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Nonparametric Simultaneous Testing for Structural Breaks

By Jiti Gao1, Irène Gijbels2 and Sébastien Van Bellegem3

1The University of Western Australia, 2Katholieke Universiteit Leuven and
3Université catholique de Louvain

Abstract

In this paper we consider a regression model with errors that are martingale dif-

ferences. This modeling includes the regression of both independent and time series

data. The aim is to study the appearance of structural breaks in both the mean

and the variance functions, assuming that such breaks may occur simultaneously in

both the functions. We develop nonparametric testing procedures that simultane-

ously test for structural breaks in the conditional mean and the conditional variance.

The asymptotic distribution of an adaptive test statistic is established, as well as its

asymptotic consistency and efficiency. Simulations illustrate the performance of the

adaptive testing procedure. An application to the analysis of financial time series

also demonstrates the usefulness of the proposed adaptive test in practice.

JEL Classification: C12; C14; C32.

Keywords and phrases: conditional mean and variance function, nonparametric test-

ing, structural break, threshold model, time series analysis.

1. Introduction and Motivation

Existing studies show that most nonparametric inference methods assume a certain

degree of smoothness of the function to be investigated. When estimating a regression

function based on an independent and identically distributed sample for example, it is of-

ten assumed that this unknown function is continuous, or even a few times differentiable.

When dealing with discontinuous functions, the classical nonparametric estimation tech-

niques need to be used with care in order to produce an estimate that shows a similar

unsmooth behaviour. Related topics are change-point detection, edge detection and image

Corresponding author: Irène Gijbels, Department of Mathematics and University Center for Statis-

tics, Katholieke Universiteit Leuven, Box 2400, Celestijnenlaan 200B, B-3001 Leuven (Heverlee), Belgium;
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reconstruction. See for example, Müller (1992), Carlstein, Müller and Siegmund (1994),

Loader (1996), Qiu (1998), Spokoiny (1998), Müller and Stadtmüller (1999), Gonzalez

and Woods (2002), Gijbels and Goderniaux (2004) and Qui (2005), among others.

When detecting or testing for change–points in a mean regression function, it is often

assumed that the variance function is a continuous function. A closely related study in the

literature of nonparametric testing of change–points is given in Grégoire and Hamrouni

(2002), which assume that both the marginal and variance functions are continuous when

testing for continuity for the mean function at a known location. This assumption however

may not be justified, and in fact both the mean and the variance functions could have

change–points. In a time series context, models with structural breaks (change–points)

in the conditional mean and variance function have already been discussed. For example,

Delgado and Hidalgo (2000) assume in their equation (1) and condition A4 that both the

conditional mean and conditional variance functions may have the same structural breaks

and then propose estimating both the locations and sizes of possible structural breaks in

nonparametric regression with stationary time series observations.

In addition, when there is no information or knowledge about the smoothness of either

function or both functions, we should consider testing whether the conditional mean and

conditional variance functions both have discontinuities. By doing so, one may avoid

assuming continuity mistakenly for one of the functions. Of course this also implies that

one may assume discontinuities mistakenly for one of the functions. For this case, however,

our experience in Chen and Gao (2005) shows that there would only be a slight reduction

of the power for using a simultaneous test when a univariate test for either the conditional

mean or the conditional variance should be used.

This motivates us to address the important issue of how to detect possible structural

breaks in both the conditional mean and variance functions of nonparametric regression

models for both independent and dependent data. Although there are numerous non-

parametric tests available in the literature, to the best of our knowledge none of them

could be directly applicable to such cases where both the mean and variance may have

discontinuities. In order to clearly present our idea and methodology, we mainly consider

the case where both the mean and the variance function may have structural breaks at a

same number of unknown locations τ1, · · · , τd, where d is the dimension of the covariate

vector. As mentioned in the end of Section 2, however, the proposed theory and method-

ology in Section 2 is applicable to deal with other related cases where structural changes

2
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of the mean and the variance function may occur at different locations. In our detailed

construction, we propose simple left–hand and right–hand limit estimators of the mean

and the variance functions. Each possible test statistic is based on a suitably weighted

version of the sum of squared differences of these estimates for the mean and the variance

functions. The asymptotic distribution of the standardized weighted type of each of the

proposed test statistics, under the null hypothesis of no change in the mean and in the

variance function, is established.

As τ1, · · · , τd do not exist under the null hypothesis, we propose using an integrated

version of the standardized weighted test over all possible values of {τi : 1 ≤ i ≤ d}.
This is a nonparametric counterpart of existing forms for the parametric case (Andrews

1993; Andrews and Ploberger 1994; Hansen 2000; among others). More than what has

been established in the literature, we are able to show that the asymptotic distribution

of the integrated version can still be standard normal (see Theorem 2.1) through using

a newly established central limit theorem for quadratic forms of dependent processes. A

crucial issue is then the choice of appropriate bandwidths. One way to deal (partially)

with this problem is to construct an adaptive version of a test by taking the maximum

of the test over a range of bandwidth values. We then establish that the adaptive test

is asymptotically consistent not only for the case where both the mean and variance or

either of them have structural change at {τi : 1 ≤ i ≤ d}, but also for the case where

both functions may only have a kind of asymptotic structural change. Both the size and

power properties of the proposed adaptive test are illustrated via simulated and real data

examples.

The paper is organized as follows. In Section 2 we introduce the general regression

model, the testing problems and the proposed test statistics. We also provide the asymp-

totic distribution of the proposed test statistics under the null hypothesis. At the end of

Section 2, we explain how our results may be extended to cover some other complicated

cases. An adaptive testing procedure, when taking the maximum over a range of band-

width values and using a Monte Carlo simulation procedure to approximate the critical

level of each of the proposed tests, is discussed in Section 3. We establish consistency

and efficiency of the adaptive test procedure. Section 4 contains the simulation study and

in Section 5 we apply the methods to the analysis of stock indices. Section 6 contains

some conclusions and further discussions. Assumptions and mathematical proofs of all

theoretical results are given in the appendix.
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2. Test statistics and asymptotic theory

Consider a nonparametric regression model of the form

Yt = m(Xt) + σ(Xt) et, t = 1, 2, . . . , T, (1)

where {Xt} is a vector of d–dimensional strictly stationary time series variables of the

form Xt = (Xt1, · · · , Xtd)
τ , both m(x) and σ(x) > 0 are defined over IRd and continuous

except at a finite number of points where the functions are discontinuous, and {et} is a

sequence of martingale differences with E[et|Ωt−1] = 0, E[e2
t |Ωt−1] = 1, E[e3

t |Ωt−1] = 0

and E[e4
t |Ωt−1] < ∞, where {Ωt} is a sequence of σ–fields generated by {(Xs+1, Ys) : 1 ≤

s ≤ t}.
In order to establish our tests, we need to introduce the following notation: for j = 1, 2,

x = (x1, · · · , xr−1, xr, xr+1, · · · , xd)
τ , τ = (τ1, · · · , τr−1, τr, τr+1, · · · , τd)

τ ,

m1(x) = m(x), m2(x) = σ2(x), mj+(x) = lim
y↓x

mj(y), mj−(x) = lim
y↑x

mj(y),

βj(τ) = mj+(τ) − mj−(τ) for 1 ≤ j ≤ 2.

Following the discussion in Delgado and Hidalgo (2000), we mainly consider the case

where discontinuous points may exist at each of the d regressors for both m(x) and

σ(x), located at some unknown locations τ1, · · · , τd. In detail, we assume that there are

continuous functions ms(x) and σs(x) such that

m(x) = ms(x) + β1(τ)
d∏

i=1

I (xi ≥ τi) and σ2(x) = σ2
s(x) + β2(τ)

d∏
i=1

I (xi ≥ τi) , (2)

where I(A) is the conventional indicator function.

We assume without loss of generality that −1 < τi < 1 for 1 ≤ i ≤ d. Except for some

extreme cases where discontinuities of ν(x) = E[Y 2
t |Xt = x] and m2(x) are cancelled out,

the conditional mean function m(·) and conditional variance function σ2(x) = ν(x)−m2(x)

should share some discontinuities at τ1, · · · , τd. In other words, it is not unreasonable to

assume that m(·) and σ2(·) both have some discontinuities at τ1, · · · , τd. In addition, we

also assume throughout this paper that the marginal density, f(x), of {Xt} is continuous

at τi for 1 ≤ i ≤ d. Other cases, including the case where m(x) and σ2(x) have different

discontinuities, will be briefly mentioned at the end of Section 2.

Note that β1(τ) and β2(τ) are respectively the jump sizes of m(·) and σ2(·) at the

possible singular points τi. The main objective of this paper is to test whether such

singular points at τi for 1 ≤ i ≤ d exist.
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This section considers a simultaneous test problem of the form:

H0 : β2
1(x) + β2

2(x) = 0 for all x ∈ IRd. (3)

In Section 3 below, when we study asymptotic consistency of the proposed test of this

paper, we will specify a class of local alternatives under H1.

Before we establish our tests, we propose using a modified local linear kernel estimation

method for {mj±(·) : j = 1, 2} (Fan and Gijbels 1996; Fan and Yao 1998) of the form

m̂1±(x) =
T∑

t=1

Ŵ1±(x,Xt)Yt and m̂2±(x) =
T∑

t=1

Ŵ2±(x,Xt) (Yt − m̂1±(Xt))
2 , (4)

where

Ŵj±(x,Xt) =
1

Thd
j

S2j±(x) − S1j±(x)
∏d

i=1

(
xi−Xti

hj

)
S2j±(x)S0j±(x) − S1j±(x)2

Kj±

(
x − Xt

hi

)
, (5)

in which Slj±(x) = 1
Thd

j

∑T
s=1 Kj±

(
x−Xs

hj

) ∏d
i=1

(
xi−Xsi

hj

)l

for l = 0, 1, 2 and j = 1, 2,

{Kj± : j = 1, 2} are one–sided probability kernel functions and {hj : j = 1, 2} are

bandwidth parameters.

For each 1 ≤ j ≤ 2, we estimate βj(τ) by

β̂j(τ) = m̂j+(τ) − m̂j−(τ). (6)

A natural test statistic is based on the following form:

L1T (τ) = β̂(τ)Tβ̂(τ) = (m̂1+(τ) − m̂1−(τ))2 + (m̂2+(τ) − m̂2−(τ))2 , (7)

where β̂(τ) = (β̂1(τ), β̂2(τ))T, with the superscript T denoting the transpose of a vector

or matrix. Before we provide some heuristic argument about the suitability of form (7),

we need the following notation:

εt = Yt − m1(Xt) = σ(Xt)et and ηt = ε2
t − m2(Xt) = m2(Xt)[e

2
t − 1]. (8)

This is equivalent to

Yt = m1(Xt) + εt and ε2
t = m2(Xt) + ηt. (9)

A simple decomposition of (7) implies that the leading term of L1T (τ) is

M1T (τ) =
T∑

t=1

T∑
s=1

Ŵ1(τ, Xs)Ŵ1(τ,Xt)YsYt +
T∑

t=1

T∑
s=1

Ŵ2(τ, Xs)Ŵ2(τ,Xt)ε
2
sε

2
t , (10)

5
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where Ŵj(τ, Xt) = Ŵj+(τ,Xt) − Ŵj−(τ, Xt) for j = 1, 2. This yields under H0,

µ1T (τ) = E [L1T (τ)] = (1 + o(1))
T∑

t=1

E
[
Ŵ 2

1 (τ, Xt)m2(Xt) + µ4Ŵ
2
2 (τ, Xt)m

2
2(Xt)

]
,

σ2
1T (τ) = Var [L1T (τ)] = 2(1 + o(1))

T∑
t=1

T∑
s=1

E
[
Ŵ 2

1 (τ,Xs)m2(Xs)Ŵ
2
1 (τ, Xt)m2(Xt)

]
+ 2(1 + o(1)) µ2

4

T∑
t=1

T∑
s=1

E
[
Ŵ 2

2 (τ,Xs)m
2
2(Xs)Ŵ

2
2 (τ, Xt)m

2
2(Xt)

]
, (11)

using E[e2
t |Ωt−1] = 1 and E[et|Ωt−1] = E[e3

t |Ωt−1] = 0, where µ4 = E[e4
t ] − 1.

It is noted that the fact that εt and ηt are uncorrelated (i.e. cov[εt, ηt] = 0) has

been used in (11). This fact also supports that using an additive version of the form (7)

is justifiable for testing H0. Obviously, we may replace the direct sum of β̂2
1(·) + β̂2

2(·)
by a suitably weighted version. The case where εt and ηt may also be correlated can be

discussed similarly. For this case, we need to modify form (7) to include some cross terms.

To present the main idea and method of this paper, however, we will focus on (7) for the

uncorrelated case throughout this paper.

In the implementation, µ1T (τ) and σ2
1T (τ) are estimated respectively by

µ̂1T (τ) =
T∑

t=1

[
Ŵ 2

1+(τ,Xt)m̂2+(Xt) + Ŵ 2
1−(τ,Xt)m̂2−(Xt)

]
+ µ4

T∑
t=1

[
Ŵ 2

2+(τ, Xt)m̂
2
2+(Xt) + Ŵ 2

2−(τ, Xt)m̂
2
2−(Xt)

]
,

σ̂2
1T (τ) = 2

T∑
t=1

[
Ŵ 2

1+(τ, Xt)m̂2+(Xt) + Ŵ 2
1−(τ,Xt)m̂2−(Xt)

]
×

T∑
s=1

[
Ŵ 2

1+(τ,Xs)m̂2+(Xs) + Ŵ 2
1−(τ, Xs)m̂2−(Xs)

]
+ 2µ2

4

T∑
t=1

[
Ŵ 2

2+(τ, Xt)m̂
2
2+(Xt) + Ŵ 2

2−(τ, Xt)m̂
2
2−(Xt)

]
×

T∑
s=1

[
Ŵ 2

2+(τ,Xs)m̂
2
2+(Xs) + Ŵ 2

2−(τ, Xs)m̂
2
2−(Xs)

]
.

We now define a normalized version of L1T (τ) of the form

L̂1T (τ) =
L1T (τ) − µ̂1T (τ)

σ̂1T (τ)
. (12)

6
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As can be seen from equation (3), the vector of the threshold parameters τ only

appears under the alternative but not under the null. If τ is known, we may use L̂1T (τ)

as a test statistic for testing (3). This location of structural breaks is however normally

unknown. In the parametric case, Andrews and Ploberger (1994) propose using a weighted

average power function. This paper extends such an idea to a nonparametric setting by

developing a test for testing (3). There are two reasons why we are using such an averaging

version. The first one is that the test statistic of this form may have some advantages in

terms of weighted average power over test statistics of supremum forms as pointed out

in Andrews (1993, p.824). The second reason, which is probably more important to our

case and different from existing results (Andrews and Ploberger 1994), is that we are able

to derive asymptotically normal distributions for the proposed test L̂wT in (13) below

even under discontinuity and integration. In this paper we do not address any optimality

properties of the proposed test statistic. Optimality of tests is an open question here. In

our simulation studies we also investigated the performance of a supremum test statistic.

The choice between these two and other types of test statistics is related somehow to a

discussion on the performances of classical goodness-of-fit tests of the Cramér-Von Mises

and Kolmogorov-Smirnov type. Comparisons of these classical goodness-of-fit tests can

be found in Stephens (1974) and D’Agostino and Stephens (1986), among others.

Let A12 =
∏d

i=1[ai min, ai max] with each [ai min, ai max] ⊂] − 1, 1[, where ai min and ai max

are assumed to be known, and the interval includes τi. The main test statistic of this

paper is defined by

L̂wT = L̂wT (h1, h2) =
LwT − µ̂wT

σ̂wT

, (13)

where LwT =
∫

L1T (u)π(u)d u, µ̂wT =
∫

µ̂1T (u)π(u)d u and

σ̂2
wT = 2

T∑
t=1

∫ [
Ŵ 2

1+(u,Xt)m̂2+(Xt) + Ŵ 2
1−(u,Xt)m̂2−(Xt)

]
π(u)du

×
T∑

s=1

∫ [
Ŵ 2

1+(v,Xs)m̂2+(Xs) + Ŵ 2
1−(v, Xs)m̂2−(Xs)

]
π(v)dv

+ 2µ2
4

T∑
t=1

∫ [
Ŵ 2

2+(u,Xt)m̂
2
2+(Xt) + Ŵ 2

2−(u,Xt)m̂
2
2−(Xt)

]
π(u)du

×
T∑

s=1

∫ [
Ŵ 2

2+(v,Xs)m̂
2
2+(Xs) + Ŵ 2

2−(v, Xs)m̂
2
2−(Xs)

]
π(v)dv,

in which π(τ) is a weight function over A12. An example of a weight function is a uniform

7
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weight function:

π(x) =


∏d

i=1

(
1

ai max−ai min

)
if x ∈ A12,

0 otherwise.
(14)

Alternatively, we may suggest using a test statistic of the form

L̂sT = L̂sT (h1, h2) = sup
τ∈A12

L̂1T (τ) (15)

with L̂1T (τ) = L1T (τ)−µ̂1T (τ)
σ̂1T (τ)

.

We have not established the asymptotic distribution for L̂sT which converges to a

standardized Bessel process. For L̂wT , however, we are able to establish the following

asymptotic normality. For ease of presentation the assumptions are listed in the beginning

of the appendix.

Theorem 2.1. Assume that Assumptions A.1–A.4 hold. Then under H0

L̂wT →D N(0, 1) as T → ∞. (16)

The proof of Theorem 2.1 is postponed to the appendix below.

When the null hypothesis is rejected, we will need to further test

H01 : β1(x) = 0 or H02 : β2(x) = 0 for all x ∈ IRd. (17)

Similarly to the construction of L̂wT , we may establish a univariate test L̂wjT for

j = 1, 2. Moreover, analogously to Theorem 2.1, we can show that each L̂wjT is an

asymptotically normal test.

We have considered the case where the same number of discontinuities occur in the d

regressors at τ1, · · · , τd. Similarly to (2) of Delgado and Hidalgo (2000), we may consider

the case where discontinuities occur in all the regressors at τ
(j)
r for 1 ≤ r ≤ d; 1 ≤ j ≤ J

for m1(·) and at µ
(k)
r for 1 ≤ r ≤ d; 1 ≤ k ≤ K for m2(·). In this case, model (2) becomes

m(x) = ms(x) +
J∑

j=1

β1

(
τ (j)
) d∏

r=1

I
(
xr ≥ τ (j)

r

)
and

σ2(x) = σ2
s(x) +

K∑
k=1

β2

(
µ(k)
) d∏

r=1

I
(
xr ≥ µ(k)

r

)
, (18)

where τ (j) =
(
τ

(j)
1 , · · · , τ

(j)
d

)T

and µ(k) =
(
µ

(k)
1 , · · · , µ

(k)
d

)T

.

8
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Similarly to the construction of L̂wT , we can establish a corresponding test to deal

with (18). Since presenting the main idea and methodology of ours is the main objective

of this paper, we therefore concentrate our discussion on L̂wT throughout the rest of this

paper.

We conclude this section by pointing out that

(i) We should use L̂wT to test whether the conditional mean and conditional variance

functions both have discontinuities at τ1, · · · , τd if we have no information or knowledge

about the smoothness of either function or both functions. By doing so, one may avoid

assuming continuity mistakenly for one of the functions. Of course this also implies that

one may assume discontinuities mistakenly for one of the functions.

(ii) If the null hypothesis H0 is rejected or we have some information or knowledge

about the smoothness of either function, we should use either L̂w1T or L̂w2T to test which

function would have discontinuities at τ1, · · · , τd.

(iii) This section considers the case where the conditional mean and variance functions

are purely nonparametric. As discussed in Section 5.2 below, it is also interesting in

both theory and applications to discuss structural breaks in semiparametric time series

regression models.

3. An adaptive testing procedure

An important but very difficult issue is the choice of two suitable bandwidths h1 and

h2 that are optimal for testing purposes. Since we will emphasize on L̂wT (h1, h2) in the

examples in Section 4 below, this section proposes an adaptive version of the proposed

test L̂wT (h1, h2) and then discusses its asymptotic behaviors. The discussion given in this

section also applies to the other tests L̂wiT (h1, h2), for i = 1, 2. As for the smooth case

(Horowitz and Spokoiny 2001; Gao and King 2004), we propose using

L̂w = max
h∈HT

L̂wT (h1, h2), (19)

where h = (h1, h2), HT = H1T×H2T , HiT =
{
hi = hi maxa

k
i : hi ≥ hi min, 0 ≤ k ≤ JiT − 1

}
,

in which 0 < hi min < hi max, and 0 < ai < 1 for i = 1, 2. With JiT denoting the number

of elements of HiT , we have JiT ≤ log1/ai
(hi max/hi min).

It should be noted that each HiT is just a set of discrete bandwidth values, starting

with the smallest value hi min and ending with the largest value hi max. The ratio between

two consecutive bandwidths in this (increasing) geometric grid of values is 1/ai.

9
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Simulation scheme: We now discuss how to obtain a critical value for L̂w. The exact

α–level critical value, le(α) (0 < α < 1) is the 1 − α quantile of the exact finite–sample

distribution of L̂w. Because the distribution of {et} is unknown, we cannot evaluate le(α)

in practice. We therefore need to approximate the finite–sample distribution of L̂w based

on a pre-specified distributional structure of {et}.
We now propose using the following Monte Carlo simulation procedure to choose a

simulated α–level critical value, lα, as follows.

1. For each t = 1, 2, . . . , T , generate Y ∗
t = m̂1(Xt) +

√
m̂2(Xt)e

∗
t , where the original

sample (X1, · · · , XT ) acts in the resampling as a fixed design, and m̂i(·) for i = 1, 2

are either m̂i+(·) or m̂i−(·) and {e∗t} is a sequence of independent and identically

distributed random samples drawn from a pre-specified distribution. Use the data

set {(Xt, Y
∗
t ) : t = 1, 2, . . . , T} to compute L̂w. Let lα be the 1 − α quantile of the

distribution of L̂w based on {(Xt, Y
∗
t ) : 1 ≤ t ≤ T}.

2. Repeat the above step B times and produce B versions of L̂w denoted by L̂∗
w(b) for

b = 1, 2, . . . , B. Use the B values of L̂∗
w(b) to construct their empirical distribution

function, that is, F ∗
w(u) = 1

B

∑B
b=1 I(L̂∗

w(b) ≤ u). Use the 1 − α quantile of the

empirical distribution function, l∗α, to approximate the simulated α–level critical

value, lα.

It should be noted that both lα and l∗α depend on {(Xt, Yt; e
∗
t ) : 1 ≤ t ≤ T}. It should

also be noted that a similar procedure for parametric threshold testing has already been

proposed in Hansen (1996).

In both theory and practice, there are normally two different simulation procedures we

could use for finding our critical value. The first is the proposed Monte Carlo method. The

second method is to use a bootstrap resampling procedure to generate {e∗t} (see Hjellvik,

Yao and Tjøstheim 1998; Franke, Kreiss and Mammen 2002 for example). In such a case,

we will need to treat (X1, · · · , XT ) as a fixed sample when we generate resamples of {e∗t}.
As the choice of lα is only a small step in this section, we adopt the more applicable Monte

Carlo method and then establish the main theoretical results in Theorems 3.1–3.3 below.

To study the power function of L̂w, we need to specify the alternative hypothesis with

the following notation: for u ∈ (−1, 1)d

ρ(u) = β(u)Tβ(u). (20)

10
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Since a jump in β̂j(τ) is usually observed in a neighborhood of τ , we consider negating

H0 in an asymptotically small interval containing τ . This section thus proposes using the

following two types of alternatives:

Case A: Assume that there are some c1min > 0 and ε1 > 0 such that

H1 : ρ(u) ≥ c1min (21)

uniformly in u ∈∏d
i=1(τi − ε1, τi + ε1), where ε1 =

(
log(log(T ))

T

) 1
2d

.

Case B: Assume that there are some c2min > 0 and ε2 > 0 such that

H1 : ρ(u) ≥ c2min
log(log(T ))

T
(22)

uniformly in u ∈∏d
i=1(τi − ε2, τi + ε2), where ε2 = (log(log(T )))−

1
4d .

We now state the following results; their proofs are relegated to the appendix.

Theorem 3.1. Assume that Assumptions A.1–A.6 hold. Then under H0

lim
T→∞

P (L̂w > lα) = α.

Theorem 3.2. Assume that Assumptions A.1–A.6 hold. Then under H1 of (21)

lim
T→∞

P (L̂w > lα) = 1.

Theorem 3.3. Let Assumptions A.1–A.6 with hi max = ci max (loglog(T ))−
1
2d for some

constant ci max > 0 (i = 1, 2) hold. Then under H1 of (22)

lim
T→∞

P (L̂w > lα) = 1.

Theorem 3.1 implies that lα is an asymptotically correct α–level critical value under

any model in H0, while Theorem 3.2 establishes the asymptotic consistency of L̂w for the

case where ρ(u) > 0 uniformly in u ∈∏d
i=1(τi − ε1, τi + ε1). Theorem 3.2 therefore implies

that the adaptive test L̂w is asymptotically consistent when each τi is a discontinuity of

either m1(x), m2(x) or both. Theorem 3.3 shows that L̂w is still asymptotically consistent

when the ‘distance’ between continuity and discontinuity is of the shortest possible rate

of T− 1
2

√
loglogT under such a nonparametric setting. To the best of our knowledge, this

is the first result of this kind in the field of nonparametric testing for structural breaks.
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4. Simulation study

In this section we investigate the finite-sample performance of the proposed testing

procedures via simulations. We consider two testing models. Model 1 below is a regression

case where the observations are independent and identically distributed (i.i.d.): the design

points Xt are uniformly distributed on [−1, 1] and the errors et are i.i.d. N(0, 1). Model 2

is an example in the time series context. In both examples, we assume that there is some

structural break at the same location µ for both m(·) and σ2(·).
This section focuses only on the case where both the conditional mean and conditional

variance functions have a same single change–point with fixed jump size. When there are

more regressors and jumps with the jump size in each case being quite small, the issue of

whether the testing procedure is sensitive would need to be examined in future research.

Model 1. The mean function m1(x) = m(x) and the variance function m2(x) = σ2(x)

are piecewise constant and contain at most one jump at 0:

m1(x) =

 α −1 � x < 0

α + β 0 � x � 1 ,

m2(x) =

 γ2 −1 � x < 0

γ2 + δ 0 � x � 1 .

The size of the possible jump is quantified by the parametres β and δ. Note that

δ > −γ2 is needed to ensure that the variance function is strictly positive.

Model 2: Consider the time series model Yt = m(Yt−1) + σ(Yt−1)et, with

m(Yt−1) =

 0.8Yt−1 − λYt−1 if Yt−1 ≤ 0

0.8Yt−1 if Yt−1 > 0

σ2(Yt−1) =

 1 + 0.5Y 2
t−1 + η(0.5 + 0.3Y 2

t−1) if Yt−1 ≤ 0

1 + 0.5Y 2
t−1 if Yt−1 > 0 ,

and et ∼ N(0, 1).

This is an example of a so-called double threshold autoregressive conditional het-

eroscedastic model. Such models have been discussed by Wong and Li (1997, 2000)

among others, and are especially useful for modelling financial time series. It follows

from Lemma 3.1 of Masry and Tjøstheim (1995) that Assumption A.1(i) holds when

m(Yt−1) and σ2(Yt−1) are of the forms in Model 2.
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In the next subsections we use these two models to investigate various aspects of the

proposed testing procedures. In all simulations we used a uniform kernel density function

supported on [−0.5, 0.5]. More details about how the simulation study can be done in

practice is available from Gao, Gijbels and Van Bellegem (2006).

4.1. Implementation issues and basic distributional properties of the test statistics

We investigate the distribution of the test statistic under the null hypothesis H0. We

therefore consider Model 1 with parameters β = δ = 0, α = 2 and γ = 1. We illustrate

the behaviour of the statistic L̂1T (0), defined in (12), and L̂wT , as defined in (13), with

the weight function as in (14) with A12 = [−0.9, 0.9]. Recall that both statistics have an

asymptotic standard normal distribution. The statistic L̂1T (0) is not appropriate for our

testing problem, and it is only included for comparison purpose.

We simulate 100 samples of size T = 200 from Model 1, and present the estimated

density, based on the obtained 100 values for L̂1T (0), using the standard kernel smoothing

procedure of the software package R (i.e. the function density). The resulting density

estimate is plotted in Figure 1. The other densities plotted in the figure show the estimated

densities based on samples of size T = 600 and T = 1200 respectively. Note the slow

convergence of the statistic L̂1T (0). Further investigation of this revealed that the slow

convergence could be due to the slow convergence of the estimator of the variance σ̂2
1T (0).

Looking at the right-hand side of Figure 1 we can see that the statistic L̂wT converges,

under the null hypothesis, reasonably fast to N(0, 1).

We now investigate, through the same example, the finite-sample power properties of

the testing procedures L̂wT as defined in (13).

We proceed as follows:

1. Fix the sample size T (in the following, T = 200 or 600).

2. Compute the empirical distribution function of the test statistics under the null (i.e.

when β = δ = 0). This computation is based on M = 5000 simulations of length T

from Model 1 under the null.

3. Fix the level of the test : α = 5 % or 10 %.
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4. For a given value of β � 0 and δ � 0, we compute the number of rejections of the

test. This is based on 500 simulations from Model 1 under the alternative.

Table 1 reports the results of this simulation. We can see that the powers of the

tests increase dramatically when the sample size increases from T = 200 to T = 600.

Furthermore, for the small sample size of T = 200, the power of the test based on

L̂sT = supu∈A12
L̂1T (u) seems to be better than the power of the test based on L̂wT . For

the medium sample size of T = 600, both tests perform quite comparable. From the more

extensive simulation study that we performed there was no clear evidence for a best test

among the two. For brevity we will, in the following finite sample studies and empirical

applications, only assess the performance of an adaptive version of L̂wT .

4.2. Adaptive testing procedure in time series

So far we have not addressed the issue of how to choose the bandwidth parameters.

Recall the notation from Section 3. We restrict here to H1T = H2T . For the simulation

study we take JiT = 5, for i = 1, 2. Further, we take h1max = h2max = cmax

√
(log log T )−1,

with cmax being a constant to be chosen. This choice of the largest bandwidth in the grid

of bandwidth values is motivated by the conditions in Theorem 3.3.

The adaptive testing procedure, including a practical choice for the grid H1T = H2T ,

−2 0 2 4 6

0.0
0.2

0.4
0.6

0.8
1.0

1.2

(a)

−2 0 2 4 6

0.0
0.2

0.4
0.6

0.8
1.0

1.2

(b)

Figure 1: Estimated density of L̂1T (0) (left picture) and of L̂wT (right picture) from 100

simulated samples from Model 1, with β = δ = 0, α = 2 and γ = 1, for sample sizes

T = 200 (dotted curve), T = 600 (dashed curve), and T = 1200 (solid curve).

14



Acc
ep

te
d m

an
usc

rip
t 

Table 1: Simulation results on the power of the tests for Model 1 (in percentages) for

various alternatives

Alternative T = 200 T = 600

L̂sT L̂wT L̂sT L̂wT

(1) β = 1, δ = 1 α = 5% 13.8 8.2 85.6 86.2

α = 10% 25.4 18.6 94.6 95.4

(2) β = 2, δ = 1 α = 5% 41.2 29.2 98.8 98.6

α = 10% 52.4 42.2 99.6 100

(3) β = 2, δ = 0 α = 5% 40.0 36.8 92.6 94.4

α = 10% 48.0 48.6 98.6 96.8

(4) β = 0, δ = 2 α = 5% 39.6 21.8 100 100

α = 10% 59.8 54.2 100 100

(5) β = 2, δ = 2 α = 5% 52.0 48.8 100 100

α = 10% 70.0 76.8 100 100

and based on

L̂w = max
h1∈H1T ,h2∈H2T

L̂wT (h1, h2)

reads as follows (for simulated data)

Step 1 : Determining the grids H1T and H2T of bandwidths. Consider H1T = H2T =

HT = {hk = hmaxa
k : hk � hmin, k = 0, 1, . . . , 4}, in which 0 < hmin < hmax =

cmax

√
(log log T )−1 and 0 < a < 1.

• Simulate J sets of data Z
(j)
i = (X

(j)
i , Y

(j)
i ), 1 � i � T (T is fixed), 1 � j � J

under H0.

• For each sample j, we determine the bandwidth h(j) that minimizes∑
q

∑
t

{
m̂−q

1,h(Xt) − Yt

}2
+
{

m̂−q
2,h(Xt) −

(
Yt − m̂−q

1,h(Xt)
)2}2

,

where m̂−q
i,h (i = 1, 2) denotes the estimator of mi (i = 1, 2) based on the sample

without Xq and with bandwith h. This selection procedure can be viewed as

a cross-validation method.
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• Compute the mean of all h(j) (1 � j � J), and call it h. Fix 0 < a < 1 and

compute hmax (or equivalently cmax) such that the mean value of the grid H1T

is h.

Step 2 : Estimation of the critical values. Simulate M sets of data Z
(m)
i = (X

(m)
i , Y

(m)
i ),

1 � i � T (T is fixed), 1 � j � M under H0. For each sample, compute L̂w =

L̂w(m). For a given level of the test, the critical value is computed from the empirical

distribution function F (u) = 1
M

∑M
m=1 I(L̂w(m) � u).

Step 3 : Estimating the power of the test against H1. Simulate B sets of data Z
(b)
i =

(X
(b)
i , Y

(b)
i ), 1 � i � T (T is fixed), 1 � j � B under H1. Perform the test over each

sample set, using the critical value derived in step 2, and compute the percentage

of rejection.

We now evaluate the performance of the above adaptive testing procedure for Model

2. Model 2 is an example of a double threshold autoregressive conditional heteroscedastic

model. We consider the following situations:

(1) λ = η = 0, i.e. H0, an AR – ARCH model;

(2) λ = 0.7 and η = 0 i.e. a threshold AR – ARCH, in which the sign of the AR coefficient

remains the same after the structural break;

(3) λ = 1.6 and η = 0 i.e. a threshold AR – ARCH where the sign of the AR coefficient

changes

(4) λ = 0.7 and η = −1, a double threshold AR-ARCH model, with breakpoints that are

difficult to detect;

(5) λ = 1.6 and η = −1, a double threshold AR-ARCH model.

The simulation results, for sample sizes T = 200 and 400, are summarized in Table

2 below. The distributional law under H0 is based on M = 1000 simulations. Table 2

shows that the adaptive test has little size distortion even when the sample size is as

moderate as T = 200. This is mainly because of the combined employment of a simulated

critical value instead of an asymptotic critical value of l0.05 = 1.645 as well as an adaptive

version of L̂wT over a set of suitable bandwidths. The computation of the power under

the alternatives (1) to (5) is based on B = 200 simulations. In terms of the power
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Table 2: Powers (in percentages) of the test for various alternatives for Model 2

Alternative T = 200 T = 400

L̂w L̂w

(1) λ = 0, η = 0 α = 5% 4.0 4.0

α = 10% 7.5 9.0

(2) λ = 0.7, η = 0 α = 5% 34.5 62.0

α = 10% 43.0 69.5

(3) λ = 1.6, η = 0 α = 5% 52.0 73.0

α = 10% 60.5 79.5

(4) λ = 0.7, η = −1 α = 5% 58.5 85.0

α = 10% 62.5 94.5

(5) λ = 1.6, η = −1 α = 5% 65.5 88.0

α = 10% 75.5 93.5

performance, the adaptive test procedure seems to work reasonably well and have some

good power properties even for moderate sample sizes such as T = 400.

5. Application to the analysis of stock markets

For real data analysis we use the adaptive testing procedure as described in Section 3,

in combination with the data-driven way for determining the grid of bandwidth values.

Given the observed data (Yt, Xt), t = 1, · · · , T , we generate in the empirical bootstrap

procedure Y ∗
t = m̂1(Xt) +

√
m̂2(Xt)e

∗
t , with m̂1(x) and m̂2(x) being the (continuous)

two-sided local linear kernel estimators with cross-validation bandwidths hCV
1 and hCV

2 ,

and where {e∗t} is a sequence of i.i.d. Gaussian errors with mean 0 and variance 1.

From the observed data (Yt, Xt), t = 1, · · · , T , we compute the test statistic L̂w and the

corresponding p-values from the empirical bootstrap distribution F ∗
w(u).

5.1. Univariate data analysis.

The data analysis focuses on closing values for seven stock indices from July, 1, 1988

to November 14, 2001. These indices are the FTSE 100 (United Kingdom), Dax 30 (Ger-

many), CAC 40 (France), Swiss Market Price (Switzerland), Toronto SE 300 (Canada),
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Table 3: Analysis of stock returns: p-value from the empirical bootstrap distribution F �
w(u).

Numbers indicated by ∗ (respectively ∗∗) refer to significance on the 0.1 (respectively 0.05)

level

Period FTSE 100 Dax 30 CAC 40 Swiss SE 300 Nikkei 225 S&P 500

1 0.83 0.54 0.78 0.06* 0.80 0.75 0.55

2 0.50 0.32 0.19 0.14 0.13 0.01** 0.85

3 0.13 0.90 0.76 0.18 0.15 0.16 0.65

4 0.78 0.44 0.88 0.03** 0.38 0.27 0.73

5 0.37 0.96 0.42 0.89 0.03** 0.08* 0.00**

6 0.79 0.64 0.44 0.76 0.55 0.17 0.57

7 0.95 0.53 0.60 0.99 0.59 0.44 0.84

Nikkei 225 Index (Japan) and the S&P 500 Index (United States). These data were anal-

ysed by Chen, Chiang and So (2003) and were taken from Data Stream International. For

each index It, we computed the daily stock-return series using the conventional definition,

that is Rt = 100 (log It− log It−1). Basic statistics on these indices may be found in Table

1 of Chen, Chiang and So (2003).

The aim of this section is to apply our test of continuity on different periods of time

for each return. We consider the following seven bi-annual periods of time: Period 1:

July, 1, 1988 to June, 29, 1990; Period 2: July, 2, 1990 to June, 30, 1992; Period 3:

July, 1, 1992 to June, 30, 1994; Period 4: July, 1, 1994 to June, 28, 1996; Period 5:

July, 1, 1996 to June, 30, 1998; Period 6: July, 1, 1998 to June, 30, 2000; Period 7:

July, 3, 2000 to November, 14, 2001.

Obtained p-values from the empirical bootstrap distribution of the 7 × 7 = 49 tests

based on L̂w. Values that are significant at a 0.1 (respectively 0.05) significance level are

indicated by ∗ (respectively ∗∗). A first observation is that the test based on L̂w gives some

illustrative conclusions. For example, the test rejects the null hypothesis for two periods

of the Swiss index. It does run in the same direction for the Japanese and the Canadian

indices, which contain several periods where the hypothesis of continuity is rejected. For

all periods of the UK, German and French index, this hypothesis is not rejected, meaning

that it is likely that there is no change of regime in these markets for the given period.
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5.2. Intermarket analysis.

As stock markets in different countries operate in different time zones, they have

different opening and closing times and it is interesting to study the effect of market

closing information flowing from a trading market to another. Some works such as Chen,

Chiang and So (2003) have showed that “the causal relationships have been dominated

by information running from the US market into the international markets, although a

minor feedback is found from the German and Japanese markets.”

Let Ik
t be the closing price of the market k at time t, and Ius

t−m be the closing price

of the S&P 500 Index at time t − m, where m denotes the delay between the closing

of each market (for instance m = 5 hours if k denotes the UK market). The sequence

of observations can then be written as {Ik
t , Ius

t+m, Ik
t+1, I

us
t+1+m, . . .} and, correspondingly,

the sequence of returns is {Rk
t , R

us
t+m, Rk

t+1, R
us
t+1+m, . . .}. The causal relationship from the

US market to the other markets indicates that the observation of {Rus
t+m−1} is a valuable

information to explain {Rk
t }. At the same time, nonsynchronous trading is very often

responsible for autocorrelation in index returns (see e.g. Lo and MacKinlay 1990). On

the basis of these econometric facts, our intermarket analysis will study the relationship

between Xt = Rus
t+m−1 and Yt = Rk

t − φRk
t−1, where φ is an autoregressive coefficient and

k denotes a market different from the US market.

In the following, we consider the nonparametric regression model (1) between Xt and

Yt, and we apply our test of discontinuity on this model. Namely, the alternative of the

test can be written

Rk
t − φRk

t−1 =

 m1(Rus
t+m−1) + σ1(Rus

t+m−1)et if Rus
t+m−1 � δ

m2(Rus
t+m−1) + σ2(Rus

t+m−1)et if Rus
t+m−1 > δ ,

where {et} is a sequence of Gaussian errors and δ is some threshold parameter. The

alternative then models two different regimes in response to bad news (Rus
t+m−1 � δ)

or good news (Rus
t+m−1 > δ). In other words, the test allows to check an asymmetrical

reaction to the S&P 500 Index. Such asymmetry would mean that a national market

behaves differently after negative news from US than after positive news. Note that this

alternative is a generalisation of some parametric nonlinear models already proposed in

the literature (see e.g. Chen, Chiang and So 2003).

In our experiment, we again divide the data into seven periods of time. Table 4 shows

the p-values from the empirical bootstrap distribution. The test based on L̂w gives some

informative conclusions, for example, the CAC 40 index: a significant value is shown
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Table 4: Intermarket analysis of stock returns per period: estimation of the autoregressive

coefficient (φ̂) (first column) and the empirical p-value (p∗) for the test of asymmetry based

on L̂w (second column). Numbers indicated by ∗ (respectively ∗∗) refer to significance on

the 0.1 (respectively 0.05) level

FTSE 100 Dax 30 CAC 40 Swiss SE 300 Nikkei 225

φ̂ p∗ φ̂ p∗ φ̂ p∗ φ̂ p∗ φ̂ p∗ φ̂ p∗

1 0.09 0.86 0.09 0.94 -0.03 0.95 0.07 0.06∗ 0.05 0.95 0.15 0.86

2 0.03 0.85 0.04 0.88 -0.02 0.35 0.03 0.16 -0.03 0.96 0.32 0.04∗∗

3 0.07 0.74 0.07 0.76 0.07 0.55 0.09 0.52 0.13 0.48 0.26 0.01∗∗

4 0.02 0.15 0.02 0.08∗∗ -0.01 0.95 -0.04 0.38 -0.02 0.54 0.17 0.36

5 0.13 0.56 0.14 0.41 -0.07 0.03∗∗ 0.02 0.10∗ 0.05 0.47 0.19 0.02∗∗

6 0.07 0.81 0.07 0.81 0.07 0.24 0.09 0.16 0.07 0.14 0.08 0.01∗∗

7 -0.02 0.69 -0.02 0.53 -0.01 0.60 -0.04 0.79 0.01 0.62 0.04 0.76

during period 5. This is also the case for period 4 of Dax 30. Our test concludes that

the SE 300 index does not reject while the alternative model seems more appropriate to

model the Nikkei 225 index. There are also some interesting conclusions from the test,

for instance at period 5 for the FTSE 100 and the Dax 30 indices. In these two cases,

the empirical p-value of the test based on L̂w is larger than 0.4. Overall, the test statistic

based on L̂w seems quite illustrative.

6. Conclusions

The form considered in (7) is of a very simple nature, and is inspired by the simplest

statistics for detecting change-points in a regression function: squared differences of es-

timated right-hand and left-hand limits. Instead of looking at squared differences one

could also look at absolute differences, as is done in the i.i.d. regression case (see e.g.

Grégoire and Hamrouni 2002). Also, instead of taking the sum of the squared differences

one might consider taking for example, the maximum of these differences, etc. Further

research is needed here for identifying the most appropriate test statistics.

An important remaining issue in this nonparametric testing procedure is the choice of

the grid of bandwidth values. Although we proposed in Section 4 a data-driven way to

choose this grid, we still need to subjectively choose the geometric factor in the grid. The
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choice of this factor remains unsolved theoretically. Of course, if computational costs,

are of no concern, one could simply choose this factor as close as possible to one to have

a very fine grid. Note that in choosing the grid we reply on a cross-validation criterion

for the estimation task. This may not be the most appropriate criterion to consider in a

testing context, but the important question is what would be a good criterion here.

In Section 5 we illustrated the use of the methods on stock market data. Note that

many other economic applications would be worth considering, such as unemployment

rate (Koop and Potter 1999) to name but a few.

Appendix

This appendix lists the necessary assumptions for the establishment and the proof of

the main results given in Sections 2 and 3.

A.1. Assumptions

Assumption A.1. (i) Assume that the process (Xt, Yt) is strictly stationary and α-mixing

with mixing coefficient α(t) defined by

α(t) = sup{|P (A ∩ B) − P (A)P (B)| : A ∈ Ωs
1, B ∈ Ω∞

s+t} ≤ Cααt

for all s, t ≥ 1, where 0 < Cα < ∞ and 0 < α < 1 are constants, and Ωj
i denotes the σ-field

generated by {(Xt, Yt) : i ≤ t ≤ j}.
(ii) Assume that P (0 < mint≥1 σ(Xt) ≤ maxt≥1 σ(Xt) < ∞) = 1 and that for all t ≥ 1 and

1 ≤ i ≤ 4,

P
(
E[ei

t|Ωt−1] = µi

)
= 1,

where µ1 = µ3 = 0, µ2 = 1 and µ4 is a real constant, and Ωt = σ{(Xs+1, Ys) : 1 ≤ s ≤ t} is a

sequence of σ-fields generated by {(Xs+1, Ys) : 1 ≤ s ≤ t}.
(iii) Let ζt = εt or ηt. In addition, E

[∣∣∣ζi1
t1

ζi2
t2
· ζil

tl

∣∣∣1+δ2
]

< ∞ for all t1, t2, · · · , tl and some

small constants δi > 0, where 2 ≤ l ≤ 4 is an integer, 0 ≤ ij ≤ 4 and
∑l

j=1 ij ≤ 8.

Assumption A.2. (i) each mi(x) has two continuous derivatives at each x ∈ [−1, 1]d − {τ}
for some τ ∈ IR.

(ii) Assume that m
(j)
i− (y) = limx↑y m

(j)
i (x) and m

(j)
i+ (y) = limx↓y m

(j)
i (x) exist for all i = 1, 2

and j = 0, 1, 2.

(iii) Let fs1,s2,··· ,sl
(·) be the joint probability density of (X1+s1 , . . . , X1+sl

) (1 ≤ l ≤ 4).

Assume that each fs1,s2,··· ,sl
(x) is twice differentiable in x ∈ IRld = (−∞,∞)ld for 1 ≤ l ≤ 4.
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Throughout this paper, we will simply use f(x1, · · · , xl) to denote the joint density function of

(X1+s1 , . . . , X1+sl
) for simplicity of notation.

Assumption A.3. (i) For each i = 1 or 2, the kernel function Ki±(x) =
∏d

r=1 ki±(xr).

Assume that the kernel function ki− has the support interval [−1, 0] and satisfies ki−(−1) =

ki−(0) = 0 and
∫ 0
−1 |u|j |ki+(u)|ldu < ∞ for i = 1, 2, j = 0, 1, 2 and l = 1, 2.

(ii) For each i, the first derivative, k
(1)
i− (·), of ki−(·) is continuous on [−1, 0] and k

(1)
i− (0) < 0.

(iii) For each i = 1 or 2, the kernel function ki+ defined by ki+(xr) = ki−(−xr) for all

1 ≤ r ≤ d satisfies the corresponding conditions.

(iv) hi → 0 and Thd
i → ∞ as T → ∞ and for i = 1, 2. In addition, there is an absolute

constant 0 < c1 < ∞ such that limT→∞ h2
h1

= c1.

Assumption A.4. Assume that π(·) is a bounded probability density function with compact

support C(π) in IRd. In addition, infµ∈C(π) π(µ) ≥ cmin(π) > 0 for some constant cmin(π) > 0.

Assumption A.5. (i) For each t = 1, 2, . . . , T , generate Y ∗
t = m̂1(Xt) +

√
m̂2(Xt)e∗t under

H0, where {e∗t } is a sequence of independent and identically distributed random samples drawn

from a pre-specified distribution with E [e∗t ] = E
[
e∗3t

]
= 0, E

[
e∗2t

]
= 1 and E

[
e∗4t

]
= µ4 < ∞,

and m̂i(·) for i = 1, 2 are defined by either m̂i+(·) or m̂i−(·).
(ii) Let m∗

i (x) for i = 1, 2 be the corresponding continuous versions of mi(x) under H0.

Define ε∗t =
√

m∗
2(Xt)e∗t , η∗t = m∗

2(Xt)[e∗2t − 1], and ζ∗t = ε∗t or η∗t . Assume that

E

[∣∣∣ζ∗i1t1
ζ∗i2t2

· ζ∗iltl

∣∣∣1+β∗
]

< ∞

for all t1, t2, · · · , tl and some small constants α∗ > 0 and β∗ > 0, where 2 ≤ l ≤ 4 is an integer,

0 ≤ ij ≤ 4 and
∑l

j=1 ij ≤ 8.

Assumption A.6. Let HiT =
{
hi = hi maxa

k
i : hi ≥ hi min, k = 0, 1, 2, . . . , JiT − 1

}
, where

0 < ai < 1, 0 < hi min = ci minT
−γi < hi max = ci max (loglog(T ))−

1
2d , in which 0 < γi < 1

3 and

0 < ci min, ci max < ∞ are constants.

Assumptions A.1–A.6 are quite reasonable in this kind of problem. A detailed justification

is relegated to Gao, Gijbels and Van Bellegem (2006).

A.2. A Technical Lemma. The following lemma is necessary for the proof of the main results

stated in Section 2.

Before stating the next lemma, we define the following notation. Let ξt = (et, X
τ
t ). For

22



Acc
ep

te
d m

an
usc

rip
t 

i = 1, 2 and j = 0, 1, 2,

lji± =
d∏

r=1

[∫ 1

−1
uj

rki±(ur)dur

]
, Li± = l2i±l0i± − l21i±,

Wi±(u) =
1

Li±
(l2i± − l1i± u)Ki±(u), Wi(u) = Wi+(u) − Wi−(u),

ai(Xs, Xt) = ai(Xs, Xt; h) =
1

Thd
1

∫
Wi

(
x − Xs

hi

)
Wi

(
x − Xt

hi

)
π(x)dx,

φst = φ(ξs, ξt) = a1(Xs, Xt)εsεt + a2(Xs, Xt)ηsηt,

N0T (h) =
T∑

s=1

T∑
t=1

φst and L̃wT (h) =
N0T (h) − E[N0T (h)]√

Var[N0T (h)]
, (A.1)

where h = (h1, h2) is as defined before and the symbol “
∫

” is used to denote either a univariate

or multivariate integral. In the rest of this paper, we may use N0T as the abbreviation of N0T (h)

when there is no notational confusion.

Recall the definition of M1T (x) in (10) and the notation in (A.1). Define

M1T (x) =
1

Thd
1

T∑
t=1

T∑
s=1

W1

(
x − Xs

h1

)
W1

(
x − Xt

h1

)
YsYt

+
1

Thd
2

T∑
t=1

T∑
s=1

W2

(
x − Xs

h2

)
W2

(
x − Xt

h2

)
ε2sε

2
t ,

N1T =
∫

M1T (x)π(x)dx =
T∑

t=1

T∑
s=1

a1(Xs, Xt)YsYt +
T∑

t=1

T∑
s=1

a2(Xs, Xt)ε2sε
2
t ,

LwT (h) =
N1T − E[N1T ]√

Var[N1T ]
,

M̃1T (x) =
1

Thd
1

(
T∑

t=1

W1

(
x − Xt

h1

)
εt

)2

+
1

Thd
2

(
T∑

t=1

W2

(
x − Xt

h1

)
ηt

)2

,

M̃2T (x) =
1

Thd
1

(
T∑

t=1

W1

(
x − Xt

h1

)
m1(Xt)

)2

+
1

Thd
2

(
T∑

t=1

W2

(
x − Xt

h2

)
m2(Xt)

)2

,

Ñ1T =
∫

M̃1T (x)π(x)dx and Ñ2T =
∫

M̃2T (x)π(x)dx. (A.2)

Then we have the following lemma.

Lemma A.1. (i) Under Assumptions A.1–A.4, we have as T → ∞

max
h∈HT

L̂wT (h) = max
h∈HT

LwT (h) + oP (1). (A.3)

(ii) In addition, under H0,

max
h∈HT

LwT (h) = max
h∈HT

L̃wT (h) + oP (1). (A.4)
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(iii) Thus, we have under H0

max
h∈HT

L̂wT (h) = max
h∈HT

L̃wT (h) + oP (1). (A.5)

Proof: As the proof is quite technical, it is relegated to the proof of Lemma A.4 of Gao,

Gijbels and Van Bellegem (2006).

A.3. Proof of Theorem 2.1

Proof of Theorem 2.1: To prove Theorem 2.1, we first show that as T → ∞

N0T (h) − µ

σh
→ N(0, 1), (A.6)

where µ = E[N0T (h)] and σ2
h = Var[N0T (h)] = Chd

1 for some constant C > 0.

To apply Lemma A.1 of Gao and King (2004), let ξt = (εt, ηt, Xt) and φ(ξs, ξt) = φst as

defined in (A.1). Let MT and NT be defined as in the Lemma A.1. We now verify only the

following condition listed in the Lemma A.2,

max{MT , NT }
σ2

h

→ 0 as T → ∞ (A.7)

for MT1, MT21, MT3, MT51, MT52 and MT6. The others follow similarly.

For the MT part, one justifies only

T 2M
1

1+δ

T1

σ2
h

→ 0 as T → ∞.

The others follow similarly.

Without any confusion in this proof, let ast = a1(Xs, Xt) and ψst = astεsεt throughout this

proof. It follows that for some 0 < δ < 1 and 1 ≤ i < j < k ≤ T

E
[
|ψikψjk|1+δ

]
= E

[
|εiεjε

2
kaikajk|1+δ

]
≤

{
E
[
|εiεjε

2
k|2(1+δ)(1+δ2)

]} 1
2(1+δ2)

{
E
[
|aijaik|(1+δ)(1+δ1)

]} 1
(1+δ1)

≤ Cε

{
E
[
|aijaik|(1+δ)(1+δ1)

]} 1
(1+δ1)

, (A.8)

using Assumption A.1(iii), where Cε is a constant.

Since 0 < δ1 < 1 and 0 < δ2 < 1 satisfy 1
1+δ1

+ 1
2(1+δ2) = 1 and 1+δ

3−δ < δ1 < 1−δ
1+δ , we have

that

1 < ζ1 = (1 + δ)(1 + δ2) < 2 and 1 < ζ2 = (1 + δ)(1 + δ1) < 2.
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Similarly, we have

aikajk =
1

T 2h2d
1

∫ ∫
W1

(
x − Xi

h1

)
W1

(
x − Xk

h1

)
W1

(
y − Xj

h1

)
W1

(
y − Xk

h1

)
π(x)π(y)dxdy

= T−2

∫ ∫
W1(u)W1

(
u +

Xi − Xk

h1

)
W1(v)W1

(
v +

Xj − Xk

h1

)
× π(Xi + uh)π(Xj + vh)dudv ≡ bijk + δijk,

where bijk = T−2π(Xi)π(Xj)L1

(
Xi−Xk

h1

)
L1

(
Xj−Xk

h1

)
and δijk = aikajk − bijk is the remainder

term.

For convenience, we use ζ = ζ2. For the given 1 < ζ < 2 and T sufficiently large, we can

show that

M
(1+δ1)
T11 = E |aikajk|ζ = (1 + o(1))E |bijk|ζ

= T−2ζ

∫ ∫ ∫
|π(u)π(v)|ζ

∣∣∣∣L1

(
u − w

h

)∣∣∣∣ζ ∣∣∣∣L1

(
v − w

h

)∣∣∣∣ζ f(u, v, w)dudvdw

= T−2ζh2d
1

∫ ∫ ∫
|π(z + xh)π(z + yh)|ζ |L1(x)L1(y)|ζf(z + xh, z + yh, z)dxdydz

= CpT
−2ζh2d

1 (1 + o(1)) (A.9)

using Assumptions A.2–A.4, where Cp is a constant and f(u, v, w) is the joint density function

of (X1, X1+s1 , X1+s2).

Thus, as T → ∞

T 2M
1

1+δ

T11

σ2
h

= C
T 2
(
T−2ζh2d

1

)1/ζ

hd
1

= h
(2−ζ)d

ζ

1 → 0. (A.10)

Hence, (A.8)–(A.10) show that (A.7) holds for the first part of MT1. The proof for the

second part of MT1 follows similarly.

Similarly to (A.9), we have that as T → ∞

MT3 = E
[
a2

ika
2
jkε

2
i ε

2
jε

4
k

]
= (Th1)−4h4d

1 (µ4 + 1)

× E

[
π2(Xi)π2(Xj)L2

1

(
Xi − Xk

h1

)
L2

1

(
Xj − Xk

h1

)
m2(Xi)m2(Xj)m2

2(Xk)
]

= T−4(µ4 + 1)
∫ ∫ ∫

π2(x)π2(y)L2
1

(
x − z

h

)
L2

1

(
y − z

h

)
m2(x)m2(y)m2

2(z)

× f(x, y, z) dxdydz = T−4h2d
1 (µ4 + 1)

×
∫ ∫ ∫

π2(uh + w)π2(vh + w)L2
1(u)L2

1(v)m2(uh + w)m2(vh + w)m2
2(w)

× dudvdw = CT−4h2d
1 , (A.11)

using Assumptions A.2–A.4, where µ4 = E[e4
t ] − 1.
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This implies that as T → ∞

T 3/2M
1
2
T3

σ2
h

= C
T 3/2T−2hd

1

hd
1

= CT−1/2 → 0. (A.12)

Thus, (A.11) and (A.12) now show that (A.7) holds for MT3. It follows from the structure

of {aij} that (A.7) holds automatically for MT51, MT52 and MT6, since E[εi|Xi] = 0.

We now start to prove that (A.7) holds for MT21. Similarly to (A.8), it follows that for some

0 < δ < 1 and 1 ≤ i < j < k ≤ T

MT21 = E
[
|ψikψjk|2(1+δ)

]
= E

[
|εiεjε

2
kaikajk|2(1+δ)

]
≤

{
E
[
|εiεjε

2
k|2(1+δ)(1+δ3)

]} 1
1+δ3

{
E
[
|aijaik|2(1+δ)(1+δ4)

]} 1
(1+δ4)

,

where 0 < δ3 < 1 and 0 < δ4 < 1 satisfy 1
1+δ3

+ 1
1+δ4

= 1,

1 < ζ3 = (1 + δ)(1 + δ3) < 2 and 1 < ζ4 = (1 + δ)(1 + δ4) < 2.

Analogously to (A.9) and (A.10), we obtain that as T → ∞

T 3/2M
1

2(1+δ)

T21

σ2
h

= C
T 3/2T−2

(
h2d

1

)1/(2ζ4)

hd
1

= C
1

T 1/2h
(1−ζ−1

4 )d
1

→ 0

using the fact that limT→∞ Thd
1 = ∞ and (1 − ζ−1

4 ) < 1
2 .

This finally completes the proof of (A.7) for MT21 and thus (A.7) holds for the first part

of {φst}. Similarly, one can show that (A.7) holds for the second part of {φst}. Thus, we have

shown that (A.6) holds under H0. The proof of Theorem 2.1 therefore follows from (A.6) and

Lemma A.1(iii).

A.4 More Technical Lemmas

Before stating the necessary lemmas for the proof of the results given in Section 3, we

introduce the following notation: Let HT = H1T × H2T , JT = J1T · J2T ,

M∗
1T (x) =

1
Thd

1

T∑
t=1

T∑
s=1

W1

(
x − Xs

h1

)
W1

(
x − Xt

h1

)
Y �

s Y �
t

+
1

Thd
2

T∑
t=1

T∑
s=1

W2

(
x − Xs

h2

)
W2

(
x − Xt

h2

)
ε∗2s ε∗2t ,

N∗
1T =

∫
M∗

1T (x)π(x)dx

=
T∑

t=1

T∑
s=1

a1(Xs, Xt)Y ∗
s Y ∗

t +
T∑

t=1

T∑
s=1

a2(Xs, Xt)ε∗2s ε∗2t ,
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N∗
0T =

T∑
t=1

T∑
s=1

a1(Xs, Xt)ε∗sε
∗
t +

T∑
t=1

T∑
s=1

a2(Xs, Xt)η∗sη
∗
t ,

L∗
1T (h) =

N∗
1T − E[N∗

1T ]√
Var[N∗

1T ]
and L∗

0T (h) =
N∗

0T − E[N0T ]√
Var[N0T ]

. (A.13)

We also define L∗
wT (h) as the corresponding version of L̂wT (h) with {Yt : t ≥ 1} replaced by

{Y ∗
t : t ≥ 1}. We now need the following lemmas to show Theorems 3.1–3.3.

Lemma A.2. Suppose that Assumptions A.1–A.6 hold. Then as T → ∞

max
h∈HT

L∗
wT (h) = max

h∈HT

L∗
1T (h) + oP (1), (A.14)

max
h∈HT

L∗
1T (h) = max

h∈HT

L∗
0T (h) + oP (1) under H0. (A.15)

Proof: The proof is The proof of (A.14) is very similar to that of Lemma A.4(i) with the

replacement of {Yt} by {Y ∗
t }. In this case, the detailed proof is simpler because {e∗t } is now a

sequence of independent and identically distributed random samples, and independent of {Xs}
for all 1 ≤ s ≤ T .

To prove (A.15), we need only to follow the proof of Lemma A.4(ii) by noting that under

H0,

E[N∗
1T ] = E[N0T ] (1 + o(1)) and Var[N∗

1T ] = Var[N0T ] (1 + o(1)). (A.16)

The proof of Lemma A.2 is therefore completed.

Lemma A.3. Let Assumptions A.1–A.6 hold. Then maxh∈HT
L∗

wT (h) and maxh∈HT
L̃wT (h)

have identical asymptotic distributions under H0.

Proof: As the proof is extremely technical, it is relegated to the proof of Lemma A.6 of

Gao, Gijbels and Van Bellegem (2006).

Lemma A.4. Suppose that Assumptions A.1–A.6 hold. Then for any x ≥ 0, h ∈ HT and

sufficiently large T

P (L∗
0T (h) > x) ≤ exp

(
−x2

4

)
.

Proof: As the proof is straightforward, it is available from the proof of Lemma A.7 of Gao,

Gijbels and Van Bellegem (2006).

Before we present the next lemma, let us define, for 0 < α < 1, l∗α to be the 1 − α quantile

of maxh∈HT
L∗

0T (h).

Lemma A.5. Suppose that Assumptions A.1–A.6 hold. Then for large enough T

l∗α ≤ 2
√

log(JT ) − log(α).
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Proof: The proof is similar to that of Lemma 12 of Horowitz and Spokoiny (2001).

Lemma A.6. Suppose that Assumptions A.1–A.6 hold, and

lim
n→∞P

(
Ñ2T

h
d/2
1

≥ C0 l̃
∗
α

)
= 1 (A.17)

for some h ∈ HT , where C0 is some positive constant and l̃∗α = max
(

l∗α,
√

2 log(JT ) +
√

2 log(JT )
)
.

Then the adaptive test statistic L̂ defined in (19) satisfies

lim
T→∞

P (L̂w > lα) = 1.

Proof: The proof is available from that of Lemma A.9 of Gao, Gijbels and Van Bellegem

(2006).

A.5. Proofs of Theorems 3.1–3.3

Proof of Theorem 3.1: The proof follows directly from Lemmas A.1(iii), A.2 and A.3.

Proof of Theorem 3.2: It follows from the definition of Ñ2T in (A.2) that for sufficiently large

T ,

Ñ2T = (1 + oP (1))
∫

· · ·
∫

ρ(u) π(u) du ≥ (1 + oP (1))
∫ τ1+ε

τ1−ε
· · ·

∫ τd+ε

τd−ε
ρ(u) π(u) du

≥ (1 + oP (1)) min
u∈Q d

i=1(τi−ε,τi+ε)
ρ(u) · cmin(π) · 2dεd (A.18)

for ε = ε1 or ε2. Equation (A.17) then follows from (21), (A.18) with ε = ε1 and the fact that

both

lim
T→∞

1
Thd

1

Ñ2T > 0 and then lim
T→∞

Ñ2T

h
d/2
1

= ∞ (A.19)

hold in probability.

Proof of Theorem 3.3: Since equation (A.17) follows from (22), (A.18) with ε = ε2 and the

choice of h1max = c1max

√
(loglogT )−

1
d , the proof of Theorem 3.3 is completed.
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