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ABSTRACT

The problem of specification tests for conditional models is studied when

the data are subject to left truncation and right censoring. A general method is

applied to derive tests for the polynomial regression, the proportional hazards,

the additive risks and the proportional odds models. Bootstrap versions to

approximate the critical values of the test are introduced and proved to work

both from a theoretical viewpoint as well as in a small simulation study.
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1 Introduction

During the last two decades, an increasing interest in the so-called duration

data models has been detected in the econometric literature. A small sample

of papers in this large field is Chamberlain (1986), Kiefer (1988) or Lewbel

and Linton (2002). The main motivation for this interest comes from the fact

that in many settings, an economic response variable, typically a duration,

can be subject to censoring and/or truncation. Plenty of econometric studies

with duration data try to explain this response in terms of a vector of covari-

ates. In these circumstances, the presence of truncation or censoring is rather

common. The first is due to individuals that cannot enter the study because

their duration time has ended before the follow-up period. This is the well

known left truncation (LT) phenomenon. The second problem appears when

the duration time is not completely observed since, for instance, the evolution

of the individual could not be followed till the end of his duration for whatever

reason. Typically, only some lower bound for this duration time is available

(the random time to a previous event that avoids observation of the duration

end point). This is known as the right censoring (RC) mechanism.

To be precise let us assume that our interest vector is (Y, T, C), where Y

is the duration time, T is the left truncation time and C is the right censoring

time. Let us denote by F , G, H and L the distribution functions of Y , C,

Z = min {Y, C} and T , respectively. A very common assumption that we also

make for this model is that Y is independent of (T, C). In the left truncation

and right censoring model (LTRC) we are only able to observe (Z, T, δ) with

δ = 1{Y ≤C}, whenever Z ≥ T . We will denote by H1 the subdistribution

function of Z given that δ = 1. If Z < T we are not able to observe anything.

Of course, a reasonable assumption in this setup is α = P (T ≤ Z) > 0.

Using some initial sample, ((Z1, T1, δ1) , . . . , (Zn, Tn, δn)), where Ti ≤ Zi for
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every i = 1, 2, . . . , n, the distribution function F can be estimated by means

of the well known product-limit estimate (see Tsai, Jewell and Wang (1987)):

1 − F̂n (y) =

n∏
i=1

(
1 − 1{Zi≤y,δi=1}

nCn (Zi)

)
, (1)

where Cn (y) = 1
n

∑n
j=1 1{Tj≤y≤Zj} is the empirical estimator of the underlying

function C (y) = P
(
T ≤ y ≤ Z|T≤Z

)
.

An important setup in duration analysis is the conditional case. Now we are

interested in how an explanatory vector, X, typically formed with risk factors,

affects the duration Y . In this case we will assume that Y is independent of

(T, C) conditionally on X. A general estimator in the single covariate context

has been introduced by Iglesias-Pérez and González-Manteiga (1999):

1 − F̂n (y|x) =

n∏
i=1

(
1 − 1{Zi≤y,δi=1}Bni (x)∑n

j=1 1{Tj≤Zi≤Zj}Bnj (x)

)
, (2)

where F̂n (•|x) is an estimator of F (•|x), conditional distribution function of

Y |X=x, {(Xi, Zi, Ti, δi)}n
i=1 is the original sample and {Bni}n

i=1 is a nonparamet-

ric weight sequence, for instance, the Nadaraya-Watson weights (see Nadaraya

(1964) and Watson (1964)), the k-nearest neighbours weights, local linear

weights, etc. A particular case of the estimator (2) is the estimator introduced

by Beran (1981), which applies to the case where only censoring is present.

Some theoretical properties of the Beran estimator, including an asymptotic

representation, have been studied in the series of papers by Van Keilegom and

Veraverbeke (1996, 1997a, 1997b). Another important particular case is the

estimator proposed by Lavalley and Akritas (1994) for the truncation setup,

These two situations, but without covariates, correspond to the well-known

estimators introduced by Kaplan and Meier (1958) and Lynden-Bell (1971).

Finally (1) is a particular case of (2) when no covariates are present, by just

defining Bni (x) = 1
n

for i = 1, 2, . . . , n.
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The existing literature for testing Cox model is abundant. See, for in-

stance, Gray (1990), Lin and Wei (1991), Burke and Yuen (1995), McKeague

and Sun (1996), Marzec and Marzec (1997), Verweij, Van Houwelingen and

Stijnen (1998) and Peña (1998). Several methods are presented in these pa-

pers based on different approaches: cumulative hazard function estimation

(smoothed or not), information matrix score tests and extensions of smooth

specification tests. Some alternative methods for testing other models, as the

accelerated lifetime model or related models, can be found in Lin and Spiek-

erman (1996) and Stute, González-Manteiga and Sánchez-Sellero (2000), but

always in the context of censored data. Some other relevant references in this

context are Stute (1999) and Sánchez-Sellero, González-Manteiga and Van Kei-

legom (2005). No one of these papers deals with the general left censoring and

right truncation situation that is considered in the present paper.

In the rest of the paper we will concentrate on the estimator given in (2)

and use it to define some goodness-of-fit test statistics for different conditional

curves in this LTRC setup. General polynomial regression models (PR), pro-

portional hazards models (PH), additive risks models (AR) and proportional

odds models (PO) are introduced in Section 2, where it is also indicated how

the specification test statistic is defined. The asymptotic properties of the

tests are presented in Section 3, while Section 4 contains the definition and

theoretical properties of some bootstrap versions of these tests. The practical

behaviour of these tests is analyzed through the simulation study included in

Section 5. Finally, Section 6 contains the proofs.

2 Remarkable conditional models

One of the main aims of duration analysis, in a conditional setup, is to analyze

how an explanatory q-dimensional covariate vector, X, influences the duration,
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Y . This dependency may be modelled in a different number of ways but,

typically, the key idea is to assume some kind of functional relationship for

the conditional distribution function or some other conditional curve. In the

following we make a short overview of some of the most popular conditional

models in this setup. Models PH, AR and PO have been studied in detail by

Grigoletto and Akritas (1999).

2.1 General regression (GR) and polynomial regression

(PR) models

We assume that the conditional distribution function, F (•|x), satisfies

T (F (•|x)) = At (x) β

where A : Rq → Rp is a know function, β = (β0, β1, . . . , βp)
t is the vector of

unknown parameters, the functional T is given by T (N) =
∫ 1

0
N−1 (s)J (s) ds,

for any distribution function, N , N−1 (s) = inf {u : N (u) ≥ s} is the quantile

function and J is some nonnegative real function satisfying
∫ 1

0
J (s) ds = 1. In

other words, T is an L-functional in the terminology of Serfling (1980, p. 265).

If J is the density function of a U [0, 1] distribution, it is easy to check that

T (F (•|x)) = E (Y |X=x), i.e. we are imposing a polynomial structure to the

regression function of Y given X. In duration analysis, where the duration is

typically asymmetric, it seems more reasonable to set J (s) = 1
b−a

I{a≤s≤b} for

some [a, b] � [0, 1], which gives rise to trimmed conditional means or, in an

extreme case, the conditional median.

In the special case of a one-dimensional covariate (q = 1), a popular choice

is A (x) = (1, x, . . . , xp)t, which leads to a polynomial regression model:

T (F (•|x)) = β0 + β1x+ . . .+ βpx
p. (3)

For a detailed study of model (3) see Akritas (1996).
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2.2 Proportional hazards model (PH)

The idea behind this model is two split the conditional hazard rate as a product

of two factors:

λ (t|x) = λ0 (t) exp
(
At (x) β

)
, (4)

where λ0 is the so-called baseline hazard rate and β = (β0, β1, . . . , βp)
t is a

vector of unknown real constants. This popular model, also known as Cox

regression model, was proposed by Cox (1972) and can also be expressed in

terms of the cumulative hazard function. If we then let the coefficients βj, in

equation (4), depend on the duration, we get the general Cox model with time

depending coefficients:

Λ (t|x) = Λ0 (t) exp
(
At (x) β (t)

)
. (5)

This model has been studied in Marzec and Marzec (1997).

2.3 Additive risks model (AR)

An alternative approach to model the conditional hazard rate is

λ (t|x) = λ0 (t) + At (x)β. (6)

It is clear that some conditions on the term At (x)β are needed now in order

for λ (t|x) to be a hazard rate. This model is a special case of the multiplicative

intensity model suggested by Aalen (1980).

2.4 Proportional odds model (PO)

The conditional cumulative hazard function of Y given X = x, Λ (t|x) is as-

sumed to satisfy the following equation

logit (1 − exp (−Λ (t|x))) = α (t) + At (x) β, (7)

6
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where α (t) is an increasing function and logit(u) = ln
(

u
1−u

)
. Observe that

this model can be expressed in terms of the odds ratio:

P (Y ≤ t|X=x)

P (Y > t|X=x)
= exp

(
α (t) + At (x)β

)
.

2.5 Parameter estimation

For the multivariate case (q > 1), a typical selection is A (x) = x. To avoid the

problems coming from the curse of dimensionality one needs to use preliminary
√
n-consistent estimators of β under the model in order to estimate quanti-

ties of the form F (t|Xtβ=u). Along this subsection only the one-dimensional

covariate case (q = 1) will be considered in detail. In such a case the curse of di-

mensionality is no longer a problem and, for the choice A (x) = (1, x, . . . , xp)t,

we will propose
√
n-consistent estimators of β that will be incorporated into

the test statistic.

In Akritas (1996) some properties are studied for a general least squares

estimator, β̂, of the parameter vector β = (β0, β1, . . . , βp)
t in the PR model

for complete, censored or truncated data, but not when both mechanisms are

present. This estimator is defined as β̂ = arg minβ ψ̂n (β), where

ψ̂n (β) =
1

n

n∑
r=1

(m̂r − (β0 + β1Xr + · · ·+ βpX
p
r ))2 (8)

and m̂r = T
(
F̂n (•|Xr)

)
is an estimator ofmr = T (F (•|Xr)) for r = 1, 2, . . . , n.

To avoid definiteness problems with T
(
F̂n (•|Xr)

)
=
∫ 1

0
F̂−1

n (s|Xr) J (s) ds we

modify the estimator F̂n (•|Xr), if necessary, forcing it to attain the value 1 in

the largest point with positive probability mass. This results in

β̂ =
(
χtχ

)−1
χtm̂, (9)

where m̂ = (m̂1, m̂2, . . . , m̂n)t and χ =
(
Xk−1

i

)
i=1,2,... ,n

k=1,2,...p+1
is the design matrix.

7
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Grigoletto and Akritas (1999) define β̂, some version of the least squares

estimator of the true parameter, β, in models PH, AR and PO:

β̂ = arg min
β
ψ̄n (β) = arg min

β

1

n

n∑
r=1

(
Ω̂r − (β0 + β1Xr + · · ·+ βpX

p
r )
)2

,

(10)

where Ω̂r is some estimation of Ωr, a suitable transformation of Λ (•|Xr) that

will change from one model to other. An explicit expression for the estimator

in (10) can be easily derived β̂ = (χtχ)
−1
χtΩ̂, with Ω̂ =

(
Ω̂1, Ω̂2, . . . , Ω̂n

)t

.

These authors give some asymptotic properties of β̂ under either censoring or

truncation but not for both simultaneously.

For model PH, using a weight function, W , satisfying W (s) ≥ 0 for s ∈
[0,∞) and

∫∞
0
dW (s) = 1, straight forward manipulations of equation (4) give

∫ ∞

0

ln Λ (s|x) dW (s) =

∫ ∞

0

ln Λ0 (s) dW (s) + β0 + β1x+ · · ·+ βpx
p

= β ′
0 + β1x+ · · ·+ βpx

p,

with β ′
0 = β0 +

∫∞
0

ln Λ0 (s) dW (s). Parallel calculations for model (5) give:∫ ∞

0

ln Λ (s|x) dW (s) = β̃0 + β̃1x+ · · ·+ β̃px
p, with

β̃0 =

∫ ∞

0

ln Λ0 (s) dW (s) +

∫ ∞

0

β0 (s) dW (s) ,

β̃j =

∫ ∞

0

βj (s) dW (s) , for j = 1, 2, . . . , p,

which essentially tells that this model can also be transformed to a polynomial

regression model. Although the functions βj (t) are not identifiable then, this

idea can be used for testing (5).

Now, it is clear then that Ωx =
∫∞
0

ln Λ (s|x) dW (s), Ωr = ΩXr and

Ω̂r =
∫∞
0

ln Λ̂n (s|Xr) dW (s), where Λ̂n (t|x) is the conditional cumulative haz-

ard function estimator connected to (2), i.e.

Λ̂n (t|x) =

∫ t

−∞

dĤ∗
1n (s|x)

Ĉn (s|x)
, (11)

8
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where Ĥ∗
1n (s|x) and Ĉn (s|x) are nonparametric estimators of the conditional

subdistribution function H∗
1 (s|x) = P (Z ≤ s, δ = 1|T≤Z,X=x) and the popula-

tional function C (s|x) = P (T ≤ s ≤ Z|T≤Z,X=x).

For model AR simple algebra gives∫ ∞

0

Λ (s|x) dW̃ (s) = β ′′
0 + β1x+ · · ·+ βpx

p,

with

β ′′
0 = β0 +

∫∞
0

Λ0 (s) dW (s)∫∞
0
sdW (s)

and

W̃ =
W∫∞

0
sdW (s)

.

As a consequence

Ωx =

∫ ∞

0

Λ (s|x) dW̃ (s) , Ωr = ΩXr and Ω̂r =

∫ ∞

0

Λ̂n (s|Xr) dW̃ (s) ,

where Λ̂n (t|x) is the estimator defined in (11).

Under model PO, integrating both terms in (7) gives∫ ∞

0

logit (1 − exp (−Λ (s|x))) dW (s) = β ′′′
0 + β1x+ · · · + βpx

p,

with β ′′′
0 = β0 +

∫∞
0
α (s) dW (s). Hence, Ωr = ΩXr , with

Ωx =

∫ ∞

0

logit (1 − exp (−Λ (s|x))) dW (s)

and

Ω̂r =

∫ ∞

0

logit
(
1 − exp

(
−Λ̂n (s|Xr)

))
dW (s) .

3 The test statistic

Let us first focus in model PR. The problem under study is to test

H0 : ∃β ∈ Rp+1 such that equation (3) holds

versus the alternative (12)

H1 : equation (3) does not hold for any β ∈ Rp+1.

9
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An intuitive way of measuring the discrepancy between the hypothesized model

and the data is to consider the stochastic process (8) at β = β̂:

ψ̂n

(
β̂
)

=
1

n

n∑
r=1

(
m̂r −

(
β̂0 + β̂1Xr + · · ·+ β̂pX

p
r

))2

.

This is a kind of L2-distance between the transformed data and the fitted

model. Hence, H0 should be rejected when ψ̂n

(
β̂
)

is large.

In models PH, AR and PO, the hypothesis testing is completely similar to

(12) but replacing equation (3) by (4), (6) or (7), respectively. The definition

of the statistic is also parallel for models PH, AR and PO:

ψ̄n

(
β̂
)

=
1

n

n∑
r=1

(
Ω̂r −

(
β̂0 + β̂1Xr + · · ·+ β̂pX

p
r

))2

.

These test statistics have to be multiplied by a normalizing sequence in order

to have a limit distribution. This leads to the test statistics

T (1)
n = n

√
hψ̂n

(
β̂
)

for model PR,

T (2)
n = n

√
hψ̄n

(
β̂
)

for models PH, AR and PO.

In order to obtain the limit distribution of these statistics under the null

hypothesis some conditions have to be assumed. To do this we introduce some

notation. We denote by L (•|x) and H (•|x) the distribution functions of T

and Z, conditionally on X = x. In a similar way, H1 (•|x) is the conditional

subdistribution function of Z for δ = 1, L∗ (•|x) is the distribution function

of T , given T ≤ Z and X = x and H∗
1 (•|x) is the subdistribution function of

the variable Z for uncensored data conditionally on T ≤ Z and X = x, with

h∗1 (•|x) its pertaining conditional subdensity. The conditions needed, C1–C14,

are collected in Section 6.

Let us state our main result.

Theorem 1. Assume conditions C1-C14. Then, under H0,

T (1)
n − b0h

d−→ N (0, V ) ,

10
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with b0h = h−
1
2K(2) (0)

∫
σ2 (x) dx and V = 2K(4) (0)

∫
σ4 (x) dx. Here K(2) (u) =

K ∗K (u) and K(4) (u) = K ∗K ∗K ∗K (u), where ∗ denotes convolution and

the definition of σ2 (x) is in C11.

In order to deal with some of the terms coming up in the proof of Theorem

1, we state the following lemma. Its proof is also included in Section 6.

Lemma 2. Assume the conditions in Theorem 1 and H0, then β̂ − β =

OP

(
n− 1

2

)
.

We now present an asymptotic distribution result (under the null hypoth-

esis) for the statistic T
(2)
n used for testing models PH, AR and PO. The new

conditions needed here are presented in Section 6.

The main result for the test statistic T
(2)
n is the following.

Theorem 3. Assume conditions C1’, C3-C10, C11’, C12, C13’ and C14’.

Then, under H0,

T (2)
n − b0h

d−→ N (0, V ) ,

with b0h = h−
1
2K(2) (0)

∫
σ2 (x) dx and V = 2K(4) (0)

∫
σ4 (x) dx, where

σ2 (x) =




σ2
PH (x) = V ar (ηPH (Z, T, δ, x)|X=x) for model PH

σ2
AR (x) = V ar (ηAR (Z, T, δ, x)|X=x) for model AR

σ2
PO (x) = V ar (ηPO (Z, T, δ, x)|X=x) for model PO

and ηPH (Z, T, δ, x), ηAR (Z, T, δ, x) and ηPO (Z, T, δ, x) will be defined in (16).

Now, some comments related to the previous results follow.

Remark 4. Condition nh3

(ln n)3
→ ∞ in C12 could be replaced by the

somewhat weaker condition of the form nh2

(lnn)2
→ ∞ if the almost sure or-

der, O
(

ln n
nh

) 3
4 , for the negligible term in Iglesias-Pérez and González-Manteiga

(1999) could be improved, for instance, to O
(

lnn
nh

)
.

Remark 5. If we choose J to be the uniform density in (0, 1), the func-

tional T used in model PR becomes

T (N) =

∫ 1

0

N−1 (s) ds =

∫ ∞

0

t dN (t) .

11
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As a consequence, T (F (•|x)) = E (Y |X=x). In the case of no censoring and

no truncation the estimator (2) reduces to

F̂n (y|x) =

∑n
j=1 1{Zj≤y}Bnj (x)∑n

j=1Bnj (x)

and T
(
F̂n (•|x)

)
is the classical Nadaraya-Watson kernel estimator of the

regression function. Under these circumstances, the test statistic T
(1)
n coin-

cides with the test statistic ∆ASE proposed by González-Manteiga and Cao

(1993) except for the fixed design used in that paper. The limit distribution of

∆ASE in that paper is also a particular case of our Theorem 1 above, with-

out censoring and truncation. In the same sense T
(1)
n can be also viewed as a

generalization of the test proposed in Härdle and Mammen (1993) to the case

with censoring and truncation. However, these authors did not consider least

squares parameter estimators with the smoothed responses.

Remark 6. As soon as one transforms the goodness-of-fit problem of

interest into the model check for linearity of the values (Xr, m̂r) it is clear

that plenty of the alternative approaches for constructing specification tests in

regression can be directly used in this setup. For instance, the ideas in Dette

(1999) can be translated to this setup by of constructing a test based on the

difference between two estimators of the integrated conditional variance. One

based on the linearity assumption of the (Xr, m̂r) and the other that is purely

nonparametric. Similar ideas could be exploited for models PH, AR and PO

using the data
(
Xr, Ω̂r

)
.

Remark 7. Let us consider some local alternative to model PR of the

following form

T (F (•|x)) = β0 + β1x+ · · ·+ βpx
p + n− 1

2h−
1
4g (x) ,

where g (x) is a squared integrable function orthogonal to β0 +β1x+ · · ·+βpx
p.
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A careful inspection of the proof of Theorem 1 gives

T (1)
n − b0h

d−→ N

(∫
g (x)2m (x) dx, V

)
,

under this local alternative model, where m is the density function of X. This

implies that the test is able to detect local alternatives that approach the

hypothesized model at any rate slower or equal to n− 1
2h−

1
4 .

A similar property can be derived for the test T
(2)
n for suitable local alter-

natives to models PH, AR and PO. It is clear that such local alternatives have

to be formulated in terms of

Ωx = β0 + β1x+ · · ·+ βpx
p + n− 1

2h−
1
4g (x) ,

where Ωx is the appropriate transformation introduced for each of these.

Remark 8. As stated in the previous section in order to extend the above

techniques to the GR model, in the multivariate case, some preliminary
√
n-

consistent estimator, β̃, under the null model, is needed. Using the data{(
Xt

iβ̃, Zi, Ti, δi

)}n

i=1
one can estimate the conditional distribution function

F (t|Xtβ=u) using (2), already introduced for the single covariate case. Now

the values m̂r = T
(
F̂n

(
•|Xt

rβ̃

))
can be used in (8) to define β̂, a second

stage estimator of β, and to construct the test statistic in a parallel way to

what has been proposed for model PR. Parallel procedures can be designed for

models PH, AR and PO to multivariate settings. Similar arguments have been

applied in previous papers in order to avoid the curse of dimensionality, but

only for the complete data case (see Hall and Yao (2005)). The asymptotic

null distribution in the general LTRC case is an open question.

4 Bootstrap version

The quadratic form structure of the dominant terms in the test statistics T
(1)
n

and T
(2)
n suggest that the convergence of their distribution to the normal limit

13
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will be slow. To remedy this, the bootstrap method can be used to approximate

the sampling distribution of these statistics by the resampling distribution

of some bootstrap versions. Different bootstrap resampling plans have been

introduced to mimic the sampling distribution of some statistic for conditional

models in duration analysis. Some of these are presented in the papers by

Burke and Yuen (1995), Burr and Doss (1993), Burr (1994) and Doss and

Chiang (1994). All these papers use bootstrap resampling plans that mimic

the hypothesized model, which is not always possible in our context, since

model PR do not fully specify the conditional distribution of the duration. For

this reason we adopt a residual-based bootstrap resampling in the line of that

proposed in Stute, González-Manteiga and Sánchez-Sellero (2000) and Zhu,

Yuen and Tang (2002) in different contexts. The bootstrap method that will

be proposed next can also be regarded just as a Monte Carlo approximation

(see the book by Zhu (2005) for details).

We first deal with the goodness-of-fit problem for model PR. Since the

conditional distribution F (•|x) cannot be uniquely determined by equation

(3), a reasonable way of bootstrapping the test statistic T
(1)
n is to mimic the

dominant terms of this statistic studied in the proof of Theorem 1. It is clear

from (41) that the limit distribution of T
(1)
n is the same as that of

√
n2h

1

n

n∑
r=1

(
n∑

i=1

Bni (Xr) εi

)2

.

We now use the bootstrap version of this statistic to approximate the null

distribution of T
(1)
n . Let us define some estimators of the errors of the model

as defined in (31):

ε̂i =

∫ (
1 − F̂g (y|Xi

)
)
ξ̂ (Zi, Ti, δi, Xi, y)J

(
F̂g (y|Xi

)
)
dy, (13)

where F̂g (y|x) is the estimator defined in (2) but using a pilot bandwidth g

14
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instead of the original bandwidth h,

ξ̂ (Z, T, δ, x, y) =
1{Z≤y,δ=1}
Ĉg (Z|x)

−
∫ y

0

1{T≤u≤Z}
Ĉ2

g (u|x)
dĤ∗

1g (u|x)

is the empirical version of (15), with Ĉg (z|x) the kernel estimator of C (z|x)
given by

Ĉg (z|x) =

1
ng

∑n
i=1 1{Ti≤z≤Zi}K

(
x−Xi

g

)
1
ng

∑n
i=1K

(
x−Xi

g

) =
n∑

i=1

Bgi (x) 1{Ti≤z≤Zi},

with

Bgi (x) =
K
(

x−Xi

g

)
∑n

j=1K
(

x−Xi

g

) (14)

and the kernel estimator ofH∗
1 (u|x) is Ĥ∗

1g (u|x) =
∑n

i=1Bgi (x) 1{Zi≤u}δi. Now,

the bootstrap version of T
(1)
n is defined as

T (1)∗
n =

√
n2h

1

n

n∑
r=1

(
n∑

i=1

Bni (Xr) ε
∗
i

)2

,

where the error resample is given by ε∗i = W ∗
i ε̂i, i = 1, 2, . . . , n and the

W ∗
i are random observations (independent on the original sample) satisfying

E∗ (W ∗
i ) = 0 and E∗ (W ∗2

i ) = 1, where E∗ is a notation for bootstrap expec-

tation, i.e., conditional expectation given the initial sample.

In order to state the main result that warranties the validity of the boot-

strap version we need further integrability assumptions and some limit condi-

tions on the pilot bandwidth. These are collected in Section 6.

The asymptotic validity of the bootstrap version of T
(1)
n is stated next.

Theorem 9. Assume conditions C1-C16. Then, under H0,

T (1)∗
n − b0h

d∗−→ N (0, V ) , in probability.

In order to construct bootstrap resampling plans for models PH, AR and

PO we need to define some residuals, parallel to (13), but according to the
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error structure of every model in (50). We first define the residuals

ε̂′i =




ε̂PH
i =

∫
ξ̂ (Zi, Ti, δi, Xi, y)

w(y)

Λ̂g(y|Xi)
dy for model PH

ε̂AR
i =

∫
ξ̂ (Zi, Ti, δi, Xi, y) w̃ (y) dy for model AR

ε̂PO
i =

∫
ξ̂ (Zi, Ti, δi, Xi, y)

w(y)

F̂g(y|Xi)
dy for model PO

where the functions w and w̃ are the densities pertaining to W and W̃ ,

Λ̂g (y|Xi
) =

n∑
r=1

1{Zr≤y,δr=1}Bgr (Xi)∑n
j=1 1{Tj≤Zr≤Zj}Bgj (Xi)

,

is the Iglesias-Pérez and González-Manteiga (1999) estimator and Bgr (x) has

been defined in (14). The bootstrap version of the test statistic is then

T (2)∗
n =

√
n2h

1

n

n∑
r=1

(
n∑

i=1

Bni (Xr) ε
′∗
i

)2

,

where the bootstrap observations are given by ε′∗i = W ∗
i ε̂

′
i, i = 1, 2, . . . , n and

the W ∗
i are iid random observations with the properties mentioned above.

Some new assumption is needed to prove the consistency of the bootstrap

version for models PH, AR and PO. This is condition C15’, in Section 6. Next,

we prove that T
(2)∗
n has the same limit behaviour as its counterpart T

(2)
n .

Theorem 10. Assume conditions C1’, C3-C10, C11’, C12, C13’-C15’ and

C16. Then, under H0, with probability one

T (2)∗
n − b0h

d∗−→ N (0, V ) .

The proof of this result is a straightforward modification of the proof of

Theorem 9. For this reason it is not included in Section 6.

Remark 11. The comments in Remark 8 are also valid for the bootstrap

version presented in this section.
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5 Simulations

We have used a Koziol-Green Weibull conditional model in the simulation

study. Let us consider Y |X=x

d
= W (α (x) , β (x)), i.e.

1 − F (y|x) =


 exp

(
− (β (x) y)α(x)

)
if y ≥ 0

1 if y < 0

for some functions α (x) and β (x) to be defined later. The censoring condi-

tional survival function is defined in terms of the interest one as in Koziol-

Green model: 1 − G (y|x) = (1 − F (y|x))η(x) for some function η (x). The

conditional distribution of the truncation variable is also of Koziol-Green type:

1 − L (y|x) = (1 − F (y|x))ν(x). Under this model, standard calculations lead

to the following expression for the conditional hazard rate of interest:

λ (y|x) = α (x) β (x)α(x) yα(x)−1.

The function β that will be used in our simulation study is of the form β (x) =

exp (β0 + β1x+ · · · + βpx
p).

Setting α (x) = α0 (a constant) we are in Cox proportional hazard model,

since the hazard rate can be written as a product:

λ (y|x) = λ0 (y) exp
(
β ′

0 + β ′
1x+ · · ·+ β ′

px
p
)
,

where λ0 (y) = α0y
α0−1 and β ′

j = α0βj , j = 1, 2, . . . , p. To examine the power

of our test we considered quadratic alternatives of the form α (x) = α0 + cx2.

This gives the conditional hazard rate

λ (y|x) =
(
α0 + cx2

)
yα0−1+cx2

exp
(
(β0 + β1x+ · · · + βpx

p)
(
α0 + cx2

))
.

Along the simulation study we considered 2β (2, 2) for the marginal distribu-

tion of X. The probability of uncensoring and the probability of observation
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(absence of truncation) can be easily calculated when the functions η and ν

are constants: η (x) ≡ η and ν (x) ≡ ν. These two probabilities are then

γ = P (Y ≤ C) = E (δ) =
1

1 + η
,

α = P (T ≤ Z) =
ν

1 + η + ν
.

Three models, with different values for η and ν, have been considered to

deal with different degrees of censoring and truncation. These are reported in

Table 1. The nominal significant level fixed for the test was 0.05.

Model η ν 1 − γ 1 − α

1 0.25 5 0.2000 0.2000

2 0.50 4 0.3333 0.2727

3 0.75 3 0.4286 0.3684

Table 1. Probabilities of censoring (1 − γ) and truncation (1 − α).

In order to compute the test statistic, the values Ω̂r have to be obtained

first. To do this we need to choose some weight function, W , and to compute

the estimator in (11). The integral that defines Ω̂r can be written as an

empirical sum to avoid numerical integration. Our choice for W has been a

uniform distribution in some interval, [L1, L2], whose limits have been chosen to

prevent boundary effects problems. The estimator in (11) has been computed

using the gaussian kernel. In order to examine the effect of the choice of the

smoothing parameter, h, several values have been tried along the simulations.

This approach has been used as well for the pilot bandwidth, g, in the bootstrap

resampling. Throughout the simulations we fixed 1000 trials and 500 bootstrap

replications.

For the whole simulation batch the case with p = 1, β0 = −1 and β1 = 1

was considered. The support of the weight function in this case has set to

[L1, L2] = [0.43, 0.83]. We chose α0 = 2 and tried the values c = 0 (H0) and
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c = 1, 2, 3, 4 (H1) in the expression α (x) = α0 + cx2. Visual examination of

the logarithm of the conditional hazard functions for this models shows that

the choices c = 1, 2 are very hard to distinguish from the null hypothesis.

Tables 2-4 collect the percentages of acceptance of the test using the boot-

strap critical value for the three models and sample size n = 200. Different

values of the bandwidths have been tried under the constraint g = 2h. This is

a reasonable choice since condition C16 implies that g has to be asymptotically

larger than h2 (see also Härdle and Mammen (1993) for some insight about

possible choices of g in the regression case). Tables 5-6 show similar results

for model 1 and samples sizes: n = 50, 100, while Table 7 reports on the

sensitivity of the test to the choice of the pilot bandwidth, g, when h is fixed.

h 0.2 0.225 0.25 0.275 0.3

g 0.4 0.45 0.5 0.55 0.6

c = 0 75.8 84.7 90.3 94.7 98.0

c = 1 69.9 78.5 84.9 91.0 94.9

c = 2 48.6 56.9 65.3 72.9 79.9

c = 3 31.0 35.1 40.1 44.6 50.2

c = 4 19.0 21.6 23.4 26.2 29.8

Table 2. Percentages of acceptance for model 1 with n = 200, when g = 2h.

h 0.2 0.225 0.25 0.275 0.3

g 0.4 0.45 0.5 0.55 0.6

c = 0 71.2 80.7 88.7 94.0 97.3

c = 1 63.9 72.8 82.3 89.6 94.9

c = 2 43.0 52.6 61.5 69.2 75.6

c = 3 24.6 30.3 35.9 41.1 48.2

c = 4 15.6 18.4 21.1 23.0 26.4
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Table 3. Percentages of acceptance for model 2 with n = 200, when g = 2h.

h 0.2 0.225 0.25 0.275 0.3

g 0.4 0.45 0.5 0.55 0.6

c = 0 71.9 82.5 89.7 94.8 98.2

c = 1 59.9 72.6 82.0 88.8 94.7

c = 2 40.4 49.8 58.7 67.2 76.3

c = 3 26.1 30.9 35.8 41.7 49.1

c = 4 16.1 19.4 21.3 25.3 29.4

Table 4. Percentages of acceptance for model 3 with n = 200, when g = 2h.

h 0.2 0.225 0.25 0.275 0.3

g 0.4 0.45 0.5 0.55 0.6

c = 0 64.9 78.2 89.4 95.8 98.7

c = 1 45.1 57.3 71.8 85.5 94.4

c = 2 27.1 36.9 50.5 63.6 80.8

c = 3 18.0 24.6 34.3 47.6 63.3

c = 4 16.0 21.6 28.5 38.9 52.6

Table 5. Percentages of acceptance for model 1 with n = 50, when g = 2h.

h 0.2 0.225 0.25 0.275 0.3

g 0.4 0.45 0.5 0.55 0.6

c = 0 70.6 82.5 90.8 95.4 98.6

c = 1 55.2 67.9 79.4 87.9 93.5

c = 2 32.1 42.2 53.1 65.6 75.1

c = 3 17.8 23.1 30.5 39.1 49.4

c = 4 10.4 13.5 17.7 22.5 29.2
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Table 6. Percentages of acceptance for model 1 with n = 100, when g = 2h.

g 0.4 0.47 0.55 0.65 0.8

c = 0 94.1 94.2 94.7 95.7 96.6

c = 1 90.1 90.5 91.0 91.8 92.8

c = 2 72.8 72.7 72.9 73.4 77.1

c = 3 45.5 44.3 44.6 45.5 48.6

c = 4 27.4 26.9 26.2 27.4 29.4

Table 7. Percentages of acceptance for model 1 with n = 200 and h = 0.275.

The results in Tables 2-7 lead to some conclusions. First of all, the choice

of the smoothing parameter, h, seems not to be very critical for the null hy-

pothesis. However it should not be too small. For alternatives that are really

close to Cox model one should prevent against taking the bandwidth h too

large (see Tables 2-6), specially for small sample size (n = 50). All in all, it

is clear that there exist some range of bandwidths for which the percentage

of acceptation is close to the nominal 95%, for the null hypothesis, and rea-

sonably small (specially when n increases) under the alternatives. The pilot

bandwidth, g, used in the bootstrap resampling to approximate the critical

value, has a secondary importance in view of Table 7. This is more evident for

the null hypothesis, but the results do not fluctuate much for the alternative

too. Finally, the results are not much affected by the actual proportion of

censoring and truncation (see Tables 2-4).

21



Acc
ep

te
d m

an
usc

rip
t 

6 Conditions and proofs

6.1 Conditions

We now state the conditions used in the results of Sections 3 and 4.

Conditions for Theorem 1.

C1 The function J is bounded and differentiable in (0, 1) with J ′ (u) = 0

for u ∈ (0, α∗) ∪ (β∗, 1), for some 0 < α∗ < β∗ < 1. Furthermore, the

following limit exists: limu→1− J (u).

C2 For every point x, in the support of the random variable X,

lim
y→∞

y [1 − (F (y|x))] = 0.

C3 The covariate X has finite moments of order 2p and n−1χtχ −→ A,

almost surely, for some nonsingular matrix A.

C4 X, Y , T and C are absolutely continuous random variables.

C5 Let M∗ be the conditional distribution of X given T ≤ Z and m∗ its per-

taining density. Let I = [x1, x2] be an interval contained in the support

of m∗ such that

0 < γ = inf
x∈Iδ

m∗ (x) < sup
x∈Iδ

m∗ (x) = Γ <∞,

for some Iδ = [x1 − δ, x2 + δ] with δ > 0 and 0 < δΓ < 1. The random

variables Y , T and C are conditionally independent given X = x, for

every x ∈ I and aL(•|x) ≤ aH(•|x) and bL(•|x) ≤ bH(•|x), for every x ∈ Iδ,

where aG and bG are the left and right endpoints of the support of the

distribution G. Finally, there exist some real numbers a < b satisfying

inf
x∈Iδ

α (x)−1 (1 −H (b|x))L (a|x) ≥ θ > 0,

⋃
x∈I

(
F−1

( α∗
2

∣∣∣
x

)
, F−1

(
β∗ + 1

2

∣∣∣∣
x

))
⊂ [a, b] .
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C6 The density of X, m (x), and the function α (x) are twice continuously

differentiable in Iδ. The functions L (y|x), H (y|x) and H1 (y|x) are twice

continuously differentiable, with respect to x, and their first two deriva-

tives are bounded for (x, y) ∈ Iδ × [0,∞).

C7 The functions L (y|x), H (y|x) and H1 (y|x) are twice continuously differ-

entiable, with respect to y, for (x, y) ∈ Iδ × [a, b].

C8 The partial second derivatives of the functions L (y|x),H (y|x) andH1 (y|x),
with respect to x and y, exist and are continuous for (x, y) ∈ Iδ × [a, b].

C9 The densities (or subdensity) pertaining to L (y), H (y) and H1 (y) are

bounded away from zero in [a, b].

C10 The kernel function, K, is a bounded variation symmetric density with

support contained in (−1, 1).

C11 Let’s define

η (Z, T, δ, x) =

∫
(1 − F (y|x)) ξ (Z, T, δ, x, y)J (F (y|x)) dy,

with

ξ (Z, T, δ, x, y) =
1{Z≤y,δ=1}
C (Z|x) −

∫ y

0

1{T≤u≤Z}
C2 (u|x) dH

∗
1 (u|x) . (15)

Then, the functions

σ2 (x) = V ar (η (Z, T, δ, x)|X=x)

µ4 (x) = E
(
η (Z, T, δ, x)4

∣∣
X=x

)
satisfy ∫

σ4 (x)

m∗ (x)
dx <∞ and

∫
µ4 (x)

m∗ (x)
dx <∞.

C12 The smoothing parameter fulfills the following limit conditions: h → 0,

nh3

(ln n)3
→ ∞ and nh4 → 0.
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C13 The first and second derivatives of C (y|x) and h∗1 (y|x) with respect to

x,
·
C (y|x),

··
C (y|x),

·
h
∗
1 (y|x) and

··
h
∗
1 (y|x) are bounded (in both variables

x and y), m∗′ and m∗′′ are bounded and integrable with∫ ∫ ∫ ∣∣∣∣ν (x, y) ν (x, z)ϕ1 (x, y)ϕ2 (x, z)
m∗(i) (x)m∗(j) (x)

m∗ (x)
dxdydz

∣∣∣∣ <∞,

for every i, j = 0, 1, 2 and where ν (x, y) = (1 − F (y|x)) J (F (y|x)) and

ϕ1 (x, y) and ϕ2 (x, y) are any of the functions

∫ y

0

·
h
∗
1 (s|x)

C (s|x)2ds,

∫ y

0

··
h
∗
1 (s|x)

C (s|x)2ds,

∫ y

0

·
C (s|x)
C (s|x)2dH

∗
1 (s|x) and

∫ y

0

··
C (s|x)
C (s|x)2dH

∗
1 (s|x) .

C14 The function

ϕ (x1, x2, x3, y1, y2) =

∫ y1∧y2

0

dH∗
1

(
s|x3

)
C
(
s|x1

)
C
(
s|x2

)
−
∫ y2

0

∫ y1

s

dH∗
1

(
z|x3

)
C
(
z|x1

) L∗ (s|x3

)
dH∗

1

(
s|x2

)
C
(
s|x2

)2

−
∫ y1

0

∫ y2

s

dH∗
1

(
z|x3

)
C
(
z|x2

) L∗ (s|x3

)
dH∗

1

(
s|x1

)
C
(
s|x1

)2

+

∫ y1

0

∫ y2

0

L∗ (s1 ∧ s2|x3

) (
1 −H∗

1

(
s1 ∨ s2|x3

))
C
(
s1|x1

)2
C
(
s2|x2

)2 dH∗
1

(
s2|x2

)
dH∗

1

(
s1|x1

)
is twice differentiable with respect to its first three variables and satisfies∫ ∫ ∫

ν (x1, y1) ν (x2, y2)

m∗ (x1)

×
∣∣∣∣∣ ∂

2

∂x2
2

[ϕ (x1, x1, x2, y1, y2)m
∗ (x2)]

∣∣∣∣
x2=x1

∣∣∣∣∣ dy1dy2dx1 <∞,

∫ ∫ ∫
ν (x1, y1)

m∗ (x1)

×
∣∣∣∣∣ ∂

2

∂x2
2

[ν (x2, y2)ϕ (x1, x2, x2, y1, y2)m
∗ (x2)]

∣∣∣∣
x2=x1

∣∣∣∣∣ dy1dy2dx1 <∞,
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∫ ∫ ∫
ν (x1, y2)

m∗ (x1)

×
∣∣∣∣∣ ∂

2

∂x2
2

[ν (x2, y1)ϕ (x2, x1, x2, y1, y2)m
∗ (x2)]

∣∣∣∣
x2=x1

∣∣∣∣∣ dy1dy2dx1 <∞ and

∫ ∫ ∫
1

m∗ (x1)

×
∣∣∣∣∣ ∂

2

∂x2
2

[ν (x2, y1) ν (x2, y2)ϕ (x2, x2, x2, y1, y2)m
∗ (x2)]

∣∣∣∣
x2=x1

∣∣∣∣∣ dy1dy2dx1 <∞

Conditions for Theorem 3.

C1’ The distribution functionW has a bounded density w. As a consequence,

the derivative of W̃ , w̃, is also bounded.

C11’ Condition C11 holds when redefining

η (Z, T, δ, x) =




ηPH (Z, T, δ, x) =
∫
ξ (Z, T, δ, x, y) dW (y)

Λ(y|x)
for model PH

ηAR (Z, T, δ, x) =
∫
ξ (Z, T, δ, x, y)dW̃ (y) for model AR

ηPO (Z, T, δ, x) =
∫
ξ (Z, T, δ, x, y) dW (y)

F (y|x)
for model PO

(16)

with ξ (Z, T, δ, x, y) as in (15).

C13’ Let us change the definition of the function ν:

ν (x, y) =




νPH (x, y) = w(y)
Λ(y|x)

for model PH

νAR (x, y) = w̃ (y) for model AR

νPO (x, y) = w(y)
F (y|x)

for model PO

Then condition C13 is satisfied for this function.

C14’ Condition C14 holds for the new definition of ν (x, y).

Conditions for Theorem 9.
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C15 Let us define the function µ1 (x) = E ( |η (Z, T, δ, x)||X=x). Then∫ ∫
(1 − F (y|x))

(∫ y

0

h∗1 (u|x)
C (u|x)

du

)
J (F (y|x)) dydx < ∞,∫ ∫

(1 − F (y|x))
m∗ (x)

(∫ y

0

h∗1 (u|x)
C (u|x)

du

)
J (F (y|x)) dydx < ∞,

∫
σ2 (x)

m∗ (x)�
dx < ∞,

∫
µ1 (x)2

m∗ (x)�
dx <∞,

∫
µ1 (x)

m∗ (x)�
dx < ∞,

∫
µ1 (x)σ2 (x)

m∗ (x)�
dx <∞,

for � = 0, 1, 2 and ∫
µ4 (x) σ4 (x)

m∗ (x)�
dx <∞,

for � = 1, 2, 3, 4, 5.

C16 The pilot bandwidth g satisfies g → 0, ng → ∞ and g
h2 → ∞.

Condition for Theorem 10.

C15’ C15 holds for the definition of η (Z, T, δ, x) given in C11’.

6.2 Proofs

We now proceed with the proofs of the main results.

Proof of Theorem 1: Using (8),

ψ̂n

(
β̂
)

=
1

n

n∑
r=1

(m̂r −mr + ∆r)
2 = ψ̂(1)

n

(
β̂
)

+ ∆(1) + ∆(2), (17)

with ψ̂
(1)
n

(
β̂
)

= 1
n

∑n
r=1 (m̂r −mr)

2, ∆r = mr −
(
β̂0 + β̂1Xr + · · ·+ β̂pX

p
r

)
,

∆(1) = 1
n

∑n
r=1 ∆2

r and ∆(2) = 2 1
n

∑n
r=1 (m̂r −mr) ∆r.
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Using Lemma 2 it is straightforward to prove that ∆r = OP

(
n− 1

2

)
,uniformly

in r = 1, 2, . . . , n. As a consequence

∆(1) = OP

(
n−1

)
(18)

∆(2) = 2

(
1

n

n∑
r=1

(m̂r −mr) , . . . ,
1

n

n∑
r=1

(m̂r −mr)X
p
r

)(
β − β̂

)
, (19)

where the term (19) will be studied much later.

Let J (t) =
∫ t

0
J (u) du, then, using condition C2, partial integration gives

m̂r −mr =

∫ ∞

0

[
J (F (y|Xr)) − J

(
F̂n (y|Xr)

)]
dy. (20)

Conditions C4-C10 and expression (15) warranty that part (c) of Theorem

2 in Iglesias-Pérez and González-Manteiga (1999) can be applied to obtain

F̂n (y|Xr) − F (y|Xr) (21)

= (1 − F (y|Xr))

n∑
i=1

Bni (Xr) ξ (Zi, Ti, δi, Xr, y) +R′
n (y|Xr) ,

where

sup
y∈[a,b],r=1,2,... ,n

|R′
n (y|Xr)| = O

((
lnn

nh

) 3
4

)
a.s.

Starting from these results, some extra work can be done to prove that

sup
y∈[a,b],x∈I

∣∣∣F̂n (y|x) − F (y|x)
∣∣∣ = O

((
lnn

nh

) 1
2

)
a.s. (22)

Using (22) and conditions C1, C5 and C12 it is easy to verify that the

inequality∣∣∣∣
∫ ∞

0

[
J (F (y|Xr)) − J

(
F̂n (y|Xr)

)]
dy

−
∫ ∞

0

[
F (y|Xr) − F̂n (y|Xr)

]
J (F (y|Xr)) dy

∣∣∣∣ = OP

(
lnn

nh

)
= oP

(
n− 1

2

)
(23)

holds uniformly in r = 1, 2, . . . , n.
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Now, the leading term of equation (17) can be easily handled using (20),

(23) and Cauchy-Schwarz inequality:

ψ̂(1)
n

(
β̂
)

=
1

n

n∑
r=1

(∫ [
J (F (y|Xr)) − J

(
F̂n (y|Xr)

)]
dy

)2

= ψ̂(2)
n

(
β̂
)

+ ∆(3) + ∆(4), (24)

with

ψ̂(2)
n

(
β̂
)

=
1

n

n∑
r=1

(∫ [
F (y|Xr) − F̂n (y|Xr)

]
J (F (y|Xr)) dy

)2

,

∆(3) = oP

(
n−1

)
and

∆(4) = oP

((
ψ̂(2)

n

(
β̂
)) 1

2
n− 1

2

)
. (25)

Now (25) and (21) imply that

ψ̂(2)
n

(
β̂
)

= ψ̂(3)
n

(
β̂
)

+ ∆(5) + ∆(6), (26)

with

ψ̂(3)
n

(
β̂
)

=
1

n

n∑
r=1

(∫
(1 − F (y|Xr))

n∑
i=1

Bni (Xr) ξ (Zi, Ti, δi, Xr, y)J (F (y|Xr)) dy

)2

, (27)

∆(5) = OP

((
lnn

nh

) 3
2

)
and (28)

∆(6) = OP

((
ψ̂(3)

n

(
β̂
)) 1

2

(
lnn

nh

) 3
4

)
, (29)

where, for i = 1, 2, . . . , n, Bni (x) = K
(

x−Xi

h

) [∑n
j=1K

(
x−Xj

h

)]−1

are the

Nadaraya-Watson weights. The term (27) may be expanded in the following

28



Acc
ep

te
d m

an
usc

rip
t 

way

ψ̂(3)
n

(
β̂
)

=
1

n

n∑
r=1

(
n∑

i=1

Bni (Xr) εi + ∆(7)
r

)2

=
1

n

n∑
r=1

(
n∑

i=1

Bni (Xr) εi

)2

+
1

n

n∑
r=1

(
∆(7)

r

)2
(30)

+2
1

n

n∑
r=1

n∑
i=1

Bni (Xr) εi∆
(7)
r ,

with

εi =

∫
(1 − F (y|Xi

)) ξ (Zi, Ti, δi, Xi, y)J (F (y|Xi
)) dy and (31)

∆(7)
r =

n∑
i=1

Bni (Xr)[∫
(1 − F (y|Xr)) ξ (Zi, Ti, δi, Xr, y)J (F (y|Xr)) dy−∫

(1 − F (y|Xi
)) ξ (Zi, Ti, δi, Xi, y)J (F (y|Xi

)) dy

]
.

By defining bnij = 1
n

∑n
r=1Bni (Xr)Bnj (Xr), the first term in the right

handside of (30) can be decomposed into two new terms:

1

n

n∑
r=1

(
n∑

i=1

Bni (Xr) εi

)2

= ∆(8) + ∆(9), (32)

with ∆(8) =

n∑
i=1

bniiε
2
i and ∆(9) = 2

∑
i<j

bnijεiεj

which can be dealt with in the same way as the term ∆121 and ∆122 in the

proof of Theorem 2.1 in González-Manteiga and Cao (1993). Indeed,

∆(8) =
1

n

n∑
i=1

n∑
r=1

Bni (Xr)
2 ε2

i =
1

n

n∑
i=1

n∑
r=1


 K

(
Xr−Xi

h

)
∑n

j=1K
(

Xr−Xj

h

)



2

ε2
i

=
1

n3h2

n∑
r=1

1

m̂∗ (Xr)
2

n∑
i=1

K

(
Xr −Xi

h

)2

ε2
i (33)

= ∆
(8)
1 + ∆

(8)
2
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where m̂∗ (x) = 1
nh

∑n
i=1K

(
x−Xi

h

)
is the Parzen-Rosenblatt estimator of m (x)

and the terms ∆
(8)
1 and ∆

(8)
2 are given by

∆
(8)
1 =

1

n3h2

n∑
r=1

1

m∗ (Xr)
2

n∑
i=1

K

(
Xr −Xi

h

)2

ε2
i

∆
(8)
2 =

1

n3h2

n∑
r=1

m∗ (Xr)
2 − m̂∗ (Xr)

2

m̂∗ (Xr)
2m∗ (Xr)

2

n∑
i=1

K

(
Xr −Xi

h

)2

ε2
i .

Standard arguments, condition C12 and Theorem B Silverman (1978) imply

∣∣∣∆(8)
2

∣∣∣ ≤ Γ (1 +D)D

γ2
∆(8) (34)

where D = sup
x∈R

|m∗ (x) − m̂∗ (x)| = OP

((
lnh−1

nh

) 1
2

+ h2

)
.

Standard mean and variance calculations for ∆
(8)
1 , Taylor expansions and

condition C11 lead to

∆
(8)
1 =

1

nh

(∫
σ2 (x) dx

)
K(2) (0) +OP

(
n−2h−2 + n−1h + n− 3

2h−1
)
.

(35)

We now use (33), (34) and (35) to conclude

∆(8) =
1

nh

(∫
σ2 (x) dx

)
K(2) (0) (36)

+OP

(
n−2h−2 + n−1h+ n− 3

2h−1 + n− 3
2h−

3
2

(
lnh−1

) 1
2

)

The term ∆(9) can be approximated by a somewhat simpler expression

∆̃(9) = 2
∑
i<j

b̃nijεiεj, (37)

where b̃nij = 1
n

∑n
r=1 B̃ni (Xr) B̃nj (Xr) and B̃ni (Xr) =

K(Xr−Xi
h )

nh·m∗(Xr)
. Straight
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forward calculations give

∆(9) = ∆̃(9) + ∆
(9)
1 + ∆

(9)
2 + ∆

(9)
3 with

∆
(9)
1 =

2

n

∑
i<j

n∑
r=1

B̃ni (Xr)Bnj (Xr)
m∗ (Xr) − m̂∗ (Xr)

m∗ (Xr)
εiεj, (38)

∆
(9)
2 =

2

n

∑
i<j

n∑
r=1

Bni (Xr) B̃nj (Xr)
m∗ (Xr) − m̂∗ (Xr)

m∗ (Xr)
εiεj, (39)

∆
(9)
2 =

2

n

∑
i<j

n∑
r=1

Bni (Xr)Bnj (Xr)
(m∗ (Xr) − m̂∗ (Xr))

2

m∗ (Xr)
2 εiεj . (40)

Expressions (38), (39) and (40) can be proved to be oP

(
n−1h−

1
2

)
by us-

ing Cauchy-Schwarz inequality, the fact that D = OP

((
lnh−1

nh

) 1
2

+ h2

)
and

variance calculations similar to what will be done next for ∆̃(9).

A central limit theorem for quadratic forms (Theorem (2.1) in De Jong

(1987)) can be applied to conclude that ∆̃(9) in (37) is asymptotically normal

with zero mean. The conditions on that theorem can be checked in a com-

pletely parallel way to the proof of Theorem 2.1 in González-Manteiga and

Cao (1993). For this reason we skip it.

Standard U-statistic calculations, changes of variable, Taylor expansions

and condition C12 can be used to obtain an asymptotic expression for the

variance of ∆̃(9):

V ar
(
∆̃(9)

)
=

2

n2h

(∫
σ4 (x) dx

)
K(4) (0) + o

(
n−2h−1

)
,

which implies
√
n2h∆̃(9) d−→ N (0, V ). Now using (32), (36), condition C12

and the fact that (38), (39) and (40) are oP

(
n−1h−

1
2

)
we get

√
n2h


1

n

n∑
r=1

(
n∑

i=1

Bni (Xr) εi

)2

− 1

nh

(∫
σ2 (x) dx

)
K(2) (0)


 d−→ N (0, V ) .

(41)

As done for the term ∆(9) we may get rid off the random denominator in

Bni (Xr) for the second term in the right handside of (30):

31



Acc
ep

te
d m

an
usc

rip
t 

1

n

n∑
r=1

(
∆(7)

r

)2
= (1 + oP (1))

1

n

n∑
r=1

n∑
i,j=1

∆̃
(7)
rij (42)

with

∆̃
(7)
rij =

K
(

Xr−Xi

h

)
K
(

Xr−Xj

h

)
n2h2m∗ (Xr)

2∫ ∫
[(1 − F (y1|Xr)) ξ (Zi, Ti, δi, Xr, y1)J (F (y1|Xr))−

(1 − F (y1|Xi
)) ξ (Zi, Ti, δi, Xi, y1)J (F (y1|Xi

))]

× [(1 − F (y2|Xr)) ξ (Zj, Tj, δj , Xr, y2) J (F (y2|Xr))−(
1 − F

(
y2|Xj

))
ξ (Zj , Tj, δj, Xj , y2) J (F (y2|Xj))

]
dy1dy2.

It is clear that ∆̃
(7)
rij = 0 when r = i or r = j. On the other hand, using

(15), we have

E (ξ (Z, T, δ, x, y)|X=u) =

∫ y

0

dH∗
1 (s|u)

C (s|x)
−
∫ y

0

C (s|u)
C (s|x)2dH

∗
1 (s|x)

and

E
(
ξ (Z, T, δ, x1, y1) ξ (Z, T, δ, x2, y2)|X=x3

)
= ϕ (x1, x2, x3, y1, y2)

with ϕ defined in condition C14. It is straight forward but long and tedious to

compute the order of E
(
∆̃

(7)
rij

)
. Standard arguments as changes of variables

and Taylor expansions, as well as conditions C13 and C14 lead to

E
(
∆̃

(7)
rij

)
= 0, if r = i or r = j,

E
(
∆̃

(7)
rij

)
= E

(
∆̃

(7)
123

)
= O

(
h4

n2

)
if the indices i, j and r are different,

E
(
∆̃

(7)
rij

)
= E

(
∆̃

(7)
122

)
= O

(
h

n2

)
if i = j �= r.

These results and (42) imply

1

n

n∑
r=1

(
∆(7)

r

)2
= OP

(
h4 +

h

n

)
. (43)
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Using (41) and (43), the last term in (30) may be bounded by means of

Cauchy-Schwarz inequality∣∣∣∣∣2 1

n

n∑
r=1

n∑
i=1

Bni (Xr) εi∆
(7)
r

∣∣∣∣∣ = OP

(
n− 1

2h
3
2 + n−1

)
.

This expression, as well as condition C12 and (43), (41) and (30) imply that

√
n2hψ̂(3)

n

(
β̂
)
− h−

1
2K(2) (0)

∫
σ2 (x) dx

d−→ N (0, V ) . (44)

As a consequence, ψ̂
(3)
n

(
β̂
)

= OP (n−1h−1) and, using (29) and condition C11,

we conclude

∆(6) = OP

(
(nh)−

5
4 (lnn)

3
4

)
= Op

(
n−1h−

1
2

)
.

This rate and those in (28) and (29) apply to (26) and (44) to directly obtain

√
n2hψ̂(2)

n

(
β̂
)
− h−

1
2K(2) (0)

∫
σ2 (x) dx

d−→ N (0, V ) . (45)

Now (25) imply that ∆(4) = oP

(
n−1h−

1
2

)
and, consequently, (24) and (45)

can be used to derive

√
n2hψ̂(1)

n

(
β̂
)
− h−

1
2K(2) (0)

∫
σ2 (x) dx

d−→ N (0, V ) . (46)

In order to derive the asymptotic distribution of ψ̂n

(
β̂
)

using (17), we

need to study the term ∆(2) in (19) which may be treated as done in (24)-(40).

As a consequence

1

n

n∑
r=1

(m̂r −mr)X
k
r =

1

n

n∑
r=1

Xk
r

∫ [
J (F (y|Xr)) − J

(
F̂n (y|Xr)

)]
dy

= ∆
(10)
k + ∆

(11)
k +OP

((
lnn

nh

) 3
4

)
+ oP

(
n− 1

2h−
1
2

)
, (47)

with ∆
(10)
k = 1

n

∑n
r=1X

j
r

∑n
i=1 B̃ni (Xr) εi and ∆

(11)
k = 1

n

∑n
r=1X

j
r∆

(7)
r .
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Using standard expectation and variance calculations and Taylor expan-

sions, it is straightforward to prove that

∆
(10)
k = OP

(
n− 1

2 + n−1h
1
2

)
and

∆
(11)
k = OP

(
h2 + n− 1

2h2 + n−1h
1
2

)
.

Now (19), (47) and Lemma 2 lead to

∆(2) = OP

(
n−1 + n− 3

2h
1
2 + n− 1

2h2 + n− 5
4h−

3
4 (lnn)

3
4

)
+ oP

(
n−1h−

1
2

)
.

and the proof concludes by using expressions (17), (18) and (46).�
Proof of Lemma 2: We will follow the lines of Theorem 2.1 in Akri-

tas (1996). First of all we write β̂ − β = Â−1b̂ with Â = n−1χtχ and

b̂ = n−1χt (m̂−m). Using (20), (23), condition C12, the representation (21)

and standard arguments, the k-th coordinate of the vector b̂ is

b̂k = n−1

n∑
i=1

Xk−1
i

∫ [
J (F (y|Xi

)) − J
(
F̂n (y|Xi

)
)]
dy

= ∆(12) + ∆(13) + oP

(
n− 1

2

)
(48)

with

∆(12) = −n−2h−1K (0)
n∑

i=1

Xk−1
i

×
∫

(1 − F (y|Xi
))

m∗ (Xi)
ξ (Zi, Ti, δi, Xi, y)J (F (y|Xi

)) dy,

∆(13) = −n−2h−1
n∑

i,j=1,i�=j

Xk−1
i

K
(

Xi−Xj

h

)
m∗ (Xi)

×
∫

[(1 − F (y|Xi
)) ξ (Zj, Tj, δj , Xi, y)]J (F (y|Xi

)) dy.

Usual mean nad variance calculations lead to

∆(12) = OP

(
n− 3

2h−1
)

and ∆(13) = OP

(
h2 + n−1h−

1
2

)
. (49)
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Now (48) and (49) imply that b̂ = OP

(
n− 1

2

)
. Condition C3 can be used to

control the limit behaviour of Â and hence to conclude the proof.�
Sketch of the proof of Theorem 3:

Direct inspection enables to reach similar expressions to (24) and (25), but

replacing the integral
∫ [

F (y|Xr) − F̂n (y|Xr)
]
J (F (y|Xr)) dy with

∫ [
ln Λ̂n (y|Xr) − ln Λ (y|Xr)

]
dW (y)

�
n∑

i=1

Bni (Xr)

∫
ξ (Zi, Ti, δi, Xr, y)

w (y)

Λ (y|Xr)
dy,

for model PH, ∫ [
Λ̂n (y|Xr) − Λ (y|Xr)

]
dW (y)

�
n∑

i=1

Bni (Xr)

∫
ξ (Zi, Ti, δi, Xr, y) w̃ (y) dy,

for model AR and∫ {
logit

[
1 − exp

(
Λ̂n (y|Xr)

)]
− logit [1 − exp (Λ (y|Xr))]

}
dW (y)

�
n∑

i=1

Bni (Xr)

∫
ξ (Zi, Ti, δi, Xr, y)

w (y)

F (y|Xr)
dy,

for model PO, where the negligible terms in the approximations above may be

handled using Taylor expansions, condition C1’ and part (b) of Theorem 2 in

Iglesias-Pérez and González-Manteiga (1999), as in the proof of Theorem 1.

Replacing the former εi in (31) by

ε′i =




εPH
i =

∫
ξ (Zi, Ti, δi, Xi, y)

w(y)

Λ(y|Xi)
dy for model PH

εAR
i =

∫
ξ (Zi, Ti, δi, Xi, y) w̃ (y)dy for model AR

εPO
i =

∫
ξ (Zi, Ti, δi, Xi, y)

w(y)

F(y|Xi)
dy for model PO

(50)

the rest of the proof proceeds parallel to the proof of Theorem 1 and for this

reason we skip it.�
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Sketch of the proof of Theorem 9:

The proof proceeds parallel to the study of the terms ∆(8) and ∆(9) in the

proof of Theorem 1. First of all we split the statistic T
(1)∗
n into two terms as

done in (32):

T (1)∗
n =

√
n2h∆∗(8) +

√
n2h∆∗(9), (51)

with ∆∗(8) =
∑n

i=1 bniiε
∗2
i and ∆∗(9) = 2

∑
i<j bnijε

∗
i ε

∗
j .

Recall (33), then it is straightforward to prove

E∗ (∆∗(8)) = ∆(8) + ∆
∗(8)
1 , (52)

with ∆
∗(8)
1 = 1

n

∑n
i,r=1Bni (Xr)

2 (ε̂2
i − ε2

i ). Since the term ∆(8) has already been

studied in (36) we only need to check ∆
∗(8)
1 . To do this we define

∆
∗(8)
11 =

2

n

n∑
i,r=1

Bni (Xr)
2 εi (ε̂i − εi) , (53)

∆
∗(8)
12 =

1

n

n∑
i,r=1

Bni (Xr)
2 (ε̂i − εi)

2 (54)

and write ∆
∗(8)
1 = ∆

∗(8)
11 + ∆

∗(8)
12 . In order to study these terms it is important

to find some order for the maximal absolute difference |ε̂i − εi|.
Similar arguments to those leading to (22) can be used to obtain uniform

consistency rates for the kernel estimators Ĉg (z|x) and Ĥ∗
1g (u|x):

sup
y∈[a,b],x∈I

∣∣∣Ĉg (y|x) − C (y|x)
∣∣∣ = O

((
lnn

ng

) 1
2

)
a.s. (55)

sup
y∈[a,b],x∈I

∣∣∣Ĥ∗
1g (y|x) −H∗

1g (y|x)
∣∣∣ = O

((
lnn

ng

) 1
2

)
a.s. (56)

Now conditions C1, C5, and expressions (22), (55) and (56) imply that

max
1≤i≤n

|ε̂i − εi| = O

((
lnn

ng

) 1
2

)
a.s. (57)
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This fact together with expectation calculations, Taylor expansions and con-

dition C15 can be used to obtain

∣∣∣∆∗(8)
11

∣∣∣ = OP

(
(lnn)

1
2

n
3
2g

1
2h

)
,

∣∣∣∆∗(8)
12

∣∣∣ = OP

(
lnn

n2gh

)
.

Now (52) and (36) imply

E∗ (∆∗(8)) =
1

nh

(∫
σ2 (x) dx

)
K(2) (0) (58)

+OP

(
n−2h−2 + n−1h+ n− 3

2h−1 + n− 3
2h−

3
2

(
lnh−1

) 1
2 + n− 3

2g−
1
2h−1 (lnn)

1
2

)

To study the bootstrap variance of ∆∗(8) let’s define γ = V ar∗ (W ∗
i ). Now,

V ar∗
(
∆∗(8)) = γ

n∑
i=1

b2niiε̂
4
i = ∆

∗(8)
2 + ∆

∗(8)
3 , (59)

with

∆
∗(8)
2 = γ

n∑
i=1

b2niiε
4
i = ∆

∗(8)
21 + oP

(
∆

∗(8)
21

)
,

∆
∗(8)
3 = γ

n∑
i=1

b2nii

(
ε̂4

i − ε4
i

)
,

where the order of ∆
∗(8)
21 = γ

∑n
i=1 b̃

2
niiε

4
i can be analyzed by standard expec-

tation calculations: E
(
∆

∗(8)
21

)
= O (n−3h−2). Consequently,

∆
∗(8)
2 = OP

(
n−3h−2

)
. (60)

The term ∆
∗(8)
3 can be easily bounded:

∣∣∣∆∗(8)
3

∣∣∣ ≤ γ

(
max
1≤i≤n

|ε̂i − εi|
)(

∆
∗(8)
31 + ∆

∗(8)
32 + ∆

∗(8)
33 + ∆

∗(8)
34

)
, (61)

where

∆
∗(8)
31 = 8

n∑
i=1

b2nii |εi|3 , ∆
∗(8)
32 = 12

n∑
i=1

b2niiε
2
i |ε̂i − εi| , ∆

∗(8)
33 = 6

n∑
i=1

b2nii |εi| (ε̂i − εi)
2
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and ∆
∗(8)
34 =

∑n
i=1 b

2
nii |ε̂i − εi|3 can be treated in a parallel way to what has

been done before for (53) and (54). Such a study leads to

∆
∗(8)
31 = OP

(
n−3h−2

)
, ∆

∗(8)
32 = OP

((
lnn

ng

) 1
2

n−3h−2

)
,

∆
∗(8)
33 = OP

(
lnn

ng
n−3h−2

)
, ∆

∗(8)
34 = OP

((
lnn

ng

) 3
2

n−3h−2

)
,

which, together with (61), (57) and condition C16 imply

∆
∗(8)
3 = OP

((
lnn

ng

) 1
2

n−3h−2

)
.

This expression, (60) and (59) can be used to derive a final order for the

bootstrap variance:

V ar∗
(
∆∗(8)) = OP

(
n−3h−2

)
(62)

The asymptotic expressions found in (58) and (62) for the bootstrap mean

and variance of ∆∗(8) can be readily used to conclude

∆∗(8) =
1

nh

(∫
σ2 (x) dx

)
K(2) (0) (63)

+OP ∗
(
n−2h−2 + n−1h+ n− 3

2h−1 + n− 3
2h−

3
2

(
lnh−1

) 1
2 + n− 3

2 g−
1
2h−1 (lnn)

1
2

)
,

in probability.

We now proceed by studying the term ∆∗(9) = 2
∑

i<j bnijε
∗
i ε

∗
j in a com-

pletely parallel way to what was done for the term ∆̃(9) in the proof of Theorem

1. First of all, it is straightforward to prove that E∗ (∆∗(9)) = 0 and

V ar∗
(
∆∗(9)) =

9∑
j=1

∆
∗(9)
j , (64)
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with

∆
∗(9)
1 = 4

∑
i<j

b2nijε
2
i ε

2
j , ∆

∗(9)
2 = 8

∑
i<j

b2nijεiε
2
j (ε̂i − εi) ,

∆
∗(9)
3 = 4

∑
i<j

b2nijε
2
j (ε̂i − εi)

2 , ∆
∗(9)
4 = 16

∑
i<j

b2nijεiεj (ε̂i − εi) (ε̂j − εj) ,

∆
∗(9)
5 = 8

∑
i<j

b2nijεi (ε̂i − εi) (ε̂j − εj)
2 , ∆

∗(9)
6 = 8

∑
i<j

b2nijεj (ε̂i − εi)
2 (ε̂j − εj) ,

∆
∗(9)
7 = 4

∑
i<j

b2nij (ε̂i − εi)
2 (ε̂j − εj)

2 , ∆
∗(9)
8 = 8

∑
i<j

b2nijε
2
i εj (ε̂j − εj) ,

∆
∗(9)
9 = 4

∑
i<j

b2nijε
2
i (ε̂j − εj)

2 .

To study ∆
∗(9)
1 , which is the dominant term in the bootstrap variance, we

use ∆
∗(9)
1 = ∆

∗(9)
11 + oP

(
∆

∗(9)
11

)
,where ∆

∗(9)
11 = 4

∑
i<j b̃

2
nijε

2
i ε

2
j .Routine expecta-

tion and variance calculations and conditions C12, C15 and C16 lead to

∆
∗(9)
11 =

2

n2h

(∫
σ4 (x) dx

)
K(4) (0) + oP

(
n−2h−1

)
. (65)

The study of the terms ∆
∗(9)
j , for j = 2, 3, . . . , 9 proceeds by using standard

bounds, expectation calculations, Taylor expansions and integrability condi-

tions in C15 to conclude

∆
∗(9)
j = oP

(
n−2h−1

)
, for j = 2, 3, . . . , 9. (66)

Now, (64), (65) and (66) imply

V ar∗
(
∆∗(9)) =

2

n2h

(∫
σ4 (x) dx

)
K(4) (0) + oP

(
n−2h−1

)
and De Jong’s (1987) central limit theorem applies to conclude that

√
n2h∆∗(9) d∗−→ N (0, V ) , (67)

in probability. The proof concludes by using (51), (63) and (67).�
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