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Abstract

We discuss how to test the specification of an ordered discrete choice model

against a general alternative. Two main approaches can be followed: tests based

on moment conditions and tests based on comparisons between parametric and

nonparametric estimations. Following these approaches, various statistics are

proposed and their asymptotic properties are discussed. The performance of

the statistics is compared by means of simulations. An easy-to-compute variant

of the standard moment-based statistic yields the best results in models with

a single explanatory variable. In models with various explanatory variables the

results are less conclusive, since the relative performance of the statistics depends

on both the fit of the model and the type of misspecification that is considered.
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‡We are grateful to F. Peñaranda and two anonymous referees for their comments.



Acc
ep

te
d m

an
usc

rip
t 

1. INTRODUCTION

Ordered discrete choice variables often appear in Statistics and Econometrics as

a dependent variable. Examples of this type of dependent variables used in recent

applied works include: educational level attained by individuals, female labour partic-

ipation (work full-time/work part-time/not to work), and level of demand for a new

product or service. The outcomes of an ordered discrete choice variable Y are usually

labelled as 0, 1, ..., J . Given certain explanatory variables X = (X1, ..., Xk)
′, the re-

searcher is usually interested in analysing whether the proposed explanatory variables

are significant or not, and/or providing accurate estimates of the conditional probabil-

ities Pr(Y = j | X = x). The most frequently used parametric model for an ordered

discrete choice variable arises when one assumes the existence of a latent continuous

dependent variable Y ∗ for which a linear regression model Y ∗ = X ′β0 + u holds; the

non-observed variable Y ∗ and the observed variable Y are assumed to be related as

follows: Y = j if µ0,j−1 ≤ Y ∗ < µ0j, for j = 0, 1, ..., J , where µ0,−1 ≡ −∞, µ0,J ≡ +∞

and µ00, µ01, ..., µ0,J−1 are threshold parameters such that µ00 ≤ µ01 ≤ ... ≤ µ0,J−1.

Assuming independence between u and X, this implies that

Pr(Y = j | X) = F (µ0j − X ′β0) − F (µ0,j−1 − X ′β0), for j = 0, 1, ..., J, (1)

where F (·) is the cumulative distribution function (cdf) of u, usually referred to as the

“link function”. To ensure identification µ00 is usually assumed to be 0; additionally,

it is assumed that F (·) is entirely known, and typical choices are the standard normal

cdf (“ordered probit”) and the logistic cdf (“ordered logit”). With these assumptions

a full parameterization of the conditional distribution Y | X = x is obtained, with

parameter vector (β ′
0, µ

′
0)

′ ⊂ R
k+J−1. Parameter estimates and predicted probabilities

are inconsistent if these assumptions are not met. Therefore, it is especially important

to test the null hypothesis that the parametric specification (1) is correct. The aim of

1



Acc
ep

te
d m

an
usc

rip
t 

this paper is to describe and compare procedures to perform this test.

The usual approach to test one (or some) of the assumptions of a parametric ordered

discrete choice model is to construct test statistics based on one (or various) moment

conditions derived from (1), using the methodology described in Newey (1985) and

Tauchen (1985). For example, Skeels and Vella (1999) derive various statistics for the

probit model (J = 1); and Butler and Chatterjee (1997) propose a test of overidenti-

fying restrictions that can be used if J ≥ 2. However, most of the recent research has

focused on the derivation of moment conditions that allow to detect specific departures

from the proposed specification; thus, Weiss (1997) proposes to test if u is homoskedas-

tic against some heteroskedastic alternatives; Johnson (1996) proposes to test if u is

normal against the alternative that it is a member of the Pearson family; and Murphy

(1996) proposes to test if F (·) is logistic against various alternatives. In contrast, we

focus on omnibus specification tests that do not address to any specific alternative.

The starting point of the moment-based statistics that we consider here is the set

of simplest moment conditions that are derived from (1), namely, the expectations

of 1{Y =j}, for j = 0, 1, ..., J , where 1{·} is the indicator function. We discuss how

asymptotically chi-square statistics can be derived from these moment conditions. We

consider various moment-based statistics that only differ in how the covariance matrix

of the sample moments is estimated, but it is well-known that this estimation plays

a crucial role in the small-sample performance of the statistic. This phenomenon was

thoroughly studied by Orme (1990), who suggests to use covariance matrix estimators

based on conditional expectations of analytical derivatives to improve small-sample

performance. Here we can follow this suggestion since the specification of our model

allows us to obtain any conditional expectation (note that this makes our approach

different to that in Skeels and Vella 1999, who estimate the covariance matrix us-

ing analytical derivatives without taking expectations). Additionally we prove that, as
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many others moment-based statistics (see e.g. Wooldridge 1990), the statistic obtained

with a conditional-expectation-based covariance matrix can be computed using an ar-

tificial regression. Finally, following Andrews (1988), we describe how the number of

moments on which the statistics are based can be increased by partitioning the support

of the regressors, and discuss whether this leads to an increase in power.

When a finite set of unconditional moment restrictions is used to test a null hy-

pothesis that specifies a conditional moment restriction, the resulting test statistic is

in general not consistent against any possible alternative, since it might happen that

all the unconditional moment restrictions that are being tested hold, but the null hy-

pothesis does not. For this reason, the statistics described above are not consistent.

Andrews (1997) proposes a consistent statistic to test a parametric specification of a

conditional cdf that can be used in our context; but most of the recent literature on

consistent specification tests has focused on regression models. When J > 1, the speci-

fication that we consider is not a regression model but the methodology that is applied

in regression models can also be applied in our context: this will be our strategy to

derive other consistent specification tests for ordered discrete choice models. Most of

the consistent specification tests for regression models that have appeared in the lit-

erature are derived by comparing parametric and nonparametric regression estimates.

Many of them require the use of a smoothing value; this is an undesirable property,

since the choice of the smoothing value plays a key role in the results, and the problem

of how to choose it is far from trivial. For this reason, here we only consider statistics

whose behavior does not depend crucially on the choice of a smoothing value. More

specifically, we consider the statistics proposed in Horowitz and Spokoiny (2001), Stute

and Zhu (2002) and Guerre and Lavergne (2005), and adapt them to our context.

We use a variety of Monte Carlo experiments to analyse the performance of the

statistics and to compare the relative merits of all of them. The experiments are
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designed to cover the most typical departures from the null hypothesis that one would

like to detect in practice: non-linearity, heteroskedasticity and misspecification of the

cdf of the error in the latent regression model.

The rest of the paper is organized as follows. In Sections 2 and 3 the test statistics

are derived. In Section 4 we describe the Monte Carlo experiments, discuss their results

and present an empirical application. In Section 5 we conclude. Some technical details

are relegated to an Appendix.

2. STATISTICS BASED ON MOMENT CONDITIONS

We assume that independent and identically distributed (i.i.d.) observations (Yi, X
′
i)

′

are available, where, hereafter, i = 1, ..., n. The following notation will be used: Dji ≡
1{Yi=j}, for j = 0, 1, ..., J ; and, given θ ≡ (β ′, µ′)′ ∈ Θ ⊂ R

k+J−1, p0i(θ) ≡ F (−X ′
iβ);

pJi(θ) ≡ 1−F (µJ−1 −X ′
iβ); if J ≥ 2, p1i(θ) ≡ F (µ1 −X ′

iβ)−F (−X ′
iβ); and if J ≥ 3,

pji(θ) ≡ F (µj − X ′
iβ) − F (µj−1 − X ′

iβ), for j = 2, ..., J − 1.

Define mji(θ) ≡ Dji − pji(θ). It follows from (1) that E{mji(θ0)} = 0, for j =

0, 1, ..., J. This yields J + 1 moment conditions but, as the sum of all probabilities

adds to one, only J are used to construct a test statistic. Specifically, we consider

the random vector
∑n

i=1 mi(θ̂), where mi(θ) is the J × 1 column vector whose j-th

component is mji(θ) and θ̂ is a well-behaved estimator of θ0. To derive an asymp-

totically valid test statistic, note that using a first-order Taylor expansion it follows

that n−1/2
∑n

i=1 mi(θ̂) = n−1/2
∑n

i=1 mi(θ0) + B0 × n1/2(θ̂ − θ0) + op(1), where B0 ≡
E{Bi(θ0)} and Bi(θ) denotes the J × (k+J−1) matrix whose j-th row is ∂mji(θ)/∂θ′.

In our context, the natural way to estimate θ0 is maximum likelihood (ML). As-

suming that certain regularity conditions hold, the ML estimator θ̂ satisfies that

n1/2(θ̂ − θ0) = A−1
0 × n−1/2

∑n
i=1 gi (θ0) + op(1), where gi(θ) ≡

∑J
j=1 Dji∂ ln pji(θ)/∂θ

is the derivative with respect to θ of the i-th term in ln L(θ), and A0 = E{Ai(θ0)},
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for Ai(θ) ≡ −∂gi(θ)/∂θ′, is the limiting information matrix. Inserting the asymptotic

expansion of n1/2(θ̂ − θ0) into the Taylor expansion of n−1/2
∑n

i=1 mi(θ̂) it follows that

n−1/2

n∑
i=1

mi(θ̂)
d−→ N (0,V0) , (2)

where V0 ≡ [IJ : B0A
−1
0 ]Q0[IJ : B0A

−1
0 ]′, IJ is the J × J identity matrix, Q0 ≡

E{Qi(θ0)} and Qi(θ) ≡ (mi(θ)
′, gi(θ)

′)′(mi(θ)
′, gi(θ)

′). To derive a test statistic, a

consistent estimator of V0 must be proposed. It is worthwhile discussing in detail how

this can be done, since it is well-known (Orme 1990) that the finite-sample performance

of moment-based statistics crucially depends on this.

The natural candidate for estimating V0 is Vn,1 ≡ [IJ : BnA
−1
n ]Qn [IJ : BnA

−1
n ]′,

where Qn ≡ n−1
∑n

i=1 Qi(θ̂), Bn ≡ n−1
∑n

i=1 Bi(θ̂), An ≡ n−1
∑n

i=1 Ai(θ̂). But it

is possible to derive an alternative estimator of V0 that leads to a computationally

simpler statistic: the information matrix equality ensures that E{gi(θ0)gi(θ0)
′} = A0,

and it is easy to check that E{mi(θ0)gi(θ0)
′} = −B0; hence it follows that V0 equals

E{mi(θ0)mi(θ0)
′} − E{mi(θ0)gi(θ0)

′}E{gi(θ0)gi(θ0)
′}−1E{gi(θ0)mi(θ0)

′}. (3)

Thus we consider Vn,2 ≡ n−1[
∑n

i=1 mi(θ̂)mi(θ̂)
′−∑n

i=1 mi(θ̂)gi(θ̂)
′{∑n

i=1 gi(θ̂)gi(θ̂)
′}−1

∑n
i=1 gi(θ̂)mi(θ̂)

′]. Note that Vn,1 and Vn,2, obtained by simply replacing population

moments by sample moments, are the standard estimates of V0 following the Newey-

Tauchen methodology. However, in our context we can do better than that: our null

hypothesis specifies the conditional distribution Y | X = x; hence, any conditional

expectation can be derived, and the sample analog of the conditional expectation is,

by the law of iterated expectations, a consistent estimator of the population moment.

This approach was proposed by Orme (1990) in the context of information matrix

tests. Here, (3) suggests that we can estimate V0 with Vn,3 ≡ n−1
∑n

i=1 Vi,3(θ̂), where

Vi,3(θ) ≡ EX{mi(θ)mi(θ)
′} − EX{mi(θ)gi(θ)

′}EX{gi(θ)gi(θ)
′}−1EX{gi(θ)mi(θ)

′}.

To sum up, we can consider three possible estimates for V0 and thus derive three pos-
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sible test statistics C
(M)
n,l ≡ n−1{∑n

i=1 mi(θ̂)
′}V−

n,l{
∑n

i=1 mi(θ̂)}, for l = 1, 2, 3, where

V−
n,l denotes the Moore-Penrose inverse of Vn,l, which is, under certain conditions, a

consistent estimator of the Moore-Penrose inverse of V0 (see Andrews 1987). From (2)

it follows that if (1) holds then C
(M)
n,l

d−→ χ2
rk(V0), what justifies the use of C

(M)
n,l as an

asymptotically valid test statistic. Typically, rk(V0) = J and V−
n,l is just the inverse

of Vn,l; but if one suspects that V0 might not be invertible (this happens e.g. if X1 is

constant and β02 = · · · = β0k = 0), it would be desirable to test whether the hypothesis

rk(V0) = J is plausible (see e.g. Robin and Smith 2000).

The computation of the three statistics can be made using the analytical expressions

that are given in the Appendix. But C
(M)
n,2 and C

(M)
n,3 can also be computed using

artificial regressions. On the one hand, C
(M)
n,2 can be computed as the explained sum

of squares (ESS) in the artificial regression of a vector of ones on mi(θ̂)
′ and gi(θ̂) (see

Newey 1985 and Tauchen 1985). On the other hand, if we denote p̂ji ≡ pji(θ̂) and

δ̂ji ≡ 1 − F (µ̂j − X ′
iβ̂) + F (−X ′

iβ̂), and consider the J × 1 vectors ĉji, d̂ji, êi,, f̂ji,

whose l-th components are defined by ĉji,l ≡ {1{l<j}p̂ji + 1{l=j}δ̂j−1,i}/(p̂jiδ̂jiδ̂j−1,i)
1/2,

d̂ji,l ≡ p̂
1/2
li [−1{l<j}p̂ji + 1{l=j}δ̂ji]/(δ̂liδ̂l−1,i)

1/2, êi,l ≡ f(µ̂l −X ′
iβ̂)− f(µ̂l−1 −X ′

iβ̂) and

f̂ji,l ≡ {1{l=j+1} − 1{l=j}}f(µ̂j − X ′
iβ̂), then it is possible to prove that C

(M)
n,3 coincides

with the ESS in the artificial regression with vector of dependent observations Z and

matrix of observations W, where Z ≡ [z′1, ..., z
′
n]′, zi is the J × 1 vector whose j-th

element is ĉ′jim̂i, W ≡ [W(1) : W(2) : W(3)], W(l) ≡ [w
(l)′
1 , ...,w

(l)′
n ]′ for l = 1, 2, 3,

w
(1)
i is the J × J matrix whose j-th column is d̂ji, w

(2)
i is the J × k matrix whose

j-th row is ĉ′jiêiX
′
i and w

(3)
i is the J × (J − 1) matrix whose (j, l) element is ĉ′jif̂li.

This is deduced taking into account that from the analytical expressions derived in

the Appendix it follows that Z′W(1) =
∑n

i=1 mi(θ̂)
′, Z′W∗= −∑n

i=1 gi(θ̂)= 0, where

W∗ ≡ [W(2) : W(3)], and W(1)′W(1) −W(1)′W∗(W′
∗W∗)

−1
W′

∗W
(1) =nVn,3.

Andrews (1988) proposes increasing the degrees of freedom of moment-based statis-

6
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tics by partitioning the support of the regressors. Let us assume that the support of Xi

is partitioned into G subsets A1, ..., AG. If we define mjgi(θ) ≡ 1{Xi∈Ag}mji(θ), for j =

1, ..., J and g = 1, ..., G, we can consider the JG moment conditions E{mjgi(θ0)} = 0.

To derive a test statistic, we define m
(P )
i (θ) ≡ mi(θ)⊗Pi, where Pi is the G×1 matrix

whose g-th row is 1{Xi∈Ag}, and consider
∑n

i=1 m
(P )
i (θ̂). As above, it follows that

n−1/2
n∑

i=1

m
(P )
i (θ̂)

d−→ N(0,V
(P )
0 ), (4)

where V
(P )
0 ≡ [IJG : B

(P )
0 A−1

0 ]Q
(P )
0 [IJG : B

(P )
0 A−1

0 ]′, B
(P )
0 ≡ E{B(P )

i (θ0)}, Q
(P )
0 ≡

E{Q(P )
i (θ0)}, B

(P )
i (θ) ≡ Bi(θ) ⊗Pi and Q

(P )
i (θ) ≡ (m

(P )
i (θ)′, gi(θ)

′)′(m(P )
i (θ)′, gi(θ)

′).

Now, the natural estimator for V
(P )
0 is V

(P )
n,1 ≡ [IJG : B

(P )
n A−1

n ] Q
(P )
n [IJG : B

(P )
n A−1

n ]′,

where B
(P )
n ≡ n−1

∑n
i=1 B

(P )
i (θ̂) and Q

(P )
n ≡ n−1

∑n
i=1 Q

(P )
i (θ̂). But two other esti-

mators can be proposed: V
(P )
n,2 and V

(P )
n,3 , defined in the same way as Vn,2 and Vn,3,

respectively, but replacing mi(θ̂) by m
(P )
i (θ̂). Thus we obtain three different test statis-

tics C
(MP )
n,l ≡ n−1{∑n

i=1 m
(P )
i (θ̂)′}V(P )

n,l
−{∑n

i=1 m
(P )
i (θ̂)}, for l = 1, 2, 3. From (4) it

follows that if (1) holds then C
(MP )
n,l

d−→ χ2

rk(V
(P )
0 )

. Again, C
(MP )
n,2 and C

(MP )
n,3 can be

computed using artificial regressions: the former coincides with the ESS in the artifi-

cial regression of a vector of ones on m
(P )
i (θ̂) and gi(θ̂); and with a similar reasoning

as above it follows that C
(MP )
n,3 coincides with the ESS in the artificial regression with

vector of dependent observations Z(P ) ≡ [z
(P )′
1 , ..., z

(P )′
n ]′ and matrix of observations

W(P ) ≡ [W(P1) : W(P2) : W(P3)], where z
(P )
i ≡ zi ⊗ Pi, W(P l)=[w

(P l)′
1 , ...,w

(P l)′
n ]′ for

l = 1, 2, 3, w
(P1)
i ≡ w

(1)
i ⊗ (PiP

′
i), w

(P2)
i ≡ w

(2)
i ⊗ Pi and w

(P3)
i ≡ w

(3)
i ⊗Pi.

Still within the framework of moment-based statistics, finally we consider the test

proposed in Butler and Chatterjee (1997), also designed against a general alterna-

tive. Note that (1) implies that E{Xlimji(θ0)} = 0, for l = 1, ..., k, j = 1, ..., J ,

where Xli denotes the l-th component of Xi. If Jk is greater than the number of

parameters (i.e. if J ≥ 2 and k ≥ 2), these Jk moment conditions can be used to

perform a test of overidentifying restrictions. Adapting the results of the generalized

7
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method of moments (GMM) to our framework, it follows that the test can be com-

puted as follows: i) obtain an initial estimate of θ0, say θ, by minimizing sn(θ)′sn(θ),

where sn(θ) ≡ n−1
∑n

i=1 mi(θ) ⊗ Xi; ii) compute Sn(θ), where Sn(θ) is a Jk × Jk

matrix with (j, j) submatrix Sjj,n(θ) = n−1
∑n

i=1 XiX
′
ipji(θ){1 − pji(θ)}, and (j, l)

submatrix Sjl,n(θ) = −n−1
∑n

i=1 XiX
′
ipji(θ)pli(θ) for j 
= l; iii) obtain a final esti-

mate of θ0, say θ̃, by minimizing sn(θ)′Sn(θ)−1sn(θ); and iv) compute the statistic

C
(BC)
n = nsn(θ̃)′Sn(θ)−1sn(θ̃). From the results of GMM theory, it follows that if (1)

holds, then C
(BC)
n

d−→ χ2
Jk−(k+J−1).

3. STATISTICS BASED ON COMPARISONS BETWEEN

PARAMETRIC AND NONPARAMETRIC ESTIMATIONS

Many specification tests have been developed by comparing parametric and non-

parametric estimations. We focus here on four of them: the ones proposed in Andrews

(1997), Stute and Zhu (2002), Horowitz and Spokoiny (2001) and Guerre and Lavergne

(2005). As we discuss below, the statistic proposed in Andrews (1997) is the only one

that applies directly to our problem, but the others can also be adapted to our frame-

work. We restrict our attention to these statistics since we want to focus on statistics

whose behavior does not depend crucially on the choice of a smoothing value: note that

two of them use no smoothing value at all, whereas the other two partially rule out the

influence of smoothing value selection by using as a statistic a maximum from among

statistics computed with different smoothing values. In all cases a root-n-consistent

estimator of θ0 is required; as above, the ML estimator is the natural choice.

Andrews (1997) suggests testing a parametric specification of the conditional distri-

bution Y | X = x by comparing the joint empirical cdf of (Y, X ′)′ and an estimate

of the joint cdf based on the parametric specification. Specifically, he proposes the

Kolmogorov-Smirnov-type statistic C
(AN)
n ≡ max1≤j≤n

∣∣n1/2Hn(Xj , Yj)
∣∣, where Hn(x, y)

8
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≡ n−1{∑n
i=1 1{Yi≤y,Xi≤x}−

∑n
i=1 1{Xi≤x}F (y | Xi, θ̂)} and F (· | x, θ0) is the conditional

cdf specified for Y | X = x. The asymptotic null distribution of C
(AN)
n cannot be tab-

ulated, but asymptotically valid critical values can be derived using bootstrap samples

{(Y ∗
ib, X

∗′
ib )

′}n
i=1 obtained as follows: X∗

ib = Xi and Y ∗
ib is generated with cdf F (· | Xi, θ̂).

Stute and Zhu (2002) suggest testing the specification of a generalized linear regres-

sion model by comparing non-smoothed parametric and nonparametric estimations of

the regression function. Their statistic does not directly apply to our problem, since

our specification is not a generalized linear regression model if J > 1. However, observe

that (1) holds if and only if

E(Dji | Xi) = pji(θ0) for j = 1, ..., J, (5)

where pji(θ0) can be expressed as a function of X ′
iβ0 and µ0. Thus, our specifica-

tion is equivalent to J generalized linear regression models. Hence, we can derive a

test statistic for our problem as follows: i) compute C
(SZ)
j,n , the Cramér-von Mises-

type statistic for the j-th regression model in (5) that is obtained following Stute and

Zhu (2002): C
(SZ)
j,n ≡ n−2

∑n
l=1

[∑n
i=1 1{X′

i
bβ≤X′

l
bβ}{Dji − pji(θ̂)}

]2

; ii) derive the overall

statistic C
(SZ)
n ≡ ∑J

j=1 C
(SZ)
j,n . Note that this overall statistic could also be defined

in a different way, e.g. max1≤j≤n C
(SZ)
j,n or

∑J
j=1{C(SZ)

j,n }2. The asymptotic null distri-

bution of C
(SZ)
n is not known, but bootstrap critical values can be derived as above;

the asymptotic validity of the bootstrap in this context can be proved with similar

arguments as in Stute et al. (1998). It is worth emphasizing that C
(SZ)
n is not affected

by the curse of dimensionality, which typically appears in nonparametric estimations,

since the effect of regressors is always introduced by means of the so-called single index

X ′
iβ̂. However, unlike the other three statistics discussed in this Section, we cannot

ensure consistency of C
(SZ)
n against any alternative, only against alternatives in which

regressors enter through a single-index1.

1Following Stute (1997), a test statistic consistent against any alternative can be achieved simply
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Horowitz and Spokoiny (2001) propose testing the specification of a regression model

comparing smoothed nonparametric and parametric estimations of the regression func-

tion with various smoothing values. To derive a test statistic for our problem, we

proceed as follows: i) compute C
(HS)
j,n , the Horowitz-Spokoiny statistic for the j-th

regression model in (5):

C
(HS)
j,n ≡ max

h∈Hj,n

∑n
l=1

[∑n
i=1{Dji − pji(θ̂)}wi,h(Xl)

]2

− ∑n
i=1 aii,hσ̂

2
ji{

2
∑n

i=1

∑n
l=1 a2

il,hσ̂
2
jiσ̂

2
jl

}1/2

where wi,h(x) ≡ K{(x−Xi)/h}/
∑n

l=1 K{(x−Xl)/h} is the Nadaraya-Watson weight,

K(·) is the kernel function, h is a smoothing value, ail,h ≡ ∑n
m=1 wi,h(Xm)wl,h(Xm),

σ̂2
ji ≡ pji(θ̂){1 − pji(θ̂)}, Hj,n ≡ {hj0a

l
j}Jn−1

l=0 is a grid of smoothing values, Jn is an

integer and hj0, aj are fixed values, 0 < aj < 1; ii) derive the overall statistic C
(HS)
n ≡

∑J
j=1 C

(HS)
j,n , which detects any deviation in any of the J regression models. Note that

the researcher must choose Jn, hj0 and aj. As before, the asymptotic null distribution

of C
(HS)
n is not known, but critical values can be derived by bootstrap. Observe that

neither the bootstrap procedure nor the conditional variance estimators σ̂2
ji that we

use are those proposed in Horowitz and Spokoiny (2001), since we exploit that the

dependent variable is binary; in this way, a better performance is obtained.

The statistic proposed in Guerre and Lavergne (2005) is similar in spirit to the pre-

vious one but, in order to maximize power, the discrepancy between the smoothed

estimations is standardized with an estimate of its conditional standard deviation

computed with a possibly different smoothing value; additionally, they exploit the

properties of leave-one-out estimators to simplify the estimation of asymptotic con-

ditional variances. Specifically, the statistic that has to be used to test the spec-

ification of the j-th regression model in (5) is C
(GL)
j,n = T

(j)

n,ehj
/v̂

(j)
hj0

, where T
(j)
n,h ≡

replacing 1{X′
i
bβ≤X′

l
bβ} by 1{Xi≤Xl} in the definition; but this consistent statistic does suffer from

the curse of dimensionality. We do not include it in our study since in our simulations it is always

outperformed by C
(SZ)
n when the number of non-constant regressors is greater than one.
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∑n
i=1

∑n
l=1,l �=i ωil(h){Dji − pji(θ̂)}{Dli − pli(θ̂)}, v̂

(j)2
h ≡ 2

∑n
i=1

∑n
l=1,l �=i ωil(h)2σ̂2

jiσ̂
2
jl,

ωil(h) ≡ K{(Xi−Xl)/h}/[
∑n

j=1,j �=i K{(Xj−Xi)/h}
∑n

j=1,j �=l K{(Xj−Xl)/h}]1/2, h̃j =

arg maxh∈Hj,n
{T (j)

n,h − γnv̂
(j)
h,hj0

} and v̂
(j)2
h,hj0

≡ 2
∑n

i=1

∑n
l=1,l �=i{ωil(h) − ωil(hj0)}2σ̂2

jiσ̂
2
jl.

Note that now we must choose γn in addition to Jn, hj0, and aj . Once C
(GL)
j,n has

been computed, the overall statistic C
(GL)
n ≡ ∑J

j=1 C
(GL)
j,n has to be derived. As above,

critical values can be derived by bootstrap.

4. SIMULATION STUDY AND EMPIRICAL APPLICATION

We perform two sets of Monte Carlo experiments. First, we generate n i.i.d. obser-

vations from 18 different models. The dependent variable is Yi = 1{Y ∗
i ≥0} in models

labelled with an A and Yi = 1{Y ∗
i ≥0} + 1{Y ∗

i ≥µ0} in models labelled with a B, and the

latent variable Y ∗
i is generated as follows:

• Models 1A, 1B: Y ∗
i = β01+β02X2i+c(X2

2i−1)+ui, where X2i and ui are independent,

X2i, ui ∼ N(0, 1).

• Models 2A, 2B: Y ∗
i , X2i as in Model 1A, and ui | X2i = x2 ∼ N(0, exp(cx2−c2/2)).

• Models 3A, 3B: Y ∗
i , X2i as in Model 1A, X2i and ui independent, and if c = 0 then

ui ∼ N(0, 1); otherwise ui = (1{c>0} − 1{c<0})(|c|1/2 εi + |c|−1/2), where εi has density

function fε(x) = x(1/|c|)−1 exp(−x)/Γ(1/ |c|) (if c ≈ 0, ui is approximately N(0, 1); if

|c| is large the distribution of ui is highly skewed).

• Models 4A, 4B, 7A, 7B: Y ∗
i = β01 + β02X2i + β03X3i + β04X4i + c(X2

2i − 1)(X2
3i −

1)(X2
4i − 1)+ui, where X2i, X3i, X4i and ui are independent with distribution N(0, 1).

• Models 5A, 5B, 8A, 8B: Y ∗
i , X2i, X3i, X4i as in Model 4A, and ui | (X2i = x2,

X3i = x3, X4i = x4) ∼ N(0, exp(cx2 − c2/2))

• Models 6A, 6B and 9A, 9B: Y ∗
i , X2i, X3i, X4i as in Model 4A, X2i, X3i, X4i and

ui are independent, and ui as in Model 3A.

The true parameter values are β01 = 0, β0j = 1 (for j > 1) in Models 1A-6A;
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β01 = 0, β0j = 1/3 (for j > 1) in Models 7A-9A; µ0 = 2, β0j = 1 (for all j) in Models

1B-6B; and µ0 = 2, β0j = 1/3 (for all j) in Models 7B-9B. In all models we test the

null hypothesis that (1) holds with the standard normal cdf as F (·). Parameters are

estimated by ML assuming that H0 holds. Note that H0 is true if and only if c = 0,

and values of c different from 0 allow us to examine the ability of the statistics to

detect misspecification in the latent regression model due to non-linearities (Models 1,

4, 7), heteroskedasticity (Models 2, 5, 8) and non-normality in F (·) (Models 3, 6, 9).

Also note that we consider models with one non-constant regressor (Models 1-3), and

with three non-constant regressors, either with a high R2 in the latent regression model

(Models 4-6) or with a low R2 (Models 7-9). In Tables 1-9 we report the proportion

of rejections of H0 at the 5% significance level when the sample size is n = 250. The

results are based on 1000 simulation runs, performed using GAUSS programmes that

are available from the authors on request. The experiments are also run with n = 100

and n = 500, but these results are not reported since they lead to similar conclusions.

When computing C
(HS)
j,n and C

(GL)
j,n a grid of smoothing values Hj,n must be chosen.

We expected this choice not to be important, but the results from some preliminary

samples suggest that this is not entirely the case. It is not within the scope of this paper

to study the optimal choice of this grid, and we failed to locate references where hints

on how to select it are given. Finally, we adopt this relatively automatic procedure: i)

compute h
(j)
CV , the leave-one-out cross-validation bandwidth in the Nadaraya-Watson

nonparametric estimation of E[1{Y =j} | X = ·]; ii) consider the grid Hj,n = {hj0a
l
j}Jn−1

l=0 ,

where hj0 = ϕjh
(j)
CV /aJn−1

j , Jn is the closest integer to ln n, and aj ∈ (0, 1), ϕj are fixed

values. Note that the minimum value in Hj,n is O(h
(j)
CV ), and Hj,n has the structure

that is required in the theoretical assumptions. This procedure is easy to implement

and only requires selecting aj , ϕj. In our experiments, all values of aj within [0.75, 0.95]

lead to almost identical results; the performance of the statistics is more sensitive to
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the choice of ϕj , but in our experiments all values within [1.5, 2] lead to approximately

correct empirical sizes -note that this means that some “oversmoothing” is required.

We finally choose aj = 0.9, and ϕj = 1.5 if the model only has one non-constant

regressor or ϕj = 1.8 otherwise. In the models with various non-constant regressors,

the same smoothing values are used with all regressors (all of them have unit variance).

The other choices required to compute the statistics are less crucial for the results.

As a kernel function we use the unit-variance density K(u) = 1{|u|≤√
7}{15/(16

√
7}(1−

u2/7)2, or a product of densities of this type. When computing C
(GL)
n we take γ250 =

{2 ln(Jn − 1)}1/2. When computing C
(MP )
n,l we consider various partitions of the sup-

port, but we only report the results for the statistic that performs better, namely,

C
(MP )
n,3 with G = 2 in Models 1-3, and with G = 8 in Models 4-9 (the partitions are

obtained splitting the support of each non-constant regressor in (−∞, 0) and [0,∞)).

When required, 101 bootstrap replications are used. Bootstrap versions of the moment-

based statistics are also computed and their results are reported with an asterisk (for

computational reasons, bootstrap versions of C
(BC)
n are not computed).

First we discuss the results for the moment-based statistics. We do not report the

results for C
(M)
n,1 and C

(M)
n,2 used with χ2 critical values, since their empirical size is

much higher than the nominal size (when the nominal size is 0.05 the empirical size

is above 0.10 in most cases); we do report the results for C
(M)
n,3 , which behaves well in

terms of size. The bootstrap versions of the three statistics also behave well in terms

of size, though a slight size distortion is observed; with additional experiments we have

checked that this problem disappears if the number of bootstrap replicates and the

number of simulation runs are increased. As regards power, note that C
(M)∗
n,3 slightly

outperforms C
(M)
n,3 ; and comparing the bootstrap versions of the three statistics, C

(M)∗
n,1

yields the worst results, and C
(M)∗
n,3 usually outperforms C

(M)∗
n,2 , though both perform

similarly in most cases (but not always, see e.g. Table 7B). If we compare C
(M)
n,3 and
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C
(MP )
n,3 , we observe that introducing partitions leads to increases in power only in a few

models and for some specific partitions (note that we only report the results for the

partition with better behaviour); hence, if the aim is to derive omnibus specification

tests that yield good results in as many settings as possible, the advice has to be not to

include partitions. The test of overidentifying restrictions C
(BC)
n almost always yields

the worst results, its empirical size worsens as the number of regressors increases, and

may be unable to detect heteroskedastic alternatives (see Table 2B). Summarizing, the

preferred moment-based statistic should be C
(M)
n,3 used with χ2 critical values, or its

bootstrap implementation C
(M)∗
n,3 .

As regards the statistics based on the comparison between parametric and nonpara-

metric estimations, all four behave reasonably well in terms of size, though there is a

slight tendency to overreject, especially with C
(AN)
n and C

(SZ)
n , and this problem is more

severe when n = 100; however this size distortion may simply be a consequence of the

limited number of simulations and bootstraps. When comparing power performance,

first we observe that C
(AN)
n almost always yields the worst results; moreover, though

the theoretical properties of this statistic do not depend on the number of regressors,

here we observe that its behaviour worsens dramatically as the number of regressors

increases. It is also observed that the two bandwidth-based statistics C
(HS)
n and C

(GL)
n

perform similarly; in some cases the latter behaves slightly better in terms of power,

but this is not a general rule. With additional experiments (not included here) we

observe that C
(GL)
n is more sensitive to bandwidth selection than C

(HS)
n . In fact, it

is possible to improve the power of C
(GL)
n in the models where it performs worse by

using a different grid of smoothing values; however, we report only the results obtained

with the grid described above, since our aim is to compare test statistics for which the

choice of smoothing value does not play a crucial role.

The comparison between the bandwidth-based statistics and C
(SZ)
n is not straight-
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forward, let alone if we also want to include C
(M)
n,3 in the comparison. However, some

significant conclusions can be drawn from Tables 1-9. First, we observe that in the mod-

els with one non-constant regressor C
(M)
n,3 performs better than the others in detecting

non-linearities or heteroskedasticity, but with non-normal alternatives the evidence is

mixed: in the binary choice models C
(M)
n,3 , C

(HS)
n and C

(GL)
n perform similarly and out-

perform C
(SZ)
n , but the latter performs better when J > 1. Second, in the models

with various non-constant regressors and a high latent R2, C
(HS)
n and C

(GL)
n perform

better than the others in detecting non-linearities or heteroskedasticity, but again the

evidence is mixed with non-normal alternatives: in the binary choice model C
(M)
n,3 is the

best one to capture non-normality, but if J > 1 C
(SZ)
n performs better. Third, in the

models with various non-constant regressors and a low latent R2, C
(SZ)
n almost always

outperforms C
(HS)
n and C

(GL)
n (the exception to this is Model 7B); but the compari-

son between C
(M)
n,3 and C

(SZ)
n is not so clear-cut: the former performs better to detect

heteroskedasticity, but there is mixed evidence with the other alternatives. Finally,

note that in most of our models the statistics’ rankings are similar under both non-

linear and heteroskedastic alternatives; possibly, this is not a surprising result, since

heteroskedasticity can be seen as a kind of specific nonlinearity.

As a summary, one could say that in models with a single explanatory variable

C
(M)
n,3 should be preferred, since it is easily computed, requires no subjective choice,

and yields the best results in almost all cases. In models with various explanatory

variables it is harder to give a general advice. If the fit of the model is good, the curse

of dimensionality does not seem to affect dramatically the performance of C
(HS)
n and

C
(GL)
n , which yield on average the best results; but if the fit of the model is poor no

general rule is found. However, assessing the advantages and disadvantages of each

statistic, it is likely that practitioners feel more comfortable using C
(M)
n,3 or C

(SZ)
n rather

than C
(HS)
n or C

(GL)
n , since those have a much lower computational cost and, what is

15



Acc
ep

te
d m

an
usc

rip
t 

more important, do not require the choice of any smoothing value.

To examine if the conclusions provided by the previous experiments still hold in

models closer to the reality, we perform a second set of experiments in which the

regressors are not simulated, but fixed at each replication and equal to real variables

contained in the Panel Study of Income Dynamics (PSID). More specifically, we extract

from the 2001 Wave a sample composed by 2280 women whose age is between 21 and

40, and whose marital status is other than “never married”, and consider the vector of

regressors Xi = (1, Ai, A2
i , Ei, Di, Hi), where Ai is age, Ei is education, Di is a dummy

variable for children/no children and Hi is husband’s labor income. We randomly

extract a subsample of 1000 observations and with this subsample we generate two

models with dependent variable Yi = 1{Y ∗
i ≥0} + 1{Y ∗

i ≥µ0}, where Y ∗
i = X ′

iβ0 + ui for

i = 1, ..., 1000, and ui is generated independently from Xi as follows:

• Model 10: If c = 0 then ui ∼ N(0, 12), and if c 
= 0 then ui = {(c−1 − 2)/c−1}1/2εi,

where εi follows a Student’s t distribution with c−1 degrees of freedom.

• Model 11: ui = {(c + 1)/(c + 3)}1/2εi, where εi follows a Student’s t distribution

with c + 3 degrees of freedom.

In Model 10 we test the null hypothesis that (1) holds with the standard normal cdf as

F (·), and in Model 11 we test the null hypothesis that (1) holds with the standardized

Student’s t3 cdf as F (·). In both models H0 is true if and only if c = 0; values of

c 
= 0 allow us to examine the ability of the statistics to detect misspecification at the

tails of u. The true parameter values are the ML estimates obtained in the empirical

application described below; parameters are estimated by ML assuming that H0 holds.

In Tables 10-11 we report the proportion of rejections of H0 at the 5% significance

level. These results are based on 200 simulation runs. The statistic C
(MP )
n,3 is computed

with G = 2 and partitioning the support of the regressors according to education

(higher or lower than the mean level). When computing C
(HS)
n and C

(GL)
n we use the
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same kernels as above with the continuous regressors (which are previously standardized

to have unit variance) and non-smoothing weights with the binary regressor. We use

the grid of smoothing values described above with a = 0.9 and ϕ = 1.8 and take

γ1000 = (2 ln 6)1/2. When required, we use 101 bootstrap replications. The results show

that the statistics perform reasonably well to detect departures from a normal cdf

due to fatter tails (Model 10), but departures from a Student’s t3 cdf due to lower

tails (Model 11) are much harder to capture. As for the relative performance of the

statistics, the conclusions drawn from the first set of experiments are confirmed.

As an empirical application we consider the determinants of women’s labour market

participation and the type of participation (full-time or part-time). We use the 2280

observations described above, and also consider the variable HW = hours of work

per year. Then we define the dependent variable Y = 0 if HW = 0, Y = 1 if

0 < HW < 1440, or Y = 2 if HW ≥ 1440. Using the vector of regressors Xi described

above we estimate an ordered probit model and an ordered discrete choice model with

a standardized Student’s t3 cdf as F (·). In both cases all estimated coefficients have

the expected sign, but the significance of some of the regressors depends on the model

that is being estimated: husband’s income in only significant in the ordered probit

model, whereas age2 is only significant in the model with a standardized Student’s t3

cdf. However, the ordered probit specification is rejected with all the statistics (the

p-values range from 0.001 to 0.025), but the Student’s t3 specification is almost never

rejected at the usual significance levels (most p-values are above 0.10).

5. CONCLUDING REMARKS

We discuss how to test the specification of an ordered discrete choice model against

a general alternative. On the one hand, we consider various moment-based statistics;

they are all based on a finite set of unconditional moment restrictions and, hence,
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are not consistent against any possible alternative. On the other hand, we consider

statistics based on comparisons between parametric and nonparametric estimations

which are either consistent against any alternative (Andrew’s statistic, Horowitz and

Spokoiny’s statistic and Guerre and Lavergne’s statistic) or consistent against alterna-

tives in which regressors enter through a single index (Stute and Zhu’s statistic). We

analyze how all these statistics can be implemented in our context and compare their

relative performance with simulations that allow us to examine their ability to detect

non-linearities, heteroskedasticity or non-normality in the latent regression model.

Moment-based statistics are easy to derive and, as usual, their finite-sample per-

formance depends on the covariance-matrix estimator that is used. We propose a

variant of the standard moment-based statistics that uses a conditional-expectation-

based covariance matrix, and prove that this variant can be computed using an artificial

regression. The resulting statistic performs very well both in terms of size and power,

particularly in models with a single explanatory variable. It must also be stressed that

in most of our simulations this moment-based statistic outperforms the widely-used

test of overidentifying restrictions proposed in Butler and Chatterjee (1997). Andrew’s

statistic also performs reasonably well in models with a single explanatory variable,

but its behaviour is severely affected by the number of regressors. The generalizations

of the statistics in Stute and Zhu (2002), Horowitz and Spokoiny (2001) and Guerre

and Lavergne (2005) that we consider here also yield satisfactory results, though the

latter ones require the choice of a grid of smoothing values, and their behaviour is

more sensitive to this choice than we expected to. The typical curse of dimensionality

of noparametric estimations affects the performance of Horowitz and Spokoiny’s and

Guerre and Lavergne’s statistcs more dramatically in models with poor fit. However,

this is not entirely the case with Stute and Zhu’s statistic, which exhibits good power

properties in all models with various regressors, possibly because it circumvents the
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curse of dimensionality by the use of a single index.

Finally, if we try to compare the performance of all the statistics, we observe that in

models with only one non-constant regressor, our variant of the moment-based statistic

yields the best results. But when the number of non-constant regressors is greater

than one, the results are less conclusive, since the relative performance of the statistics

depends on both the fit the model and the type of misspecification that is considered.

APPENDIX: ANALYTICAL EXPRESSIONS

Hereafter, f(·) and ḟ(·) denote the first and second derivative of F (·), f0i ≡ f(−X ′
iβ),

ḟ0i ≡ ḟ(−X ′
iβ), pji ≡ pji(θ), and, for j = 1, ..., J − 1, fji ≡ f(µj − X ′

iβ), ḟji ≡

ḟ(µj −X ′
iβ). Additionally, f−1,i ≡ 0, ḟ−1,i ≡ 0, fJi ≡ 0, ḟJi ≡ 0. To compute Vn,1 and

Vn,2, expressions for Bi(θ), gi(θ) and Ai(θ) are required. From the definitions in Sec-

tion 2, it follows that Bi(θ) = [B1i(θ) : B2i(θ)], where B1i(θ) is the J ×k matrix whose

j-th row is (fji − fj−1,i)X
′
i, and B2i(θ) is the J × (J − 1) matrix whose (j, l) element

is −1{l=j}fji + 1{l=j−1}fj−1,i. On the other hand, gi(θ) is the (k + J − 1) × 1 vector

whose first k rows are −{∑J
j=0(fji − fj−1,i)Dji/pji}Xi, and whose (k + l)-th row is

{Dli/pli−Dl+1,i/pl+1,i}fli. Finally, Ai(θ) is the k+(J −1)×k+(J −1) symmetric ma-

trix whose (1, 1) submatrix is {∑J
j=0 Dji[(fji − fj−1,i)

2 − pji(ḟji − ḟj−1,i)]/p
2
ji}XiX

′
i,

its (1, 2) submatrix is the k × (J − 1) matrix whose j-th column is {Dji[ḟjipji −

(fji − fj−1,i)fji]/p
2
ji + Dj+1,i[(fj+1,i − fji)fji − ḟjipj+1,i]/p

2
j+1,i}Xi, and its (2, 2) sub-

matrix is the symmetric matrix whose (j, j + l) element is 1{l=0}{Dji(f
2
ji− ḟjipji)/p

2
ji +

Dj+1,i(f
2
ji + ḟjipj+1,i)/p

2
j+1,i} − 1{l=1}Dj+1,ifjifj+1,i/p

2
j+1,i. To compute Vn,3, expres-

sions for EX{mi(θ)mi(θ)
′}, EX{mi(θ) gi(θ)

′} and EX{gi(θ)gi(θ)
′} are required. Here

EX{mi(θ)mi(θ)
′} is the J × J symmetric matrix whose (j, j) element is pji(1 − pji)

and whose (j, l) element, for l > j, is −pjipli, EX{mi(θ)gi(θ)
′} = −Bi(θ), and

EX{gi(θ)gi(θ)
′} is the k+(J−1)×k+(J−1) symmetric matrix whose (1, 1) submatrix
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is {∑J
j=0 (fji − fj−1,i)

2 /pji}XiX
′
i, its (1, 2) submatrix is the k × (J − 1) matrix whose

j-th column is {(fj+1,i − fji)/pj+1,i − (fji − fj−1,i)/pji}fjiXi, and its (2, 2) submatrix

is the symmetric matrix whose (j, l) element, for l ≥ j, is 1{l=j}(1/pji + 1/pj+1,i)f
2
ji −

1{l=j+1}(fjifj+1,i/pj+1,i). Finally, V
(P )
n,3 can be computed using that EX{m(P )

i (θ)m
(P )
i (θ)′}

= EX{mi(θ)mi(θ)
′} ⊗ (PiP

′
i) and EX{m(P )

i (θ)gi(θ)
′} = −B

(P )
i (θ).
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