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Distribution free specification tests of con-
ditional models

MIGUEL A. DELGADO and WINFRIED STUTE
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128, Getafe 28903, Madrid, Spain
E-mail: miguelangel.delgado@uc3m.es
Mathematical Institute, University of Giessen, Arndtstr. 2, Germany.
E-mail: winfried.stute@math.uni-giessen.de

This article proposes a class of asymptotically distribution free specification tests for
parametric conditional distributions. These tests are based on a martingale trans-
form of a proper sequential empirical process of conditionally transformed data.
Standard continuous functionals of this martingale provide omnibus tests while lin-
ear combinations of the orthogonal components in its spectral representation form
a basis for directional tests. Finally, Neyman-type smooth tests, a compromise
between directional and omnibus tests, are discussed. As a special example we
study in detail the construction of directional tests for the null hypothesis of con-
ditional normality versus heteroskedastic contiguous alternatives. A small Monte
Carlo study shows that our tests attain the nominal level already for small sample
sizes.

Keywords: conditional models; martingale transformation; sequential empirical
process; specification tests

Running title: Specification Tests

1 Introduction

The correct specification of a statistical model is important for several rea-
sons. First, it provides a convenient framework to describe and understand,
for example, the dynamics of a time series or a causal relation between
independent and dependent variables in regression. In each case it turns
out that conditional quantities like autoregressive functions or conditional
distributions are of major interest, while marginal distributions of explana-
tory variables may be considered as parametric or nonparametric nuisance
parameter-functions. The choice of the model has some consequences on
the estimation of unknown parameters and hence on the interpretation of
data or the prediction of future values of a dependent variable. The validity
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of statistical inferences based on conditional maximum likelihood principle,
e.g., relies on the correct specification of the conditional distribution model.
In particular, the popular Lagrange Multiplier and Likelihood Ratio tests on
parameter restrictions are invalid under misspecification, though robust but
inefficient inferences are possible. However, classical procedures are opti-
mal under a correct specification. Applications using conditional maximum
likelihood are available in abundant supply in economics, as well as in any
other disciplines where statistical inference is indispensable. The correct
specification of conditional distributions is especially crucial in microecono-
metrics and biostatistics, where parameter identification is sustained by a
correct specification. In these cases, parameter estimates are inconsistent
under misspecification. See the classical monograph by Maddala (1983) on
limited-dependent and qualitative variables models, Cameron and Trivedi
(1998) for count data models, or Lancaster (1990) for duration models.

In the simple case of independent identically distributed observations the
history of goodness-of-fit tests started with the classical χ2-test for cell prob-
abilities. For continuous variables most of the procedures, like Kolmogorov-
Smirnov and Cramér-von Mises tests, are based on proper functionals of the
empirical process. When the model to be tested is composite, the need to
estimate unknown parameters has some impact on the distributional char-
acter under the null model so that available tables of critical values are no
longer valid. See the work of Gikhman (1953) and Kac, Kiefer and Wolfowitz
(1955) for some early fundamental contributions in this context. A formal
derivation of the limit process is due to Durbin (1973) and Neuhaus (1973,
1976), among others. For practical purposes, critical values of the tests can
be obtained either through resampling or through the orthogonal compo-
nents in the spectral representation of the underlying empirical process, as
suggested by Durbin, Knott and Taylor (1975).

A different approach was initiated by Khmaladze (1981), who proposed
to transform the empirical process to an appropriate martingale, which in
distribution may then be approximated by a time-transformed Brownian
Motion. As a consequence, classical functionals of these processes like the
Kolmogorov-Smirnov or Cramér-von Mises test statistics become asymptot-
ically distribution-free so that existing tables can be used.

In this paper we are interested, for a multivariate observation (X,Y ),
in the conditional distribution of Y given X = x. For the related question
of testing just the conditional mean and not the whole conditional distribu-
tional structure, the literature is much more elaborate. Härdle and Mammen
(1993) were among the first to compare parametric and nonparametric fits.
These tests require some smoothing to the effect that the power of these

2



Acc
ep

te
d m

an
usc

rip
t 

tests may depend on the choice of the smoothing parameter. Stute (1997)
investigated so-called integrated regression function (or cusum) processes
which avoid smoothing and at the same time allow for a principal compo-
nent analysis. If we replace (in our notation) Y by indicators 1{Y ≤y}, these
approaches lead to tests of conditional probability models and may be found
in Andrews (1997). In particular he investigated the Kolmogorov-Smirnov
test. Due to the complicated distributional character of the test statistic, a
bootstrap approximation was proposed and studied. The martingale trans-
formation of the cusum process for fixed design and linear regression is due
to Brown, Durbin and Evans (1975). The random design case with a pos-
sibly nonlinear regression function has been dealt with in Stute, Thies and
Zhu (1998), while applications to time series and Generalized Linear Models
may be found in Koul and Stute (1999) and Stute and Zhu (2002). See
also Nikabadze and Stute (1997) and Khmaladze and Koul (2004). Zheng
(2000) has extended the smoothing approach to specification tests of condi-
tional distributions, while Bai (2003) has applied Khmaladze’s martingale
approach to tests of the marginal distribution of time series innovations.

To motivate the approach of the present paper we recall a fundamental
result due to Rosenblatt (1952). Namely, let (X,Y ) be a bivariate random
vector with an unknown continuous distribution function F . Denote with
FX the marginal distribution function of X and let FY |X(y|x) be the condi-
tional distribution function of Y given X = x evaluated at y. Given FX , F
is uniquely determined through FY |X and vice versa.

In nonparametric testing for F, it is known that tests based on the em-
pirical distribution function are no longer distribution-free. In this context,
Rosenblatt (1952) used FX and FY |X to introduce a transformation T =
T (X,Y ) = (U, V ) of (X,Y ) , which maps (X,Y ) into a vector (U, V ) such
that U and V are independent and uniformly distributed on [0,1]. Just put
U = FX(X) and V = FY |X(Y |X). It is easy to recover (X,Y ) from (U, V ).
Actually, we have with probability one (X,Y ) = (F−1

X (U), F−1
Y |X(V |F−1

X (U)),
where G−1 denotes the quantile function of a distribution function G. The
transformation T can be extended to higher dimensions, but in this paper,
for most of the time, we shall stick to the bivariate case. We rather study
the important situation when X = Ztδ0, for a p×1 random vector Z and an
unknown parameter vector δ0, so that the multidimensionality of the model
enters through a proper projection of a random vector Z. The extension
to the case where X = m (Z, δ0) for a suitably smooth m is routine. These
so called dimension reducing models are popular in applied fields and nat-
urally lead to an input-output analysis in which, at an intermediate step,
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the independent variable is univariate. This is relevant in many economet-
ric applications, where one assumes a regression model with innovations
independent of the explanatory variables, e.g., limited-dependent variable
models.

The Rosenblatt transform T constitutes the extension of the transforma-
tion U = FX(X), which is basic in the analysis of univariate data and leads
to many distribution-free procedures based on ranks or Kolmogorov-Smirnov
and Cramér-von Mises discrepancies. Since ordering is unavailable in the
multivariate case we propose to order the inputs through the U ’s treating
the V ’s as the associated concomitants. This leads to a sequential version
of an empirical process based on concomitants. Its statistical analysis will
be the focus of this paper.

To be more precise, assume that we observe a sample of independent
identically distributed data with the same distribution as (X,Y ) , say
(X1, Y1) , . . . , (Xn, Yn). Set

(Ui, Vi) = T (Xi, Yi) , 1 ≤ i ≤ n,

and consider the associated uniform empirical distribution function

Gn (u, v) :=
1
n

n∑
i=1

1{Ui≤u}1{Vi≤v} for 0 ≤ u, v ≤ 1.

Here 1A is the indicator function of the event A. The empirical process

αn (u, v) :=
√

n [Gn (u, v) − uv] , for 0 ≤ u, v ≤ 1,

is a random element in the Skorokhod space D[0, 1]2, endowed with a proper
topology. See, for example, Straf (1971), Neuhaus (1971) and Bickel and
Wichura (1971). Note that the distribution of αn is free of F . Throughout
this paper we shall denote with “−→d ” weak convergence or convergence
in distribution. It is then well known that in D[0, 1]2 we have

αn −→d B1, (1.1)

where B1 is a tied-down Brownian sheet. That is, a centered Gaussian
process on the unit square with covariance kernel

E
[
B1 (u1, v1) B1 (u2, v2)

]
= (u1 ∧ u2) · (v1 ∧ v2) − u1u2v1v2.

Functionals of the empirical process αn are distribution-free and form
a basis for goodness-of-fit tests of simple hypotheses on F. They are, how-
ever, unsuitable for testing the specification of FY |X when FX is unknown.

4



Acc
ep

te
d m

an
usc

rip
t 

In order to circumvent this problem we propose to substitute Ui by the
normalized ranks of the Xi’s:

Uni = FXn (Xi) , 1 ≤ i ≤ n,

with FXn denoting the empirical distribution function of X1, . . . ,Xn. This
leads to

Ḡn (u, v) =
1
n

n∑
i=1

1{Uni≤u}1{Vi≤v}

=
1
n

n∑
i=1

1{ i
n
≤u}1{V[i:n]≤v}

=
1
n

�nu�∑
i=1

1{V[i:n]≤v}.

Here, V[i:n] is the V −concomitant associated with Xi:n, that is, V[i:n] = Vj

if Xi:n = Xj with X1:n ≤ X2:n ≤ ... ≤ Xn:n denoting the set of X-order
statistics. The empirical process associated with Ḡn becomes

ᾱn (u, v) := n1/2
[
Ḡn (u, v) − u · v]

= n1/2
[
Ḡn (u, v) − v · Ḡn (u, 1)

]
+ v · �nu� − nu

n1/2
.

Since the second term is negligible, it is natural to consider

βn (u, v) := n1/2
[
Ḡn (u, v) − v · Ḡn (u, 1)

]
=

1
n1/2

�nu�∑
i=1

[
1{V[i:n]≤v} − v

]
,

which is the standard sequential empirical process of the concomitants. No-
tice that, since {V1, ..., Vn} and {X1, ...,Xn} are independent,

{
V[1:n], ..., V[n:n]

}
is a random permutation of {V1, ..., Vn}. That is,

{
V[1:n], ..., V[n:n]

}
are inde-

pendent identically distributed copies of V. It follows from classical empirical
process theory, see Shorack and Wellner (1986), that

βn −→d K in the space D[0, 1]2,

where K is the standard Kiefer process, a centered biparameter Gaussian
process on the unit square with covariance function

E [K (u1, v1) · K (u2, v2)] = (u1 ∧ u2) (v1 ∧ v2 − v1 · v2) .
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The Kiefer process can be represented in terms of the standard Brownian
sheet B, a zero mean Gaussian process with covariance function

E [B (u1, v1) · B (u2, v2)] = (u1 ∧ u2) (v1 ∧ v2) ,

namely as

K (u, v) = (1 − v)
∫ v

0

∫ u

0

1
1 − v̄

B (dū, dv̄) .

In practical situations, the conditional distribution functions FY |X are
parametrically modeled, and the hypothesis to be tested becomes

H0 : FY |X ∈ F .

Here, F is a given family of parametric conditional distribution functions

F =
{
FY |X,θ : θ ∈ Θ

}
,

and Θ ⊂ R
p is a proper parameter space. The alternative hypothesis may be

specified or not. Under H0, there exists a θ0 ∈ Θ such that FY |X = FY |X,θ0
,

and given a
√

n−consistent estimator of θ0, say θn, Ḡn (u, v) can be replaced
by

Ĝn (u, v) :=
1
n

�nu�∑
i=1

1{V̂n[i:n]≤v},

with V̂ni = FY |X,θn
(Yi|Xi) and V̂n[i:n] denoting the V̂ -concomitant of Xi:n.

The final version of βn then becomes

β̂n (u, v) := n1/2
[
Ĝn (u, v) − v · Ĝn (u, 1)

]
=

1
n1/2

�nu�∑
i=1

[
1{V̂n[i:n]≤v} − v

]
.

The asymptotic distribution of β̂n (1, ·) may be derived along the lines
of Durbin (1973), who as already mentioned established the weak limit of
the univariate empirical process with estimated parameters. The empirical
process β̂n (1, ·) has also been considered by Bai (2003) for testing Ḣ0 :
E
(
FY |X,θ0

(y|X)
)

= FY (y) for some θ0 ∈ Θ, with FY denoting the marginal
distribution function of Y. The resulting test has trivial power for testing
H0 in all directions where Ḣ0 is satisfied. Neuhaus (1971, 1976) extended
Durbin’s (1973) results to the multiparameter case and considered general
contiguous nonparametric alternatives. See also Bai (1994, 1996).

We derive the asymptotic distribution of β̂n under the type of regularity
conditions on F corresponding to Neuhaus (1976) and Durbin (1973):
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A1: Assume that ∂FY |X,θ (y|x) /∂θ exists for all (x, y) ∈ R
2 and each com-

ponent of the vector of functions

qθ (u, v) :=
∫ u

0

∂

∂θ
FY |X,θ

(
F−1

Y |X,θ

(
v|F−1

X (ū)
)∣∣∣F−1

X (ū)
)

dū

is continuous on [0, 1]2 × Θ.

Our first result is crucial for proving the weak convergence of β̂n. It
provides a convenient representation of β̂n in terms of βn and θn − θ0.

Theorem 1 Under H0 and for F satisfying A1, suppose that θn = θ0 +
OP

(
n−1/2

)
. Then we have

sup
(u,v)∈[0,1]2

∣∣∣β̂n (u, v) − βn (u, v) + qθ0 (u, v)t n1/2 (θn − θ0)
∣∣∣ = oP (1) .

In many situations θn admits a linear representation in terms of indepen-
dent identically distributed random variables, in which case we can identify
the limit of β̂n.

A2: Assume that

θn = θ0 +
1
n

n∑
i=1

�θ0 (Xi, Yi) + oP

(
n−1/2

)
,

where, for each x ∈ R and every θ ∈ Θ,∫
R

�θ (x, y) FY |X,θ (dy| x) = 0

and

sup
x∈R

∥∥∥∥∫
R

�θ (x, y) �θ (x, y)t FY |X,θ (dy| x)
∥∥∥∥ < ∞.

When F is given through its conditional densities fY |X,θ, say, a natural
estimator of θ0 is the conditional maximum likelihood estimator:

θn = arg max
θ∈Θ

n∑
i=1

ln fY |X,θ (Yi|Xi) .

In this case,

�θ (x, y) = I−1
θ

∂

∂θ
ln fY |X,θ (y|x)

7
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where

Iθ = E

[
∂

∂θ
ln fY |X,θ (Y |X)

∂

∂θt
ln fY |X,θ (Y |X)

]
is the “conditional” information matrix.

qθ (u, v) =
∫ v

0

∫ u

0

∂

∂θ
ln fY |X,θ

(
F−1

Y |X,θ

(
v̄|F−1

X (ū)
)∣∣∣F−1

X (ū)
)

dūdv̄

≡
∫ v

0

∫ u

0
ϕθ(ū, v̄)dūdv̄ (1.2)

The next result is a consequence of Theorem 1 and A2.

Corollary 1 Under the conditions in Theorem 1 and A2,

β̂n −→d β̂∞ in the space D[0, 1]2,

with

β̂∞ (u, v) = K (u, v)

−qθ0 (u, v)t ·
∫ 1

0

∫ 1

0
�θ0

(
F−1

X (ū) , F−1
Y |X,θ0

(
v̄|F−1

X (ū)
))

B (dū, dv̄) .

If an observation (X,Y,Z, . . .) is multivariate with more than two com-
ponents, the Rosenblatt transformation also works but requires, besides F
and FY |X , also the specifications of FZ|X,Y,.... Rather than this, we now
discuss the case when X = Ztδ0. Along with θn, let δn be a

√
n-consistent

estimator of δ0. For example we could take

(θn, δn) = arg max
(θ,δ)

n∑
i=1

ln fY |X,θ(Yi|ZT
i δ).

Consider the following modification of β̂n:

β̃n (u, v) :=
1

n1/2

�nu�∑
i=1

[
1{Ṽn[i:n]≤v} − v

]
≡ n1/2

[
G̃n(u, v) − vG̃n(u, 1)

]
,

where now Ṽn[i:n] is the i-th V̂ −concomitant with respect to the ordered
X̃n1, ..., X̃nn, where X̃ni = Zt

i δn is in place of Xi = Zt
i δ0. In this case the

need to estimate δ0 requires an additional correction in the expansion of the
associated G̃n.

For the sake of simplicity we only consider the case when θ and δ have
no coordinates in common. Otherwise the derivative needs to be taken only
with respect to the components of δ which do not appear in θ.

8
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Theorem 2 Under the conditions of Theorem 1, assume that FY |X,θ(y|x)
is also differentiable with respect to x and let δn and θn be

√
n− consistent

estimators of δ0 and θ0, respectively. Assume also that Z has finite second
moments. Then

sup
0≤u,v≤1

∣∣∣β̃n(u, v) − βn(u, v) + qθ0,δ0(u, v)tn1/2(θn − θ0)

+q1
θ0,δ0(u, v)tn1/2(δn − δ0)

∣∣∣ = oP (1) .

Here qθ0,δ0 is the q-function from before, but with FX(x) = P(Ztδ0 ≤ x) now
depending on the unknown δ0 and

q1
θ0,δ0(u, v) := E

[
1{FX(Ztδ0)≤u}Z

∂

∂x
FY |X,θ0

(
F−1

Y |X,θ0
(v|Ztδ0) |Ztδ0

)]
(1.3)

=
∫ u

0
r
(
F−1

X (ū)
) ∂

∂x
FY |X,θ0

(
F−1

Y |X,θ0

(
v|F−1

X (ū)
) |F−1

X (ū)
)

dū

with r(x) = E[Z|X = x] denoting the vector-valued regression function of Z
given X = Ztδ0 = x.

Typically, δn also admits a representation in terms of independent iden-
tically distributed random variables. We also obtain an analogue of Corol-
lary 1. Since, however, the limit process depends on unknown parameters,
the unknown FX and the model F , tests based on β̂n and β̃n are still not
(asymptotically) distribution-free.

The rest of the paper is organized as follows. The next section presents
a transformation of the sequential empirical process of estimated concomi-
tants, which converges in distribution to the standard biparameter Brownian
sheet. Hence, continuous functionals of this transformed process are suit-
able for testing composite hypotheses. Power considerations are studied in
Section 3, where we provide the limiting distribution of the transformed pro-
cess under contiguous alternatives converging to the null at the parametric
rate n−1/2. In this section, we also provide the spectral decomposition of
the transformed process and propose test statistics based on linear combi-
nations of the principal components. Furthermore we derive test statistics
consisting of the optimal combination of principal components, thus maxi-
mizing the power in the direction of a particular contiguous alternative. The
results of a Monte Carlo experiment are reported on in Section 4. Proofs
are postponed to the Appendix.
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2 Distribution free transformation of the sequen-
tial empirical process with estimated concomi-

tants

The martingale transformation of β̂n to be discussed now will turn out to
be a composition of two operators. In the first step we transform β̂n so
that in the limit the Kiefer process will be replaced by the Brownian sheet.
In the next step we shall apply a model dependent transformation which is
designed to give us distribution-free processes.

Now, as mentioned earlier, the Kiefer process can be represented in terms
of independent Gaussian increments, namely as a stochastic integral with
respect to a Brownian sheet:

K (u, v) = (1 − v)
∫ v

0

∫ u

0

1
1 − v̄

B (dū, dv̄) .

Inverting this last expression, we obtain

B = L0K,

where L0 is the linear operator defined as

L0m (u, v) = m (u, v)

−
∫ v

0

1
1 − v̄

∫ 1

v̄

∫ u

0
m (dũ, dṽ) dv̄,

for a generic function m : [0, 1]2 → R.
Hence, tests on simple hypotheses on FY |X can alternatively be based

on the transformed process

L0βn (u, v) = n1/2L0Ḡn(u, v) =
1

n1/2

�nu�∑
i=1

[
1{V[i:n]≤v} + log

[
1 − (

v ∧ V[i:n]

)]]
Note that this is the time-sequential version of the martingale part in the
Doob-Meyer decomposition of the uniform empirical process. Applying the
continuous mapping theorem and the weak convergence of βn, we have,
under H0,

L0βn −→d B in the space D[0, 1]2.

Similarly

L0β̂n(u, v) = n1/2L0Ĝn(u, v) =
1

n1/2

�nu�∑
i=1

[
1{V̂n[i:n]≤v} + log

[
1 − (v ∧ V̂n[i:n])

]]
,

10
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while for L0β̃n the V̂n[i:n] need to be replaced with Ṽn[i:n].
Assuming that the conditions in Corollary 1 are satisfied, then

L0β̂n −→d L0β̂∞,

with

L0β̂∞ (u, v) = B (u, v)−
∫ v

0

∫ u

0
hθ0 (ū, v̄)t dūdv̄ ·

∫ 1

0

∫ 1

0
�̄θ0 (ũ, ṽ) B (dũ, dṽ) ,

where
L0qθ0 (u, v) =

∫ v

0

∫ u

0
hθ0 (ū, v̄) dūdv̄

and
�̄θ(u, v) = �θ

(
F−1

X (u), F−1
Y |X,θ

(
v|F−1

X (u)
))

.

If, as in the case of the maximum likelihood estimator, see (1.2), qθ has
a Lebesgue density ϕθ, we have

hθ(u, v) = ϕθ(u, v) − 1
1 − v

∫ 1

v
ϕθ(u, v̄)dv̄. (2.1)

From the above representation of L0β̂n we see that K has been replaced by
B. Actually, unlike β̂∞, L0β̂∞ admits the same type of representation as
the limiting distribution of the standard biparameter empirical process with
estimated parameters. This fact suggests to apply the scanning innovation
approach proposed by Khmaladze (1988, 1993) in order to obtain an empir-
ical process converging in distribution to the biparameter Brownian sheet
under the null. For this, let us consider a family of measurable subsets,

S =
{

S(u,v) : (u, v) ∈ [0, 1]2
}

,

satisfying the following properties:

1. For every (u1, v1) , (u2, v2) ∈ [0, 1]2 , S(u1,v1) ⊂ S(u2,v2) or S(u2,v2) ⊂
S(u1,v1), that is, S is linearly ordered,

2. ∪(u,v)S(u, v) = [0, 1]2 and ∩(u,v)S(u, v) = ∅,
3. If S(ui,vi) ∈ S, i = 1, 2, .. then lim infn S(un,vn) ∈ S,

4. S(u1,v1)

∖
S(u2,v2) → S0 as (u1, v1) → (u2, v2) ,

11
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where S0 is a set with Lebesgue measure equal to zero.
Examples of sets satisfying these conditions are,

S = {[0, 1] × [0, v] , v ∈ [0, 1]} , (2.2)
S = {[0, v] × [0, v] , v ∈ [0, 1]} . (2.3)

For any particular family of sets S, let us define the matrix

Aθ (u, v) =
∫ ∫

S̄(u,v)
hθ (ū, v̄) hθ (ū, v̄)t dūdv̄,

where S̄(u, v) denotes the complement of S(u, v). The scanning innovation
of L0β̂∞ is given by (Lθ0 ◦ L0) β̂∞,where Lθ is the linear operator defined
as

Lθm (u, v) = m (u, v)

−
∫ v

0

∫ u

0
hθ (ū, v̄)t A−1

θ (ū, v̄)
∫ ∫

S̄(ū,v̄)

hθ (ũ, ṽ)m (dũ, dṽ) dūdv̄,

for a generic function m : [0, 1]2 → R.
Usually, as it will be the case in this paper, it is assumed that the matrix

Aθ0 (u, v) is nonsingular for (u, v) ∈ [0, 1)2, that is, that the components of
hθ0 are linearly independent in every interval [0, u] × [0, v] . However, there
are families of distributions where this condition is not fulfilled. In such a
situation A−1

θ (·, ·) is the generalized inverse of Aθ (·, ·) satisfying

A−1
θ (·, ·) [Aθ (·, ·) ξ] =

{
ξ if ξ ∈ Image (Aθ (·, ·))
0 otherwise.

Interestingly, the transformation provided by the operator Lθ is unique ir-
respective of the generalized inverse used, as proved by Nikabadze (1997).

The choice of the sets in (2.2) is very convenient from the computational
view point. In this case,

(Lθ ◦ L0) β̂n (u, v) = L0β̂n (u, v)

−
∫ v

0

∫ u

0
hθ (ū, v̄)t A−1

θ (v̄)
∫ 1

0

∫ 1

v̄
hθ (ũ, ṽ)L0β̂n (dũ, dṽ) dūdv̄,

where

Aθ (v) =
∫ 1

0

∫ 1

v
hθ (ū, v̄)hθ (ū, v̄)t dv̄dū

12
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only depends on v.
The following theorem provides the weak convergence of the transformed

sequential empirical process. Since in most examples Aθ is the null matrix
when u or v equal 1, we shall, in the following, restrict our processes to
[0, 1)2. The associated space D[0, 1)2 is endowed with the topology of Sko-
rokhod convergence on compact subsets of [0, 1)2. For a related discussion
of D[0,∞), see Pollard (1984).

Theorem 3 Under H0 and the conditions in Theorem 1,

(Lθ0 ◦ L0) β̂n −→d B in the space D[0, 1)2.

Since FX and θ0 are unknown, the transformation Lθ0 is unavailable in
practice and needs to be replaced by its data dependent analogue. For this,
put

L̂θnm (u, v) = m (u, v)

−
∫ v

0

∫ u

0
ĥθn (ū, v̄)t Â−1

θn
(ū, v̄)

∫ ∫
S̄(ū,v̄)

ĥθn(ũ, ṽ)m(dũ, dṽ)dūdv̄,

with
Âθ (u, v) =

∫ ∫
S̄(u,v)

ĥθ (ū, v̄) ĥθ (ū, v̄)t dūdv̄.

Here ĥθ is defined through

L0q̂θ(u, v) =
∫ v

0

∫ u

0
ĥθ(ū, v̄)dūdv̄

and q̂θ is defined as qθ, but with FX replaced with FXn.

Theorem 4 Under H0 and the conditions in Theorem 1,(
L̂θn ◦ L0

)
β̂n −→d B in the space D[0, 1)2.

Theorem 4 reveals that for the operators replacement of θ0 by θn has no
effect on the limit, in contrast to the processes βn and β̂n. See also Stute,
Thies and Zhu (1998).

Test statistics are based on continuous functionals of
(
L̂θn ◦ L0

)
β̂n. The

following Corollary is a straightforward consequence of Theorem 4 and the
continuous mapping theorem,

13
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Corollary 2 Under H0 and the conditions in Theorem 1,

Γ
((

L̂θn ◦ L0

)
β̂n

)
−→d Γ (B) ,

for any functional Γ on D[0, 1)2 being continuous at the sample paths of B.

Remark 1 The results of this section continue to hold in the situation of
Theorem 2. For this replace the function qθ by the function (qt

θ,δ, q
1t
θ,δ)

t.
Since q1

θ,δ is an integral, it may be estimated at parametric rates though
it contains the unknown regression function r. In fact, in view of (1.3),
q1
θ0,δ0

(u, v) can be estimated by,

q̂1
θn,δn

(u, v) =
1
n

n∑
i=1

1{F̃Xn(Zt
i δn)≤u}Zi

∂

∂x
FY |X,θn

(
F−1

Y |X,θn
(v|Zt

i δn) |Zt
i δn

)
,

whose increments are free of nonparametric components. Here, F̃Xn is the
sample distribution of Zt

i δn, i ≥ 1.

The Kolmogorov-Smirnov and Cramér-von Mises statistics pertain to
the functionals

Γ (f) = sup
0≤u,v<1

|f (u, v)| and Γ (f) =
∫ 1

0

∫ 1

0
f (u, v)2 dudv,

respectively, resulting in the test statistics

Kn = sup
0≤u,v<1

∣∣∣(L̂θn ◦ L0

)
β̂n(u, v)

∣∣∣
and

Cn =
∫ 1

0

∫ 1

0

∣∣∣(L̂θn ◦ L0

)
β̂n(u, v)

∣∣∣2 dudv,

respectively. Under H0 and the conditions in Corollary 1,

Kn −→d K∞ = sup
0≤u,v<1

|B(u, v)|

Cn −→d C∞ =
∫ 1

0

∫ 1

0
B(u, v)2dudv

in distribution. Table 1 provides some quantiles of K∞ and C∞. The distri-
bution of suprema for the two parameter Brownian Motion (K∞) has been

14
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Table 1: Critical values of C∞ and K∞

C∞ K∞
α = 0.10 0.53 2.21
α = 0.05 0.72 2.46
α = 0.01 1.18 3.03

tabulated by Brownrigg (2005). We have obtained the critical values of C∞
by simulation, using the spectral representation in (3.2).

From the computational viewpoint, it is more convenient to use the
asymptotically equivalent versions

K̂n = sup
1≤i,j≤n

∣∣∣∣(L̂θn ◦ L0

)
β̂n

(
i

n
, V̂nj

)∣∣∣∣
Ĉn =

1
n2

n∑
i=1

n∑
j=1

∣∣∣∣(L̂θn ◦ L0

)
β̂n

(
i

n
, V̂nj

)∣∣∣∣2 .

The resulting tests are omnibus, but power in particular directions can
be improved by using linear combinations of the principal components of(
L̂θn ◦ L0

)
β̂n, as will be discussed in the next section.

For the sets in (2.2), the transformation of β̂n can be written as(
L̂θn ◦ L0

)
β̂n (u, v) = n1/2

(
L̂θn ◦ L0

)
Ĝn(u, v)

=
1

n1/2

�nu�∑
i=1

[
1{V̂n[i:n]≤v} + log

[
1 −

(
v ∧ V̂n[i:n]

)]]

− n1/2

∫ v

0

 1
n

�nu�∑
i=1

ĥθn

(
i

n
, v̄

)t
 Â−1

θn
(v̄)

∫ 1

0

∫ 1

v̄
ĥθn(ũ, ṽ)L0Ĝn(dũ, dṽ)dv̄.

It may happen that the function ϕθ in (1.2) and hence hθ does not depend
on u:

ϕθ(u, v) = ϕθ(v) hθ(u, v) = hθ(v).

This may be the case, for example, when ϕ pertains to the maximum likeli-
hood estimator and F is the normal location-scale family. See Section 4 for
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details. In such a situation, ĥ = h and the transformation of β̂n becomes

(
L̂θn ◦ L0

)
β̂n(u, v) =

1
n1/2

�nu�∑
i=1

[
1{V̂n[i:n]≤v} + log

[
1 −

(
v ∧ V̂n[i:n]

)]]
− n1/2u

∫ v

0
hθn(v̄)Â−1

θn
(v̄)

∫ 1

v̄
hθn(ṽ)L0Ĝn(1, dṽ)dv̄.

Here

Âθ(v) =
∫ 1

v
hθ(v̄)hθ(v̄)tdv̄,

while the last double integral may be seen to be equal to

v∫
0

(
0

hθn (v̄)

)t

 1 − v̄
1∫̄
v

ϕθn (ṽ)t dṽ

1∫̄
v

ϕθn (ṽ) dṽ
1∫̄
v

ϕθn (ṽ) ϕθn (ṽ)t dṽ


−1

1∫̄
v

Ĝn (1, dṽ)

1∫̄
v

ϕθn (ṽ) Ĝn (1, dṽ)

 dv̄ =

1
n

n∑
i=1

(
1

ϕθn

(
V̂n[i:n]

))t v∧V̂n[i:n]∫
0

 1 − v̄
1∫̄
v

ϕθn (ṽ)t dṽ

1∫̄
v

ϕθn (ṽ) dṽ
1∫̄
v

ϕθn (ṽ)ϕθn (ṽ)t dṽ


−1(

0
hθn (v̄)

)
dv̄.

In our simulations the integrals were computed using numerical methods.
See Section 4.

3 Contiguous alternatives and directional tests

Consider the contiguous alternatives

A3:

H1n :
FY |X (dy|x)

FY |X,θ0
(dy| x)

= 1 +
tnθ0 (y, x)

n1/2
some θ0 ∈ Θ,

where tnθ : R
2 → R is such that∫

R

tnθ (y, x) FY |X,θ (dy| x) = 0 and tnθ → tθ as n → ∞ in L2

for each x ∈ R and all θ ∈ Θ.
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The restriction on tnθ allows modeling particular departures from the null
hypothesis, which are properly defined conditional distribution functions. In
order to illustrate these local alternatives, consider the example of testing
conditional normality under homoskedasticity, i.e.

H0 : FY |X,θ0
(y|x) = Φ

(
y − x

σ

)
,

where Φ (ε) =
∫ ε
−∞ φ (ε̄) dε̄ and φ (ε) = exp

(−ε2/2
)
/
√

2π is the standard
normal probability density function. Here, σ2 is the conditional variance un-
der H0, that is, the model is homoskedastic. An interesting local alternative
is

H1n : FY |X (y| x) = Φ
(

y − x

σn (x)

)
with σ2

n (x) = σ2

[
1 +

γ (x)
n1/2

]
for some σ > 0,

for a particular positive function γ. This contiguous alternative can be al-
ternatively written as

H1n :
FY |X (dy|x)

FY |X,θ0
(dy|x)

=
σ

σn (x)
exp

{
−(y − x)2

2

[
1

σ2
n (x)

− 1
σ2

]}
= 1+

tnθ0 (y, x)
n1/2

,

with

tnθ0 (y, x) = −n1/2

[
1 − σ

σn (x)
exp

{
−(y − x)2

2

[
1

σ2
n (x)

− 1
σ2

]}]
.

Therefore,

tnθ0 (y, x) → tθ0 (y, x) = γ (x) ·
[

(y − x)2

2σ2
− 1

]
as n → ∞.

To study β̂n under H1n in A3, we may again proceed in steps. To
compensate for the deviation from the null model, the expansion of Ĝn

under H1n now becomes

sup
0≤u,v≤1

|Ĝn(u, v)−Ḡn(u, v)+qθ0(u, v)t(θn−θ0)+n−1/2T 1
θ0

(u, v)| = oP(n−1/2),

(3.1)
where

T 1
θ (u, v) =

∫ u

0

∫ v

0
tθ(F−1

Y |X,θ

(
v̄|F−1

X (ū)
)
, F−1

X (ū))dv̄dū.

17
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Under contiguous alternatives the expansion A2 of θn still continues to
hold, but the �θ0-terms typically are not centered anymore. See Behnen
and Neuhaus (1975). This results in the additional shift

T 2
θ (u, v) = qt

θ (u, v)
∫ 1

0

∫ 1

0
�̄θ(ū, v̄)tθ

(
F−1

Y |X,θ

(
v̄|F−1

X (ū)
)
, F−1

X (ū)
)

dv̄dū.

Put
Tθ(u, v) = T 1

θ (u, v) − T 2
θ (u, v).

Then, under H1n, β̂n − Tθ0 has the same limit as β̂n under H0. This yields
the following result.

Theorem 5 Under H1n and the conditions in Theorem 1,(
L̂θn ◦ L0

)(
β̂n − Tθ0

)
−→d B in the space D[0, 1)2.

The associated shift function Tθ0 will be in charge of the local power
of the test. Through the additional term T 2

θ it is possible that, though
parameters may be known, their estimation increases the power of the test.

It is well known, see Kuelbs (1968), that B has the Kac-Siegert repre-
sentation:

B (u, v) =
∞∑
i=1

∞∑
j=1

zijλ
1/2
ij Φij (u, v) ,

where

λij =
16

[(2i − 1) (2j − 1) π2]2
, Φij (u, v) = 2 sin

[
(2i − 1) πu

2

]
sin

[
(2j − 1) πv

2

]
and

zij =
∫ 1

0

∫ 1

0

B (u, v) Φij (u, v)

λ
1/2
ij

dudv, i, j = 1, 2, 3, ....

are the principal components of B.

The principal components of
(
L̂θn ◦ L0

)
β̂n are

ẑij =
∫ 1

0

∫ 1

0

(
L̂θn ◦ L0

)
β̂n (u, v) Φij (u, v)

λ
1/2
ij

dudv.

Hence, applying the continuous mapping theorem, ẑij →d N (τij , 1) under
H1n with

τij =
∫ 1

0

∫ 1

0

(Lθ0 ◦ L0) Tθ0 (u, v) Φij (u, v)

λ
1/2
ij

dudv.
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Tests can be based on linear combinations of some ẑij, as has been sug-
gested, in the context of goodness-of-fit testing of marginal distributions, by
Durbin, Knott and Taylor (1975). Notice that, under H1n, upon applying
Parseval’s Theorem,

Ĉn =
1
n2

n∑
j=1

n∑
i=1

[(
L̂θn ◦ L0

)
β̂n

(
i

n
, V̂nj

)]2

→d

∞∑
i=1

∞∑
j=1

(zij + τij)
2 λij .

(3.2)
Conclude that the resulting tests will hardly detect high frequency alter-
natives, since λij will take very small values when i and j become large.
See Eubank and La Riccia (1992) for a discussion. This suggests to use
Neyman-type test statistics. See Neyman (1937). For this fix m1 and m2.
Then

Sn,m1,m2 =
m1∑
i=1

m2∑
j=1

ẑ2
ij −→d χ2

m1+m2

m1∑
i=1

m2∑
j=1

τ2
ij

 under H1n,

with χ2
m (Λ) denoting a noncentral chi-square variate with noncentrality pa-

rameter Λ. These smooth tests are expected to perform better than those
based on the Cramér-von Mises or Kolmogorov-Smirnov criteria in the di-
rection of high frequency alternatives. It is also relevant to find the optimal
linear combination of principal components such that the resulting test max-
imizes the power in the direction of particular contiguous alternatives, along
the lines suggested by Schoenfeld (1977, 1980) and Stute (1997). In fact,
as it happens with Neyman-type statistics, Sn,m1,m2 can be interpreted as a
Lagrange Multiplier test for testing that V and U are independent and uni-
formly distributed in [0, 1] in the direction of an exponential density, along
the lines of Kallenberg and Ledwina (1999) for a related problem.

Now, under H1n,(
L̂θn ◦ L0

)
β̂n −→d M = B + (Lθ0 ◦ L0)Tθ0 .

M has the spectral representation,

M (u, v) =
∞∑
i=1

∞∑
j=1

rijλ
1/2
ij Φij (u, v)

where rij is distributed as N (τij , 1). Conclude that we may consider a test
of the hypothesis

H̄0 : E [rij ] = 0 all i, j = 1, 2, ...
versus

H̄1 : E [rij] = τij some i, j = 1, 2, ...
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The asymptotic likelihood-ratio test statistic based on rij, i = 1, ...,m1, j =
1, ...,m2 is given by

Λm1m2 = exp


m1∑
i=1

m2∑
j=1

τij

(
rij − τij

2

)
= exp

{∫ 1

0

∫ 1

0
∆m1m2 (u, v)

[
M (u, v) − (Lθ0 ◦ L0) Tθ0 (u, v)

2

]
dudv

}
,

with

∆m1m2 (u, v) =
m1∑
i=1

m2∑
j=1

τijΦij (u, v)

λ
1/2
ij

.

Grenander (1950) showed that if
∑∞

i=1

∑∞
j=1 τ2

ij < ∞, the most powerful
test, at the significance level α, consists of rejecting H̄0 when

Λ∞ > k with P (Λ∞ > k) = α.

Here

Λ∞ = exp
{∫ 1

0

∫ 1

0
∆∞ (u, v)

[
M (u, v) − (Lθ0 ◦ L0)Tθ0 (u, v)

2

]
dudv

}
with

∆∞ (u, v) =
∞∑
i=1

∞∑
j=1

τijΦij (u, v)

λ
1/2
ij

.

We can use, as a test statistic,

ϕ =

∑∞
i=1

∑∞
j=1 rij · τij(∑∞

i=1

∑∞
j=1 τ2

ij

)1/2

=

∫ 1
0

∫ 1
0 ∆∞ (u, v) M (u, v) dudv(∑∞

i=1

∑∞
j=1 τ2

ij

)1/2
,

Then ϕ ∼ N (0, 1) under H̄0. H̄0 is rejected when

ϕ ≥ c1−α,

with c1−α denoting the (1 − α) th quantile of N (0, 1) .
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In practice, we must estimate τij, truncate and rescale the series to come
up with an upper one-sided test based on

ϕ̂n,m1m2
=

∑m1
i=1

∑m2
j=1 τ̂ ij · ẑij(∑m1

i=1

∑m2
j=1 τ̂2

ij

)1/2
−→d N (0, 1) under H0,

with m1 and m2 fixed integers,

τ̂ ij =
∫ 1

0

∫ 1

0

(
L̂θn ◦ L0

)
T̂nθn (u, v) Φij (u, v)

λ
1/2
ij

dudv,

T̂nθ (u, v) =
1
n

�nu�∑
i=1

tnθ

(
Y[i:n],Xi:n

)
1{V̂n[i:n]≤v}

− q̂θ(u, v)t
1
n

n∑
i=1

�θ(Xi, Yi)tnθ(Yi,Xi).

Again, replacement of the operator Lθ0 by an estimated operator Lθn does
not change the limit. For a given parametric conditional model and a spec-
ified alternative an analysis of the components which guarantee high power
depends on the model. In the following section we discuss how our method
applies for testing conditional normality.

4 Monte Carlo

In this section we apply the Cramér-von Mises test based on Ĉn to test for
conditional normality with homoscedastic disturbances, that is,

FY |X,θ (y|x) = Φ
(

y − x

σ

)
,

with x = δ00 + δ01z, θ0 =
(
δt
0 , σ2

)t ∈ R
2 × R

+ and δ0 = (δ00, δ01)
t, where Φ

is the standard normal distribution. Conclude that

fY |X,θ (y| x) =
1
σ

φ

(
y − x

σ

)
with φ the standard normal probability density function. Therefore,

∂

∂θ
ln fY |X,θ (y|x) =

1
σ2

 1
2

(
(y−x)2

σ2 − 1
)

y − x
z (y − x)

 .
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Notice that, for all θ ∈ R
2 × R

+,

F−1
Y |X (v| x) = x + σ · Φ−1 (v) .

Hence,

∂

∂θ
ln fY |X

(
F−1

Y |X (v|x)
∣∣∣x) =

1
σ2

 1
2

(
Φ−1 (v)2 − 1

)
σ · Φ−1 (v)

z · σ · Φ−1 (v)

 ,

which is used for computing qθ in (1.2). It is immediate that the function ϕθ

in (1.2) and hence hθ in (2.1) does not depend on u. The random variable
X is always distributed as U (0, 1) with σ = δ00 = δ01 = 1. Programs were
written in double precision FORTRAN 90 and run using a Intel Pentium 4
processor at 2.4 MGz with the Microsoft Developer Studio Compiler, and
the IMSL library was used for generating the random numbers (routines
DRNUN and DRNNOR), for computing the inverse of the standard nor-
mal distribution (routine DNORDF), for numerical integration taking into
account possible singularities at the end points (routine DQDAGS). Monte
Carlo experiments are based on 5000 simulations.

We have considered sample sizes of n = 15, 25, 50 and 100. We report on
the percentages of rejection for the cases where a) θ0 is completely known
and b) δ0 is known but σ2 unknown (and estimated).

The proportion of rejections under H0 is reported on in Table 2. The
attained level is very good, even for small sample sizes like n = 25.

Table 3 reports on the proportion of rejections under the alternative
hypothesis

H1 : FY |X,θ (y|x) = Φ
(

y − x

σ (x)

)
with σ2 (x) = 12 · (z − 0.5)2 .

Note that σ2 = E (V ar (Y |X)) = E
(
σ2 (X)

)
= 1, as under H0.

5 Appendix

In the following Lemma we analyze the local behaviour of the sequential
empirical process associated with the concomitants of the V ′

i s. For this,
define for 0 ≤ u, v ≤ 1 and real κ1, κ2, ..., κn,

β0
n (u, v, κ1, ..., κn) =

1√
n

�nu�∑
i=1

[
1{V[i:n]≤v+κin−1/2} − 1{V[i:n]≤v} − κin

−1/2
]
.
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Table 2: Proportion of rejection under H0 : Y |X ∼ N
(
Z, σ2

)
, Z = δ00 +

δ01X

No estimated parameters σ2 estimated
n = 15 n = 15

α = 0.10 0.1236 0.1188
α = 0.05 0.0646 0.0680
α = 0.01 0.0206 0.0240

n = 25 n = 25
α = 0.10 0.1080 0.1052
α = 0.05 0.0578 0.0582
α = 0.01 0.0146 0.0142

n = 50 n = 50
α = 0.10 0.1030 0.1038
α = 0.05 0.0522 0.0548
α = 0.01 0.0126 0.0132

n = 100 n = 100
α = 0.10 0.0976 0.1010
α = 0.05 0.0506 0.0508
α = 0.01 0.0094 0.0100
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Table 3: Proportion of rejection under fixed alternative H1 : Y |X ∼
N
(
Z, 12 · (X − 0.5)2

)
No estimated parameters σ2 estimated

n = 50 n = 50
α = 0.10 0.0950 0.1650
α = 0.05 0.0370 0.0814
α = 0.01 0.0064 0.0208

n = 100 n = 100
α = 0.10 0.2038 0.3282
α = 0.05 0.0724 0.1834
α = 0.01 0.0080 0.0496

n = 200 n = 200
α = 0.10 0.6426 0.6962
α = 0.05 0.2982 0.4722
α = 0.01 0.0246 0.1620

We shall see that β0
n converges to zero uniformly in (u, v) and κ1, ..., κn, as

long as the κi range in a compact interval.

Lemma 1 For each finite K, as n → ∞,

sup
0≤u,v≤1

{|κi|≤K,i=1,...,n}

∣∣β0
n (u, v, κ1, ..., κn)

∣∣ = oP (1)

Proof. The proof follows standard arguments when dealing with resid-
ual empirical processes, see e.g. Koul (2002) monograph. For fixed u, v and
κi, i = 1, ..., n, the assertion is trivial. Just observe that the concomitants
are independent and identically distributed as a U (0, 1) random variable.
Obviously β0

n converges to zero in squared mean and hence in probability.
For a given sequence κ1, κ2, ..., β0

n is also tight in (u, v) , since it is only a
variation of a time-sequential empirical process, which is well known to be
tight. In order to get uniformity in κ, use monotonicity of the indicators,
decompose the interval [−K,K] into small subintervals and reduce the anal-
ysis, up to a small error, to a finite grid. Since this is standard, details are
omitted.
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Proof of Theorem 1:
Since

V̂ni = FY |X,θn

(
F−1

Y |X (Vi|Xi)
∣∣∣Xi

)
,

we have, by continuity,

1{V̂ni≤v} = 1n
Vi≤F Y |X

“
F−1

Y |X,θn
(v|Xi)

˛̨
˛Xi

”o.

Applying a mean value theorem argument, for 1 ≤ i ≤ n,

FY |X
(

F−1
Y |X,θn

(v|Xi)
∣∣∣Xi

)
= v + (θ0 − θn)t

∂

∂θ
FY |X,θ

(
F−1

Y |X,θn
(v|Xi)

∣∣∣Xi

)∣∣∣∣
θ=θ∗ni

, (5.1)

i = 1, 2, . . . where ‖θ∗ni − θ0‖ ≤ ‖θn − θ0‖ . Since ∂FY |X,θ

(
F−1

Y |X,θn
(v|Xi)

∣∣∣Xi

)/
∂θ

is bounded in a neighborhood of θ0, and since θn = θ0 + OP

(
n−1/2

)
, (5.1)

implies that

FY |X
(

F−1
Y |X,θn

(v|Xi)
∣∣∣Xi

)
= v + κi · n−1/2, i = 1, 2, ...,

where with large probability κi ranges in a possibly large but compact set.
Hence, from Lemma 1, we obtain uniformly in (u, v) ∈ [0, 1]2 that, up to a
remainder oP(1),

β̂n (u, v) = βn (u, v)−n1/2 (θn − θ0)
t 1

n

�nu�∑
i=1

∂

∂θ
FY |X,θ

(
F−1

Y |X,θn
(v|Xi:n)

∣∣∣Xi:n

)∣∣∣∣
θ=θ∗ni

.

The result now follows from the assumed continuity of

∂FY |X,θ

(
F−1

Y |X,θn
(v|Xi)

∣∣∣Xi

)/
∂θ,

the consistency of θn, and the uniform convergence of the involved empirical
integrals.
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Proof of Theorem 2:
Compared with the previous proof, we now have

V̂ni = FY |X,θn
(Yi|X̃ni),

with X̃ni = Zt
i δn and Yi = F−1

Y |X,θ0
(Vi|Zt

i δ0). Hence

1{V̂ni≤v} = 1{Vi≤FY |X,θ0
(F−1

Y |X,θn
(v|X̃ni)|Xi)}.

But

FY |X,θ0
(F−1

Y |X,θn
(v|X̃ni)|Xi)

= v + (θ0 − θn)t
∂

∂θ
FY |X,θ(F

−1
Y |X,θn

(v|X̃ni)|Zt
i δ0)θ=θ∗ni

+ (δ0 − δn)tZi
∂

∂x
FY |X,θn

(FY |X,θn
(v|X̃ni)|x)x=x∗

ni
,

where x∗
ni is between Zt

i δn and Zt
i δ0. If we sum these terms up for the

first �nu� ordered Xi = Zt
i δ0, note that in probability and uniformly in

0 ≤ u, v ≤ 1:

1
n

�nu�∑
i=1

∂

∂θ
FY |X,θ(F

−1
Y |X,θn

(v|X̃[i:n])|Xi:n)θ=θn → qθ0,δ0(u, v)

1
n

n∑
i=1

1{F̃Xn(X̃ni)≤u}Zi
∂

∂x
FY |X,θn

(F−1
Y |X,θn

(v|X̃ni)|x∗
ni) → q1

θ0,δ0(u, v),

where F̃Xn is the sample distribution of X̃ni, i ≥ 1. Actually, this follows
from the continuity of the involved functions, upon noticing that because of
the n1/2-consistency of δn and the fact that Z has finite second moments we
have

max
1≤i≤n

Zt
i (δn − δ0) = oP(1).

Proof of Theorem 3:
It follows from Corollary 1 that β̂n is tight. It is then not difficult

to show that also (Lθ0 ◦ L0)β̂n is tight. Since also the finite dimensional
distributions converge, it suffices to show that in distribution (Lθ0 ◦ L0)β̂∞
equals a Brownian sheet. First, the operator Lθ0 ◦ L0 is linear so that the
limit is a centered Gaussian process. Check the covariance structure to get
the assertion of the theorem. See also Khmaladze (1988, 1993) or Lemma
3.1 in Stute, Thies and Zhu (1998) for related arguments.
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Proof of Theorem 4:
To prove Theorem 4 it suffices to show that

(L̂θn ◦ L0)β̂n − (Lθ0 ◦ L0)β̂n → 0 in probability.

This may be proved along the lines of Stute, Thies and Zhu (1998), where
similar things have been done in the context of model checks in regression.

Proof of Theorem 5:
We already pointed out that Theorem 5 is a consequence of the expansion

(3.1) and the central limit theorem under contiguous alternatives due to
Behnen and Neuhaus (1975). To show (3.1), recall

FY |X(dy|x) =
(
1 + n−1/2tnθ0(y, x)

)
FY |X,θ0

(dy|x).

Hence, compared to the proof of Theorem 1, we have to add another term,
namely

n−1/2

F−1
Y |X,θn

(v|Xi)∫
−∞

tnθ0(y,Xi)FY |X,θ0
(dy|Xi),

to the right hand side of (5.1). Summation over the first �nu� X-order
statistics and using a continuity argument as well as assumption A3 yield
the representation (3.1) and hence the assertion of Theorem 5.
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