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Abstract

We present new tests for the form of the volatility function which are based on stochastic

processes of the integrated volatility. We prove weak convergence of these processes to centered

processes whose conditional distributions are Gaussian. In the case of testing for a constant

volatility the limiting process are standard Brownian bridges. As a consequence an asymptotic

distribution free test and bootstrap tests (for testing of a general parametric form) can easily

be implemented. It is demonstrated that the new tests are more than the currently available

procedures. The new approach is also demonstrated by means of a simulation study.
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1 Introduction

Modeling the dynamics of interest rates, stock prices exchange rates is an important problem in

mathematical finance and since the seminar papers of Black and Scholes (1973) and Merton (1973)

many theoretical models have been developed for this purpose. Most of these models are continuous

time stochastic processes, because information arrives at financial markets in continuous time (see

Merton, 1990). A commonly used class of processes in mathematical finance for representing asset

prices are Itô diffusions defined as a solution of the stochastic differential equation

dXt = b (t,Xt) dt + σ (t,Xt) dWt (1)

where (Wt)t is a standard Brownian motion and b and σ denote the drift and volatility, respectively.

Various models have been proposed in the literature for the different types of options (see e.g. Black

and Scholes, 1973, Vasicek, 1977, Cox, Ingersoll and Ross, 1985, Karatzas, 1988, Constantinides,

1992 or Duffie and Harrison, 1993, among many others). For a reasonable pricing of derivative

assets in the context of such models a correct specification of the volatility is required and good

estimates of this quantity are needed. For example, the pricing of European call options crucially

depends on the functional form of the volatility (see Black and Scholes, 1973) and the same is true

for other types of options (see e.g. Duffie and Harrison, 1993, or Karatzas, 1988, among many

others).

A (correct) specification of a parametric form for the volatility has the advantage that the problem

of its estimation is reduced to the determination of a low dimensional parameter. On the other

hand a misspecification of drift or variance in the diffusion model (1) may lead to an inadequate

data analysis and to serious errors in the pricing of derivative assets. Therefore several authors

propose to check the postulated model by means of a goodness-of-fit test (see Ait Sahalia, 1996,
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Corradi and White, 1999, Dette and von Lieres und Wilkau, 2003). Ait Sahalia (1996) assumes a

time span approaching infinity as the sample size increases and considers the problem of testing a

joint parametric specification of drift and variance, while in the other references a fixed time span

is considered, where the discrete sampling interval approaches zero, and a parametric hypothesis

regarding the volatility function is tested. This modeling might be more appropriate for high

frequency data.

In the present paper we also consider the case of discretely observed data on a fixed time span, say

[0, 1], from the model (1) with increasing sample size. As pointed out by Corradi and White (1999)

this model is appropriate for analyzing the pricing of European, American or Asian options. These

authors consider the sum of the squared differences between a nonparametric and a parametric

estimate of the variance function at a fixed number of points in the interval [0, 1]. Although this

approach is attractive because of its simplicity, it has been argued by Dette and von Lieres und

Wilkau (2003) that the results of the test may depend on the number and location of the points,

where the parametric and nonparametric estimates are compared. Therefore these authors suggest

a new test for the parametric form of the volatility in the diffusion model (1), which does not

depend on the state x, i.e. σ(t,Xt) = σ(t). The test is based on an L2-distance between the

volatility function in the model under the null hypothesis and alternative. This approach yields a

consistent procedure against any (fixed) alternative, which can detect local alternatives converging

to the null hypothesis at a rate n−1/4. In the present paper an alternative test for the parametric

form of the volatility function is proposed, which is based on a process of the integrated volatility.

Our motivation for considering functionals of stochastic processes as test statistics stems from the

fact that tests of this type are more sensitive with respect to Pitman alternatives. Moreover the

new tests are also applicable for testing parametric hypotheses on the volatility, which depend on

the state x.

In Section 2 we introduce some basic terminology and describe two kinds of parametric hypothe-

ses for the volatility function. We also define two types of stochastic processes of the integrated
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volatility, which will be used for the construction of test statistics for these hypotheses. Section

3 contains our main results. We show convergence in probability of the stochastic processes to a

random variable, which vanishes if and only if the null hypothesis is satisfied. Moreover, we also

establish weak convergence of appropriately scaled processes of the integrated volatility to a cen-

tered process under the null hypothesis of a parametric form of the volatility. Consequently, the

Kolmogorov-Smirnov and Cramér von Mises functional of these processes are natural test statis-

tics. In general the limiting process is a complicated “function” of the data generating diffusion,

but conditioned on the diffusion (Xt)t∈[0,1] it is a Gaussian process. In the problem of testing for

homoscedasticity these tests are asymptotically distribution free and the limit distribution is given

by a Brownian bridge. In Section 4 we study the finite sample properties of the proposed method-

ology and compare the new procedure with the currently available tests for the parametric form

of the volatility function. For high frequency data the new tests yield a reliable approximation of

the nominal level and substantial improvements with respect to power compared to the currently

available procedures. Finally, all proofs and some auxiliary results are presented in an appendix.

2 Specification of a parametric form of the volatility

Let (Wt)t≥0 denote a standard Brownian motion defined on an appropriate probability space

(Ω,F , (Ft)0≤t≤1, P ) with corresponding filtration FW
t = σ(Ws, 0 ≤ s ≤ t) and assume that the

drift and variance function in the stochastic differential equation (1) are locally Lipschitz continu-

ous, i.e. for every integer M > 0 there exists a constant KM such that

|b (t, x) − b (t, y)| + |σ (t, x) − σ (t, y)| ≤ KM |x − y| (2)

for all t ∈ [0, 1], x, y ∈ [−M, M ], and there exists a constant K such that

|b (t, x)|2 + |σ (t, x)|2 ≤ K2 (1 + |x|2) (3)

4
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for all t ∈ [0, 1], x ∈ R. Throughout this paper we assume additionally that the drift and variance

function satisfy a further Lipschitz condition of order γ > 1
2
, i.e.

|b (t, x) − b (s, x)| + |σ(t, x) − σ(s, x)| ≤ L |t − s|γ (4)

for some constant L > 0. It is well known that for an F0-measurable square integrable random

variable ξ, which is independent of the Brownian motion (Wt)t∈[0,1], the assumptions (2) and (3)

admit a unique strong solution (Xt)t∈[0,1] of the stochastic differential equation (1) with initial

condition X0 = ξ which is adapted to the filtration (Ft)0≤t≤1 (see e.g. Karatzas and Shreve, 1991,

p. 289). The solution of the differential equation can be represented as

Xt = ξ +

∫ t

0

b (s,Xs) ds +

∫ t

0

σ (s,Xs) dWs a.s., (5)

where Xt is Ft-measurable for all t ∈ [0, 1] and the paths t → Xt are almost surely continuous.

Throughout the paper we assume that

E[|ξ|4] < ∞. (6)

and that the volatility σ is twice continuously differentiable such that for some constant F > 0

sup
s,t∈[0,1]

E[(
∂

∂x
σ(s,Xt))

4] < F, sup
s,t∈[0,1]

E[(
∂2

∂x2
σ(s,Xt))

4] < F (7)

(here ∂
∂x

denotes the partial derivative with respect to the second argument). In the literature

various parametric functions have been proposed for different types of options (see e.g. Black and

Scholes, 1973, Vasicek, 1977, Cox, Ingersoll and Ross, 1985, Karatzas, 1988, Constantinides, 1992,

or Duffie and Harrison, 1993, among many others). In principle the assumption on the volatility

function in these models can be formulated in two ways that is

H̄0 : σ2(t, Xt) =
d∑

j=1

θ̄jσ̄
2
j (t,Xt) ∀ t ∈ [0, 1] (a.s.) , (8)

or

H0 : σ(t,Xt) =
d∑

j=1

θjσj(t,Xt) ∀ t ∈ [0, 1] (a.s.) , (9)
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where θ̄ = (θ̄1, . . . , θ̄d), θ = (θ1, . . . , θd) ∈ Θ ⊂ R
d are unknown finite dimensional parameters and

σ̄2
1, . . . , σ̄

2
d, respectively σ1, . . . , σd are given and known volatility functions satisfying

|σ̄j (t, x) − σ̄j (s, x)| + |σj(t, x) − σj(s, x)| ≤ L |t − s|γ , j = 1, . . . , d,

for all s, t ∈ [0, 1], L > 0, γ > 1
2
. Note that the hypothesis (8) refers to the variance function σ2

while the formulation (9) directly refers to the factor of the term dWs in the stochastic differential

equation (1). There exist in fact many models for prices of financial assets traded in continuous

time, where both hypotheses are equivalent (see e.g. Vasicek, 1977, Cox, Ingersoll and Ross, 1985,

Brennan and Schwartz, 1979, Courtadon, 1982, Chan, Karolyi, Longstaff and Sanders, 1992), but

in general these hypotheses are not equivalent. A typical example for such a case is given by

H̄0 : σ2(t,Xt) = ϑ̄1 + ϑ̄2X
2
1 , (a.s.) (10)

H0 : σ(t, Xt) = ϑ1 + ϑ2|Xt|, (a.s.) (11)

which is a slight generalization of the models considered in the cited references. We begin our

discussion constructing a test statistic for the hypothesis H0 in (9) and since the law of the process

X depends only on σ2 (see Revuz and Yor, 1999, p. 293) we assume that the functions σ1, . . . , σd

are twice continuously differentiable, strictly positive, linearly independent on every compact set

[0, 1] × [a, b], a < b and satisfy the analogue of (7), that is

sup
s,t∈[0,1]

E[(
∂

∂x
{σi(s,Xt)σj(s,Xt)})4] < F, sup

s,t∈[0,1]

E[(
∂2

∂x2
{σi(s,Xt)σj(s,Xt)})4] < F (12)

for all 1 ≤ i, j ≤ d. Further we assume that the functions σ1, . . . , σd in the linear hypothesis

(9) satisfy the same assumptions (2), (3) and (7) as the volatility function σ. For the discussion

of hypothesis (8) we need to replace σ by σ2 in assumption (7), σi by σ̄2
i in (12) and 4 by 8 in

assumption (6).

For testing the hypothesis (9) we consider the following stochastic process

Mt :=

∫ t

0

{σ(s,Xs) −
d∑

j=1

θmin
j σj(s,Xs)}ds, (13)

6
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where the vector θmin = (θmin
1 , . . . , θmin

d )T := argminθ∈Rd

∫ 1

0
{σ(s,Xs)−

∑d
j=1 θjσj(s,Xs)}2 ds . Note

that the null hypothesis in (9) is satisfied if and only if Mt = 0 ∀ t ∈ [0, 1] (a.s.) and that we use

an L2-distance to determine the best approximation of σ by linear combination of the functions

σ1, . . . , σd. This choice is mainly motivated by the sake of transparency and other distances as the

L1-distance could be used as well with an additional amount of technical difficulties.

¿From standard Hilbert space theory (see Achieser, 1956) we obtain θmin = D−1C, where the matrix

D = (Dij)1≤i,j≤d and the vector C = (C1, . . . , Cd)
T are defined by

Dij := 〈σi, σj〉2, Ci := 〈σ, σi〉2, (14)

and 〈·, ·〉2 denotes the standard inner product for functions f, g : [0, 1] × R → R, that is 〈f, g〉2 =

∫ 1

0
f(t,Xt)g(t,Xt)dt (here and throughout this paper we assume that the integrals exist almost

surely, whenever they appear in the text). The quantities in (14) can easily be estimated by

D̂ij :=
1

n

n∑
k=1

σi(
k

n
, X k

n
)σj(

k

n
,X k

n
)

P−→ Dij, (15)

Ĉi := µ−1
1 n− 1

2

n∑
k=1

σi(
k − 1

n
,X k−1

n
)|X k

n
− X k−1

n
| P−→ Ci , (16)

where the symbol
P−→ means convergence in probability and µr (r ≥ 0) is defined as a the rth

absolute moment of a standard normal distribution (e.g. µ1 =
√

2/π, µ2 = 1). With the notation

D̂ = (D̂ij)1≤i,j≤d, Ĉ = (Ĉ1, . . . , Ĉd)
T (17)

we obtain θ̂min := D̂−1Ĉ as estimate for the random variable θmin. We finally introduce the

stochastic process

M̂t := B̂0
t − B̂T

t D̂−1Ĉ , (18)

as estimate of the process (Mt)t∈[0,1] defined in (13), where the quantities B̂0
t and B̂t = (B̂1

t , . . . , B̂
d
t )

T

are given by

B̂0
t := µ−1

1 n− 1
2

�nt�∑
k=1

|X k
n
− X k−1

n
| , B̂i

t :=
1

n

�nt�∑
k=1

σi(
k

n
,X k

n
), 1 ≤ i ≤ d, (19)

7
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respectively. Because Mt = 0 (a.s.) for all t ∈ [0, 1] if and only if the null hypothesis H0 is satisfied,

it is intuitively clear that the rejection of the null hypothesis for large values of supt∈[0,1] |M̂t|,∫ 1

0
|M̂t|dt or

∫ 1

0
|M̂t|2dt yields a consistent test for the above problem. Note that the integrals and

supremum have to be calculated with sufficient accuracy in order to avoid a discretization bias.

Before we make these arguments more rigorous we briefly present the corresponding testing pro-

cedure for the hypothesis (8). In this case the analogue of the stochastic process Mt is defined

by

Nt :=

∫ t

0

{
σ2(s,Xs) −

d∑
j=1

θ̄min
j σ̄2

j (s,Xs)
}

ds , (20)

where θ̄min = (θ̄min
1 , . . . , θ̄min

d )T := argminθ̄∈Rd

∫ 1

0
{σ2(s,Xs) −

∑d
j=1 θ̄jσ̄

2
j (s,Xs)}2 ds. The nonob-

servable stochastic process can easily be estimated from the available data by

N̂t := B̄0
t − B̄T

t D̄−1C̄ , (21)

where D̄ij = 1/n
∑n

k=1 σ̄2
i (

k
n
, X k

n
)σ̄2

j (
k
n
, X k

n
) (i, j = 1, . . . , d), C̄i =

∑n
k=2 σ̄2

i (
k−1
n

, X k−1
n

)|X k
n
−X k−1

n
|2

(i = 1, . . . , d) and the quantities B̄0
t and B̄t = (B̄1

t , . . . B̄
d
t )

T are given by

B̄0
t :=

�nt�∑
k=1

|X k
n
− X k−1

n
|2, B̄i

t :=
1

n

�nt�∑
k=1

σ̄2
i (

k

n
,X k

n
), 1 ≤ i ≤ d. (22)

In the following section we investigate the stochastic properties of the processes (
√

n(M̂t−Mt))t∈[0,1]

and (
√

n(N̂t−Nt))t∈[0,1]. In particular, we will prove weak convergence of these processes to centered

processes, which are conditioned on the process (Xt)t∈[0,1] Gaussian processes. This is the basic

result for the application of these processes in the problem of testing for the parametric form of

the volatility in a continuous time diffusion model. The reason for considering both processes is

twofold. On the one hand the weak convergence of the process
√

n(M̂t − Mt) can be established

under weaker assumptions on the model (1). On the other hand the statistic
√

n(N̂t − Nt) can

easily be extended to vector-valued diffusions (see Remark 3.7).

8
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3 Main results

For the sake of brevity we mainly restrict ourselves to a detailed derivation of the stochastic prop-

erties of the process M̂t. The corresponding results for the process N̂t can be obtained by similar

arguments and the main statements are given at the end of this section for the sake of completeness.

We begin our discussion with two auxiliary results regarding the estimators D̂ and B̂i
t defined in

(17) and (19), which are also of own interest. Our first results clarify the order of difference between

the empirical quantities Ĉi, B̂i
t, D̂ij and their theoretical counterparts Ci, Bi

t, Dij, respectively.

Lemma 3.1. If the assumptions stated in Section 2 are satisfied we have D̂ − D = op(n
− 1

2 ) and

B̂i
t −

∫ t

0

σi(s,Xs)ds = op(n
− 1

2 ) 1 ≤ i ≤ d

Throughout this paper the symbol Xn
Dst−→ X means that the sequence of random variables converges

stably in law. Recall that a sequence of d-dimensional random variables (Xn)n∈N converges stably in

law with limit X, defined on an appropriate extension (Ω′,F ′, P ′) of a probability space (Ω,F , P ), if

and only if for any F -measurable and bounded random variable Y and any bounded and continuous

function g the convergence limn→∞ E[Y g(Xn)] = E[Y g(X)] holds. This is obviously a slightly

stronger mode of convergence than convergence in law (see Renyi, 1963, Aldous and Eagleson, 1978,

for more details on stable convergence). The following Lemma shows that the random variables B̂0
t

and Ĉi defined in (19) and (17) converge stably in law if they are appropriately normalized.

Lemma 3.2. If the assumptions stated in Section 2 are satisfied we have for any t1, . . . , tk ∈ [0, 1]

√
n


 (B̂0

t�
− < σ, 1 >t�

2 )k
�=1

(Ĉ� − C�)
d
�=1


 Dst−→ µ−1

1

√
µ2 − µ2

1

∫ 1

0

Σ
1
2
t1,...tk

(s,Xs) dW ′
s , (23)

where W ′ denotes a (d + k)-dimensional Brownian motion, which is independent of the σ-field F ,

and the matrix Σt1,...tk(s, Xs) denotes a block matrix defined by

Σt1,...tk(s,Xs) =


 E F

F T G


 (24)

9
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with

E =
(
σ2(s,Xs)1[0,ti∧tj)(s)

)j=1,...,k

i=1,...,k
, F =

(
σj(s,Xs)σ

2(s,Xs)1[0,ti)(s)
)j=1,...,d

i=1,...,k

G =
(
σi(s,Xs)σj(s,Xs)σ

2(s,Xs)
)j=1,...,d

i=1,...,d

and < σ, 1 >t
2=

∫ t

0
σ(s,Xs)ds.

Note that the matrix Σt1,...tk(s,Xs) defined in (24) can be represented as

Σ
1/2
t1,...,tk

(s,Xs) =
gt1,...,tk(s,Xs)gt1,...,tk(s,Xs)

T√
gt1,...,tk(s,Xs)T gt1,...,tk(s,Xs)

, (25)

where the vector gt1,...,tk(s,Xs) is defined by

gt1,...,tk(s,Xs) = (σ(s,Xs){I[0,t1)(s), . . . , I[0,tk)(s)}, σ(s,Xs){σ1(s,Xs), . . . , σd(s,Xs)})T .

Now we state one of our main results.

Theorem 3.3. If the assumptions given in Section 2 are satisfied, then the process {An(t)}t∈[0,1] =

{√n(M̂t − Mt)}t∈[0,1] converges weakly on D[0, 1] to a process {A(t)}t∈[0,1], which is Gaussian con-

ditioned on the σ-field F . Moreover, the finite dimensional conditional distributions of the limiting

process (A(t1), . . . A(tk))
T are uniquely determined by the conditional covariance matrix

µ−2
1 (µ2 − µ2

1) V

∫ 1

0

Σt1,...tk(s,Xs) ds V T , (26)

where the k × (d + k)-dimensional matrix V is defined by V = (Ik|Ṽ ), Ṽ = − (
BT

t�
D−1

)
�=1,...d

and

Ik ∈ R
k×k denotes the identity matrix.

Note that the identity Mt ≡ 0 holds (a.s.) for all t ∈ [0, 1] if and only if the null hypothesis in

(9) is satisfied, and consequently the null hypothesis is rejected for large values of a functional

of the process (
√

nM̂t)t∈[0,1]. For example, in the case of the Kolmogorov-Smirnov statistic Kn =

√
n supt∈[0,1] |M̂t|, it follows from Theorem 3.3 that (under H0) Kn

D−→ supt∈[0,1] |A(t)|, where the

symbol
D−→ denotes the weak convergence and the process (A(t))t∈[0,1] is defined in Theorem 3.3. In

10
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general, even under the null hypothesis H0, the distribution of this process is rarely available and

depends on the full process (Xt)t∈[0,1]. However, conditioned on the process (Xt)t∈[0,1] the process

(A(t))t∈[0,1] is Gaussian. Moreover, in the important case of testing for a constant volatility, i.e.

d = 1, σ1(t,Xt) = 1, the limit distribution of the process (An(t))t∈[0,1] is surprisingly simple.

Corollary 3.4. Assume that the assumptions stated in Section 2 are satisfied and that the hypothesis

H0 : σ(t,Xt) = σ has to be tested (that is d = 1, σ1(t, Xt) = 1 in (9)). Under the null hypothesis

the process (An(t))t∈[0,1] converges weakly on D[0, 1] to the process (µ−1
1

√
µ2 − µ2

1σB′
t)t∈[0,1] , where

B′
t denotes a Brownian bridge.

We now briefly consider the corresponding results for testing the hypothesis (8) based on the

stochastic process N̂t defined in (21). The following result is proved by similar arguments as

presented for the proof of Theorem 3.3 in the Appendix.

Theorem 3.5. If the assumptions given in Section 2 are satisfied, then the process {Ān(t)}t∈[0,1] =

{√n(N̂t −Nt)}t∈[0,1] converges weakly on D[0, 1] to a process (Ā(t))t∈[0,1], which is Gaussian condi-

tioned on the σ-field F . Moreover, the finite dimensional conditional distributions of the limiting

process (Ā(t1), . . . Ā(tk))
T are uniquely determined by the conditional covariance matrix

2 V̄

∫ 1

0

Σ̄t1,...tk(s,Xs) ds V̄ T , (27)

where the k × (d + k)-dimensional matrix V̄ is defined by V̄ = (Ik|Ũ) , Ũ = −(B̄T
t�
D̄−1)�=1,...k, and

the matrix Σ̄t1,...tk is given by

Σ̄t1,...tk(s,Xs) =


 Ē F̄

F̄ T Ḡ


 (28)

with

Ē =
(
σ4(s,Xs)1[0,ti∧tj)(s)

)j=1,...,k

i=1,...,k
, F̄ =

(
σ̄2

j (s,Xs)σ
4(s,Xs)1[0,ti)(s)

)j=1,...,d

i=1,...,k

Ḡ =
(
σ̄2

i (s,Xs)σ̄
2
j (s,Xs)σ

4(s,Xs)
)j=1,...,d

i=1,...,d
, B̄t =

( ∫ t

0

σ̄2
1(s,Xs)ds, . . . ,

∫ t

0

σ̄2
d(s,Xs)ds

)T

.
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We proceed this section with an investigation of the stochastic properties of the tests with respect

to local alternatives. For the sake of brevity we restrict ourselves to the problem of testing for

homoscedasticity, that is H0 : σ(t,Xt) = σ a.s. for some σ > 0. The problem of testing more

general hypotheses can be treated exactly in the same way. The consideration of the null hypothesis

of homoscedasticity additionally allows a comparison of the two approaches based on Theorem 3.3

and 3.5, because in the special case d = 1 the hypotheses (8) and (9) are in fact equivalent. Note

that the process corresponding to the hypothesis H0 : σ(t,Xt) = σ is given by

M̂t = µ−1
1 n− 1

2

( �nt�∑
k=2

|X k
n
− Xk−1

n
| − 
nt�

n

n∑
k=2

|X k
n
− Xk−1

n
|
)
. (29)

Similarly, if the process defined by (21) is used we have (in the case d = 1, σ1(s,Xs) = 1)

N̂t =

�nt�∑
k=2

(X k
n
− X k−1

n
)2 − 
nt�

n

n∑
k=2

(X k
n
− X k−1

n
)2. (30)

We finally also introduce the statistic proposed by Dette and von Lieres und Wilkau (2003) for the

hypothesis of homoscedasticity, that is

Ĝ =
√

n
{n

3

n∑
k=2

(X k
n
− X k−1

n
)4 −

( n∑
k=2

(X k
n
− X k−1

n
)2

)2}
(31)

The following results specify the asymptotic behaviour of the processes M̂t, N̂t and the statistic Ĝ

under local alternatives.

Theorem 3.6. Consider local alternatives of the form H
(n)
1 : σ(t,Xt) = σ + γnh(t,Xt), where h is

a positive function and γn is a positive sequence converging to 0.

(a) If the assumptions of Theorem 3.3 are satisfied, γn = n−1/2, then the processes (
√

nM̂t)t∈[0,1]

defined in (29) converges weakly on D[0, 1] to the process (µ−1
1

√
µ2 − µ2

1σB′
t +Rt)t∈[0,1], where

B′
t denotes a Brownian bridge, the process Rt is given by

Rt =

(∫ t

0

h(s,Xs)ds − t

∫ 1

0

h(s,Xs)ds

)
, (32)

and the processes (B′
t)t∈[0,1] and (Rt)t∈[0,1] are stochastically independent.
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(b) If the assumptions of Theorem 3.5 are satisfied, γn = n−1/2, then the process (
√

nN̂t)t∈[0,1]

defined by (30) converges weakly on D[0, 1] to the process (
√

2σ2B′
t + 2σRt)t∈[0,1], where B′

t

denotes a Brownian bridge, the process Rt is given in (32) and the processes (B′
t)t∈[0,1] and

(Rt)t∈[0,1] are stochastically independent.

(c) If the assumptions of Theorem 3.5 are satisfied, γn = n−1/4, then it follows for the random

variable Ĝ defined in (31)

√
nĜ

D−→ Z + 4σ2
(∫ 1

0

h2(s,Xs)ds −
(∫ 1

0

h(s,Xs)ds
)2)

,

where the random variables Z ∼ N (0, 8
3
σ8) and (

∫ 1

0
h2(s,Xs)ds−(

∫ 1

0
h(s,Xs)ds)2) are stochas-

tically independent

Note that it follows from Theorem 3.6 that goodness-of-fit tests based on the processes (29) and (30)

are more powerful with respect to the Pitman alternatives considered in Theorem 3.6 than the test

which rejects the null hypothesis of homoscedasticity for large values of the statistic Ĝ. Moreover,

Theorem 3.6 also shows that there will be no substantial differences between the tests based on the

stochastic processes M̂t and N̂t with respect to power for the local alternatives considered in Theo-

rem 3.6 (besides that the asymptotic theory for the latter requires slightly stronger assumptions).

We finally note again that a similar statement can be shown for the general hypotheses (8) and (9).

Remark 3.7. It is worthwhile to mention that the process (Nt)t∈[0,1] can easily be generalized to p-

dimensional diffusions. For this assume that the drift function b in (1) is a p-dimensional vector, the

volatility is a p×q matrix, and the underlying Brownian motion is q-dimensional. For functions f, g :

[0, 1]×R
p → R

p×p we define the (random) inner product 〈f, g〉2 =
∫ 1

0
trace (f(s,Xs)g(s,Xs)

T )ds and

denote by θ̄min := argminθ̄∈Rd〈σσT−∑d
j=1θ̄jσ̄jσ̄

T
j , σσT−∑d

j=1θ̄jσ̄jσ̄
T
j 〉2 = D̄−1C̄, where the elements

of the matrix D̄ = (D̄ij)1≤i,j≤d and the vector C̄ = (C̄1, . . . , C̄d)
T are defined as D̄ij := 〈σ̄iσ̄

T
i , σ̄jσ̄

T
j 〉2

, C̄i := 〈σσT , σ̄iσ̄
T
i 〉2 . Finally we define the p × p process

Nt :=

∫ t

0

{
σ(s,Xs)σ(s,Xs)

T −
d∑

j=1

θ̄min
j σ̄j(s,Xs)σ̄j(s,Xs)

T
}

ds , (33)
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then it is easy to see that the null hypothesis σσT =
∑d

j=1 θ̄jσ̄jσ̄
T
j is valid if and only if Mt ≡ 0

∀ t ∈ [0, 1] (a.s.). This process is now estimated in an obvious way. For example, the first term in

(33) can be approximated by the data by

[nt]∑
i=1

(X i
n
− X i−1

n
)(X i

n
− X i−1

n
)T P−→

∫ t

0

σ(s,Xs)σ(s, Xs)
T ds,

and the other terms are treated similarly. Consequently under appropriate assumptions on the drift

b the volatility σ and the functions σ̄1, . . . σ̄d analogues of Theorem 3.5 and 3.6 are available for the

vector-valued diffusions.

We conclude this section with a corresponding result for a standardized version of the process An(t)

(a similar result holds for Ān(t) and is omitted for the sake of brevity). Observe that the asymptotic

conditional variance of An(t) is given by

s2
t = µ−2

1 (µ2 − µ2
1)(1,−BT

t D−1)

∫ 1

0

Σt(s,Xs)ds (1,−BT
t D−1)T (34)

For the corresponding estimate, say ŝ2
t , the random variables Bt und D are replaced by their

empirical counterparts, and the random elements in the matrix Σt(s,Xs) defined in (24) are replaced

by the statistics

[nt]∑
k=1

(X k
n
− X k−1

n
)2 P−→

∫ t

0

σ2(s,Xs)ds

[nt]∑
k=1

σ2
i (

k − 1

n
,X k−1

n
)(X k

n
− X k−1

n
)2 P−→

∫ t

0

σ2
i (s,Xs)σ

2(s,Xs)ds

n∑
k=1

σ2
j (

k − 1

n
,X k−1

n
)σ2

i (
k − 1

n
,X k−1

n
)(X k

n
− X k−1

n
)2 P−→

∫ 1

0

σ2
j (s,Xs)σ

2
i (s,Xs)σ

2(s,Xs)ds

For the final result of this section we require the following non-singularity condition

The matrix

∫ 1

0

Σt(s,Xs)ds is positive definite for all t ∈ [x, x], 0 < x < x ≤ 1. (35)

Note that
∫ 1

0
Σ0(s, Xs)ds is singular. Furthermore, when d = 1, σ1(t,Xt) = 1 in (9) the matrix

∫ 1

0
Σ1(s,Xs)ds is also singular (so x < 1).
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Theorem 3.8. If the assumptions given in Section 2 and condition (35) are satisfied, then the

process (An(t)/ŝt)t∈[x,x] converges weakly on D[0, 1] to a process (A(t)/st)t∈[x,x], where (A(t))t∈[0,1]

is defined in Theorem 3.3.

4 Finite sample properties

In this section we investigate the finite sample properties of Kolmogorov-Smirnov tests based on

the processes (M̂t)t∈[0,1] and (N̂t)t∈[0,1]. We also compare these tests with the test, which was

recently proposed by Dette, Podolskij and Vetter (2005) for the hypotheses of the form (8). We

begin with a study of the quality of approximation by a Brownian bridge in the case of testing

for homoscedasticity. In the second part of this section we briefly investigate the performance of a

parametric bootstrap procedure for the problem of testing more general hypotheses and present an

example analyzing exchange rate data. Here and throughout this section all reported results are

based on 1000 simulation runs. Note that this number of runs still produces some variability in the

simulated results.

4.1 Testing for homoscedasticity. Recall from Corollary 3.4 that under the null hypothesis

M (n) :=
√

n sup
t∈[0,1]

|M̂t

β̂
| D−→ sup

t∈[0,1]

|B′
t| , (36)

where (B′
t)t∈[0,1] denotes a Brownian bridge and β̂ = µ−2

1

√
µ2 − µ2

1n
−1/2

∑n
i=2 |X i

n
−X i−1

n
|. Similarly,

it follows from Theorem 3.5 that

N (n) :=
√

n sup
t∈[0,1)

|N̂t

γ̂
| D−→ sup

t∈[0,1]

|B′
t| , (37)

where the process (N̂t)t∈[0,1] is defined in (30) and γ̂ =
√

2
∑n

i=1(X i
n
− X i−1

n
)2. The null hypothesis

of a constant volatility in the stochastic differential equation is now rejected if M (n) or N (n) exceed

the corresponding quantile of the distribution of the maximum of a Brownian bridge on the interval

[0, 1]. In Table 1 we show the approximation of the nominal level of these tests for sample sizes
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n = 100, 200, 500. The data was generated according to the diffusion model (1) with σ = 1 and

various drift functions b(t, x).

Insert Table 1

We observe a reasonable approximation of the nominal level in most cases. The statistic M (n)

usually yields a more precise approximation of the nominal level than the statistic N (n), which

turns out to be slightly conservative for small sample sizes. We now investigate the power of both

tests in the problem of testing for homoscedasticity. For the sake of comparison we consider the

same scenario as in Dette, von Lieres und Wilkau (2003) who proposed the test based on the

statistic Ĝ in (31) for the problem of checking homoscedasticity. Following these authors we chose

the volatitlity functions σ(t, x) = 1 + x, 1 + sin(5x), 1 + xet, 1 + x sin(5t), 1 + xt. In Table 2 we

present the corresponding rejection probabilities for the sample sizes n = 100, 200 and 500. The

results are directly comparable with the results in Table 3 of Dette and von Lieres und Wilkau

(2003) for the corresponding test based on the statistic (31). From Theorem 3.6 we expect some

improvement in local power with respect to Pitman alternatives by the new procedure and these

theoretical advantages are impressively reflected in our simulation study. We observe a substantial

increase in power for the new tests. In most cases the improvement is at least approximately 15%

and there are many cases, for which the power of the new test with 200 observations already exceeds

the power of the test of Dette, von Lieres und Wilkau (2003) for 500 observations.

Insert Table 2

4.2 Testing for the parametric form of the volatility. As pointed out previously, for a general

null hypothesis the asymptotic distribution of the processes depends on the underlying diffusion

(Xt)t∈[0,1] and cannot be used for the calculation of critical values (except in the problem of testing

for homoscedasticity). However, conditional on (Xt)t∈[0,1] the limiting processes in Theorem 3.3, 3.5

and 3.8 are Gaussian and this suggests that the parametric bootstrap can be used to obtain critical
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values. In this paragraph we will investigate the finite sample performance of this approach. We

explain this procedure for the process (M̂t)t∈[0,1], the corresponding bootstrap test for the process

(N̂t)t∈[0,1] is obtained similarly. We consider the standardized Kolmogorov-Smirnov statistic

Zn = sup{|√nM̂t/ŝt| | t ∈ [0, 1]} (38)

Then the least squares estimator θ̂min = (θ̂min
1 , . . . , θ̂min

d )T is determined and the data X
∗(j)
i/n (i =

1, . . . , n; j = 1, . . . B) from the stochastic differential equation (1) with b(t, x) ≡ 0 and σ(t, x) =

∑d
j=1 θ̂min

j σj(t, x) are generated (note that this choice corresponds to the null hypothesis (9)). These

data are used to calculate the bootstrap analogues Z
∗(1)
n , . . . , Z

∗(B)
n of the statistic Zn defined in

(38). Finally the value of the statistic Zn is compared with the corresponding quantiles of the

bootstrap distribution.

We have investigated the performance of this resampling procedure for the problem of testing

various linear hypotheses, where the volatility function depends on the variable x. The sample sizes

are again n = 100, 200, 500 and B = 500 bootstrap replications are used for the calculation of the

critical values. In particular we compare the two procedures based on (M̂t)t∈[0,1] and (N̂t)t∈[0,1] for

testing the hypothesis

H̄0 : σ2(t, x) = θ̄x2 , H0 : σ(t, x) = θx

In Table 3 we display the simulated level of the parametric bootstrap tests for various drift functions.

We observe a better approximation of the nominal level by the test based on the process (Nt)t∈[0,1],

in particular for small sample sizes. The Kolmogorov-Smirnov test based on the process (M̂t)t∈[0,1]

yields a reliable approximation of the nominal level for sample sizes larger than 200, while the

statistic based on the process N̂t can already be recommended for n = 100. The results for sample

size n = 200, 500 demonstrate that for high frequency data as considered in this paper both tests

yield a reliable approximation of the nominal level. In Table 4 we show the simulated rejection

probabilities for the case b(t, x) = 2 − x and the alternatives σ2(t, x) = 1 + x2, 1, 5|x|3/2, 5|x|,
(1 + x)2
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Insert Table 3 and 4

Note that the Kolmogorov-Smirnov test based on the process (M̂t)t∈[0,1] is substantially more power-

ful than the test based on the process (N̂t)t∈[0,1] which uses the squared differences. This superiority

is partially bought by a worse approximation of the nominal level for smaller sample sizes (see the

results for n = 100 and n = 200 in Table 3). However, in the case b(t, x) = 2 − x and n = 200, 500

both tests keep approximately their level, but the test based on (M̂t)t∈[0,1] is still substantially more

powerful. Thus for high frequency data we recommend the application of the Kolmogorov-Smirnov

test based on the process (M̂t)t∈[0,1].

It is also of interest to compare the power of the new tests with a bootstrap test, which was

recently proposed by Dette, Podolskij and Vetter (2005) and is based on an estimate of the L2-

distance M2 = minθ1,...,θd

∫ 1

0
{σ2(t,Xt) −

∑d
j=1 θjσ

2
j (t,Xt)}2dt. Because this test yield a rather ac-

curate approximation of the nominal level (see Table 1 in this reference) we mainly consider the

Kolmogorov-Smirnov test based on the process (N̂t)t∈[0,1] in our comparison. The results in the right

part of Table 4 are directly comparable with the results displayed in Tabel 4 of Dette, Podolskij and

Vetter (2005). We observe that in most cases the new Kolmogorov-Smirnov test yields a substantial

improvement with respect to power. For the sample size n = 100 the procedure is more powerful for

detecting the alternatives σ2(t, x) = 1; 1+x2 and less powerful for the alternative σ2(t, x) = 5|x|3/2.

For the remaining two alternatives the new test yields slightly better results. One the other hand

the asymptotic advantages of the Kolmogorov-Smirnov test become more visible for larger sample

sizes (n = 200, n = 500), where it outperforms the test based on the L2-distance in all cases. For

example, the power of the test of Dette, Podolskij and Vetter (2005) with n = 500 observations

is already achieved by the Kolmogorov-Smirnov test with n = 200 observations. Except for the

alternative σ2(t, x) = 5|x|3/2 the power of the new test is substantially larger.

We finally note again that the power of the Kolmogorov-Smirnov test based on the process (M̂t)t∈[0,1]

is even larger than the power obtained for (N̂t)t∈[0,1]. Thus for high frequeny data the new tests are
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a substantial improvement of the currently available procedure for testing the parametric form of

the diffusion coefficient in a stochastic differential equation.

-0.002

-0.001

0.001

0.002

-0.002

-0.001

0.001

0.002

Figure 1 Log returns of the EUR/USD exchange rate for two different weeks.

4.3 Data Example. In this paragraph we apply the test based on the process (Nt)t∈[0,1] to tick-

by-tick data. As a specific example we consider the log returns of the excange rate between the

EUR and the US dollar in 2004. The data were available for 10 weeks between February and April

2004 and approximately 710 log returns were recorded per week. A typical picture for the 4th and

8th week is depicted in Figure 1.

We applied the proposed procedures to test the hypotheses H̄0 : σ2(t, x) = θ̄1, H̄0 : σ2(t, x) = θ̄1|x|,
H̄0 : σ2(t, x) = θ̄1x

2 and H̄0 : σ2(t, x) = θ̄1 + θ̄2x
2. The corresponding p-values are depicted in

Table 5. The null hypothesis H̄0 : σ2(t, x) = θ̄1 is cleary rejected in all cases. For the hypotheses

H̄0 : σ2(t, x) = θ̄1|x| and H̄0 : σ2(t, x) = θ̄1x
2 the results do not indicate a clear structure. In

the remaining case H̄0 : σ2(t, x) = θ̄1 + θ̄2x
2 we observe relatively large p-values, which gives some

evidence for the null hypothesis in all weeks under consideration. Note that some of these models

have been used for describing interest rates (see e.g. Cox, Ingersoll and Ross, 1980, or Chan, Karolyi,

Longstaff and Sanders, 1992). Our test indicates that a volatility of the form σ2(t, x) = θ̄1 + θ̄2x
2

is also appropriate to describe the variation in EUR/USD stock exchange data.
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Insert Table 5

5 Appendix: Proofs

Proof of Lemma 3.1. The proof of the following result is obtained along the lines of Dette,

Podolskij and Vetter (2005) and therefore omitted. �

Proof of Lemma 3.2. For the sake of brevity we restrict ourselves to a proof of asymptotic

normality of the component

√
n(Ĉ1 − C1) (39)

The general case is shown by exactly the same arguments using the results of Barndorff-Nielsen,

Graversen, Jacod, Podolskij and Shephard (2004). For a proof of the stable convergence of the

statistic (39) we introduce the notation ∆n
i X = X i

n
−X i−1

n
, βn

i =
√

nσ( i−1
n

, X i−1
n

)∆n
i W , g(x) = |x|,

ρx(f) = E[f(X)] , where X ∼ N(0, x2), ρσs(f) = ρσ(s,Xs)(f) and decompose the proof in three

parts.

(1) We prove the assertion

Un =
1√
n

n∑
i=1

σ1(
i − 1

n
,X i−1

n
)[g(βn

i )−ρσ i−1
n

(g)]
Dst−→ ν

∫ 1

0

σ1(s,Xs)σ(s,Xs)dW ′
s, (40)

where ν =
√

µ2 − µ2
1.

(2) We show the estimate Un − V n P−→ 0, where the random variable Vn is defined by

V n =
1√
n

n∑
i=1

σ1(
i − 1

n
,X i−1

n
)[g(

√
n∆n

i X) − E[g(
√

n∆n
i X)|F i−1

n
]] (41)

(3) We prove the convergence
√

nµ1(Ĉ1 − C1) − V n P−→ 0

Recalling the definition of Ĉi in (16) and observing (39), (1) - (3) it follows

√
n(Ĉ1 − C1)

Dst−→ µ−1
1

√
µ2 − µ2

1

∫ 1

0

σ1(s,Xs)σ(s,Xs)dWs,
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which proves the assertion of Lemma 3.2 for the second component.

Proof of (1). We introduce the random variable ξn
i = 1√

n
σ1(

i−1
n

, X i−1
n

)[g(βn
i )− ρσ i−1

n

(g)] and obtain

the representation Un =
∑n

i=1 ξn
i . Note that g is an even function and observe the identities

E[ξn
i |F i−1

n
] = 0 , E[ξn

i ∆n
i W |F i−1

n
] = 0 (42)

E[|ξn
i |2|F i−1

n
] = n−1(µ2 − µ2

1)σ
2
1(

i − 1

n
,X i−1

n
)σ2(

i − 1

n
,X i−1

n
) (43)

Next, let N be any bounded martingale on (Ω,F , (Ft)0≤t≤1, P ), which is orthogonal to W (this

means that the quadratic variation process < M,N >t is equal to 0). It follows from Barndorff-

Nielsen et al. (2004) E[ξn
i ∆n

i N |F i−1
n

] = 0 , and finally Theorem IX 7.28 in Jacod and Shiryaev

(2003) implies (40).

Proof of (2). We consider the representation Vn − Un =
∑n

i=1(ζ
n
i −E[ζn

i |F i−1
n

]), where the random

variables ζn
i are given by

ζn
i =

1√
n

σ1(
i − 1

n
, X i−1

n
)[g(

√
n∆n

i X) − g(βn
i )] , (44)

and note that it is sufficient to prove
∑n

i=1 E[|ζn
i |2] → 0. For this we calculate using Burkholder

inequality, Lemma 6.2 in Dette and Podolskij (2005) and (6)

n∑
i=1

E[|ζn
i |2] =

1

n

n∑
i=1

Eσ2
1(

i − 1

n
,X i−1

n
)[g(

√
n∆n

i X) − g(βn
i )]2

≤
n∑

i=1

Eσ2
1(

i − 1

n
,X i−1

n
)|

∫ i
n

i−1
n

b(s,Xs) ds +

∫ i
n

i−1
n

σ(s,Xs) − σ(
i − 1

n
,X i−1

n
) dWs|2

≤ 2
n∑

i=1

E{σ4
1(

i − 1

n
,X i−1

n
)} 1

2 E{|
∫ i

n

i−1
n

b(s,Xs) ds|4} 1
2

+ E{σ4
1(

i − 1

n
,X i−1

n
)} 1

2 E{|
∫ i

n

i−1
n

σ(s,Xs) − σ(
i − 1

n
,X i−1

n
) dWs|4} 1

2

= o(1),

which completes the proof of (2).
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Proof of (3). Obviously, the assertion (3) follows from the statements

1√
n

n∑
i=1

σ1(
i − 1

n
,X i−1

n
)E[g(

√
n∆n

i X) − g(βn
i )|F i−1

n
]

P−→ 0 (45)

√
n

n∑
i=1

∫ i
n

i−1
n

σ1(s,Xs)ρσs(g) − σ1(
i − 1

n
,X i−1

n
)ρσ i−1

n

(g) ds
P−→ 0 (46)

Note that σ, σ1 > 0, which shows that ρσs(g) = µ1σs and (46) follows along the lines of Dette,

Podolskij and Vetter (2005). For a proof of (45) we define the set An
i := {|√n∆n

i X − βn
i | > |βn

i |},
and obtain the decomposition

g(
√

n∆n
i X) − g(βn

i ) = R1
in + R2

in − R3
in, (47)

with R1
in = g′(βn

i )(
√

n∆n
i X − βn

i ), R2
in = [g(

√
n∆n

i X)− g(βn
i )]1An

i
, R3

in = g′(βn
i )(

√
n∆n

i X − βn
i )1An

i
,

where 1A denotes the indicator function of the set A. Note that the decomposition (47) follows

from the fact that the random variables
√

n∆n
i X and βn

i have the same sign if (
√

n∆n
i X, βn

i ) is an

element of (An
i )c (here Bc denotes the complement of the set B). Note also that g′ is defined on

R\{0} and that σ > 0. We now decompose R1
in as follows R1

in = R1.1
in + R1.2

in , where

R1.1
in :=

√
ng′(βn

i )
[ 1

n
b(

i − 1

n
,X i−1

n
) +

∫ i
n

i−1
n

σ′(
i − 1

n
,X i−1

n
)
( ∫ s

i−1
n

σ(
i − 1

n
,X i−1

n
)dWt

)
dWs

]

R1.2
in :=

√
ng′(βn

i )
[ ∫ i

n

i−1
n

b(s,Xs) − b(
i − 1

n
,X i−1

n
) ds +

∫ i
n

i−1
n

σ(s,Xs) − σ(
i − 1

n
,Xs) dWs

+

∫ i
n

i−1
n

σ′(
i − 1

n
,X i−1

n
)
( ∫ s

i−1
n

b(t, Xt)dt +

∫ s

i−1
n

σ(t,Xt) − σ(
i − 1

n
,X i−1

n
) dWt

)
dWs

+
1

2

∫ i
n

i−1
n

σ′′(
i − 1

n
, ξn

i )(Xs − X i−1
n

)2 dWs

]
= R1.2.1

in + R1.2.2
in + R1.2.3

in + R1.2.4
in ,

the last line defines the random variables R1.2.j
in (j = 1, 2, 3, 4) and ξn

i = ϑn
i X i−1

n
+ (1 − ϑn

i )Xs for

some ϑn
i ∈ [0, 1]. Here σ′, σ′′ denote the first and the second derivative with respect to the second

variable, respectively. Because R1.1
in is an odd function of ∆n

i W and ∆n
i W is independent of the

σ-field F i−1
n

we obtain E[R1.1
in |F i−1

n
] = 0. The Cauchy-Schwartz inequality, Burkholder inequality,

Lemma 6.2 in Dette and Podolskij (2005) and (6) now yield σ1(
i−1
n

, X i−1
n

)E[R1.2.�
in |F i−1

n
] = Op(n

−1),
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� = 1, 2, 3, 4 (uniformly with respect to i = 1, . . . , n), and we obtain

1√
n

n∑
i=1

σ1(
i − 1

n
,X i−1

n
)E[R1

in|F i−1
n

]
P−→ 0. (48)

In order to derive similar estimates for R2
in and R3

in we note that it follows from Barndorff-Nielsen

et al. (2004) that we may assume the existence of constants c1, c2 > 0 such that

c1 < |σ| < c2 , c1 < |σj| < c2. (49)

Observing the estimate 1An
i
≤ 1{|√n∆n

i X−βn
i |≥ε}+1{|βn

i |<ε}, we obtain by using Burkholder inequality,

Lemma in Dette and Podolskij (2005) and (6)

E[1An
i
|F i−1

n
] ≤ E[|√n∆n

i X − βn
i |2]

ε2
+ K1ε ≤ K2(

1

nε2
+ ε) , (50)

for some constants K1, K2 > 0. With the choice ε = n− 1
3 it therefore follows E[1An

i
|F i−1

n
] = Op(n

− 1
3 ).

A further application of the Cauchy-Schwartz inequality yields σ1(
i−1
n

, X i−1
n

)E[R�
in|F i−1

n
] = Op(n

− 2
3 ),

� = 2, 3, which implies 1/
√

n
∑n

i=1 σ1(
i−1
n

, X i−1
n

)E[R�
in|F i−1

n
]

P−→ 0, � = 2, 3. The assertion (45)

finally follows from (47), (48), which proves (3). �

Proof of Theorem 3.3. Recall the definition of B̂i
t (i = 0, . . . , d) in (19), then the stable con-

vergence (23) in Lemma 3.2 holds. Now an application of the Delta-method for stable convergence

(see the proof of Theorem 4 in Dette, Podolskij and Vetter, 2005) yields weak convergence of the

finite dimensional distributions, that is

√
n
(
M̂t1 − Mt1 , . . . , M̂tk − Mtk

)T Dst−→ µ−1
1

√
µ2 − µ2

1 V

∫ 1

0

Σ
1
2
t1,...tk

(s,Xs) dW ′
s , (51)

where the k×(d+k) matrix V is defined in Theorem 3.3. We finally prove tightness of the sequence

√
n(M̂t − Mt). For this we use the decomposition

√
n
(
M̂t − Mt

)
=

√
n(B̂0

t − B0
t ) +

√
nBT

t D−1(Ĉ − C) + op(1), (52)

which follows from the definition of the processes Mt and M̂t in (13) and (18), respectively, and from

Lemma 3.1. Tightness of the process
√

n(B̂0
t − B0

t ) follows from Barndorff-Nielsen et al. (2004).
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For the second term in (52) we note that in view of (49) it is sufficient to prove

lim
δ→0

lim sup
n→∞

P (
√

nδ|D−1
kl ||Ĉj − Cj| > ε) = 0 (53)

for all ε > 0 and all 1 ≤ k, l, j ≤ d where D−1
kl denote the element of the matrix D−1 in the position

(k, �). An application of Cramer’s rule, (49) and Markov’s inequality implies that

P (
√

nδ|D−1
kl ||Ĉj − Cj| > ε) = P (

√
nδ|D−1

kl ||Ĉj − Cj| > ε, 0 < det(D) < η)

+ P (
√

nδ|D−1
kl ||Ĉj − Cj| > ε, det(D) > η)

≤ P (0 < det(D) < η) +
cnδ2E[|Ĉj − Cj|2]

ηε2

for some constant c > 0 and for all η > 0 (note that det(D) > 0, because D is a positive definite

matrix). Moreover, it follows from the proof of Lemma 3.2 that E[n|Ĉj − Cj|2] = O(1). Now, for

all ε > 0, we choose η small, then δ small. We immediately obtain (53) and by (52) the tightness

of the process
√

n(M̂t − Mt). �

Proof of Corollary 3.4. Note that in the case d = 1 and σ1 = 1 we have for the quantities in (19)

and (15) B̂1
t = 
nt�/n, D̂ = 1, and the statistic M̂t in (18) reduces to (29). Moreover, under the

null hypothesis of homoscedasticity it follows in the case k = 2 for the matrix Ṽ in Theorem 3.3

Ṽ = (−t1,−t2)
T . Note that under the hypothesis H0 : σ(t, Xt) = σ we have θmin = σ. The matrix

Σt1,t2 in (24) can be calculated explicitly and does not depend on the process Xs. Consequently,

the limiting process is Gaussian and determined by its covariance kernel. The representation

V

∫ 1

0

Σt1,t2(s,Xs)ds V T = σ2


 t1(1 − t1) t1 ∧ t2 − t1t2

t1 ∧ t2 − t1t2 t2(1 − t2)




and Theorem 3.3 yield that under the null hypothesis of homoscedasticity the process
√

nM̂t con-

verges in law on D[0, 1], that is
√

nM̂t =⇒ µ−1
1

√
µ2 − µ2

1σBt , where Bt denotes a Brownian bridge

with covariance kernel k(t1, t2) = t1 ∧ t2 − t1t2. This completes the proof of Corollary 3.4. �
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Proof of Theorem 3.6. We will only prove part (b) of the theorem. All other cases are treated

by similar arguments. Since the drift function b does not influence the limiting process we assume

without loss of generality that b = 0. With the notation XH0
t = σWt we obtain the decomposition

Xt = XH0
t + γn

∫ t

0

h(s, Xs)dWs = XH0
t + γnX

H1
t (54)

where the last identity defines the process XH1
t . This yields N̂t =

∑�nt�
k=1 |∆n

i X|2− �nt�
n

∑n
k=1 |∆n

i X|2 =

N̂H0
t + Sn. Here N̂H0

t denotes the process defined by (30), where the random variables X k
n

have to

be replaced by the corresponding quantities XH0
k
n

and Sn = Pn1 + Pn2 − Nn1 − Nn2 with

Pn1 = 2γn

�nt�∑
k=1

∆n
i X

H0∆n
i X

H1 , Pn2 = γ2
n

�nt�∑
k=1

|∆n
i X

H1|2

Nn1 = 2

nt�
n

γn

n∑
k=1

∆n
i XH0∆n

i XH1 , Nn2 =

nt�
n

γ2
n

n∑
k=1

|∆n
i XH1|2

(here and in the following discussion the dependence of Pnj and Nnj (j = 1, 2) on the index t will

not be reflected by our notation). A straightforward calculation yields

Pn1 = 2γnσ

∫ t

0

h(s, Xs)ds + op(γn) , Pn2 = γ2
n

∫ t

0

h2(s,Xs)ds + op(γ
2
n),

Nn1 = 2tγnσ

∫ 1

0

h(s,Xs)ds + op(γn) , Nn2 = tγ2
n

∫ 1

0

h2(s,Xs)ds + op(γ
2
n),

which gives
√

nN̂t =
√

nN̂H0
t + 2σ

(∫ t

0
h(s,Xs)ds − t

∫ 1

0
h(s, Xs)ds

)
+ op(1). The assertion now

follows from Corollary 3.4. �

Proof of Theorem 3.8. The convergence of finite dimensional distribution follows from Theorem

3.3 and the properties of stable convergence, so we only need to show the tightness of the sequence

(An(t)/ŝt)t∈[x,x]. In a first step we show that it is sufficient to prove tightness of the sequence

(An(t)/st)t∈[x,x]. For this we prove that

sup
t∈[x,x]

∣∣∣An(t)
( 1

ŝt

− 1

st

)∣∣∣ P−→ 0. (55)

From Barndorff-Nielsen et al. (2004) we have supt∈[x,x] |An(t)| = Op(1), supt∈[x,x] |ŝt − st| = op(1).

Observing (35) the inequality s2
t ≥ µ−2

1 (µ2 − µ2
1)λ

min
t ≥ µ−2

1 (µ2 − µ2
1) mint∈[x,x] λ

min
t > 0 holds for
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all t ∈ [x, x], where λmin
t is the smallest eigenvalue of the positive definite matrix

∫ 1

0
Σt(s, Xs)ds.

For all ε, η > 0 we have

P ( sup
t∈[x,x]

∣∣∣st − ŝt

ŝtst

∣∣∣ > ε) ≤ P (0 < (µ−2
1 (µ2 − µ2

1) min
t∈[x,x]

λmin
t )

1
2 ≤ η) + P ( sup

t∈[x,x]

|ŝt − st| ≥ η

2
)

+ P ( sup
t∈[x,x]

|st − ŝt| > 2η2ε).

Now, by choosing η sufficiently small and then n large we decuce that (55) holds. In a second step

we show the tightness of the sequence (An(t)/st)t∈[x,x]. For this it is sufficient to show

lim
δ→0

lim sup
n→∞

P
(

sup
|t−h|<δ

∣∣∣An(t)

st

− An(h)

sh

∣∣∣ > ε
)

= 0

for any ε > 0. Observe that An(t)/st −An(h)/sh = (An(t) − An(h))/st + An(t)(1/st − 1/sh). Since

st is continuous, we have for any ε > 0

lim
δ→0

lim sup
n→∞

P
(

sup
|t−h|<δ

∣∣∣An(t)
( 1

st

− 1

sh

)∣∣∣ > ε
)

= 0 ,

which can be shown by the same methods as (55). Moreover, we have for all η > 0

lim
δ→0

lim sup
n→∞

P
(

sup
|t−h|<δ

∣∣∣An(t) − An(h)

st

∣∣∣ > ε
)

≤ P (0 < (µ−2
1 (µ2 − µ2

1) min
t∈[x,x]

λmin
t )

1
2 ≤ η)

+ lim
δ→0

lim sup
n→∞

P
(

sup
|t−h|<δ

∣∣∣An(t) − An(h)
∣∣∣ > ηε

)

From (53) we obtain

lim
δ→0

lim sup
n→∞

P
(

sup
|t−h|<δ

∣∣∣An(t) − An(h)

st

∣∣∣ > ε
)

= 0

by choosing η small, which completes the proof of Theorem 3.8. �
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M (n) N (n)

n 100 200 500 100 200 500

b
∖

α 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

0 .044 .098 .045 .099 0.046 0.093 .047 .082 .041 .077 .041 .098

2 .045 .077 .050 .099 0.044 0.106 .032 .078 .034 .078 .048 .092

x .045 .095 .044 .081 0.042 0.091 .033 .089 .033 .081 .041 .082

2 − x .045 .086 .039 .092 0.053 0.092 .041 .075 .039 .069 .051 .090

tx .042 .081 .050 .100 0.042 0.092 .037 .068 .042 .089 .051 .089

Table 1 Approximation of the nominal level of the tests, which reject the null hypothesis of ho-

moscedasticity for large values of the statistics M (n) and N (n). The critical values are obtained by

the asymptotic law (36) and (37), respectively.
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M (n) N (n)

n 100 200 500 100 200 500

σ/α 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

1 + x .857 .888 .920 .944 .972 .976 .830 .863 .929 .949 .969 .978

1 + sin(5x) .1.000 1.000 1.000 1.000 1.000 1.000 .998 .999 1.000 1.000 1.000 1.000

1 + xet .972 .981 .990 .993 0.999 0.999 .947 .968 .989 .996 0.998 0.998

1 + x sin(5t) .781 .843 .890 .911 .962 .970 .776 .824 .882 .914 .961 .974

1 + tx .744 .797 .866 .891 .941 .955 .743 .780 .851 .878 .950 .977

Table 2 Rejection probabilities of the tests, which reject the null hypothesis of homoscedasticity for

large values of thes tatistics M (n) and N (n). The critical values are obtained by the asymptotic law

(36) and (37), respectively.
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M̂t N̂t

n 100 200 500 100 200 500

b/α 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

0 .125 .195 .081 .135 .074 .133 .052 .110 .050 .099 .061 .114

2 .076 .126 .066 .107 .048 .096 .084 .132 .079 .124 .069 .117

x .094 .148 .071 .128 .048 .100 .069 .129 .057 .117 .054 .100

2 − x .082 .133 .065 .112 .063 .117 .048 .088 .043 .101 .043 .097

xt .103 .166 .068 .130 .062 .116 .049 .103 .046 .099 .063 .105

Table 3 Simulated level of the bootstrap test for the hypothesis (39) based on the standardized

Kolmogorov-Smirnov functional of the processes (M̂t)t∈[0,1] and (N̂t)t∈[0,1].

32



Acc
ep

te
d m

an
usc

rip
t 

M̂t N̂t

n 100 200 500 100 200 500

σ2/α 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

1 + x2 .516 .587 .652 .720 .831 .885 .352 .467 .502 .627 .752 .828

1 .809 .862 .933 .955 .996 .998 .739 .838 .917 .960 .995 .997

5|x|3/2 .371 .516 .511 .638 .743 .838 .252 .310 .388 .534 .485 .598

5|x| .917 .882 .954 .970 .994 .997 .439 .551 .731 .858 .898 .949

(1 + x)2 .749 .815 .874 .920 .960 .976 .387 .500 .537 .751 .883 .934

Table 4 Simulated rejection probabilities of the bootstrap test for the hypothesis (39) based on the

standardized Kolmogorov-Smirnov functional of the processes (M̂t)t∈[0,1] and (N̂t)t∈[0,1].
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week 1th 2th 3th 4th 5th 6th 7th 8th 9th 10th

n 714 714 713 714 714 714 708 714 718 710

σ2(t, x) = θ1 0.000 0.026 0.000 0.002 0.002 0.000 0.004 0.000 0.001 0.010

σ2(t, x) = θ1|x| 0.142 0.294 0.000 0.060 0.352 0.062 0.546 0.000 0.056 0.000

σ2(t, x) = θ1x
2 0.748 0.714 0.000 0.976 0.774 0.368 0.634 0.000 0.710 0.000

σ2(t, x) = θ1 + θ2x
2 0.880 0.996 0.886 0.994 0.978 0.986 0.968 0.974 0.966 0.988

Table 5 p-values of the test based on the process (Nt)t∈[0,1] for various hypotheses on the volatility

function. The table shows the results for ten weeks. The second row shows the number of the

available data at each week.
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