.

9. FINAL COMMENTS

We have presented computationally simple tests for cointegration, and embedded

one of them in an algorithm for estimating cointegrating rank. The tests require no

knowledge of integration order, and apply to fractional series as well as non-fractional

ones, and cover both stationary and nonstationary data. The tests are all semipara-

metric in character, at the cost of requiring a user-chosen bandwidth. Versions based

on a parametric speci�cation of the autocorrelation of the input I(0) vector could

be developed; given correct speci�cation they would have faster rates of convergence,

and thus probably better �nite-sample performance. However, such tests could not

be justi�ed in the same general way, and at least for long series our more robust

approach seems preferable, especially in view of the relatively simple computation

of semiparametric integration order estimates compared to parametric ones. Unlike

in some rival procedures no other user-chosen tuning numbers are required. All null

limit distributions are standard. A careful preliminary study of the data may provide

information that can be used in more powerful tests, but our approach has the bene�t

of computational simplicity and wide generality.
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Table 1: Rejection frequencies of the correct H0 of no cointegration at level �; and

MSE of ~� (stationary observables).

� = 0:01 � = 0:05

n m X X� X�� X X� X�� MSE
�
~�
�

128 10 0:001 0:000 0:000 0:006 0:006 0:006 0:027

20 0:012 0:011 0:008 0:032 0:032 0:022 0:016

40 0:020 0:020 0:014 0:038 0:037 0:032 0:008

512 20 0:008 0:005 0:005 0:027 0:028 0:018 0:014

40 0:015 0:015 0:011 0:035 0:032 0:028 0:007

80 0:014 0:014 0:011 0:042 0:038 0:029 0:003

150 0:011 0:010 0:009 0:058 0:054 0:050 0:002

1024 80 0:013 0:011 0:009 0:038 0:036 0:034 0:003

150 0:010 0:009 0:008 0:032 0:035 0:032 0:002

300 0:006 0:006 0:006 0:041 0:044 0:042 0:001
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Table 2: Rejection frequencies of the incorrect H0 of no cointegration at level �;

and MSE of ~� (stationary observables).

� = 0:01 � = 0:05

n m X X� X�� X X� X�� MSE
�
~�
�

128 10 0:000 0:000 0:000 0:000 0:003 0:003 0:028

20 0:001 0:053 0:017 0:002 0:215 0:069 0:017

40 0:014 0:440 0:034 0:077 0:688 0:063 0:009

512 20 0:000 0:045 0:030 0:001 0:183 0:091 0:014

40 0:000 0:405 0:093 0:000 0:650 0:201 0:007

80 0:001 0:901 0:164 0:002 0:973 0:244 0:004

150 0:442 0:998 0:305 0:812 1:000 0:385 0:002

1024 80 0:000 0:885 0:316 0:001 0:964 0:475 0:004

150 0:000 0:996 0:275 0:004 0:999 0:406 0:002

300 0:968 1:000 0:395 0:998 1:000 0:473 0:001
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Table 3: Frequencies of R̂ at level � (without Bonferroni�s inequality).

� = 0:01 � = 0:05

n m R̂ = 2 R̂ = 1 R̂ = 0 R̂ = 2 R̂ = 1 R̂ = 0

128 10 0:003 0:002 0:995 0:006 0:000 0:994

20 0:003 0:015 0:982 0:008 0:037 0:955

40 0:001 0:075 0:924 0:007 0:114 0:879

512 20 0:005 0:017 0:978 0:007 0:044 0:949

40 0:004 0:129 0:867 0:012 0:209 0:779

80 0:004 0:246 0:750 0:011 0:316 0:673

150 0:000 0:332 0:668 0:012 0:384 0:604

1024 80 0:002 0:410 0:588 0:006 0:531 0:463

150 0:003 0:416 0:581 0:005 0:521 0:474

300 0:003 0:429 0:568 0:008 0:460 0:532
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Table 4: Frequencies of R̂ at level � (with Bonferroni�s inequality).

� = 0:01 � = 0:05

n m R̂ = 2 R̂ = 1 R̂ = 0 R̂ = 2 R̂ = 1 R̂ = 0

128 10 0:004 0:001 0:995 0:006 0:002 0:992

20 0:004 0:017 0:972 0:008 0:040 0:952

40 0:002 0:077 0:921 0:007 0:118 0:875

512 20 0:005 0:018 0:977 0:009 0:054 0:937

40 0:005 0:138 0:857 0:012 0:222 0:766

80 0:005 0:255 0:740 0:012 0:334 0:654

150 0:002 0:337 0:661 0:013 0:389 0:598

1024 80 0:002 0:424 0:574 0:006 0:559 0:435

150 0:003 0:433 0:564 0:006 0:538 0:456

300 0:003 0:433 0:564 0:008 0:476 0:516
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Table 5: Rejection frequencies of the correct H0 of no cointegration at level �; and

MSE of ~�(1)h; ~�(2)h (nonstationary observables).

n m � = 0:01 � = 0:05 MSE
�
~�(1)h

�
MSE

�
~�(2)h

�
129 12 0:000 0:000 0:281 0:274

21 0:000 0:001 0:128 0:133

42 0:006 0:014 0:049 0:048

513 21 0:000 0:001 0:139 0:145

42 0:004 0:006 0:040 0:042

81 0:007 0:018 0:016 0:015

150 0:015 0:042 0:009 0:009

1023 81 0:004 0:016 0:014 0:014

150 0:007 0:030 0:007 0:007

300 0:021 0:054 0:005 0:005

40



Acc
ep

te
d m

an
usc

rip
t 

Table 6: Rejection frequencies of the incorrect H0 of no cointegration at level �;

and MSE of ~�(1)h; ~�(2)h (nonstationary observables).

n m � = 0:01 � = 0:05 MSE
�
~�(1)h

�
MSE

�
~�(2)h

�
129 12 0:000 0:000 0:281 0:274

21 0:000 0:000 0:148 0:133

42 0:003 0:011 0:066 0:048

513 21 0:000 0:000 0:149 0:145

42 0:002 0:004 0:044 0:042

81 0:045 0:167 0:017 0:015

150 0:672 0:894 0:015 0:009

1023 81 0:019 0:094 0:014 0:014

150 0:322 0:572 0:008 0:007

300 0:987 0:998 0:010 0:004
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