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Distribution free specification tests of conditional models
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This article proposes a class of asymptotically distribution free specification tests for parametric conditional distributions. These tests are based on a martingale transform of a proper sequential empirical process of conditionally transformed data. Standard continuous functionals of this martingale provide omnibus tests while linear combinations of the orthogonal components in its spectral representation form a basis for directional tests. Finally, Neyman-type smooth tests, a compromise between directional and omnibus tests, are discussed. As a special example we study in detail the construction of directional tests for the null hypothesis of conditional normality versus heteroskedastic contiguous alternatives. A small Monte Carlo study shows that our tests attain the nominal level already for small sample sizes.

Introduction

The correct specification of a statistical model is important for several reasons. First, it provides a convenient framework to describe and understand, for example, the dynamics of a time series or a causal relation between independent and dependent variables in regression. In each case it turns out that conditional quantities like autoregressive functions or conditional distributions are of major interest, while marginal distributions of explanatory variables may be considered as parametric or nonparametric nuisance parameter-functions. The choice of the model has some consequences on the estimation of unknown parameters and hence on the interpretation of data or the prediction of future values of a dependent variable. The validity
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of statistical inferences based on conditional maximum likelihood principle, e.g., relies on the correct specification of the conditional distribution model.

In particular, the popular Lagrange Multiplier and Likelihood Ratio tests on parameter restrictions are invalid under misspecification, though robust but inefficient inferences are possible. However, classical procedures are optimal under a correct specification. Applications using conditional maximum likelihood are available in abundant supply in economics, as well as in any other disciplines where statistical inference is indispensable. The correct specification of conditional distributions is especially crucial in microeconometrics and biostatistics, where parameter identification is sustained by a correct specification. In these cases, parameter estimates are inconsistent under misspecification. See the classical monograph by [START_REF] Maddala | Limited-Dependent and Qualitative Variables in Econometrics[END_REF] on limited-dependent and qualitative variables models, [START_REF] Cameron | Regression Analysis on Count Data[END_REF] for count data models, or [START_REF] Lancaster | The Econometric Analysis of Transition Data[END_REF] for duration models.

In the simple case of independent identically distributed observations the history of goodness-of-fit tests started with the classical χ 2 -test for cell probabilities. For continuous variables most of the procedures, like Kolmogorov-Smirnov and Cramér-von Mises tests, are based on proper functionals of the empirical process. When the model to be tested is composite, the need to estimate unknown parameters has some impact on the distributional character under the null model so that available tables of critical values are no longer valid. See the work of [START_REF] Gikhman | Some remarks on A. Kolmogorov's goodness of fit test[END_REF] and [START_REF] Kac | On tests of normality and other goodness of fit based on distance methods[END_REF] for some early fundamental contributions in this context. A formal derivation of the limit process is due to [START_REF] Durbin | Weak convergence of the sample distribution function when parameters are estimated[END_REF] and [START_REF] Neuhaus | Asymptotic properties of the Cramér-von Mises statistic when parameters are estimated[END_REF][START_REF] Neuhaus | Weak convergence under contiguous alternatives of the empirical process when parameters are estimated: The D k approach[END_REF], among others. For practical purposes, critical values of the tests can be obtained either through resampling or through the orthogonal components in the spectral representation of the underlying empirical process, as suggested by [START_REF] Durbin | Components of Cramér-von Mises statistics II[END_REF].

A different approach was initiated by [START_REF] Khmaladze | Martingale approach to the goodness of fit tests[END_REF], who proposed to transform the empirical process to an appropriate martingale, which in distribution may then be approximated by a time-transformed Brownian Motion. As a consequence, classical functionals of these processes like the Kolmogorov-Smirnov or Cramér-von Mises test statistics become asymptotically distribution-free so that existing tables can be used.

In this paper we are interested, for a multivariate observation (X, Y ), in the conditional distribution of Y given X = x. For the related question of testing just the conditional mean and not the whole conditional distributional structure, the literature is much more elaborate. [START_REF] Härdle | Comparing nonparametric versus parametric regression fits[END_REF] were among the first to compare parametric and nonparametric fits. These tests require some smoothing to the effect that the power of these
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tests may depend on the choice of the smoothing parameter. [START_REF] Stute | Nonparametric model checks for regression[END_REF] investigated so-called integrated regression function (or cusum) processes which avoid smoothing and at the same time allow for a principal component analysis. If we replace (in our notation) Y by indicators 1 {Y ≤y} , these approaches lead to tests of conditional probability models and may be found in [START_REF] Andrews | A conditional Kolmogorov test[END_REF]. In particular he investigated the Kolmogorov-Smirnov test. Due to the complicated distributional character of the test statistic, a bootstrap approximation was proposed and studied. The martingale transformation of the cusum process for fixed design and linear regression is due to [START_REF] Brown | Techniques for testing the constancy of regression relationships over time[END_REF]. The random design case with a possibly nonlinear regression function has been dealt with in Stute, Thies and Zhu (1998), while applications to time series and Generalized Linear Models may be found in [START_REF] Koul | Nonparametric model checks for time series[END_REF] and Stute and Zhu (2002). See also [START_REF] Nikabadze | Model checks under random censorship[END_REF] and [START_REF] Khmaladze | Martingale transforms goodnessof-fit tests in regression models[END_REF]. Zheng (2000) has extended the smoothing approach to specification tests of conditional distributions, while [START_REF] Bai | Testing parametric conditional distributions of dynamic models[END_REF] has applied Khmaladze's martingale approach to tests of the marginal distribution of time series innovations.

To motivate the approach of the present paper we recall a fundamental result due to [START_REF] Rosenblatt | Remarks on a multivariate transformation[END_REF]. Namely, let (X, Y ) be a bivariate random vector with an unknown continuous distribution function F . Denote with F X the marginal distribution function of X and let F Y |X (y|x) be the conditional distribution function of Y given X = x evaluated at y. Given F X , F is uniquely determined through F Y |X and vice versa.

In nonparametric testing for F, it is known that tests based on the empirical distribution function are no longer distribution-free. In this context, [START_REF] Rosenblatt | Remarks on a multivariate transformation[END_REF] used F X and F Y |X to introduce a transformation T = T (X, Y ) = (U, V ) of (X, Y ) , which maps (X, Y ) into a vector (U, V ) such that U and V are independent and uniformly distributed on [0

,1]. Just put U = F X (X) and V = F Y |X (Y |X). It is easy to recover (X, Y ) from (U, V ). Actually, we have with probability one (X, Y ) = (F -1 X (U ), F -1 Y |X (V |F -1 X (U ))
, where G -1 denotes the quantile function of a distribution function G. The transformation T can be extended to higher dimensions, but in this paper, for most of the time, we shall stick to the bivariate case. We rather study the important situation when X = Z t δ 0 , for a p × 1 random vector Z and an unknown parameter vector δ 0 , so that the multidimensionality of the model enters through a proper projection of a random vector Z. The extension to the case where X = m (Z, δ 0 ) for a suitably smooth m is routine. These so called dimension reducing models are popular in applied fields and naturally lead to an input-output analysis in which, at an intermediate step,
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the independent variable is univariate. This is relevant in many econometric applications, where one assumes a regression model with innovations independent of the explanatory variables, e.g., limited-dependent variable models.

The Rosenblatt transform T constitutes the extension of the transformation U = F X (X), which is basic in the analysis of univariate data and leads to many distribution-free procedures based on ranks or Kolmogorov-Smirnov and Cramér-von Mises discrepancies. Since ordering is unavailable in the multivariate case we propose to order the inputs through the U 's treating the V 's as the associated concomitants. This leads to a sequential version of an empirical process based on concomitants. Its statistical analysis will be the focus of this paper.

To be more precise, assume that we observe a sample of independent identically distributed data with the same distribution as (X, Y ) , say

(X 1 , Y 1 ) , . . . , (X n , Y n ). Set (U i , V i ) = T (X i , Y i ) , 1 ≤ i ≤ n,
and consider the associated uniform empirical distribution function

G n (u, v) := 1 n n i=1 1 {U i ≤u} 1 {V i ≤v} for 0 ≤ u, v ≤ 1.
Here 1 A is the indicator function of the event A. The empirical process

α n (u, v) := √ n [G n (u, v) -uv] , for 0 ≤ u, v ≤ 1,
is a random element in the Skorokhod space D[0, 1] 2 , endowed with a proper topology. See, for example, [START_REF] Straf | Weak convergence of stochastic processes with several parameters[END_REF], [START_REF] Neuhaus | On weak convergence of stochastic processes with multi-dimensional time parameter[END_REF] and [START_REF] Bickel | Convergence criteria for multiparameter stochastic processes[END_REF]. Note that the distribution of α n is free of F . Throughout this paper we shall denote with "-→ d " weak convergence or convergence in distribution. It is then well known that in D[0, 1] 2 we have

α n -→ d B 1 , (1.1)
where B 1 is a tied-down Brownian sheet. That is, a centered Gaussian process on the unit square with covariance kernel

E B 1 (u 1 , v 1 ) B 1 (u 2 , v 2 ) = (u 1 ∧ u 2 ) • (v 1 ∧ v 2 ) -u 1 u 2 v 1 v 2 .
Functionals of the empirical process α n are distribution-free and form a basis for goodness-of-fit tests of simple hypotheses on F. They are, however, unsuitable for testing the specification of F Y |X when F X is unknown.
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In order to circumvent this problem we propose to substitute U i by the normalized ranks of the X i 's:

U ni = F Xn (X i ) , 1 ≤ i ≤ n,
with F Xn denoting the empirical distribution function of X 1 , . . . , X n . This leads to

Ḡn (u, v) = 1 n n i=1 1 {U ni ≤u} 1 {V i ≤v} = 1 n n i=1 1 { i n ≤u} 1 {V[i:n]≤v} = 1 n nu i=1 1 {V[i:n]≤v} .
Here,

V [i:n] is the V -concomitant associated with X i:n , that is, V [i:n] = V j if X i:n = X j with X 1:n ≤ X 2:n ≤ .
.. ≤ X n:n denoting the set of X-order statistics. The empirical process associated with Ḡn becomes

ᾱn (u, v) := n 1/2 Ḡn (u, v) -u • v = n 1/2 Ḡn (u, v) -v • Ḡn (u, 1) + v • nu -nu n 1/2 .
Since the second term is negligible, it is natural to consider

β n (u, v) := n 1/2 Ḡn (u, v) -v • Ḡn (u, 1) = 1 n 1/2 nu i=1 1 {V[i:n]≤v} -v ,
which is the standard sequential empirical process of the concomitants. Notice that, since {V 1 , ..., V n } and {X 1 , ..., X n } are independent, .., V [n:n] are independent identically distributed copies of V. It follows from classical empirical process theory, see [START_REF] Shorack | Empirical processes with applications to statistics[END_REF], that

V [1:n] , ..., V [n:n] is a random permutation of {V 1 , ..., V n }. That is, V [1:n] , .
β n -→ d K in the space D[0, 1] 2 ,
where K is the standard Kiefer process, a centered biparameter Gaussian process on the unit square with covariance function

E [K (u 1 , v 1 ) • K (u 2 , v 2 )] = (u 1 ∧ u 2 ) (v 1 ∧ v 2 -v 1 • v 2 ) .
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The Kiefer process can be represented in terms of the standard Brownian sheet B, a zero mean Gaussian process with covariance function

E [B (u 1 , v 1 ) • B (u 2 , v 2 )] = (u 1 ∧ u 2 ) (v 1 ∧ v 2 ) ,
namely as dū, dv) . In practical situations, the conditional distribution functions F Y |X are parametrically modeled, and the hypothesis to be tested becomes

K (u, v) = (1 -v) v 0 u 0 1 1 - v B (
H 0 : F Y |X ∈ F.
Here, F is a given family of parametric conditional distribution functions

F = F Y |X,θ : θ ∈ Θ ,
and Θ ⊂ R p is a proper parameter space. The alternative hypothesis may be specified or not. Under H 0 , there exists a

θ 0 ∈ Θ such that F Y |X = F Y |X,θ 0 , and given a √ n-consistent estimator of θ 0 , say θ n , Ḡn (u, v) can be replaced by Ĝn (u, v) := 1 n nu i=1 1 { Vn[i:n] ≤v} , with Vni = F Y |X,θn ( Y i | X i ) and Vn[i:n] denoting the V -concomitant of X i:n . The final version of β n then becomes βn (u, v) := n 1/2 Ĝn (u, v) -v • Ĝn (u, 1) = 1 n 1/2 nu i=1 1 { Vn[i:n] ≤v} -v .
The asymptotic distribution of βn (1, •) may be derived along the lines of [START_REF] Durbin | Weak convergence of the sample distribution function when parameters are estimated[END_REF], who as already mentioned established the weak limit of the univariate empirical process with estimated parameters. The empirical process βn (1, •) has also been considered by [START_REF] Bai | Testing parametric conditional distributions of dynamic models[END_REF] for testing Ḣ0 :

E F Y |X,θ 0 ( y| X) = F Y (y) for some θ 0 ∈ Θ, with F Y denoting the marginal distribution function of Y.
The resulting test has trivial power for testing H 0 in all directions where Ḣ0 is satisfied. [START_REF] Neuhaus | On weak convergence of stochastic processes with multi-dimensional time parameter[END_REF][START_REF] Neuhaus | Weak convergence under contiguous alternatives of the empirical process when parameters are estimated: The D k approach[END_REF]) extended [START_REF] Durbin | Weak convergence of the sample distribution function when parameters are estimated[END_REF] results to the multiparameter case and considered general contiguous nonparametric alternatives. See also [START_REF] Bai | Weak convergence of sequential empirical processes of residuals in ARMA models[END_REF][START_REF] Bai | Testing for parameter constancy in linear regressions: an empirical distribution function approach[END_REF].

We derive the asymptotic distribution of βn under the type of regularity conditions on F corresponding to [START_REF] Neuhaus | Weak convergence under contiguous alternatives of the empirical process when parameters are estimated: The D k approach[END_REF] and [START_REF] Durbin | Weak convergence of the sample distribution function when parameters are estimated[END_REF]:
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A1: Assume that ∂F Y |X,θ ( y| x) /∂θ exists for all (x, y) ∈ R 2 and each component of the vector of functions

q θ (u, v) := u 0 ∂ ∂θ F Y |X,θ F -1 Y |X,θ v| F -1 X (ū) F -1 X (ū) dū is continuous on [0, 1] 2 × Θ.
Our first result is crucial for proving the weak convergence of βn . It provides a convenient representation of βn in terms of β n and θ nθ 0 .

Theorem 1 Under H 0 and for F satisfying A1, suppose that

θ n = θ 0 + O P n -1/2 . Then we have sup (u,v)∈[0,1] 2 βn (u, v) -β n (u, v) + q θ 0 (u, v) t n 1/2 (θ n -θ 0 ) = o P (1) .
In many situations θ n admits a linear representation in terms of independent identically distributed random variables, in which case we can identify the limit of βn .

A2: Assume that

θ n = θ 0 + 1 n n i=1 θ 0 (X i , Y i ) + o P n -1/2 ,
where, for each x ∈ R and every θ ∈ Θ,

R θ (x, y) F Y |X,θ ( dy| x) = 0 and sup x∈R R θ (x, y) θ (x, y) t F Y |X,θ ( dy| x) < ∞.
When F is given through its conditional densities f Y |X,θ , say, a natural estimator of θ 0 is the conditional maximum likelihood estimator:

θ n = arg max θ∈Θ n i=1 ln f Y |X,θ ( Y i | X i ) . In this case, θ (x, y) = I -1 θ ∂ ∂θ ln f Y |X,θ ( y| x)

A c c e p t e d m a n u s c r i p t

where

I θ = E ∂ ∂θ ln f Y |X,θ ( Y | X) ∂ ∂θ t ln f Y |X,θ ( Y | X) is the "conditional" information matrix. q θ (u, v) = v 0 u 0 ∂ ∂θ ln f Y |X,θ F -1 Y |X,θ v| F -1 X (ū) F -1 X (ū) dūdv ≡ v 0 u 0 ϕ θ (ū, v)dūdv (1.2)
The next result is a consequence of Theorem 1 and A2.

Corollary 1 Under the conditions in Theorem 1 and A2,

βn -→ d β∞ in the space D[0, 1] 2 , with β∞ (u, v) = K (u, v) -q θ 0 (u, v) t • 1 0 1 0 θ 0 F -1 X (ū) , F -1 Y |X,θ 0 v| F -1 X (ū) B (dū, dv) .
If an observation (X, Y, Z, . . .) is multivariate with more than two components, the Rosenblatt transformation also works but requires, besides F and F Y |X , also the specifications of F Z|X,Y,... . Rather than this, we now discuss the case when X = Z t δ 0 . Along with θ n , let δ n be a √ n-consistent estimator of δ 0 . For example we could take

(θ n , δ n ) = arg max (θ,δ) n i=1 ln f Y |X,θ (Y i |Z T i δ).
Consider the following modification of βn :

βn (u, v) := 1 n 1/2 nu i=1 1 { Ṽn[i:n] ≤v} -v ≡ n 1/2 Gn (u, v) -v Gn (u, 1) ,
where now Ṽn[i:n] is the i-th V -concomitant with respect to the ordered Xn1 , ..., Xnn , where Xni =

Z t i δ n is in place of X i = Z t i δ 0 .
In this case the need to estimate δ 0 requires an additional correction in the expansion of the associated Gn .

For the sake of simplicity we only consider the case when θ and δ have no coordinates in common. Otherwise the derivative needs to be taken only with respect to the components of δ which do not appear in θ.
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Theorem 2 Under the conditions of Theorem 1, assume that F Y |X,θ (y|x) is also differentiable with respect to x and let δ n and θ n be √ nconsistent estimators of δ 0 and θ 0 , respectively. Assume also that Z has finite second moments. Then

sup 0≤u,v≤1 βn (u, v) -β n (u, v) + q θ 0 ,δ 0 (u, v) t n 1/2 (θ n -θ 0 ) +q 1 θ 0 ,δ 0 (u, v) t n 1/2 (δ n -δ 0 ) = o P (1) .
Here q θ 0 ,δ 0 is the q-function from before, but with F X (x) = P(Z t δ 0 ≤ x) now depending on the unknown δ 0 and

q 1 θ 0 ,δ 0 (u, v) := E 1 {F X (Z t δ 0 )≤u} Z ∂ ∂x F Y |X,θ 0 F -1 Y |X,θ 0 ( v| Z t δ 0 ) |Z t δ 0 (1.3) = u 0 r F -1 X (ū) ∂ ∂x F Y |X,θ 0 F -1 Y |X,θ 0 v| F -1 X (ū) |F -1 X (ū) dū with r(x) = E[Z|X = x] denoting the vector-valued regression function of Z given X = Z t δ 0 = x.
Typically, δ n also admits a representation in terms of independent identically distributed random variables. We also obtain an analogue of Corollary 1. Since, however, the limit process depends on unknown parameters, the unknown F X and the model F, tests based on βn and βn are still not (asymptotically) distribution-free.

The rest of the paper is organized as follows. The next section presents a transformation of the sequential empirical process of estimated concomitants, which converges in distribution to the standard biparameter Brownian sheet. Hence, continuous functionals of this transformed process are suitable for testing composite hypotheses. Power considerations are studied in Section 3, where we provide the limiting distribution of the transformed process under contiguous alternatives converging to the null at the parametric rate n -1/2 . In this section, we also provide the spectral decomposition of the transformed process and propose test statistics based on linear combinations of the principal components. Furthermore we derive test statistics consisting of the optimal combination of principal components, thus maximizing the power in the direction of a particular contiguous alternative. The results of a Monte Carlo experiment are reported on in Section 4. Proofs are postponed to the Appendix.

A c c e p t e d m a n u s c r i p t 2 Distribution free transformation of the sequential empirical process with estimated concomitants

The martingale transformation of βn to be discussed now will turn out to be a composition of two operators. In the first step we transform βn so that in the limit the Kiefer process will be replaced by the Brownian sheet.

In the next step we shall apply a model dependent transformation which is designed to give us distribution-free processes. Now, as mentioned earlier, the Kiefer process can be represented in terms of independent Gaussian increments, namely as a stochastic integral with respect to a Brownian sheet:

K (u, v) = (1 -v) v 0 u 0 1 1 - v B (dū, dv) .
Inverting this last expression, we obtain

B = L 0 K,
where L 0 is the linear operator defined as

L 0 m (u, v) = m (u, v) - v 0 1 1 -v 1 v u 0 m (dũ, dṽ) dv, for a generic function m : [0, 1] 2 → R.
Hence, tests on simple hypotheses on F Y |X can alternatively be based on the transformed process

L 0 β n (u, v) = n 1/2 L 0 Ḡn (u, v) = 1 n 1/2 nu i=1 1 {V[i:n]≤v} + log 1 -v ∧ V [i:n]
Note that this is the time-sequential version of the martingale part in the Doob-Meyer decomposition of the uniform empirical process. Applying the continuous mapping theorem and the weak convergence of β n , we have, under Assuming that the conditions in Corollary 1 are satisfied, then

H 0 , L 0 β n -→ d B in the space D[0, 1] 2 . Similarly L 0 βn (u, v) = n 1/2 L 0 Ĝn (u, v) = 1 n 1/2 nu i=1 1 { Vn[i:n] ≤v} + log 1 -(v ∧ Vn[i:n] ) ,
L 0 βn -→ d L 0 β∞ , with L 0 β∞ (u, v) = B (u, v) - v 0 u 0 h θ 0 (ū, v) t dūdv • 1 0 1 0 ¯ θ 0 (ũ, ṽ) B (dũ, dṽ) ,
where

L 0 q θ 0 (u, v) = v 0 u 0 h θ 0 (ū, v) dūdv and ¯ θ (u, v) = θ F -1 X (u), F -1 Y |X,θ v|F -1 X (u) .
If, as in the case of the maximum likelihood estimator, see (1.2), q θ has a Lebesgue density ϕ θ , we have

h θ (u, v) = ϕ θ (u, v) - 1 1 -v 1 v ϕ θ (u, v)dv.
(2.1)

From the above representation of L 0 βn we see that K has been replaced by B. Actually, unlike β∞ , L 0 β∞ admits the same type of representation as the limiting distribution of the standard biparameter empirical process with estimated parameters. This fact suggests to apply the scanning innovation approach proposed by [START_REF] Khmaladze | An innovation approach in goodness-of-fit tests in R m[END_REF][START_REF] Khmaladze | Goodness of fit problem and scanning innovation martingales[END_REF] in order to obtain an empirical process converging in distribution to the biparameter Brownian sheet under the null. For this, let us consider a family of measurable subsets,

S = S (u,v) : (u, v) ∈ [0, 1] 2 ,
satisfying the following properties:

1. For every (u 1 , v 1 ) , (u 2 , v 2 ) ∈ [0, 1] 2 , S (u 1 ,v 1 ) ⊂ S (u 2 ,v 2 ) or S (u 2 ,v 2 ) ⊂ S (u 1 ,v 1 ) , that is, S is linearly ordered, 2. ∪ (u,v) S(u, v) = [0, 1] 2 and ∩ (u,v) S(u, v) = ∅, 3. If S (u i ,v i ) ∈ S, i = 1, 2, .. then lim inf n S (un,vn) ∈ S, 4. S (u 1 ,v 1 ) S (u 2 ,v 2 ) → S 0 as (u 1 , v 1 ) → (u 2 , v 2 ) ,
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where S 0 is a set with Lebesgue measure equal to zero.

Examples of sets satisfying these conditions are,

S = {[0, 1] × [0, v] , v ∈ [0, 1]} , (2.2) S = {[0, v] × [0, v] , v ∈ [0, 1]} .
(2.3)

For any particular family of sets S, let us define the matrix

A θ (u, v) = S(u,v) h θ (ū, v) h θ (ū, v) t dūdv,
where S(u, v) denotes the complement of S(u, v). The scanning innovation of L 0 β∞ is given by (L θ 0 • L 0 ) β∞ ,where L θ is the linear operator defined as

L θ m (u, v) = m (u, v) - v 0 u 0 h θ (ū, v) t A -1 θ (ū, v) S(ū,v) h θ (ũ, ṽ) m (dũ, dṽ) dūdv, for a generic function m : [0, 1] 2 → R.
Usually, as it will be the case in this paper, it is assumed that the matrix

A θ 0 (u, v) is nonsingular for (u, v) ∈ [0, 1) 2 , that is, that the components of h θ 0 are linearly independent in every interval [0, u] × [0, v] .
However, there are families of distributions where this condition is not fulfilled. In such a situation

A -1 θ (•, •) is the generalized inverse of A θ (•, •) satisfying A -1 θ (•, •) [A θ (•, •) ξ] = ξ if ξ ∈ Image (A θ (•, •)) 0 otherwise.
Interestingly, the transformation provided by the operator L θ is unique irrespective of the generalized inverse used, as proved by [START_REF] Nikabadze | Scanning innovations and goodness of fit tests for vector random variables against the general alternative[END_REF].

The choice of the sets in (2.2) is very convenient from the computational view point. In this case,

(L θ • L 0 ) βn (u, v) = L 0 βn (u, v) - v 0 u 0 h θ (ū, v) t A -1 θ (v) 1 0 1 v h θ (ũ, ṽ) L 0 βn (dũ, dṽ) dūdv,
where

A θ (v) = 1 0 1 v h θ (ū, v) h θ (ū, v) t dvdū
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only depends on v.

The following theorem provides the weak convergence of the transformed sequential empirical process. Since in most examples A θ is the null matrix when u or v equal 1, we shall, in the following, restrict our processes to [0, 1) 2 . The associated space D[0, 1) 2 is endowed with the topology of Skorokhod convergence on compact subsets of [0, 1) 2 . For a related discussion of D[0, ∞), see [START_REF] Pollard | Convergence of Stochastic Processes[END_REF].

Theorem 3 Under H 0 and the conditions in Theorem 1,

(L θ 0 • L 0 ) βn -→ d B in the space D[0, 1) 2 .
Since F X and θ 0 are unknown, the transformation L θ 0 is unavailable in practice and needs to be replaced by its data dependent analogue. For this, put

L θn m (u, v) = m (u, v) - v 0 u 0 ĥθn (ū, v) t Â-1 θn (ū, v) S(ū,v)
ĥθn (ũ, ṽ)m(dũ, dṽ)dūdv,

with Âθ (u, v) = S(u,v) ĥθ (ū, v) ĥθ (ū, v) t dūdv.
Here ĥθ is defined through

L 0 qθ (u, v) = v 0 u 0 ĥθ (ū, v)dūdv
and qθ is defined as q θ , but with F X replaced with F Xn .

Theorem 4 Under H 0 and the conditions in Theorem 1,

L θn • L 0 βn -→ d B in the space D[0, 1) 2 .
Theorem 4 reveals that for the operators replacement of θ 0 by θ n has no effect on the limit, in contrast to the processes β n and βn . See also [START_REF] Stute | Model checks for regression: an innovation process approach[END_REF].

Test statistics are based on continuous functionals of L θn • L 0 βn . The following Corollary is a straightforward consequence of Theorem 4 and the continuous mapping theorem,

A c c e p t e d m a n u s c r i p t

Corollary 2 Under H 0 and the conditions in Theorem 1,

Γ L θn • L 0 βn -→ d Γ (B) ,
for any functional Γ on D[0, 1) 2 being continuous at the sample paths of B.

Remark 1 The results of this section continue to hold in the situation of Theorem 2. For this replace the function q θ by the function (q t θ,δ , q 1t θ,δ ) t . Since q 1 θ,δ is an integral, it may be estimated at parametric rates though it contains the unknown regression function r. In fact, in view of (1.3), q 1 θ 0 ,δ 0 (u, v) can be estimated by,

q1 θn,δn (u, v) = 1 n n i=1 1 { FXn( Z t i δn)≤u} Z i ∂ ∂x F Y |X,θn F -1 Y |X,θn ( v| Z t i δ n ) |Z t i δ n ,
whose increments are free of nonparametric components. Here, FXn is the sample distribution of Z t i δ n , i ≥ 1.

The Kolmogorov-Smirnov and Cramér-von Mises statistics pertain to the functionals

Γ (f ) = sup 0≤u,v<1 |f (u, v)| and Γ (f ) = 1 0 1 0 f (u, v) 2 dudv,
respectively, resulting in the test statistics

K n = sup 0≤u,v<1
Lθn • L 0 βn (u, v) and

C n = 1 0 1 0 L θn • L 0 βn (u, v) 2 dudv,
respectively. Under H 0 and the conditions in Corollary 1, 1 provides some quantiles of K ∞ and C ∞ . The distribution of suprema for the two parameter Brownian Motion (K ∞ ) has been

K n -→ d K ∞ = sup 0≤u,v<1 |B(u, v)| C n -→ d C ∞ = 1 0 1 0 B(u, v) 2 dudv in distribution. Table
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Table 1: Critical values of C ∞ and K ∞ C ∞ K ∞ α = 0.10 0.53 2.21 α = 0.05 0.72 2.46 α = 0.01 1.18 3.03 tabulated by [START_REF] Brownrigg | Tables of distribution functions of suprema of Brownian Motion on a line or in 2-space[END_REF]. We have obtained the critical values of C ∞ by simulation, using the spectral representation in (3.2).

From the computational viewpoint, it is more convenient to use the asymptotically equivalent versions

Kn = sup 1≤i,j≤n L θn • L 0 βn i n , Vnj Ĉn = 1 n 2 n i=1 n j=1 L θn • L 0 βn i n , Vnj 2 .
The resulting tests are omnibus, but power in particular directions can be improved by using linear combinations of the principal components of Lθn • L 0 βn , as will be discussed in the next section.

For the sets in (2.2), the transformation of βn can be written as

L θn • L 0 βn (u, v) = n 1/2 L θn • L 0 Ĝn (u, v) = 1 n 1/2 nu i=1 1 { Vn[i:n] ≤v} + log 1 -v ∧ Vn[i:n] -n 1/2 v 0   1 n nu i=1 ĥθn i n , v t   Â-1 θn (v) 1 0 1 v ĥθn (ũ, ṽ)L 0 Ĝn (dũ, dṽ)dv.
It may happen that the function ϕ θ in (1.2) and hence h θ does not depend on u:

ϕ θ (u, v) = ϕ θ (v) h θ (u, v) = h θ (v).
This may be the case, for example, when ϕ pertains to the maximum likelihood estimator and F is the normal location-scale family. See Section 4 for
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details. In such a situation, ĥ = h and the transformation of βn becomes

L θn • L 0 βn (u, v) = 1 n 1/2 nu i=1 1 { Vn[i:n] ≤v} + log 1 -v ∧ Vn[i:n] -n 1/2 u v 0 h θn (v) Â-1 θn (v) 1 v h θn (ṽ)L 0 Ĝn (1, dṽ)dv.
Here

Âθ (v) = 1 v h θ (v)h θ (v) t dv,
while the last double integral may be seen to be equal to

v 0 0 h θn (v) t     1 - v 1 v ϕ θn (ṽ) t dṽ 1 v ϕ θn (ṽ) dṽ 1 v ϕ θn (ṽ) ϕ θn (ṽ) t dṽ     -1     1 v Ĝn (1, dṽ) 1 v ϕ θn (ṽ) Ĝn (1, dṽ)     dv = 1 n n i=1 1 ϕ θn Vn[i:n] t v∧ Vn[i:n] 0     1 - v 1 v ϕ θn (ṽ) t dṽ 1 v ϕ θn (ṽ) dṽ 1 v ϕ θn (ṽ) ϕ θn (ṽ) t dṽ     -1 0 h θn (v)
dv.

In our simulations the integrals were computed using numerical methods. See Section 4.

Contiguous alternatives and directional tests

Consider the contiguous alternatives A3:

H 1n : F Y |X ( dy| x) F Y |X,θ 0 ( dy| x) = 1 + t nθ 0 (y, x) n 1/2 some θ 0 ∈ Θ,
where

t nθ : R 2 → R is such that R t nθ (y, x) F Y |X,θ ( dy| x) = 0 and t nθ → t θ as n → ∞ in L 2
for each x ∈ R and all θ ∈ Θ.
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The restriction on t nθ allows modeling particular departures from the null hypothesis, which are properly defined conditional distribution functions. In order to illustrate these local alternatives, consider the example of testing conditional normality under homoskedasticity, i.e.

H 0 : F Y |X,θ 0 ( y| x) = Φ y -x σ , where Φ (ε) = ε -∞ φ (ε) dε and φ (ε) = exp -ε 2 /2 / √
2π is the standard normal probability density function. Here, σ 2 is the conditional variance under H 0 , that is, the model is homoskedastic. An interesting local alternative is

H 1n : F Y |X ( y| x) = Φ y -x σ n (x) with σ 2 n (x) = σ 2 1 + γ (x) n 1/2 for some σ > 0,
for a particular positive function γ. This contiguous alternative can be alternatively written as

H 1n : F Y |X ( dy| x) F Y |X,θ 0 ( dy| x) = σ σ n (x) exp - (y -x) 2 2 1 σ 2 n (x) - 1 σ 2 = 1+ t nθ 0 (y, x) n 1/2 , with t nθ 0 (y, x) = -n 1/2 1 - σ σ n (x) exp - (y -x) 2 2 1 σ 2 n (x) - 1 σ 2 .
Therefore,

t nθ 0 (y, x) → t θ 0 (y, x) = γ (x) • (y -x) 2 2σ 2 -1 as n → ∞.
To study βn under H 1n in A3, we may again proceed in steps. To compensate for the deviation from the null model, the expansion of Ĝn under

H 1n now becomes sup 0≤u,v≤1 | Ĝn (u, v)-Ḡn (u, v)+q θ 0 (u, v) t (θ n -θ 0 )+n -1/2 T 1 θ 0 (u, v)| = o P (n -1/2 ), (3.1) where T 1 θ (u, v) = u 0 v 0 t θ (F -1 Y |X,θ v|F -1 X (ū) , F -1 X (ū))dvdū.
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Under contiguous alternatives the expansion A2 of θ n still continues to hold, but the θ 0 -terms typically are not centered anymore. See [START_REF] Behnen | A central limit theorem under contiguous alternatives[END_REF]. This results in the additional shift

T 2 θ (u, v) = q t θ (u, v) 1 0 1 0 ¯ θ (ū, v)t θ F -1 Y |X,θ v|F -1 X (ū) , F -1 X (ū) dvdū. Put T θ (u, v) = T 1 θ (u, v) -T 2 θ (u, v).
Then, under H 1n , βn -T θ 0 has the same limit as βn under H 0 . This yields the following result.

Theorem 5 Under H 1n and the conditions in Theorem 1,

L θn • L 0 βn -T θ 0 -→ d B in the space D[0, 1) 2 .
The associated shift function T θ 0 will be in charge of the local power of the test. Through the additional term T 2 θ it is possible that, though parameters may be known, their estimation increases the power of the test.

It is well known, see [START_REF] Kuelbs | The invariance principle for a lattice of random variables[END_REF], that B has the Kac-Siegert representation:

B (u, v) = ∞ i=1 ∞ j=1 z ij λ 1/2 ij Φ ij (u, v) ,
where

λ ij = 16 [(2i -1) (2j -1) π 2 ] 2 , Φ ij (u, v) = 2 sin (2i -1) πu 2 sin (2j -1) πv 2 and z ij = 1 0 1 0 B (u, v) Φ ij (u, v) λ 1/2 ij dudv, i, j = 1, 2, 3, .... are the principal components of B. The principal components of L θn • L 0 βn are ẑij = 1 0 1 0 L θn • L 0 βn (u, v) Φ ij (u, v) λ 1/2 ij dudv.
Hence, applying the continuous mapping theorem, ẑij

→ d N (τ ij , 1) under H 1n with τ ij = 1 0 1 0 (L θ 0 • L 0 ) T θ 0 (u, v) Φ ij (u, v) λ 1/2 ij dudv.
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Tests can be based on linear combinations of some ẑij , as has been suggested, in the context of goodness-of-fit testing of marginal distributions, by [START_REF] Durbin | Components of Cramér-von Mises statistics II[END_REF]. Notice that, under H 1n, upon applying Parseval's Theorem,

Ĉn = 1 n 2 n j=1 n i=1 L θn • L 0 βn i n , Vnj 2 → d ∞ i=1 ∞ j=1 (z ij + τ ij ) 2 λ ij .
(3.2) Conclude that the resulting tests will hardly detect high frequency alternatives, since λ ij will take very small values when i and j become large. See Eubank and La Riccia (1992) for a discussion. This suggests to use Neyman-type test statistics. See [START_REF] Neyman | Smooth tests for goodness of fit[END_REF]. For this fix m 1 and m 2 . Then

S n,m 1 ,m 2 = m 1 i=1 m 2 j=1 ẑ2 ij -→ d χ 2 m 1 +m 2   m 1 i=1 m 2 j=1 τ 2 ij   under H 1n ,
with χ 2 m (Λ) denoting a noncentral chi-square variate with noncentrality parameter Λ. These smooth tests are expected to perform better than those based on the Cramér-von Mises or Kolmogorov-Smirnov criteria in the direction of high frequency alternatives. It is also relevant to find the optimal linear combination of principal components such that the resulting test maximizes the power in the direction of particular contiguous alternatives, along the lines suggested by [START_REF] Schoenfeld | Asymptotic properties of tests based on linear combinations of the orthogonal components of the Cramér-von Mises statistic[END_REF][START_REF] Schoenfeld | Tests based on linear combinations of the orthogonal components of the Cramér-von Mises statistic when parameters are estimated[END_REF] and [START_REF] Stute | Nonparametric model checks for regression[END_REF]. In fact, as it happens with Neyman-type statistics, S n,m 1 ,m 2 can be interpreted as a Lagrange Multiplier test for testing that V and U are independent and uniformly distributed in [0, 1] in the direction of an exponential density, along the lines of [START_REF] Kallenberg | Data-driven rank tests for independence[END_REF] for a related problem. Now, under H 1n ,

L θn • L 0 βn -→ d M = B + (L θ 0 • L 0 ) T θ 0 .
M has the spectral representation,

M (u, v) = ∞ i=1 ∞ j=1 r ij λ 1/2 ij Φ ij (u, v)
where r ij is distributed as N (τ ij , 1). Conclude that we may consider a test of the hypothesis H0 :

E [r ij ] = 0 all i, j = 1, 2, ... versus H1 : E [r ij ] = τ ij some i, j = 1, 2, ...

A c c e p t e d m a n u s c r i p t

The asymptotic likelihood-ratio test statistic based on r ij , i = 1, ..., m 1 , j = 1, ..., m 2 is given by

Λ m 1 m 2 = exp    m 1 i=1 m 2 j=1 τ ij r ij - τ ij 2    = exp 1 0 1 0 ∆ m 1 m 2 (u, v) M (u, v) - (L θ 0 • L 0 ) T θ 0 (u, v) 2 dudv , with ∆ m 1 m 2 (u, v) = m 1 i=1 m 2 j=1 τ ij Φ ij (u, v) λ 1/2 ij . Grenander (1950) showed that if ∞ i=1 ∞ j=1 τ 2 ij <
∞, the most powerful test, at the significance level α, consists of rejecting H0 when

Λ ∞ > k with P (Λ ∞ > k) = α.
Here

Λ ∞ = exp 1 0 1 0 ∆ ∞ (u, v) M (u, v) - (L θ 0 • L 0 ) T θ 0 (u, v) 2 dudv with ∆ ∞ (u, v) = ∞ i=1 ∞ j=1 τ ij Φ ij (u, v) λ 1/2 ij .
We can use, as a test statistic,

ϕ = ∞ i=1 ∞ j=1 r ij • τ ij ∞ i=1 ∞ j=1 τ 2 ij 1/2 = 1 0 1 0 ∆ ∞ (u, v) M (u, v) dudv ∞ i=1 ∞ j=1 τ 2 ij 1/2
, Then ϕ ∼ N (0, 1) under H0 . H0 is rejected when

ϕ ≥ c 1-α ,
with c 1-α denoting the (1α) th quantile of N (0, 1) .
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In practice, we must estimate τ ij , truncate and rescale the series to come up with an upper one-sided test based on φn,m

1 m 2 = m 1 i=1 m 2 j=1 τ ij • ẑij m 1 i=1 m 2 j=1 τ 2 ij 1/2 -→ d N (0, 1) under H 0 ,
with m 1 and m 2 fixed integers,

τ ij = 1 0 1 0 L θn • L 0 Tnθn (u, v) Φ ij (u, v) λ 1/2 ij dudv, Tnθ (u, v) = 1 n nu i=1 t nθ Y [i:n] , X i:n 1 { Vn[i:n] ≤v} -qθ (u, v) t 1 n n i=1 θ (X i , Y i )t nθ (Y i , X i ).
Again, replacement of the operator L θ 0 by an estimated operator L θn does not change the limit. For a given parametric conditional model and a specified alternative an analysis of the components which guarantee high power depends on the model. In the following section we discuss how our method applies for testing conditional normality.

Monte Carlo

In this section we apply the Cramér-von Mises test based on Ĉn to test for conditional normality with homoscedastic disturbances, that is,

F Y |X,θ ( y| x) = Φ y -x σ ,
with x = δ 00 + δ 01 z, θ 0 = δ t 0 , σ 2 t ∈ R 2 × R + and δ 0 = (δ 00 , δ 01 ) t , where Φ is the standard normal distribution. Conclude that

f Y |X,θ ( y| x) = 1 σ φ y -x σ
with φ the standard normal probability density function. Therefore,

∂ ∂θ ln f Y |X,θ ( y| x) = 1 σ 2    1 2 (y-x) 2 σ 2 -1 y -x z (y -x)    .
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Notice that, for all θ ∈ R 2 × R + ,

F -1 Y |X ( v| x) = x + σ • Φ -1 (v) .
Hence,

∂ ∂θ ln f Y |X F -1 Y |X ( v| x) x = 1 σ 2    1 2 Φ -1 (v) 2 -1 σ • Φ -1 (v) z • σ • Φ -1 (v)    ,
which is used for computing q θ in (1.2). It is immediate that the function ϕ θ in (1.2) and hence h θ in (2.1) does not depend on u. The random variable X is always distributed as U (0, 1) with σ = δ 00 = δ 01 = 1. Programs were written in double precision FORTRAN 90 and run using a Intel Pentium 4 processor at 2.4 MGz with the Microsoft Developer Studio Compiler, and the IMSL library was used for generating the random numbers (routines DRNUN and DRNNOR), for computing the inverse of the standard normal distribution (routine DNORDF), for numerical integration taking into account possible singularities at the end points (routine DQDAGS). Monte Carlo experiments are based on 5000 simulations.

We have considered sample sizes of n = 15, 25, 50 and 100. We report on the percentages of rejection for the cases where a) θ 0 is completely known and b) δ 0 is known but σ 2 unknown (and estimated).

The proportion of rejections under H 0 is reported on in Table 2. The attained level is very good, even for small sample sizes like n = 25.

Table 3 reports on the proportion of rejections under the alternative hypothesis

H 1 : F Y |X,θ ( y| x) = Φ y -x σ (x) with σ 2 (x) = 12 • (z -0.5) 2 . Note that σ 2 = E (V ar ( Y | X)) = E σ 2 (X) = 1, as under H 0 .

Appendix

In the following Lemma we analyze the local behaviour of the sequential empirical process associated with the concomitants of the V i s. For this, define for 0 ≤ u, v ≤ 1 and real κ 1 , κ 2 , ..., κ n , 

β 0 n (u, v, κ 1 , ..., κ n ) = 1 √ n nu i=1 1 {V[i:n]≤v+κin -1/2 } -1 {V[i:n]≤v} -κ i n -1/2 .
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β 0 n (u, v, κ 1 , ..., κ n ) = o P (1)
Proof. The proof follows standard arguments when dealing with residual empirical processes, see e.g. [START_REF] Koul | Weighted Empirical Processes in Dynamic Nonlinear Models[END_REF] monograph. For fixed u, v and κ i , i = 1, ..., n, the assertion is trivial. Just observe that the concomitants are independent and identically distributed as a U (0, 1) random variable. Obviously β 0 n converges to zero in squared mean and hence in probability. For a given sequence κ 1 , κ 2 , ..., β 0 n is also tight in (u, v) , since it is only a variation of a time-sequential empirical process, which is well known to be tight. In order to get uniformity in κ, use monotonicity of the indicators, decompose the interval [-K, K] into small subintervals and reduce the analysis, up to a small error, to a finite grid. Since this is standard, details are omitted.
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Proof of Theorem 1:

Since Vni = F Y |X,θn F -1 Y |X ( V i | X i ) X i , we have, by continuity, 1 { Vni ≤v} = 1 n V i ≤F Y |X " F -1 Y |X,θn ( v|X i ) ˛Xi "o .
Applying a mean value theorem argument, for 1 where x * ni is between Z t i δ n and Z t i δ 0 . If we sum these terms up for the first nu ordered X i = Z t i δ 0 , note that in probability and uniformly in 0 ≤ u, v ≤ 1: (v| X[i:n] )|X i:n ) θ=θn → q θ 0 ,δ 0 (u, v)

≤ i ≤ n, F Y |X F -1 Y |X,θn ( v| X i ) X i = v + (θ 0 -θ n ) t ∂ ∂θ F Y |X,θ F -1 Y |X,
F Y |X F -1 Y |X,θn ( v| X i ) X i = v + κ i • n -1/2 , i
1 n nu i=1 ∂ ∂θ F Y |X,θ (F -1 Y |X,θn
1 n n i=1 1 { FXn( Xni) ≤u} Z i ∂ ∂x F Y |X,θn (F -1 Y |X,θn (v| Xni )|x * ni ) → q 1 θ 0 ,δ 0 (u, v),
where FXn is the sample distribution of Xni , i ≥ 1. Actually, this follows from the continuity of the involved functions, upon noticing that because of the n 1/2 -consistency of δ n and the fact that Z has finite second moments we have max 1≤i≤n Z t i (δ nδ 0 ) = o P (1).

Proof of Theorem 3:

It follows from Corollary 1 that βn is tight. It is then not difficult to show that also (L θ 0 • L 0 ) βn is tight. Since also the finite dimensional distributions converge, it suffices to show that in distribution (L θ 0 • L 0 ) β∞ equals a Brownian sheet. First, the operator L θ 0 • L 0 is linear so that the limit is a centered Gaussian process. Check the covariance structure to get the assertion of the theorem. See also [START_REF] Khmaladze | An innovation approach in goodness-of-fit tests in R m[END_REF][START_REF] Khmaladze | Goodness of fit problem and scanning innovation martingales[END_REF] This may be proved along the lines of [START_REF] Stute | Model checks for regression: an innovation process approach[END_REF], where similar things have been done in the context of model checks in regression.

Proof of Theorem 5:

We already pointed out that Theorem 5 is a consequence of the expansion (3.1) and the central limit theorem under contiguous alternatives due to [START_REF] Behnen | A central limit theorem under contiguous alternatives[END_REF]. To show (3.1), recall

F Y |X (dy|x) = 1 + n -1/2 t nθ 0 (y, x) F Y |X,θ 0 (dy|x).
Hence, compared to the proof of Theorem 1, we have to add another term, namely

n -1/2 F -1 Y |X,θn (v|X i ) -∞ t nθ 0 (y, X i )F Y |X,θ 0 (dy|X i ),
to the right hand side of (5.1). Summation over the first nu X-order statistics and using a continuity argument as well as assumption A3 yield the representation (3.1) and hence the assertion of Theorem 5. 

  for L 0 βn the Vn[i:n] need to be replaced with Ṽn[i:n] .

  or Lemma 3.1 in Stute, Thies and Zhu (1998) for related arguments.

  To prove Theorem 4 it suffices to show that( Lθn • L 0 ) βn -(L θ 0 • L 0 ) βn → 0 in probability.

Table 2 :

 2 Proportion of rejection under H0 : Y |X ∼ N Z, σ 2 , Z = δ 00 + δ 01 X

		No estimated parameters σ 2 estimated
		n = 15	n = 15
	α = 0.10	0.1236	0.1188
	α = 0.05	0.0646	0.0680
	α = 0.01	0.0206	0.0240
		n = 25	n = 25
	α = 0.10	0.1080	0.1052
	α = 0.05	0.0578	0.0582
	α = 0.01	0.0146	0.0142
		n = 50	n = 50
	α = 0.10	0.1030	0.1038
	α = 0.05	0.0522	0.0548
	α = 0.01	0.0126	0.0132
		n = 100	n = 100
	α = 0.10	0.0976	0.1010
	α = 0.05	0.0506	0.0508
	α = 0.01	0.0094	0.0100

Table 3 :

 3 Proportion of rejection under fixed alternative H 1 : Y |X ∼ N Z, 12 • (X -0.5) 2 as long as the κ i range in a compact interval.

	No estimated parameters σ 2 estimated
		n = 50	n = 50
	α = 0.10	0.0950	0.1650
	α = 0.05	0.0370	0.0814
	α = 0.01	0.0064	0.0208
		n = 100	n = 100
	α = 0.10	0.2038	0.3282
	α = 0.05	0.0724	0.1834
	α = 0.01	0.0080	0.0496
		n = 200	n = 200
	α = 0.10	0.6426	0.6962
	α = 0.05	0.2982	0.4722
	α = 0.01	0.0246	0.1620
	We shall see that β 0		
	Lemma 1 For each finite K, as n → ∞,	
	sup		
	0≤u,v≤1		
	{|κ i |≤K,i=1,...,n}		

n converges to zero uniformly in (u, v) and κ 1 , ..., κ n ,

  θn ( v| X i ) X i . . . where θ * niθ 0 ≤ θ nθ 0 . Since ∂F Y |X,θ F -1 Y |X,θn ( v| X i ) X i ∂θis bounded in a neighborhood of θ 0 , and since θ n = θ 0 + O P n -1/2 , (5.1) implies that

	, (5.1)
	θ=θ * ni
	i = 1, 2,

t Proof of Theorem 2:

  the consistency of θ n , and the uniform convergence of the involved empirical integrals. Compared with the previous proof, we now haveVni = F Y |X,θn (Y i | Xni ), with Xni = Z t i δ n and Y i = F -1 Y |X,θ 0 (V i |Z t i δ 0 ). Hence 1 { Vni ≤v} = 1 {V i ≤F Y |X,θ 0 (F -1 Y |X,θn (v| Xni )|X i )} . But F Y |X,θ 0 (F -1 Y |X,θn (v| Xni )|X i ) = v + (θ 0θ n ) t ∂ ∂θ F Y |X,θ (F -1 Y |X,θn (v| Xni )|Z t i δ 0 ) θ=θ * ni + (δ 0δ n ) t Z i ∂ ∂x F Y |X,θn (F Y |X,θn (v| Xni )|x) x=x * ni ,

	A c c e p t e d	m a n u s c r i p

= 1, 2, ..., where with large probability κ i ranges in a possibly large but compact set. Hence, from Lemma 1, we obtain uniformly in (u, v) ∈ [0, 1] 2 that, up to a remainder o P (1),

βn (u, v) = β n (u, v)-n 1/2 (θ nθ 0 ) t 1 n nu i=1 ∂ ∂θ F Y |X,θ F -1 Y |X,θn ( v| X i:n ) X i:n θ=θ * ni .

The result now follows from the assumed continuity of

∂F Y |X,θ F -1 Y |X,θn ( v| X i ) X i ∂θ,
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