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On specification testing ordered discrete choice models
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We discuss how to test the specification of an ordered discrete choice model against a general alternative. Two main approaches can be followed: tests based on moment conditions and tests based on comparisons between parametric and nonparametric estimations. Following these approaches, various statistics are proposed and their asymptotic properties are discussed. The performance of the statistics is compared by means of simulations. An easy-to-compute variant of the standard moment-based statistic yields the best results in models with a single explanatory variable. In models with various explanatory variables the results are less conclusive, since the relative performance of the statistics depends on both the fit of the model and the type of misspecification that is considered.

INTRODUCTION

Ordered discrete choice variables often appear in Statistics and Econometrics as a dependent variable. Examples of this type of dependent variables used in recent applied works include: educational level attained by individuals, female labour participation (work full-time/work part-time/not to work), and level of demand for a new product or service. The outcomes of an ordered discrete choice variable Y are usually labelled as 0, 1, ..., J. Given certain explanatory variables X = (X 1 , ..., X k ) , the researcher is usually interested in analysing whether the proposed explanatory variables are significant or not, and/or providing accurate estimates of the conditional probabilities Pr(Y = j | X = x). The most frequently used parametric model for an ordered discrete choice variable arises when one assumes the existence of a latent continuous dependent variable Y * for which a linear regression model Y * = X β 0 + u holds; the non-observed variable Y * and the observed variable Y are assumed to be related as follows: Y = j if µ 0,j-1 ≤ Y * < µ 0j , for j = 0, 1, ..., J, where µ 0,-1 ≡ -∞, µ 0,J ≡ +∞ and µ 00 , µ 01 , ..., µ 0,J-1 are threshold parameters such that µ 00 ≤ µ 01 ≤ ... ≤ µ 0,J-1 .

Assuming independence between u and X, this implies that Pr(Y = j | X) = F (µ 0j -X β 0 ) -F (µ 0,j-1 -X β 0 ), for j = 0, 1, ..., J,

(

where F (•) is the cumulative distribution function (cdf) of u, usually referred to as the "link function". To ensure identification µ 00 is usually assumed to be 0; additionally, it is assumed that F (•) is entirely known, and typical choices are the standard normal cdf ("ordered probit") and the logistic cdf ("ordered logit"). With these assumptions a full parameterization of the conditional distribution Y | X = x is obtained, with parameter vector (β 0 , µ 0 ) ⊂ R k+J-1 . Parameter estimates and predicted probabilities are inconsistent if these assumptions are not met. Therefore, it is especially important to test the null hypothesis that the parametric specification (1) is correct. The aim of
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this paper is to describe and compare procedures to perform this test.

The usual approach to test one (or some) of the assumptions of a parametric ordered discrete choice model is to construct test statistics based on one (or various) moment conditions derived from (1), using the methodology described in [START_REF] Newey | Maximum Likelihood Specification Testing and Conditional Orme, C. D[END_REF] and [START_REF] Tauchen | Diagnostic Testing and Evaluation of Maximum Likelihood Models[END_REF]. For example, [START_REF] Skeels | A Monte Carlo Investigation of the Sampling Behavior of Conditional Moment Tests in Tobit and Probit Models[END_REF] derive various statistics for the probit model (J = 1); and [START_REF] Butler | Tests of the Specification of Univariate and Bivariate Ordered Probit[END_REF] propose a test of overidentifying restrictions that can be used if J ≥ 2. However, most of the recent research has focused on the derivation of moment conditions that allow to detect specific departures from the proposed specification; thus, [START_REF] Weiss | Specification Tests in Ordered Logit and Probit Models[END_REF] proposes to test if u is homoskedastic against some heteroskedastic alternatives; [START_REF] Johnson | A Test of the Normality Assumption in the Ordered Probit Model[END_REF] proposes to test if u is normal against the alternative that it is a member of the Pearson family; and [START_REF] Murphy | Simple LM Tests of Mis-Specification for Ordered Logit Models[END_REF] proposes to test if F (•) is logistic against various alternatives. In contrast, we focus on omnibus specification tests that do not address to any specific alternative.

The starting point of the moment-based statistics that we consider here is the set of simplest moment conditions that are derived from (1), namely, the expectations of 1 {Y =j} , for j = 0, 1, ..., J , where 1 {•} is the indicator function. We discuss how asymptotically chi-square statistics can be derived from these moment conditions. We consider various moment-based statistics that only differ in how the covariance matrix of the sample moments is estimated, but it is well-known that this estimation plays a crucial role in the small-sample performance of the statistic. This phenomenon was thoroughly studied by Orme (1990), who suggests to use covariance matrix estimators based on conditional expectations of analytical derivatives to improve small-sample performance. Here we can follow this suggestion since the specification of our model allows us to obtain any conditional expectation (note that this makes our approach different to that in Skeels and Vella 1999, who estimate the covariance matrix using analytical derivatives without taking expectations). Additionally we prove that, as ), the statistic obtained with a conditional-expectation-based covariance matrix can be computed using an artificial regression. Finally, following [START_REF] Andrews | Chi-Square Diagnostic Tests for Econometric Models[END_REF], we describe how the number of moments on which the statistics are based can be increased by partitioning the support of the regressors, and discuss whether this leads to an increase in power.

When a finite set of unconditional moment restrictions is used to test a null hypothesis that specifies a conditional moment restriction, the resulting test statistic is in general not consistent against any possible alternative, since it might happen that all the unconditional moment restrictions that are being tested hold, but the null hypothesis does not. For this reason, the statistics described above are not consistent. [START_REF] Andrews | A Conditional Kolmogorov Test[END_REF] proposes a consistent statistic to test a parametric specification of a conditional cdf that can be used in our context; but most of the recent literature on consistent specification tests has focused on regression models. When J > 1, the specification that we consider is not a regression model but the methodology that is applied in regression models can also be applied in our context: this will be our strategy to derive other consistent specification tests for ordered discrete choice models. Most of the consistent specification tests for regression models that have appeared in the literature are derived by comparing parametric and nonparametric regression estimates.

Many of them require the use of a smoothing value; this is an undesirable property, since the choice of the smoothing value plays a key role in the results, and the problem of how to choose it is far from trivial. For this reason, here we only consider statistics whose behavior does not depend crucially on the choice of a smoothing value. More specifically, we consider the statistics proposed in [START_REF] Horowitz | An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative[END_REF], [START_REF] Stute | Model Checks for Generalized Linear Models[END_REF] and [START_REF] Guerre | Data-Driven Rate-Optimal Specification Testing in Regression Models[END_REF], and adapt them to our context. and present an empirical application. In Section 5 we conclude. Some technical details are relegated to an Appendix.

STATISTICS BASED ON MOMENT CONDITIONS

We assume that independent and identically distributed (i.i.d.) observations (Y i , X i ) are available, where, hereafter, i = 1, ..., n. The following notation will be used:

D ji ≡ 1 {Y i =j} , for j = 0, 1, ..., J ; and, given θ ≡ (β , µ ) ∈ Θ ⊂ R k+J-1 , p 0i (θ) ≡ F (-X i β); p Ji (θ) ≡ 1 -F (µ J-1 -X i β); if J ≥ 2, p 1i (θ) ≡ F (µ 1 -X i β) -F (-X i β); and if J ≥ 3, p ji (θ) ≡ F (µ j -X i β) -F (µ j-1 -X i β), for j = 2, ..., J -1.
Define m ji (θ) ≡ D jip ji (θ). It follows from (1) that E{m ji (θ 0 )} = 0, for j = 0, 1, ..., J. This yields J + 1 moment conditions but, as the sum of all probabilities adds to one, only J are used to construct a test statistic. Specifically, we consider the random vector n i=1 m i ( θ), where m i (θ) is the J × 1 column vector whose j-th component is m ji (θ) and θ is a well-behaved estimator of θ 0 . To derive an asymptotically valid test statistic, note that using a first-order Taylor expansion it follows

that n -1/2 n i=1 m i ( θ) = n -1/2 n i=1 m i (θ 0 ) + B 0 × n 1/2 ( θ -θ 0 ) + o p (1)
, where B 0 ≡ E{B i (θ 0 )} and B i (θ) denotes the J × (k + J -1) matrix whose j-th row is ∂m ji (θ)/∂θ .

In our context, the natural way to estimate θ 0 is maximum likelihood (ML). Assuming that certain regularity conditions hold, the ML estimator θ satisfies that

n 1/2 ( θ -θ 0 ) = A -1 0 × n -1/2 n i=1 g i (θ 0 ) + o p (1), where g i (θ) ≡ J j=1 D ji ∂ ln p ji (θ)/∂θ
is the derivative with respect to θ of the i-th term in ln L(θ), and A 0 = E{A i (θ 0 )},
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for A i (θ) ≡ -∂g i (θ)/∂θ , is the limiting information matrix. Inserting the asymptotic expansion of n 1/2 ( θθ 0 ) into the Taylor expansion of n -1/2 n i=1 m i ( θ) it follows that

n -1/2 n i=1 m i ( θ) d -→ N (0, V 0 ) , ( 2 
)
where

V 0 ≡ [I J : B 0 A -1 0 ]Q 0 [I J : B 0 A -1 0 ] , I J is the J × J identity matrix, Q 0 ≡ E{Q i (θ 0 )} and Q i (θ) ≡ (m i (θ) , g i (θ) ) (m i (θ) , g i (θ) ).
To derive a test statistic, a consistent estimator of V 0 must be proposed. It is worthwhile discussing in detail how this can be done, since it is well-known (Orme 1990) that the finite-sample performance of moment-based statistics crucially depends on this.

The natural candidate for estimating

V 0 is V n,1 ≡ [I J : B n A -1 n ]Q n [I J : B n A -1 n ] ,
where

Q n ≡ n -1 n i=1 Q i ( θ), B n ≡ n -1 n i=1 B i ( θ), A n ≡ n -1 n i=1 A i ( θ). But it
is possible to derive an alternative estimator of V 0 that leads to a computationally simpler statistic: the information matrix equality ensures that E{g i (θ 0 )g i (θ 0 ) } = A 0 , and it is easy to check that E{m i (θ 0 )g i (θ 0 ) } = -B 0 ; hence it follows that V 0 equals

E{m i (θ 0 )m i (θ 0 ) } -E{m i (θ 0 )g i (θ 0 ) }E{g i (θ 0 )g i (θ 0 ) } -1 E{g i (θ 0 )m i (θ 0 ) }. (3) Thus we consider V n,2 ≡ n -1 [ n i=1 m i ( θ)m i ( θ) -n i=1 m i ( θ)g i ( θ) { n i=1 g i ( θ)g i ( θ) } -1 n i=1 g i ( θ)m i ( θ)
]. Note that V n,1 and V n,2 , obtained by simply replacing population moments by sample moments, are the standard estimates of V 0 following the Newey-Tauchen methodology. However, in our context we can do better than that: our null hypothesis specifies the conditional distribution Y | X = x; hence, any conditional expectation can be derived, and the sample analog of the conditional expectation is, by the law of iterated expectations, a consistent estimator of the population moment.

This approach was proposed by Orme (1990) in the context of information matrix tests. Here, (3) suggests that we can estimate V 0 with V n,3 ≡ n -1 n i=1 V i,3 ( θ), where

V i,3 (θ) ≡ E X {m i (θ)m i (θ) } -E X {m i (θ)g i (θ) }E X {g i (θ)g i (θ) } -1 E X {g i (θ)m i (θ) }.
To sum up, we can consider three possible estimates for V 0 and thus derive three pos- 

n,l ≡ n -1 { n i=1 m i ( θ) }V - n,l { n i=1 m i ( θ)}, for l = 1, 2, 3
, where V - n,l denotes the Moore-Penrose inverse of V n,l , which is, under certain conditions, a consistent estimator of the Moore-Penrose inverse of V 0 (see [START_REF] Andrews | Asymptotic Results for Generalized Wald Tests[END_REF]. From ( 2)

it follows that if (1) holds then C (M ) n,l d -→ χ 2 rk(V 0 ) , what justifies the use of C (M )
n,l as an asymptotically valid test statistic. Typically, rk(V 0 ) = J and V - n,l is just the inverse of V n,l ; but if one suspects that V 0 might not be invertible (this happens e.g. if X 1 is constant and

β 02 = • • • = β 0k = 0)
, it would be desirable to test whether the hypothesis rk(V 0 ) = J is plausible (see e.g. [START_REF] Robin | Tests of Rank[END_REF].

The computation of the three statistics can be made using the analytical expressions that are given in the Appendix. But

C (M ) n,2 and C (M )
n,3 can also be computed using artificial regressions. On the one hand,

C (M )
n,2 can be computed as the explained sum of squares (ESS) in the artificial regression of a vector of ones on m i ( θ) and g i ( θ) (see [START_REF] Newey | Maximum Likelihood Specification Testing and Conditional Orme, C. D[END_REF][START_REF] Tauchen | Diagnostic Testing and Evaluation of Maximum Likelihood Models[END_REF]. On the other hand, if we denote p ji ≡ p ji ( θ) and

δ ji ≡ 1 -F ( µ j -X i β) + F (-X i β), and consider the J × 1 vectors ĉji , dji , êi ,, fji , whose l-th components are defined by ĉji,l ≡ {1 {l<j} p ji + 1 {l=j} δ j-1,i }/( p ji δ ji δ j-1,i ) 1/2 , dji,l ≡ p 1/2 li [-1 {l<j} p ji + 1 {l=j} δ ji ]/( δ li δ l-1,i ) 1/2 , êi,l ≡ f ( µ l -X i β) -f ( µ l-1 -X i β) and fji,l ≡ {1 {l=j+1} -1 {l=j} }f ( µ j -X i β), then it is possible to prove that C (M )
n,3 coincides with the ESS in the artificial regression with vector of dependent observations Z and matrix of observations W, where Z ≡ [z 1 , ..., z n ] , z i is the J × 1 vector whose j-th

element is ĉ ji mi , W ≡ [W (1) : W (2) : W (3) ], W (l) ≡ [w (l) 1 , ..., w (l) n ] for l = 1, 2, 3, w (1) i is the J × J matrix whose j-th column is dji , w (2) i is the J × k matrix whose j-th row is ĉ ji êi X i and w (3) i is the J × (J -1) matrix whose (j, l) element is ĉ ji fli .
This is deduced taking into account that from the analytical expressions derived in the Appendix it follows that Z W

(1) = n i=1 m i ( θ) , Z W * = -n i=1 g i ( θ)= 0,
where

W * ≡ [W (2) : W (3) ],
and [START_REF] Andrews | Chi-Square Diagnostic Tests for Econometric Models[END_REF] proposes increasing the degrees of freedom of moment-based statis-

W (1) W (1) -W (1) W * (W * W * ) -1 W * W (1) =nV n,3 .
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tics by partitioning the support of the regressors. Let us assume that the support of X i is partitioned into G subsets A 1 , ..., A G . If we define m jgi (θ) ≡ 1 {X i ∈Ag} m ji (θ), for j = 1, ..., J and g = 1, ..., G, we can consider the JG moment conditions E{m jgi (θ 0 )} = 0.

To derive a test statistic, we define m (P ) i (θ) ≡ m i (θ) ⊗ P i , where P i is the G × 1 matrix whose g-th row is 1 {X i ∈Ag} , and consider n i=1 m (P ) i ( θ). As above, it follows that

n -1/2 n i=1 m (P ) i ( θ) d -→ N(0, V (P ) 0 ), (4) 
where

V (P ) 0 ≡ [I JG : B (P ) 0 A -1 0 ]Q (P ) 0 [I JG : B (P ) 0 A -1 0 ] , B (P ) 0 ≡ E{B (P ) i (θ 0 )}, Q (P ) 0 ≡ E{Q (P ) i (θ 0 )}, B (P ) i (θ) ≡ B i (θ) ⊗ P i and Q (P ) i (θ) ≡ (m (P ) i (θ) , g i (θ) ) (m (P ) i (θ) , g i (θ) ).
Now, the natural estimator for

V (P ) 0 is V (P ) n,1 ≡ [I JG : B (P ) n A -1 n ] Q (P ) n [I JG : B (P ) n A -1 n ] ,
where

B (P ) n ≡ n -1 n i=1 B (P ) i ( θ) and Q (P ) n ≡ n -1 n i=1 Q (P ) i ( θ).
But two other estimators can be proposed:

V (P )
n,2 and V (P )

n,3 , defined in the same way as V n,2 and V n,3 , respectively, but replacing m i ( θ) by m

(P ) i ( θ). Thus we obtain three different test statis- tics C (MP ) n,l ≡ n -1 { n i=1 m (P ) i ( θ) }V (P ) n,l -{ n i=1 m (P ) i ( θ)}, for l = 1, 2, 3. From (4) it follows that if (1) holds then C (MP ) n,l d -→ χ 2 rk(V (P ) 0 )
. Again, C n ] and matrix of observations 1) : W (P 2) : W (P 3) ], where z

W (P ) ≡ [W (P
(P ) i ≡ z i ⊗ P i , W (P l) =[w (P l) 1 , ..., w (P l) n ] for l = 1, 2, 3, w (P 1) i ≡ w (1) i ⊗ (P i P i ), w (P 2) i ≡ w (2)
i ⊗ P i and w

(P 3) i ≡ w (3) i ⊗ P i .
Still within the framework of moment-based statistics, finally we consider the test proposed in [START_REF] Butler | Tests of the Specification of Univariate and Bivariate Ordered Probit[END_REF], also designed against a general alternative. Note that (1) implies that E{X li m ji (θ 0 )} = 0, for l = 1, ..., k, j = 1, ..., J, where X li denotes the l-th component of X i . If Jk is greater than the number of parameters (i.e. if J ≥ 2 and k ≥ 2), these Jk moment conditions can be used to perform a test of overidentifying restrictions. Adapting the results of the generalized where

s n (θ) ≡ n -1 n i=1 m i (θ) ⊗ X i ; ii) compute S n (θ), where S n (θ) is a Jk × Jk matrix with (j, j) submatrix S jj,n (θ) = n -1 n i=1 X i X i p ji (θ){1 -p ji (θ)}, and (j, l) submatrix S jl,n (θ) = -n -1 n i=1 X i X i p ji (θ)p li (θ) for j = l;
iii) obtain a final estimate of θ 0 , say θ, by minimizing s n (θ) S n (θ) -1 s n (θ); and iv) compute the statistic

C (BC) n = ns n ( θ) S n (θ) -1 s n ( θ).
From the results of GMM theory, it follows that if (1) holds, then

C (BC) n d -→ χ 2
Jk-(k+J-1) .

STATISTICS BASED ON COMPARISONS BETWEEN PARAMETRIC AND NONPARAMETRIC ESTIMATIONS

Many specification tests have been developed by comparing parametric and nonparametric estimations. We focus here on four of them: the ones proposed in Andrews (1997), [START_REF] Stute | Model Checks for Generalized Linear Models[END_REF], [START_REF] Horowitz | An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative[END_REF] and [START_REF] Guerre | Data-Driven Rate-Optimal Specification Testing in Regression Models[END_REF]. As we discuss below, the statistic proposed in [START_REF] Andrews | A Conditional Kolmogorov Test[END_REF] is the only one that applies directly to our problem, but the others can also be adapted to our framework. We restrict our attention to these statistics since we want to focus on statistics whose behavior does not depend crucially on the choice of a smoothing value: note that two of them use no smoothing value at all, whereas the other two partially rule out the influence of smoothing value selection by using as a statistic a maximum from among statistics computed with different smoothing values. In all cases a root-n-consistent estimator of θ 0 is required; as above, the ML estimator is the natural choice. [START_REF] Andrews | A Conditional Kolmogorov Test[END_REF] suggests testing a parametric specification of the conditional distribution Y | X = x by comparing the joint empirical cdf of (Y, X ) and an estimate of the joint cdf based on the parametric specification. Specifically, he proposes the Kolmogorov-Smirnov-type statistic

C (AN ) n ≡ max 1≤j≤n n 1/2 H n (X j , Y j )
, where H n (x, y)
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≡ n -1 { n i=1 1 {Y i ≤y,X i ≤x} -n i=1 1 {X i ≤x} F (y | X i , θ)} and F (• | x, θ 0 ) is the conditional cdf specified for Y | X = x.
E(D ji | X i ) = p ji (θ 0 ) for j = 1, ..., J, (5) 
where p ji (θ 0 ) can be expressed as a function of X i β 0 and µ 0 . Thus, our specification is equivalent to J generalized linear regression models. Hence, we can derive a test statistic for our problem as follows: i) compute C 

C (HS) j,n ≡ max h∈H j,n n l=1 n i=1 {D ji -p ji ( θ)}w i,h (X l ) 2 -n i=1 a ii,h σ2 ji 2 n i=1 n l=1 a 2 il,h σ2 ji σ2 jl 1/2 where w i,h (x) ≡ K{(x -X i )/h}/ n l=1 K{(x -X l )/h} is the Nadaraya-Watson weight, K(•) is the kernel function, h is a smoothing value, a il,h ≡ n m=1 w i,h (X m )w l,h (X m ), σ2 ji ≡ p ji ( θ){1 -p ji ( θ)}, H j,n ≡ {h j0 a l j } Jn-1 l=0
is a grid of smoothing values, J n is an integer and h j0 , a j are fixed values, 0 < a j < 1; ii) derive the overall statistic

C (HS) n ≡ J j=1 C
(HS) j,n , which detects any deviation in any of the J regression models. Note that the researcher must choose J n , h j0 and a j . As before, the asymptotic null distribution of C

(HS) n

is not known, but critical values can be derived by bootstrap. Observe that neither the bootstrap procedure nor the conditional variance estimators σ2 ji that we use are those proposed in [START_REF] Horowitz | An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative[END_REF], since we exploit that the dependent variable is binary; in this way, a better performance is obtained.

The statistic proposed in [START_REF] Guerre | Data-Driven Rate-Optimal Specification Testing in Regression Models[END_REF] is similar in spirit to the previous one but, in order to maximize power, the discrepancy between the smoothed estimations is standardized with an estimate of its conditional standard deviation computed with a possibly different smoothing value; additionally, they exploit the properties of leave-one-out estimators to simplify the estimation of asymptotic conditional variances. Specifically, the statistic that has to be used to test the specification of the j-th regression model in ( 5) is

C (GL) j,n = T (j) n, e h j / v (j) h j0 , where T (j) n,h ≡ replacing 1 {X i b β≤X l b
β} by 1 {Xi≤X l } in the definition; but this consistent statistic does suffer from the curse of dimensionality. We do not include it in our study since in our simulations it is always outperformed by C (SZ) n when the number of non-constant regressors is greater than one.
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n i=1 n l=1,l =i ω il (h){D ji -p ji ( θ)}{D li -p li ( θ)}, v (j)2 h ≡ 2 n i=1 n l=1,l =i ω il (h) 2 σ 2 ji σ 2 jl , ω il (h) ≡ K{(X i -X l )/h}/[ n j=1,j =i K{(X j -X i )/h} n j=1,j =l K{(X j -X l )/h}] 1/2 , h j = arg max h∈H j,n {T (j) n,h -γ n v (j) h,h j0 } and v (j)2 h,h j0 ≡ 2 n i=1 n l=1,l =i {ω il (h) -ω il (h j0 )} 2 σ 2 ji σ 2 jl .
Note that now we must choose γ n in addition to J n , h j0 , and a j . Once C (GL) j,n has been computed, the overall statistic

C (GL) n ≡ J j=1 C (GL) j,n
has to be derived. As above, critical values can be derived by bootstrap.

SIMULATION STUDY AND EMPIRICAL APPLICATION

We perform two sets of Monte Carlo experiments. First, we generate n i.i.d. observations from 18 different models. The dependent variable is

Y i = 1 {Y * i ≥0}
in models labelled with an A and Y i = 1 {Y * i ≥0} + 1 {Y * i ≥µ 0 } in models labelled with a B, and the latent variable Y * i is generated as follows:

• Models 1A, 1B:

Y * i = β 01 +β 02 X 2i +c(X 2 2i -1)+u i
, where X 2i and u i are independent, X 2i , u i ∼ N(0, 1).

• Models 2A, 2B: Y * i , X 2i as in Model 1A, and

u i | X 2i = x 2 ∼ N(0, exp(cx 2 -c 2 /2)).
• Models 3A, 3B: Y * i , X 2i as in Model 1A, X 2i and u i independent, and if c = 0 then

u i ∼ N(0, 1); otherwise u i = (1 {c>0} -1 {c<0} )(|c| 1/2 ε i + |c| -1/2 ), where ε i has density function f ε (x) = x (1/|c|)-1 exp(-x)/Γ(1/ |c|) (if c ≈ 0, u i is approximately N(0, 1); if
|c| is large the distribution of u i is highly skewed).

• Models 4A, 4B, 7A, 7B:

Y * i = β 01 + β 02 X 2i + β 03 X 3i + β 04 X 4i + c(X 2 2i -1)(X 2 3i - 1)(X 2 4i -1) + u i
, where X 2i , X 3i , X 4i and u i are independent with distribution N(0, 1).

• Models 5A, 5B, 8A, 8B: Y * i , X 2i , X 3i , X 4i as in Model 4A, and

u i | (X 2i = x 2 , X 3i = x 3 , X 4i = x 4 ) ∼ N(0, exp(cx 2 -c 2 /2))
• Models 6A, 6B and 9A, 9B: Y * i , X 2i , X 3i , X 4i as in Model 4A, X 2i , X 3i , X 4i and u i are independent, and u i as in Model 3A.

The true parameter values are β 01 = 0, β 0j = 1 (for j > 1) in Models 1A-6A;
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β 01 = 0, β 0j = 1/3 (for j > 1) in Models 7A-9A; µ 0 = 2, β 0j = 1 (for all j) in Models 1B-6B; and µ 0 = 2, β 0j = 1/3 (for all j) in Models 7B-9B. In all models we test the null hypothesis that (1) holds with the standard normal cdf as F (•). Parameters are estimated by ML assuming that H 0 holds. Note that H 0 is true if and only if c = 0, and values of c different from 0 allow us to examine the ability of the statistics to detect misspecification in the latent regression model due to non-linearities (Models 1, 4, 7), heteroskedasticity (Models 2, 5, 8) and non-normality in F (•) (Models 3,6,9).

Also note that we consider models with one non-constant regressor (Models 1-3), and with three non-constant regressors, either with a high R 2 in the latent regression model (Models 4-6) or with a low R 2 (Models 7-9). In Tables 123456789we report the proportion of rejections of H 0 at the 5% significance level when the sample size is n = 250. The results are based on 1000 simulation runs, performed using GAUSS programmes that are available from the authors on request. The experiments are also run with n = 100 and n = 500, but these results are not reported since they lead to similar conclusions.

When computing C

(HS) j,n and C

(GL) j,n a grid of smoothing values H j,n must be chosen.

We expected this choice not to be important, but the results from some preliminary samples suggest that this is not entirely the case. It is not within the scope of this paper to study the optimal choice of this grid, and we failed to locate references where hints on how to select it are given. Finally, we adopt this relatively automatic procedure: i) compute h

(j)
CV , the leave-one-out cross-validation bandwidth in the Nadaraya-Watson

nonparametric estimation of E[1 {Y =j} | X = •]; ii) consider the grid H j,n = {h j0 a l j } Jn-1 l=0 ,
where

h j0 = ϕ j h (j)
CV /a Jn-1 j , J n is the closest integer to ln n, and a j ∈ (0, 1), ϕ j are fixed values. Note that the minimum value in H j,n is O(h

(j)
CV ), and H j,n has the structure that is required in the theoretical assumptions. This procedure is easy to implement and only requires selecting a j , ϕ j . In our experiments, all values of a j within [0.75, 0.95] lead to almost identical results; the performance of the statistics is more sensitive to
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the choice of ϕ j , but in our experiments all values within [1.5, 2] lead to approximately correct empirical sizes -note that this means that some "oversmoothing" is required.

We finally choose a j = 0.9, and ϕ j = 1.5 if the model only has one non-constant regressor or ϕ j = 1.8 otherwise. In the models with various non-constant regressors, the same smoothing values are used with all regressors (all of them have unit variance).

The other choices required to compute the statistics are less crucial for the results.

As a kernel function we use the unit-variance density

K(u) = 1 {|u|≤ √ 7} {15/(16 √ 7}(1 - u 2 /7) 2
, or a product of densities of this type. When computing C

(GL) n

we take

γ 250 = {2 ln(J n -1)} 1/2 . When computing C (MP ) n,l
we consider various partitions of the support, but we only report the results for the statistic that performs better, namely,

C (MP ) n,3
with G = 2 in Models 1-3, and with G = 8 in Models 4-9 (the partitions are obtained splitting the support of each non-constant regressor in (-∞, 0) and [0, ∞)).

When required, 101 bootstrap replications are used. Bootstrap versions of the momentbased statistics are also computed and their results are reported with an asterisk (for computational reasons, bootstrap versions of C

(BC) n are not computed).

First we discuss the results for the moment-based statistics. We do not report the results for C similarly in most cases (but not always, see e.g. Table 7B). If we compare C n,3 , we observe that introducing partitions leads to increases in power only in a few models and for some specific partitions (note that we only report the results for the partition with better behaviour); hence, if the aim is to derive omnibus specification tests that yield good results in as many settings as possible, the advice has to be not to include partitions. The test of overidentifying restrictions C (BC) n almost always yields the worst results, its empirical size worsens as the number of regressors increases, and may be unable to detect heteroskedastic alternatives (see Table 2B). Summarizing, the preferred moment-based statistic should be C . In fact, it is possible to improve the power of

C (GL) n
in the models where it performs worse by using a different grid of smoothing values; however, we report only the results obtained with the grid described above, since our aim is to compare test statistics for which the choice of smoothing value does not play a crucial role.

The comparison between the bandwidth-based statistics and C n,3 in the comparison. However, some significant conclusions can be drawn from Tables 123456789. First, we observe that in the models with one non-constant regressor C is not so clear-cut: the former performs better to detect heteroskedasticity, but there is mixed evidence with the other alternatives. Finally, note that in most of our models the statistics' rankings are similar under both nonlinear and heteroskedastic alternatives; possibly, this is not a surprising result, since heteroskedasticity can be seen as a kind of specific nonlinearity.

As a summary, one could say that in models with a single explanatory variable 40, and whose marital status is other than "never married", and consider the vector of 

C (M )
regressors X i = (1, A i , A 2 i , E i , D i , H i ),
Y i = 1 {Y * i ≥0} + 1 {Y * i ≥µ 0 } , where Y * i = X i β 0 + u i for i = 1, .
.., 1000, and u i is generated independently from X i as follows:

• Model 10: If c = 0 then u i ∼ N(0, 1 2 ), and if c = 0 then

u i = {(c -1 -2)/c -1 } 1/2 ε i ,
where ε i follows a Student's t distribution with c -1 degrees of freedom.

• Model 11: u i = {(c + 1)/(c + 3)} 1/2 ε i , where ε i follows a Student's t distribution with c + 3 degrees of freedom.

In Model 10 we test the null hypothesis that (1) holds with the standard normal cdf as As an empirical application we consider the determinants of women's labour market participation and the type of participation (full-time or part-time). We use the 2280 observations described above, and also consider the variable HW = hours of work per year. Then we define the dependent variable Y = 0 if HW = 0, Y = 1 if 0 < HW < 1440, or Y = 2 if HW ≥ 1440. Using the vector of regressors X i described above we estimate an ordered probit model and an ordered discrete choice model with a standardized Student's t 3 cdf as F (•). In both cases all estimated coefficients have the expected sign, but the significance of some of the regressors depends on the model that is being estimated: husband's income in only significant in the ordered probit model, whereas age 2 is only significant in the model with a standardized Student's t 3 cdf. However, the ordered probit specification is rejected with all the statistics (the p-values range from 0.001 to 0.025), but the Student's t 3 specification is almost never rejected at the usual significance levels (most p-values are above 0.10).

F (•),

CONCLUDING REMARKS

We discuss how to test the specification of an ordered discrete choice model against a general alternative. On the one hand, we consider various moment-based statistics;

they are all based on a finite set of unconditional moment restrictions and, hence, We analyze how all these statistics can be implemented in our context and compare their relative performance with simulations that allow us to examine their ability to detect non-linearities, heteroskedasticity or non-normality in the latent regression model.

Moment-based statistics are easy to derive and, as usual, their finite-sample performance depends on the covariance-matrix estimator that is used. We propose a variant of the standard moment-based statistics that uses a conditional-expectationbased covariance matrix, and prove that this variant can be computed using an artificial regression. The resulting statistic performs very well both in terms of size and power, particularly in models with a single explanatory variable. It must also be stressed that in most of our simulations this moment-based statistic outperforms the widely-used test of overidentifying restrictions proposed in [START_REF] Butler | Tests of the Specification of Univariate and Bivariate Ordered Probit[END_REF]. Andrew's statistic also performs reasonably well in models with a single explanatory variable, but its behaviour is severely affected by the number of regressors. The generalizations of the statistics in [START_REF] Stute | Model Checks for Generalized Linear Models[END_REF], [START_REF] Horowitz | An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative[END_REF] and [START_REF] Guerre | Data-Driven Rate-Optimal Specification Testing in Regression Models[END_REF] that we consider here also yield satisfactory results, though the latter ones require the choice of a grid of smoothing values, and their behaviour is more sensitive to this choice than we expected to. The typical curse of dimensionality of noparametric estimations affects the performance of Horowitz and Spokoiny's and Guerre and Lavergne's statistcs more dramatically in models with poor fit. However, this is not entirely the case with Stute and Zhu's statistic, which exhibits good power properties in all models with various regressors, possibly because it circumvents the Finally, if we try to compare the performance of all the statistics, we observe that in models with only one non-constant regressor, our variant of the moment-based statistic yields the best results. But when the number of non-constant regressors is greater than one, the results are less conclusive, since the relative performance of the statistics depends on both the fit the model and the type of misspecification that is considered.

APPENDIX: ANALYTICAL EXPRESSIONS

Hereafter, f (•) and ḟ (•) denote the first and second derivative of F (•), f 0i ≡ f (-X i β), ḟ0i ≡ ḟ (-X i β), p ji ≡ p ji (θ), and, for j = 1, ..., J -1, f ji ≡ f (µ j -X i β), ḟji ≡ ḟ (µ j -X i β). Additionally, f -1,i ≡ 0, ḟ-1,i ≡ 0, f Ji ≡ 0, ḟJi ≡ 0. To compute V n,1 and V n,2 , expressions for B i (θ), g i (θ) and A i (θ) are required. From the definitions in Section 2, it follows that B i (θ) = [B 1i (θ) : B 2i (θ)], where B 1i (θ) is the J × k matrix whose j-th row is (f jif j-1,i )X i , and B 2i (θ) is the J × (J -1) matrix whose (j, l) element is -1 {l=j} f ji + 1 {l=j-1} f j-1,i . On the other hand, g i (θ) is the (k + J -1) × 1 vector whose first k rows are -{ J j=0 (f jif j-1,i )D ji /p ji }X i , and whose (k + l)-th row is {D li /p li -D l+1,i /p l+1,i }f li . Finally, A i (θ) is the k + (J -1) × k + (J -1) symmetric matrix whose (1, 1) submatrix is { J j=0 D ji [(f jif j-1,i ) 2p ji ( ḟjiḟj-1,i )]/p 2 ji }X i X i , its (1, 2) submatrix is the k × (J -1) matrix whose j-th column is {D ji [ ḟji p ji -(f jif j-1,i )f ji ]/p 2 ji + D j+1,i [(f j+1,if ji )f ji -ḟji p j+1,i ]/p 2 j+1,i }X i , and its (2, 2) submatrix is the symmetric matrix whose (j, j + l) element is 1 {l=0} {D ji (f 2 ji -ḟji p ji )/p 2 ji + D j+1,i (f 2 ji + ḟji p j+1,i )/p 2 j+1,i } -1 {l=1} D j+1,i f ji f j+1,i /p 2 j+1,i . To compute V n,3 , expressions for E X {m i (θ)m i (θ) }, E X {m i (θ) g i (θ) } and E X {g i (θ)g i (θ) } are required. Here E X {m i (θ)m i (θ) } is the J × J symmetric matrix whose (j, j) element is p ji (1p ji ) and whose (j, l) element, for l > j, is -p ji p li , E X {m i (θ)g i (θ) } = -B i (θ), and E X {g i (θ)g i (θ) } is the k +(J -1)×k +(J -1) symmetric matrix whose (1, 1) submatrix A c c e p t e d m a n u s c r i p t is { J j=0 (f jif j-1,i ) 2 /p ji }X i X i , its (1, 2) submatrix is the k × (J -1) matrix whose j-th column is {(f j+1,if ji )/p j+1,i -(f jif j-1,i )/p ji }f ji X i , and its (2, 2) submatrix is the symmetric matrix whose (j, l) element, for l ≥ j, is 1 {l=j} (1/p ji + 1/p j+1,i )f 2 ji -1 {l=j+1} (f ji f j+1,i /p j+1,i ). Finally, V (P )

n,3 can be computed using that E X {m 

  -based statistics (see e.g.[START_REF] Wooldridge | A Unified Approach to Robust, Regression-Based Specification Tests[END_REF]

  We use a variety of Monte Carlo experiments to analyse the performance of the statistics and to compare the relative merits of all of them. The experiments are the most typical departures from the null hypothesis that one would like to detect in practice: non-linearity, heteroskedasticity and misspecification of the cdf of the error in the latent regression model.The rest of the paper is organized as follows. In Sections 2 and 3 the test statistics are derived. In Section 4 we describe the Monte Carlo experiments, discuss their results

  regressions: the former coincides with the ESS in the artificial regression of a vector of ones on m (P ) i ( θ) and g i ( θ); and with a similar reasoning as above it follows that C (MP ) n,3 coincides with the ESS in the artificial regression with vector of dependent observations Z (P ) ≡ [z (P ) 1 , ..., z (P )

  method of moments (GMM) to our framework, it follows that the test can be computed as follows: i) obtain an initial estimate of θ 0 , say θ, by minimizing s n (θ) s n (θ),

Zhu

  , the Cramér-von Misestype statistic for the j-th regression model in (5) that is obtained following Stute and . Note that this overall statistic could also be defined in a different way, e.g. max 1≤j≤n C } 2 . The asymptotic null distribution of C (SZ) n is not known, but bootstrap critical values can be derived as above; the asymptotic validity of the bootstrap in this context can be proved with similar arguments as in[START_REF] Stute | Bootstrap Approximations in Model Checks for Regression[END_REF]. It is worth emphasizing that C (SZ) n is not affected by the curse of dimensionality, which typically appears in nonparametric estimations, since the effect of regressors is always introduced by means of the so-called single index X i β. However, unlike the other three statistics discussed in this Section, we cannot ensure consistency of C (SZ) n against any alternative, only against alternatives in which regressors enter through a single-index 1 .1 Following[START_REF] Stute | Nonparametric Model Checks for Regression[END_REF], a test statistic consistent against any alternative can be achieved simply[START_REF] Horowitz | An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative[END_REF] propose testing the specification of a regression model comparing smoothed nonparametric and parametric estimations of the regression function with various smoothing values. To derive a test statistic for our problem, we proceed as follows: i) compute C (HS) j,n , the Horowitz-Spokoiny statistic for the j-th regression model in (5):

  used with χ 2 critical values, since their empirical size is much higher than the nominal size (when the nominal size is 0.05 the empirical size is above 0.10 in most cases); we do report the results for C (M ) n,3 , which behaves well in terms of size. The bootstrap versions of the three statistics also behave well in terms of size, though a slight size distortion is observed; with additional experiments we have checked that this problem disappears if the number of bootstrap replicates and the number of simulation runs are increased. As regards power, note that C

,

  As regards the statistics based on the comparison between parametric and nonparametric estimations, all four behave reasonably well in terms of size, though there is a slight tendency to overreject, especially with C and this problem is more severe when n = 100; however this size distortion may simply be a consequence of the limited number of simulations and bootstraps. When comparing power performance, first we observe that C (AN ) n almost always yields the worst results; moreover, though the theoretical properties of this statistic do not depend on the number of regressors, here we observe that its behaviour worsens dramatically as the number of regressors increases. It is also observed that the two bandwidth-based statistics C in some cases the latter behaves slightly better in terms of power, but this is not a general rule. With additional experiments (not included here) we observe that C (GL) n is more sensitive to bandwidth selection than C (HS) n

  alone if we also want to include C (M )

,

  performs better than the others in detecting non-linearities or heteroskedasticity, but with non-normal alternatives the evidence is mixed: in the binary choice models C but the latter performs better when J > 1. Second, in the models with various non-constant regressors and a high latent R 2 , C others in detecting non-linearities or heteroskedasticity, but again the evidence is mixed with non-normal alternatives: in the binary choice model C (M ) n,3 is the best one to capture non-normality, but if J > 1 C (SZ) n performs better. Third, in the models with various non-constant regressors and a low latent R 2 , C

  do not require the choice of any smoothing value. To examine if the conclusions provided by the previous experiments still hold in models closer to the reality, we perform a second set of experiments in which the regressors are not simulated, but fixed at each replication and equal to real variables contained in the Panel Study of Income Dynamics (PSID). More specifically, we extract from the 2001 Wave a sample composed by 2280 women whose age is between 21 and

  and in Model 11 we test the null hypothesis that (1) holds with the standardized Student's t 3 cdf as F (•). In both models H 0 is true if and only if c = 0; values of c = 0 allow us to examine the ability of the statistics to detect misspecification at the tails of u. The true parameter values are the ML estimates obtained in the empirical application described below; parameters are estimated by ML assuming that H 0 holds.In Tables 10-11 we report the proportion of rejections of H 0 at the 5% significance level. These results are based on 200 simulation runs. The statistic C partitioning the support of the regressors according to education (higher or lower than the mean level). When computing C above with the continuous regressors (which are previously standardized to have unit variance) and non-smoothing weights with the binary regressor. We use the grid of smoothing values described above with a = 0.9 and ϕ = 1.8 and take γ 1000 = (2 ln 6) 1/2 . When required, we use 101 bootstrap replications. The results show that the statistics perform reasonably well to detect departures from a normal cdf due to fatter tails (Model 10), but departures from a Student's t 3 cdf due to lower tails (Model 11) are much harder to capture. As for the relative performance of the statistics, the conclusions drawn from the first set of experiments are confirmed.

  against any possible alternative. On the other hand, we consider statistics based on comparisons between parametric and nonparametric estimations which are either consistent against any alternative (Andrew's statistic, Horowitz and Spokoiny's statistic and Guerre and Lavergne's statistic) or consistent against alternatives in which regressors enter through a single index (Stute and Zhu's statistic).

  by the use of a single index.

=

  E X {m i (θ)m i (θ) } ⊗ (P i P i ) and E X {m (P ) i (θ)g i (θ) } = -B

  n,3 should be preferred, since it is easily computed, requires no subjective choice, and yields the best results in almost all cases. In models with various explanatory variables it is harder to give a general advice. If the fit of the model is good, the curse of dimensionality does not seem to affect dramatically the performance of C

						(HS) n	and
	C	(GL) n	, which yield on average the best results; but if the fit of the model is poor no
	general rule is found. However, assessing the advantages and disadvantages of each
	statistic, it is likely that practitioners feel more comfortable using C	(M ) n,3 or C	(SZ) n	rather
	than C	(HS) n	or C	(GL) n	, since those have a much lower computational cost and, what is

  where A i is age, E i is education, D i is a dummy variable for children/no children and H i is husband's labor income. We randomly extract a subsample of 1000 observations and with this subsample we generate two models with dependent variable