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Testing the parametric form of the volatility in continuous time diffusion models -a stochastic process approach
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We present new tests for the form of the volatility function which are based on stochastic processes of the integrated volatility. We prove weak convergence of these processes to centered processes whose conditional distributions are Gaussian. In the case of testing for a constant volatility the limiting process are standard Brownian bridges. As a consequence an asymptotic distribution free test and bootstrap tests (for testing of a general parametric form) can easily be implemented. It is demonstrated that the new tests are more than the currently available procedures. The new approach is also demonstrated by means of a simulation study.

Introduction

Modeling the dynamics of interest rates, stock prices exchange rates is an important problem in mathematical finance and since the seminar papers of [START_REF] Black | The pricing of options and corporate liabilities[END_REF] and [START_REF] Merton | Theory of rational option pricing[END_REF] many theoretical models have been developed for this purpose. Most of these models are continuous time stochastic processes, because information arrives at financial markets in continuous time (see [START_REF] Merton | Continuous-Time Finance[END_REF]. A commonly used class of processes in mathematical finance for representing asset prices are Itô diffusions defined as a solution of the stochastic differential equation

dX t = b (t, X t ) dt + σ (t, X t ) dW t (1)
where (W t ) t is a standard Brownian motion and b and σ denote the drift and volatility, respectively.

Various models have been proposed in the literature for the different types of options (see e.g. [START_REF] Black | The pricing of options and corporate liabilities[END_REF], Vasicek, 1977[START_REF] Cox | A theory of the term structure of interest rates[END_REF][START_REF] Karatzas | On pricing of American options[END_REF][START_REF] Constantinides | A theory of the nominal term structure of interest rates[END_REF] or [START_REF] Duffie | Arbitrage pricing of Russian options and perpetual lookback options[END_REF], among many others). For a reasonable pricing of derivative assets in the context of such models a correct specification of the volatility is required and good estimates of this quantity are needed. For example, the pricing of European call options crucially depends on the functional form of the volatility (see [START_REF] Black | The pricing of options and corporate liabilities[END_REF] and the same is true for other types of options (see e.g. [START_REF] Duffie | Arbitrage pricing of Russian options and perpetual lookback options[END_REF]Harrison, 1993, or Karatzas, 1988, among many others).

A (correct) specification of a parametric form for the volatility has the advantage that the problem of its estimation is reduced to the determination of a low dimensional parameter. On the other hand a misspecification of drift or variance in the diffusion model (1) may lead to an inadequate data analysis and to serious errors in the pricing of derivative assets. Therefore several authors propose to check the postulated model by means of a goodness-of-fit test (see Ait Sahalia, 1996, A c c e p t e d m a n u s c r i p t [START_REF] Corradi | Specification tests for the variance of a diffusion[END_REF]White, 1999, Dette and[START_REF] Dette | On a test for a parametric form of volatility in continuous time financial models[END_REF]. Ait Sahalia (1996) assumes a time span approaching infinity as the sample size increases and considers the problem of testing a joint parametric specification of drift and variance, while in the other references a fixed time span is considered, where the discrete sampling interval approaches zero, and a parametric hypothesis regarding the volatility function is tested. This modeling might be more appropriate for high frequency data.

In the present paper we also consider the case of discretely observed data on a fixed time span, say [0, 1], from the model (1) with increasing sample size. As pointed out by [START_REF] Corradi | Specification tests for the variance of a diffusion[END_REF] this model is appropriate for analyzing the pricing of European, American or Asian options. These authors consider the sum of the squared differences between a nonparametric and a parametric estimate of the variance function at a fixed number of points in the interval [0,1]. Although this approach is attractive because of its simplicity, it has been argued by [START_REF] Dette | On a test for a parametric form of volatility in continuous time financial models[END_REF] that the results of the test may depend on the number and location of the points, where the parametric and nonparametric estimates are compared. Therefore these authors suggest a new test for the parametric form of the volatility in the diffusion model (1), which does not depend on the state x, i.e. σ(t, X t ) = σ(t). The test is based on an L 2 -distance between the volatility function in the model under the null hypothesis and alternative. This approach yields a consistent procedure against any (fixed) alternative, which can detect local alternatives converging to the null hypothesis at a rate n -1/4 . In the present paper an alternative test for the parametric form of the volatility function is proposed, which is based on a process of the integrated volatility.

Our motivation for considering functionals of stochastic processes as test statistics stems from the fact that tests of this type are more sensitive with respect to Pitman alternatives. Moreover the new tests are also applicable for testing parametric hypotheses on the volatility, which depend on the state x.

In Section 2 we introduce some basic terminology and describe two kinds of parametric hypotheses for the volatility function. We also define two types of stochastic processes of the integrated
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volatility, which will be used for the construction of test statistics for these hypotheses. Section 3 contains our main results. We show convergence in probability of the stochastic processes to a random variable, which vanishes if and only if the null hypothesis is satisfied. Moreover, we also establish weak convergence of appropriately scaled processes of the integrated volatility to a centered process under the null hypothesis of a parametric form of the volatility. Consequently, the Kolmogorov-Smirnov and Cramér von Mises functional of these processes are natural test statistics. In general the limiting process is a complicated "function" of the data generating diffusion, but conditioned on the diffusion (X t ) t∈ [0,1] it is a Gaussian process. In the problem of testing for homoscedasticity these tests are asymptotically distribution free and the limit distribution is given by a Brownian bridge. In Section 4 we study the finite sample properties of the proposed methodology and compare the new procedure with the currently available tests for the parametric form of the volatility function. For high frequency data the new tests yield a reliable approximation of the nominal level and substantial improvements with respect to power compared to the currently available procedures. Finally, all proofs and some auxiliary results are presented in an appendix.

Specification of a parametric form of the volatility

Let (W t ) t≥0 denote a standard Brownian motion defined on an appropriate probability space (Ω, F, (F t ) 0≤t≤1 , P ) with corresponding filtration

F W t = σ(W s , 0 ≤ s ≤ t)
and assume that the drift and variance function in the stochastic differential equation ( 1) are locally Lipschitz continuous, i.e. for every integer M > 0 there exists a constant K M such that

|b (t, x) -b (t, y)| + |σ (t, x) -σ (t, y)| ≤ K M |x -y| (2) for all t ∈ [0, 1], x, y ∈ [-M, M ],
and there exists a constant K such that

|b (t, x)| 2 + |σ (t, x)| 2 ≤ K 2 (1 + |x| 2 ) (3)
A c c e p t e d m a n u s c r i p t for all t ∈ [0, 1], x ∈ R. Throughout this paper we assume additionally that the drift and variance function satisfy a further Lipschitz condition of order γ > 1 2 , i.e.

|b (t, x) -b (s, x)| + |σ(t, x) -σ(s, x)| ≤ L |t -s| γ (4)
for some constant L > 0. It is well known that for an F 0 -measurable square integrable random variable ξ, which is independent of the Brownian motion (W t ) t∈[0,1] , the assumptions (2) and ( 3) admit a unique strong solution (X t ) t∈[0,1] of the stochastic differential equation ( 1) with initial condition X 0 = ξ which is adapted to the filtration (F t ) 0≤t≤1 (see e.g. Karatzas and Shreve, 1991, p. 289). The solution of the differential equation can be represented as

X t = ξ + t 0 b (s, X s ) ds + t 0 σ (s, X s ) dW s a.s., (5) 
where X t is F t -measurable for all t ∈ [0, 1] and the paths t → X t are almost surely continuous.

Throughout the paper we assume that

E[|ξ| 4 ] < ∞. ( 6 
)
and that the volatility σ is twice continuously differentiable such that for some constant

F > 0 sup s,t∈[0,1] E[( ∂ ∂x σ(s, X t )) 4 ] < F, sup s,t∈[0,1] E[( ∂ 2 ∂x 2 σ(s, X t )) 4 ] < F (7)
(here ∂ ∂x denotes the partial derivative with respect to the second argument). In the literature various parametric functions have been proposed for different types of options (see e.g. [START_REF] Black | The pricing of options and corporate liabilities[END_REF], Vasicek, 1977[START_REF] Cox | A theory of the term structure of interest rates[END_REF][START_REF] Karatzas | On pricing of American options[END_REF][START_REF] Constantinides | A theory of the nominal term structure of interest rates[END_REF], or Duffie and Harrison, 1993, among many others). In principle the assumption on the volatility function in these models can be formulated in two ways that is

H0 : σ 2 (t, X t ) = d j=1 θj σ2 j (t, X t ) ∀ t ∈ [0, 1] (a.s.) , ( 8 
)
or 

H 0 : σ(t, X t ) = d j=1 θ j σ j (t, X t ) ∀ t ∈ [0, 1] (a.s.) , (9) 
|σ j (t, x) -σj (s, x)| + |σ j (t, x) -σ j (s, x)| ≤ L |t -s| γ , j = 1, . . . , d,
for all s, t ∈ [0, 1], L > 0, γ > 1 2 . Note that the hypothesis (8) refers to the variance function σ 2 while the formulation (9) directly refers to the factor of the term dW s in the stochastic differential equation ( 1). There exist in fact many models for prices of financial assets traded in continuous time, where both hypotheses are equivalent (see e.g. Vasicek, 1977[START_REF] Cox | A theory of the term structure of interest rates[END_REF][START_REF] Brennan | A continuous time approach to the pricing of bonds[END_REF][START_REF] Courtadon | The pricing of options on default-free bonds[END_REF], Chan, Karolyi, Longstaff and Sanders, 1992), but in general these hypotheses are not equivalent. A typical example for such a case is given by H0 : σ 2 (t, X t ) = θ1 + θ2 X 2 1 , (a.s.) (10)

H 0 : σ(t, X t ) = ϑ 1 + ϑ 2 |X t |, (a.s.) (11) 
which is a slight generalization of the models considered in the cited references. We begin our discussion constructing a test statistic for the hypothesis H 0 in (9) and since the law of the process X depends only on σ 2 (see Revuz and Yor, 1999, p. 293) we assume that the functions σ 1 , . . . , σ d are twice continuously differentiable, strictly positive, linearly independent on every compact set [0, 1] × [a, b], a < b and satisfy the analogue of (7), that is sup

s,t∈[0,1] E[( ∂ ∂x {σ i (s, X t )σ j (s, X t )}) 4 ] < F, sup s,t∈[0,1] E[( ∂ 2 ∂x 2 {σ i (s, X t )σ j (s, X t )}) 4 ] < F (12)
for all 1 ≤ i, j ≤ d. Further we assume that the functions σ 1 , . . . , σ d in the linear hypothesis (9) satisfy the same assumptions (2), ( 3) and ( 7) as the volatility function σ. For the discussion of hypothesis (8) we need to replace σ by σ 2 in assumption (7), σ i by σ2 i in (12) and 4 by 8 in assumption (6).

For testing the hypothesis (9) we consider the following stochastic process ) T := argmin θ∈R d 1 0 {σ(s, X s ) -d j=1 θ j σ j (s, X s )} 2 ds . Note that the null hypothesis in ( 9) is satisfied if and only if M t = 0 ∀ t ∈ [0, 1] (a.s.) and that we use an L 2 -distance to determine the best approximation of σ by linear combination of the functions σ 1 , . . . , σ d . This choice is mainly motivated by the sake of transparency and other distances as the L 1 -distance could be used as well with an additional amount of technical difficulties.

M t := t 0 {σ(s, X s ) - d j=1 θ min j σ j (s, X s )}ds, (13) 
¿From standard Hilbert space theory (see [START_REF] Achieser | Theory of approximation[END_REF] we obtain θ min = D -1 C, where the matrix D = (D ij ) 1≤i,j≤d and the vector C = (C 1 , . . . , C d ) T are defined by

D ij := σ i , σ j 2 , C i := σ, σ i 2 , ( 14 
)
and •, • 2 denotes the standard inner product for functions f, g

: [0, 1] × R → R, that is f, g 2 = 1 0 f (t, X t )g(t, X t )
dt (here and throughout this paper we assume that the integrals exist almost surely, whenever they appear in the text). The quantities in ( 14) can easily be estimated by

Dij := 1 n n k=1 σ i ( k n , X k n )σ j ( k n , X k n ) P -→ D ij , ( 15 
) Ĉi := µ -1 1 n -1 2 n k=1 σ i ( k -1 n , Xk-1 n )|X k n -Xk-1 n | P -→ C i , ( 16 
)
where the symbol P -→ means convergence in probability and µ r (r ≥ 0) is defined as a the rth absolute moment of a standard normal distribution (e.g. µ 1 = 2/π, µ 2 = 1). With the notation D = ( Dij ) 1≤i,j≤d , Ĉ = ( Ĉ1 , . . . , Ĉd ) T (17)

we obtain θmin := D-1 Ĉ as estimate for the random variable θ min . We finally introduce the stochastic process

Mt := B0 t -BT t D-1 Ĉ , ( 18 
)
as estimate of the process (M t ) t∈[0,1] defined in (13), where the quantities B0 t and Bt = ( B1 t , . . . , Bd t ) T are given by Before we make these arguments more rigorous we briefly present the corresponding testing procedure for the hypothesis (8). In this case the analogue of the stochastic process M t is defined by

B0 t := µ -1 1 n -1 2 nt k=1 |X k n -Xk-1 n | , Bi t := 1 n nt k=1 σ i ( k n , X k n ), 1 ≤ i ≤ d, (19) 
N t := t 0 σ 2 (s, X s ) - d j=1 θmin j σ2 j (s, X s ) ds , ( 20 
)
where θmin = ( θmin

1 , . . . , θmin d ) T := argminθ ∈R d 1 0 {σ 2 (s, X s ) -d j=1 θj σ2 j (s, X s )} 2 ds.
The nonobservable stochastic process can easily be estimated from the available data by

Nt := B0 t -BT t D-1 C , ( 21 
)
where 

Dij = 1/n n k=1 σ2 i ( k n , X k n )σ 2 j ( k n , X k n ) (i, j = 1, . . . , d), Ci = n k=2 σ2 i ( k-1 n , Xk-1 n )|X k n -Xk-1 n | 2 (i = 1, . . . ,
|X k n -Xk-1 n | 2 , Bi t := 1 n nt k=1 σ2 i ( k n , X k n ), 1 ≤ i ≤ d. ( 22 
)
In the following section we investigate the stochastic properties of the processes (

√ n( Mt -M t )) t∈[0,1] and ( √ n( Nt -N t )) t∈[0,1] .
In particular, we will prove weak convergence of these processes to centered processes, which are conditioned on the process (X t ) t∈[0,1] Gaussian processes. This is the basic result for the application of these processes in the problem of testing for the parametric form of the volatility in a continuous time diffusion model. The reason for considering both processes is twofold. On the one hand the weak convergence of the process √ n( Mt -M t ) can be established under weaker assumptions on the model (1). On the other hand the statistic √ n( Nt -N t ) can easily be extended to vector-valued diffusions (see Remark 3.7).

A c c e p t e d m a n u s c r i p t 3 Main results

For the sake of brevity we mainly restrict ourselves to a detailed derivation of the stochastic properties of the process Mt . The corresponding results for the process Nt can be obtained by similar arguments and the main statements are given at the end of this section for the sake of completeness.

We begin our discussion with two auxiliary results regarding the estimators D and Bi t defined in ( 17) and ( 19), which are also of own interest. Our first results clarify the order of difference between the empirical quantities Ĉi , Bi t , Dij and their theoretical counterparts C i , B i t , D ij , respectively.

Lemma 3.1. If the assumptions stated in Section 2 are satisfied we have

D -D = o p (n -1 2 ) and Bi t - t 0 σ i (s, X s )ds = o p (n -1 2 ) 1 ≤ i ≤ d
Throughout this paper the symbol X n

Dst

-→ X means that the sequence of random variables converges stably in law. Recall that a sequence of d-dimensional random variables (X n ) n∈N converges stably in law with limit X, defined on an appropriate extension (Ω , F , P ) of a probability space (Ω, F, P ), if and only if for any F-measurable and bounded random variable Y and any bounded and continuous

function g the convergence lim n→∞ E[Y g(X n )] = E[Y g(X)
] holds. This is obviously a slightly stronger mode of convergence than convergence in law (see Renyi, 1963, Aldous and[START_REF] Aldous | On mixing and stability of limit theorems[END_REF] for more details on stable convergence). The following Lemma shows that the random variables B0 t and Ĉi defined in ( 19) and ( 17) converge stably in law if they are appropriately normalized.

Lemma 3.2. If the assumptions stated in Section 2 are satisfied we have for any

t 1 , . . . , t k ∈ [0, 1] √ n    ( B0 t -< σ, 1 > t 2 ) k =1 ( Ĉ -C ) d =1    Dst -→ µ -1 1 µ 2 -µ 2 1 1 0 Σ 1 2 t 1 ,...t k (s, X s ) dW s , ( 23 
)
where W denotes a (d + k)-dimensional Brownian motion, which is independent of the σ-field F, and the matrix Σ t 1 ,...t k (s, X s ) denotes a block matrix defined by

Σ t 1 ,...t k (s, X s ) =    E F F T G    (24) 
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with E = σ 2 (s, X s )1 [0,t i ∧t j ) (s) j=1,...,k i=1,...,k , F = σ j (s, X s )σ 2 (s, X s )1 [0,t i ) (s) j=1,...,d i=1,...,k G = σ i (s, X s )σ j (s, X s )σ 2 (s, X s ) j=1,...,d i=1,...,d and < σ, 1 > t 2 = t 0 σ(s, X s )ds.
Note that the matrix Σ t 1 ,...t k (s, X s ) defined in ( 24) can be represented as

Σ 1/2 t 1 ,...,t k (s, X s ) = g t 1 ,...,t k (s, X s )g t 1 ,...,t k (s, X s ) T g t 1 ,...,t k (s, X s ) T g t 1 ,...,t k (s, X s ) , ( 25 
)
where the vector g t 1 ,...,t k (s, X s ) is defined by

g t 1 ,...,t k (s, X s ) = (σ(s, X s ){I [0,t 1 ) (s), . . . , I [0,t k ) (s)}, σ(s, X s ){σ 1 (s, X s ), . . . , σ d (s, X s )}) T .
Now we state one of our main results.

Theorem 3.3. If the assumptions given in Section 2 are satisfied, then the process

{A n (t)} t∈[0,1] = { √ n( Mt -M t )} t∈[0,1] converges weakly on D[0, 1] to a process {A(t)} t∈[0,1]
, which is Gaussian conditioned on the σ-field F. Moreover, the finite dimensional conditional distributions of the limiting process (A(t 1 ), . . . A(t k )) T are uniquely determined by the conditional covariance matrix general, even under the null hypothesis H 0 , the distribution of this process is rarely available and depends on the full process (X t ) t∈[0,1] . However, conditioned on the process (X t ) t∈[0,1] the process (A(t)) t∈[0,1] is Gaussian. Moreover, in the important case of testing for a constant volatility, i.e. d = 1, σ 1 (t, X t ) = 1, the limit distribution of the process (A n (t)) t∈[0,1] is surprisingly simple.

µ -2 1 (µ 2 -µ 2 1 ) V 1 0 Σ t 1 ,...t k (s, X s ) ds V T , ( 26 
)
where the k × (d + k)-dimensional matrix V is defined by V = (I k | Ṽ ), Ṽ = -B T t D -1 =1,...
= √ n sup t∈[0,1] | Mt |, it follows from Theorem 3.3 that (under H 0 ) K n D -→ sup t∈[0,1] |A(t)|,
Corollary 3.4. Assume that the assumptions stated in Section 2 are satisfied and that the hypothesis 9)). Under the null hypothesis the process

H 0 : σ(t, X t ) = σ has to be tested (that is d = 1, σ 1 (t, X t ) = 1 in (
(A n (t)) t∈[0,1] converges weakly on D[0, 1] to the process (µ -1 1 µ 2 -µ 2 1 σB t ) t∈[0,1]
, where B t denotes a Brownian bridge.

We now briefly consider the corresponding results for testing the hypothesis (8) based on the stochastic process Nt defined in ( 21). The following result is proved by similar arguments as presented for the proof of Theorem 3.3 in the Appendix.

Theorem 3.5. If the assumptions given in Section 2 are satisfied, then the process

{ Ān (t)} t∈[0,1] = { √ n( Nt -N t )} t∈[0,1] converges weakly on D[0, 1] to a process ( Ā(t)) t∈[0,1]
, which is Gaussian conditioned on the σ-field F. Moreover, the finite dimensional conditional distributions of the limiting process ( Ā(t 1 ), . . . Ā(t k )) T are uniquely determined by the conditional covariance matrix

2 V 1 0 Σt 1 ,...t k (s, X s ) ds V T , ( 27 
)
where the k × (d + k)-dimensional matrix V is defined by V = (I k | Ũ ) , Ũ = -( BT t D-1 ) =1,...k , and the matrix Σt 1 ,...t k is given by Σt 1 ,...t k (s, X s ) =    Ē F F T Ḡ    (28) with Ē = σ 4 (s, X s )1 [0,t i ∧t j ) (s) j=1,...,k i=1,...,k , F = σ2 j (s, X s )σ 4 (s, X s )1 [0,t i ) (s) j=1,...,d i=1,...,k Ḡ = σ2 i (s, X s )σ 2 j (s, X s )σ 4 (s, X s ) j=1,...,d i=1,...,d , Bt = t 0 σ2 1 (s, X s )ds, . . . , t 0 σ2 d (s, X s )ds T .

A c c e p t e d m a n u s c r i p t

We proceed this section with an investigation of the stochastic properties of the tests with respect to local alternatives. For the sake of brevity we restrict ourselves to the problem of testing for homoscedasticity, that is H 0 : σ(t, X t ) = σ a.s. for some σ > 0. The problem of testing more general hypotheses can be treated exactly in the same way. The consideration of the null hypothesis of homoscedasticity additionally allows a comparison of the two approaches based on Theorem 3.3 and 3.5, because in the special case d = 1 the hypotheses ( 8) and ( 9) are in fact equivalent. Note that the process corresponding to the hypothesis H 0 : σ(t, X t ) = σ is given by

Mt = µ -1 1 n -1 2 nt k=2 |X k n -Xk-1 n | - nt n n k=2 |X k n -Xk-1 n | . ( 29 
)
Similarly, if the process defined by ( 21) is used we have (in the case

d = 1, σ 1 (s, X s ) = 1) Nt = nt k=2 (X k n -Xk-1 n ) 2 - nt n n k=2 (X k n -Xk-1 n ) 2 . ( 30 
)
We finally also introduce the statistic proposed by [START_REF] Dette | On a test for a parametric form of volatility in continuous time financial models[END_REF] for the hypothesis of homoscedasticity, that is

Ĝ = √ n n 3 n k=2 (X k n -Xk-1 n ) 4 - n k=2 (X k n -Xk-1 n ) 2 2 (31)
The following results specify the asymptotic behaviour of the processes Mt , Nt and the statistic Ĝ under local alternatives.

Theorem 3.6. Consider local alternatives of the form

H (n) 1 : σ(t, X t ) = σ + γ n h(t, X t )
, where h is a positive function and γ n is a positive sequence converging to 0.

(a) If the assumptions of Theorem 3.3 are satisfied,

γ n = n -1/2 , then the processes ( √ n Mt ) t∈[0,1] defined in (29) converges weakly on D[0, 1] to the process (µ -1 1 µ 2 -µ 2 1 σB t + R t ) t∈[0,1]
, where B t denotes a Brownian bridge, the process R t is given by

R t = t 0 h(s, X s )ds -t 1 0 h(s, X s )ds , ( 32 
)
and the processes (B t ) t∈[0,1] and (R t ) t∈[0,1] are stochastically independent. defined by ( 30) converges weakly on D[0, 1] to the process ( √ 2σ 2 B t + 2σR t ) t∈ [0,1] , where B t denotes a Brownian bridge, the process R t is given in ( 32) and the processes (B t ) t∈[0,1] and (R t ) t∈[0,1] are stochastically independent.

(c) If the assumptions of Theorem 3.5 are satisfied, γ n = n -1/4 , then it follows for the random variable Ĝ defined in ( 31)

√ n Ĝ D -→ Z + 4σ 2 1 0 h 2 (s, X s )ds - 1 0 h(s, X s )ds 2 ,
where the random variables Z ∼ N (0, 8 3 σ 8 ) and

( 1 0 h 2 (s, X s )ds-( 1 0 h(s, X s )ds) 2 ) are stochas- tically independent
Note that it follows from Theorem 3.6 that goodness-of-fit tests based on the processes ( 29) and ( 30)

are more powerful with respect to the Pitman alternatives considered in Theorem 3.6 than the test which rejects the null hypothesis of homoscedasticity for large values of the statistic Ĝ. Moreover, Theorem 3.6 also shows that there will be no substantial differences between the tests based on the stochastic processes Mt and Nt with respect to power for the local alternatives considered in Theorem 3.6 (besides that the asymptotic theory for the latter requires slightly stronger assumptions).

We finally note again that a similar statement can be shown for the general hypotheses ( 8) and (9).

Remark 3.7. It is worthwhile to mention that the process (N t ) t∈[0,1] can easily be generalized to pdimensional diffusions. For this assume that the drift function b in (1) is a p-dimensional vector, the volatility is a p×q matrix, and the underlying Brownian motion is q-dimensional. For functions f, g : , Ci := σσ T , σi σT i 2 . Finally we define the p × p process

[0, 1]×R p → R p×p we define the (random) inner product f, g 2 = 1 0 trace (f (s, X s )g(s, X s ) T )
N t := t 0 σ(s, X s )σ(s, X s ) T - d j=1 θmin j σj (s, X s )σ j (s, X s ) T ds , (33) 

A c c e p t e d m a n u s c r i p t

then it is easy to see that the null hypothesis σσ T = d j=1 θj σj σT j is valid if and only if M t ≡ 0 ∀ t ∈ [0, 1] (a.s.). This process is now estimated in an obvious way. For example, the first term in (33) can be approximated by the data by

[nt] i=1 (X i n -Xi-1 n )(X i n -Xi-1 n ) T P -→ t 0 σ(s, X s )σ(s, X s ) T ds,
and the other terms are treated similarly. Consequently under appropriate assumptions on the drift b the volatility σ and the functions σ1 , . . . σd analogues of Theorem 3.5 and 3.6 are available for the vector-valued diffusions.

We conclude this section with a corresponding result for a standardized version of the process A n (t) (a similar result holds for Ān (t) and is omitted for the sake of brevity). Observe that the asymptotic conditional variance of A n (t) is given by

s 2 t = µ -2 1 (µ 2 -µ 2 1 )(1, -B T t D -1 ) 1 0 Σ t (s, X s )ds (1, -B T t D -1 ) T (34)
For the corresponding estimate, say ŝ2 t , the random variables B t und D are replaced by their empirical counterparts, and the random elements in the matrix Σ t (s, X s ) defined in (24) are replaced by the statistics

[nt] k=1 (X k n -Xk-1 n ) 2 P -→ t 0 σ 2 (s, X s )ds [nt] k=1 σ 2 i ( k -1 n , Xk-1 n )(X k n -Xk-1 n ) 2 P -→ t 0 σ 2 i (s, X s )σ 2 (s, X s )ds n k=1 σ 2 j ( k -1 n , Xk-1 n )σ 2 i ( k -1 n , Xk-1 n )(X k n -Xk-1 n ) 2 P -→ 1 0 σ 2 j (s, X s )σ 2 i (s, X s )σ 2 (s, X s )ds
For the final result of this section we require the following non-singularity condition

The matrix

1 0 Σ t (s, X s )ds is positive definite for all t ∈ [x, x], 0 < x < x ≤ 1. ( 35 
)
Note that 1 0 Σ 0 (s, X s )ds is singular. Furthermore, when d = 1, σ 1 (t, X t ) = 1 in (9) the matrix 1 0 Σ 1 (s, X s )ds is also singular (so x < 1).
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Theorem 3.8. If the assumptions given in Section 2 and condition ( 35) are satisfied, then the process (A n (t)/ŝ t ) t∈ [x,x] converges weakly on D[0, 1] to a process (A(t)/s t ) t∈ [x,x] , where (A(t)) t∈ [0,1] is defined in Theorem 3.3.

Finite sample properties

In this section we investigate the finite sample properties of Kolmogorov-Smirnov tests based on the processes ( Mt ) t∈[0,1] and ( Nt ) t∈ [0,1] . We also compare these tests with the test, which was recently proposed by [START_REF] Dette | Estimation of integrated volatility in continuous time financial models with applications to goodness-of-fit testing[END_REF] for the hypotheses of the form (8). We begin with a study of the quality of approximation by a Brownian bridge in the case of testing for homoscedasticity. In the second part of this section we briefly investigate the performance of a parametric bootstrap procedure for the problem of testing more general hypotheses and present an example analyzing exchange rate data. Here and throughout this section all reported results are based on 1000 simulation runs. Note that this number of runs still produces some variability in the simulated results.

Testing for homoscedasticity.

Recall from Corollary 3.4 that under the null hypothesis

M (n) := √ n sup t∈[0,1] | Mt β | D -→ sup t∈[0,1] |B t | , (36) 
where (B t ) t∈[0,1] denotes a Brownian bridge and β = µ -2

1 µ 2 -µ 2 1 n -1/2 n i=2 |X i n -X i-1 n |.
Similarly, it follows from Theorem 3.5 that

N (n) := √ n sup t∈[0,1) | Nt γ | D -→ sup t∈[0,1] |B t | , ( 37 
)
where the process ( Nt ) t∈[0,1] is defined in (30) and γ

= √ 2 n i=1 (X i n -X i-1 n ) 2 .
The null hypothesis of a constant volatility in the stochastic differential equation is now rejected if M (n) or N (n) exceed the corresponding quantile of the distribution of the maximum of a Brownian bridge on the interval [0, 1]. In Table 1 we show the approximation of the nominal level of these tests for sample sizes Insert Table 1 We observe a reasonable approximation of the nominal level in most cases. The statistic M (n) usually yields a more precise approximation of the nominal level than the statistic N (n) , which turns out to be slightly conservative for small sample sizes. We now investigate the power of both tests in the problem of testing for homoscedasticity. For the sake of comparison we consider the same scenario as in [START_REF] Dette | On a test for a parametric form of volatility in continuous time financial models[END_REF] who proposed the test based on the statistic Ĝ in (31) for the problem of checking homoscedasticity. Following these authors we chose the volatitlity functions σ(t, x) = 1 + x, 1 + sin(5x), 1 + xe t , 1 + x sin(5t), 1 + xt. In Table 2 we present the corresponding rejection probabilities for the sample sizes n = 100, 200 and 500. The results are directly comparable with the results in Table 3 of [START_REF] Dette | On a test for a parametric form of volatility in continuous time financial models[END_REF] for the corresponding test based on the statistic (31). From Theorem 3.6 we expect some improvement in local power with respect to Pitman alternatives by the new procedure and these theoretical advantages are impressively reflected in our simulation study. We observe a substantial increase in power for the new tests. In most cases the improvement is at least approximately 15%

and there are many cases, for which the power of the new test with 200 observations already exceeds the power of the test of [START_REF] Dette | On a test for a parametric form of volatility in continuous time financial models[END_REF] for 500 observations.

Insert Table 2 4.2 Testing for the parametric form of the volatility. As pointed out previously, for a general null hypothesis the asymptotic distribution of the processes depends on the underlying diffusion (X t ) t∈[0,1] and cannot be used for the calculation of critical values (except in the problem of testing for homoscedasticity). However, conditional on (X t ) t∈[0,1] the limiting processes in Theorem 3.3, 3.5 and 3.8 are Gaussian and this suggests that the parametric bootstrap can be used to obtain critical
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values. In this paragraph we will investigate the finite sample performance of this approach. We explain this procedure for the process ( Mt ) t∈[0,1] , the corresponding bootstrap test for the process ( Nt ) t∈[0,1] is obtained similarly. We consider the standardized Kolmogorov-Smirnov statistic In Table 3 we display the simulated level of the parametric bootstrap tests for various drift functions.

Z n = sup{| √ n Mt /ŝ t | | t ∈ [0, 1]} ( 38 
We observe a better approximation of the nominal level by the test based on the process (N t ) t∈[0,1] ,

in particular for small sample sizes. The Kolmogorov-Smirnov test based on the process ( Mt ) t∈ [0,1] yields a reliable approximation of the nominal level for sample sizes larger than 200, while the statistic based on the process Nt can already be recommended for n = 100. The results for sample size n = 200, 500 demonstrate that for high frequency data as considered in this paper both tests yield a reliable approximation of the nominal level. In Table 4 we show the simulated rejection probabilities for the case b(t, x) = 2x and the alternatives σ 2 (t, x) = 1 + x 2 , 1, 5|x| 3/2 , 5|x|,

(1 + x) 2
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Insert Table 3 and4 Note that the Kolmogorov-Smirnov test based on the process ( Mt ) t∈[0,1] is substantially more powerful than the test based on the process ( Nt ) t∈[0,1] which uses the squared differences. This superiority is partially bought by a worse approximation of the nominal level for smaller sample sizes (see the results for n = 100 and n = 200 in Table 3). However, in the case b(t, x) = 2x and n = 200, 500 (2005). We observe that in most cases the new Kolmogorov-Smirnov test yields a substantial improvement with respect to power. For the sample size n = 100 the procedure is more powerful for detecting the alternatives σ 2 (t, x) = 1; 1+x 2 and less powerful for the alternative σ 2 (t, x) = 5|x| 3/2 .

For the remaining two alternatives the new test yields slightly better results. One the other hand the asymptotic advantages of the Kolmogorov-Smirnov test become more visible for larger sample sizes (n = 200, n = 500), where it outperforms the test based on the L 2 -distance in all cases. For example, the power of the test of [START_REF] Dette | Estimation of integrated volatility in continuous time financial models with applications to goodness-of-fit testing[END_REF] with n = 500 observations is already achieved by the Kolmogorov-Smirnov test with n = 200 observations. Except for the alternative σ 2 (t, x) = 5|x| 3/2 the power of the new test is substantially larger.

We finally note again that the power of the Kolmogorov-Smirnov test based on the process ( Mt ) t∈ [0,1] is even larger than the power obtained for ( Nt ) t∈ [0,1] . Thus for high frequeny data the new tests are 

Data Example.

In this paragraph we apply the test based on the process (N t ) t∈[0,1] to tickby-tick data. As a specific example we consider the log returns of the excange rate between the EUR and the US dollar in 2004. The data were available for 10 weeks between February and April 2004 and approximately 710 log returns were recorded per week. A typical picture for the 4th and 8th week is depicted in Figure 1.

We applied the proposed procedures to test the hypotheses H0 : σ 2 (t, x) = θ1 , H0 : σ 2 (t, x) = θ1 |x|, H0 : σ 2 (t, x) = θ1 x 2 and H0 : σ 2 (t, x) = θ1 + θ2 x 2 . The corresponding p-values are depicted in Table 5. The null hypothesis H0 : σ 2 (t, x) = θ1 is cleary rejected in all cases. For the hypotheses H0 : σ 2 (t, x) = θ1 |x| and H0 : σ 2 (t, x) = θ1 x 2 the results do not indicate a clear structure. In the remaining case H0 : σ 2 (t, x) = θ1 + θ2 x 2 we observe relatively large p-values, which gives some evidence for the null hypothesis in all weeks under consideration. Note that some of these models have been used for describing interest rates (see e.g. Cox, Ingersoll andRoss, 1980, or Chan, Karolyi, Longstaff and[START_REF] Chan | An empirical comparison of alternative models of the short-term interest rate[END_REF]. Our test indicates that a volatility of the form σ 2 (t, x) = θ1 + θ2 x 2 is also appropriate to describe the variation in EUR/USD stock exchange data.
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Insert Table 5 5 Appendix: Proofs Proof of Lemma 3.1. The proof of the following result is obtained along the lines of [START_REF] Dette | Estimation of integrated volatility in continuous time financial models with applications to goodness-of-fit testing[END_REF] and therefore omitted. 2

Proof of Lemma 3.2. For the sake of brevity we restrict ourselves to a proof of asymptotic

normality of the component √ n( Ĉ1 -C 1 ) (39) 
The general case is shown by exactly the same arguments using the results of Barndorff-Nielsen, Graversen, [START_REF] Barndorff-Nielsen | A central limit theorem for realised power and bipower variations of continuous semimartingales[END_REF]. For a proof of the stable convergence of the statistic (39) we introduce the notation ∆

n i X = X i n -Xi-1 n , β n i = √ nσ( i-1 n , Xi-1 n )∆ n i W , g(x) = |x|, ρ x (f ) = E[f (X)]
, where X ∼ N (0, x 2 ), ρ σs (f ) = ρ σ(s,Xs) (f ) and decompose the proof in three parts.

(1) We prove the assertion

U n = 1 √ n n i=1 σ 1 ( i -1 n , Xi-1 n )[g(β n i )-ρ σ i-1 n (g)] Dst -→ ν 1 0 σ 1 (s, X s )σ(s, X s )dW s , ( 40 
)
where ν = µ 2µ 2 1 .

(2) We show the estimate U n -V n P -→ 0, where the random variable V n is defined by

V n = 1 √ n n i=1 σ 1 ( i -1 n , Xi-1 n )[g( √ n∆ n i X) -E[g( √ n∆ n i X)|Fi-1 n ]] (41) 
(3) We prove the convergence

√ nµ 1 ( Ĉ1 -C 1 ) -V n P -→ 0
Recalling the definition of Ĉi in (16) and observing (39), (1) -(3) it follows

√ n( Ĉ1 -C 1 ) Dst -→ µ -1 1 µ 2 -µ 2 1 1 0 σ 1 (s, X s )σ(s, X s )dW s ,

20
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which proves the assertion of Lemma 3.2 for the second component.

Proof of (1). We introduce the random variable

ξ n i = 1 √ n σ 1 ( i-1 n , Xi-1 n )[g(β n i ) -ρ σ i-1 n (g)
] and obtain the representation U n = n i=1 ξ n i . Note that g is an even function and observe the identities

E[ξ n i |F i-1 n ] = 0 , E[ξ n i ∆ n i W |F i-1 n ] = 0 (42) E[|ξ n i | 2 |F i-1 n ] = n -1 (µ 2 -µ 2 1 )σ 2 1 ( i -1 n , Xi-1 n )σ 2 ( i -1 n , Xi-1 n ) (43) 
Next, let N be any bounded martingale on (Ω, F, (F t ) 0≤t≤1 , P ), which is orthogonal to W (this means that the quadratic variation process < M, N > t is equal to 0). It follows from Barndorff-

Nielsen et al. (2004) E[ξ n i ∆ n i N |F i-1
n ] = 0 , and finally Theorem IX 7.28 in Jacod and Shiryaev (2003) implies (40).

Proof of (2). We consider the representation

V n -U n = n i=1 (ζ n i -E[ζ n i |Fi-1 n ])
, where the random variables ζ n i are given by

ζ n i = 1 √ n σ 1 ( i -1 n , Xi-1 n )[g( √ n∆ n i X) -g(β n i )] , (44) 
and note that it is sufficient to prove n i=1 E[|ζ n i | 2 ] → 0. For this we calculate using Burkholder inequality, Lemma 6.2 in Dette and Podolskij (2005) and ( 6)

n i=1 E[|ζ n i | 2 ] = 1 n n i=1 Eσ 2 1 ( i -1 n , Xi-1 n )[g( √ n∆ n i X) -g(β n i )] 2 ≤ n i=1 Eσ 2 1 ( i -1 n , Xi-1 n )| i n i-1 n b(s, X s ) ds + i n i-1 n σ(s, X s ) -σ( i -1 n , Xi-1 n ) dW s | 2 ≤ 2 n i=1 E{σ 4 1 ( i -1 n , Xi-1 n )} 1 2 E{| i n i-1 n b(s, X s ) ds| 4 } 1 2 + E{σ 4 1 ( i -1 n , Xi-1 n )} 1 2 E{| i n i-1 n σ(s, X s ) -σ( i -1 n , Xi-1 n ) dW s | 4 } 1 2 = o(1),
which completes the proof of (2).

A c c e p t e d m a n u s c r i p t

Proof of (3). Obviously, the assertion (3) follows from the statements

1 √ n n i=1 σ 1 ( i -1 n , Xi-1 n )E[g( √ n∆ n i X) -g(β n i )|F i-1 n ] P -→ 0 (45) √ n n i=1 i n i-1 n σ 1 (s, X s )ρ σs (g) -σ 1 ( i -1 n , Xi-1 n )ρ σ i-1 n (g) ds P -→ 0 (46)
Note that σ, σ 1 > 0, which shows that ρ σs (g) = µ 1 σ s and ( 46) follows along the lines of [START_REF] Dette | Estimation of integrated volatility in continuous time financial models with applications to goodness-of-fit testing[END_REF]. For a proof of (45) we define the set

A n i := {| √ n∆ n i X -β n i | > |β n i |},
and obtain the decomposition

g( √ n∆ n i X) -g(β n i ) = R 1 in + R 2 in -R 3 in , ( 47 
) with R 1 in = g (β n i )( √ n∆ n i X -β n i ), R 2 in = [g( √ n∆ n i X) -g(β n i )]1 A n i , R 3 in = g (β n i )( √ n∆ n i X -β n i )1 A n i
, where 1 A denotes the indicator function of the set A. Note that the decomposition (47) follows from the fact that the random variables √ n∆ n i X and β n i have the same sign if (

√ n∆ n i X, β n i ) is an element of (A n i ) c
(here B c denotes the complement of the set B). Note also that g is defined on

R\{0} and that σ > 0. We now decompose R 1 in as follows

R 1 in = R 1.1 in + R 1.2 in , where R 1.1 in := √ ng (β n i ) 1 n b( i -1 n , Xi-1 n ) + i n i-1 n σ ( i -1 n , Xi-1 n ) s i-1 n σ( i -1 n , Xi-1 n )dW t dW s R 1.2 in := √ ng (β n i ) i n i-1 n b(s, X s ) -b( i -1 n , Xi-1 n ) ds + i n i-1 n σ(s, X s ) -σ( i -1 n , X s ) dW s + i n i-1 n σ ( i -1 n , Xi-1 n ) s i-1 n b(t, X t )dt + s i-1 n σ(t, X t ) -σ( i -1 n , Xi-1 n ) dW t dW s + 1 2 i n i-1 n σ ( i -1 n , ξ n i )(X s -Xi-1 n ) 2 dW s = R 1.2.1 in + R 1.2.2 in + R 1.2.3 in + R 1.2.4 in ,
the last line defines the random variables R 1.2.j in (j = 1, 2, 3, 4) and

ξ n i = ϑ n i Xi-1 n + (1 -ϑ n i )X s for some ϑ n i ∈ [0, 1].
Here σ , σ denote the first and the second derivative with respect to the second variable, respectively. Because R 1.1 in is an odd function of ∆ n i W and ∆ n i W is independent of the

σ-field F i-1 n we obtain E[R 1.1 in |F i-1 n ] = 0.
The Cauchy-Schwartz inequality, Burkholder inequality, Lemma 6.2 in Dette and Podolskij (2005) and ( 6) now yield σ

1 ( i-1 n , Xi-1 n )E[R 1.2. in |F i-1 n ] = O p (n -1 ),
A c c e p t e d m a n u s c r i p t = 1, 2, 3, 4 (uniformly with respect to i = 1, . . . , n), and we obtain

1 √ n n i=1 σ 1 ( i -1 n , Xi-1 n )E[R 1 in |Fi-1 n ] P -→ 0. ( 48 
)
In order to derive similar estimates for R 2 in and R 3 in we note that it follows from [START_REF] Barndorff-Nielsen | A central limit theorem for realised power and bipower variations of continuous semimartingales[END_REF] that we may assume the existence of constants c 1 , c 2 > 0 such that

c 1 < |σ| < c 2 , c 1 < |σ j | < c 2 . ( 49 
)
Observing the estimate 1

A n i ≤ 1 {| √ n∆ n i X-β n i |≥ε} + 1 {|β n i |<ε}
, we obtain by using Burkholder inequality, Lemma in Dette and Podolskij (2005) and ( 6)

E[1 A n i |F i-1 n ] ≤ E[| √ n∆ n i X -β n i | 2 ] ε 2 + K 1 ε ≤ K 2 ( 1 nε 2 + ε) , ( 50 
)
for some constants

K 1 , K 2 > 0. With the choice ε = n -1 3 it therefore follows E[1 A n i |F i-1 n ] = O p (n -1 3 ).
A further application of the Cauchy-Schwartz inequality yields σ 

1 ( i-1 n , Xi-1 n )E[R in |F i-1 n ] = O p (n -2 3 ), = 2, 3, which implies 1/ √ n n i=1 σ 1 ( i-1 n , Xi-1 n )E[R in |Fi-1 n ] P -→ 0, = 2,
√ n Mt 1 -M t 1 , . . . , Mt k -M t k T Dst -→ µ -1 1 µ 2 -µ 2 1 V 1 0 Σ 1 2 t 1 ,...t k (s, X s ) dW s , ( 51 
)
where the k × (d + k) matrix V is defined in Theorem 3.3. We finally prove tightness of the sequence √ n( Mt -M t ). For this we use the decomposition

√ n Mt -M t = √ n( B0 t -B 0 t ) + √ nB T t D -1 ( Ĉ -C) + o p (1), (52) 
which follows from the definition of the processes M t and Mt in ( 13) and ( 18), respectively, and from Lemma 3.1. Tightness of the process √ n( B0 t -B 0 t ) follows from [START_REF] Barndorff-Nielsen | A central limit theorem for realised power and bipower variations of continuous semimartingales[END_REF].
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For the second term in (52) we note that in view of (49) it is sufficient to prove lim δ→0 lim sup

n→∞ P ( √ nδ|D -1 kl || Ĉj -C j | > ε) = 0 (53)
for all ε > 0 and all 1 ≤ k, l, j ≤ d where D -1 kl denote the element of the matrix D -1 in the position (k, ). An application of Cramer's rule, (49) and Markov's inequality implies that

P ( √ nδ|D -1 kl || Ĉj -C j | > ε) = P ( √ nδ|D -1 kl || Ĉj -C j | > ε, 0 < det(D) < η) + P ( √ nδ|D -1 kl || Ĉj -C j | > ε, det(D) > η) ≤ P (0 < det(D) < η) + cnδ 2 E[| Ĉj -C j | 2 ] ηε 2
for some constant c > 0 and for all η > 0 (note that det(D) > 0, because D is a positive definite matrix). Moreover, it follows from the proof of Lemma 3.

2 that E[n| Ĉj -C j | 2 ] = O(1). Now, for
all ε > 0, we choose η small, then δ small. We immediately obtain (53) and by ( 52) the tightness of the process

√ n( Mt -M t ). 2 
Proof of Corollary 3.4. Note that in the case d = 1 and σ 1 = 1 we have for the quantities in ( 19) and (15) B1 t = nt /n, D = 1, and the statistic Mt in (18) reduces to (29). Moreover, under the null hypothesis of homoscedasticity it follows in the case k = 2 for the matrix Ṽ in Theorem 3.3 Ṽ = (-t 1 , -t 2 ) T . Note that under the hypothesis H 0 : σ(t, X t ) = σ we have θ min = σ. The matrix Σ t 1 ,t 2 in (24) can be calculated explicitly and does not depend on the process X s . Consequently, the limiting process is Gaussian and determined by its covariance kernel. The representation

V 1 0 Σ t 1 ,t 2 (s, X s )ds V T = σ 2    t 1 (1 -t 1 ) t 1 ∧ t 2 -t 1 t 2 t 1 ∧ t 2 -t 1 t 2 t 2 (1 -t 2 )   
and Theorem 3.3 yield that under the null hypothesis of homoscedasticity the process = σW t we obtain the decomposition

√ n Mt con- verges in law on D[0, 1], that is √ n Mt =⇒ µ -1 1 µ 2 -µ 2 1 σB t ,
X t = X H 0 t + γ n t 0 h(s, X s )dW s = X H 0 t + γ n X H 1 t ( 54 
)
where the last identity defines the process X H 1 t . This yields Nt =

nt k=1 |∆ n i X| 2 -nt n n k=1 |∆ n i X| 2 = N H 0 t + S n .
Here N H 0 t denotes the process defined by ( 30), where the random variables X k n have to be replaced by the corresponding quantities X H 0 k n and S n = P n1 + P n2 -N n1 -N n2 with

P n1 = 2γ n nt k=1 ∆ n i X H 0 ∆ n i X H 1 , P n2 = γ 2 n nt k=1 |∆ n i X H 1 | 2 N n1 = 2 nt n γ n n k=1 ∆ n i X H 0 ∆ n i X H 1 , N n2 = nt n γ 2 n n k=1 |∆ n i X H 1 | 2
(here and in the following discussion the dependence of P nj and N nj (j = 1, 2) on the index t will not be reflected by our notation). A straightforward calculation yields 

P n1 = 2γ n σ t 0 h(s, X s )ds + o p (γ n ) , P n2 = γ 2 n t 0 h 2 (s, X s )ds + o p (γ 2 n ), N n1 = 2tγ n σ 1 0 h(

  θ1 , . . . , θd ), θ = (θ 1 , . . . , θ d ) ∈ Θ ⊂ R d are unknown finite dimensional parameters and σ2 1 , . . . , σ2 d , respectively σ 1 , . . . , σ d are given and known volatility functions satisfying

0 |

 0 M t = 0 (a.s.) for all t ∈ [0, 1] if and only if the null hypothesis H 0 is satisfied, it is intuitively clear that the rejection of the null hypothesis for large values of sup t∈[0,1] | Mt |, 1 Mt |dt or 1 0 | Mt | 2 dtyields a consistent test for the above problem. Note that the integrals and supremum have to be calculated with sufficient accuracy in order to avoid a discretization bias.

  where the symbol D -→ denotes the weak convergence and the process (A(t)) t∈[0,1] is defined in Theorem 3.3. In

  If the assumptions of Theorem 3.5 are satisfied, γ n = n -1/2 , then the process ( √ n Nt ) t∈[0,1] 

  ds and denote by θmin := argminθ ∈R d σσ Td j=1 θj σj σT j , σσ Td j=1 θj σj σT j 2 = D-1 C, where the elements of the matrix D = ( Dij ) 1≤i,j≤d and the vector C = ( C1 , . . . , Cd ) T are defined as Dij := σi σT i , σj σT j 2

  , 200, 500. The data was generated according to the diffusion model (1) with σ = 1 and various drift functions b(t, x).

)

  Then the least squares estimator θmin = ( θmin 1 , . . . , θmin d ) T is determined and the data X * (j) i/n (i = 1, . . . , n; j = 1, . . . B) from the stochastic differential equation (1) with b(t, x) ≡ 0 and σ(t, x) = d j=1 θmin j σ j (t, x) are generated (note that this choice corresponds to the null hypothesis (9)). These data are used to calculate the bootstrap analogues Z * (1) n , . . . , Z * (B) n of the statistic Z n defined in (38). Finally the value of the statistic Z n is compared with the corresponding quantiles of the bootstrap distribution. We have investigated the performance of this resampling procedure for the problem of testing various linear hypotheses, where the volatility function depends on the variable x. The sample sizes are again n = 100, 200, 500 and B = 500 bootstrap replications are used for the calculation of the critical values. In particular we compare the two procedures based on ( Mt ) t∈[0,1] and ( Nt ) t∈[0,1] for testing the hypothesis H0 : σ 2 (t, x) = θx 2 , H 0 : σ(t, x) = θx

Figure 1

 1 Figure 1 Log returns of the EUR/USD exchange rate for two different weeks.

  We will only prove part (b) of the theorem. All other cases are treated by similar arguments. Since the drift function b does not influence the limiting process we assume without loss of generality that b = 0. With the notation X H 0 t

  For example, in the case of the Kolmogorov-Smirnov statistic K n

	(9) is satisfied, and consequently the null hypothesis is rejected for large values of a functional
	of the process (	√	n Mt ) t∈[0,1] .

d and I k ∈ R k×k denotes the identity matrix.

Note that the identity M t ≡ 0 holds (a.s.) for all t ∈ [0, 1] if and only if the null hypothesis in

  both tests keep approximately their level, but the test based on ( Mt ) t∈[0,1] is still substantially more powerful. Thus for high frequency data we recommend the application of the Kolmogorov-Smirnov test based on the process ( Mt ) t∈[0,1] .It is also of interest to compare the power of the new tests with a bootstrap test, which was recently proposed by[START_REF] Dette | Estimation of integrated volatility in continuous time financial models with applications to goodness-of-fit testing[END_REF] and is based on an estimate of the L 2 -

distance M 2 = min θ 1 ,...,θ d 1 0 {σ 2 (t, X t ) -d j=1 θ j σ 2 j (t,

X t )} 2 dt. Because this test yield a rather accurate approximation of the nominal level (see Table 1 in this reference) we mainly consider the Kolmogorov-Smirnov test based on the process ( Nt ) t∈[0,1] in our comparison. The results in the right part of Table 4 are directly comparable with the results displayed in Tabel 4 of Dette, Podolskij and Vetter

2 Proof of Theorem 3.8.

  s, X s )ds + o p (γ n ) , N n2 = tγ2 The convergence of finite dimensional distribution follows from Theorem 3.3 and the properties of stable convergence, so we only need to show the tightness of the sequence (A n (t)/ŝ t ) t∈[x,x] . In a first step we show that it is sufficient to prove tightness of the sequence (A n (t)/s t ) t∈[x,x] . For this we prove that Nielsen et al. (2004) we have sup t∈[x,x] |A n (t)| = O p (1), sup t∈[x,x] |ŝ ts t | = o p (1). |s tŝt | > 2η 2 ε).Now, by choosing η sufficiently small and then n large we decuce that (55) holds. In a second step we show the tightness of the sequence (A n (t)/s t ) t∈[x,x] . For this it is sufficient to show Observe thatA n (t)/s t -A n (h)/s h = (A n (t) -A n (h))/s t + A n (t)(1/s t -1/s h ). Since s t is continuous, we have for any ε > 0 which can be shown by the same methods as (55). Moreover, we have for all η > 0 -x .045 .086 .039 .092 0.053 0.092 .041 .075 .039 .069 .051 .090 tx .042 .081 .050 .100 0.042 0.092 .037 .068 .042 .089 .051 .089

			M (n)					N (n)
	n	100	200	500			100	200	500
	P ( sup t∈[x,x] b α 0	s t -ŝt ŝt s t 5% 10% 5% 10% > ε) ≤ P (0 < (µ -2 1 (µ 2 -µ 2 1 ) min t∈[x,x] 5% 10% 5% 10% 5% 10% 5% 10% λ min t ) 1 2 ≤ η) + P ( sup t∈[x,x] |ŝ t -s t | ≥ .044 .098 .045 .099 0.046 0.093 .047 .082 .041 .077 .041 .098	η 2	)
	2	+ P ( sup t∈[x,x] .045 .077 .050 .099 0.044 0.106 .032 .078 .034 .078 .048 .092
	x	.045 .095 .044 .081 0.042 0.091 .033 .089 .033 .081 .041 .082
	2						
	n a n u s c r i p t 1 0 h 2 (s, X s )ds + o p (γ 2 n ), m A n (t) s t -A n (h) s h > ε = 0 A n (t) A c c e p t e d n Nt = √ n N H 0 t + 2σ lim δ→0 lim sup n→∞ P sup |t-h|<δ for any ε > 0. lim which gives √ δ→0 lim sup n→∞ P sup |t-h|<δ 1 s t -1 s h > ε = 0 , lim δ→0 lim sup n→∞ P sup |t-h|<δ A n (t) -A n (h) s t > ε ≤ P (0 < (µ -2 1 (µ 2 -µ 2 1 ) min t∈[x,x] λ min t ) 1 2 ≤ η) + lim δ→0 lim sup n→∞ P sup |t-h|<δ A From (53) we obtain lim δ→0 lim sup n→∞ P sup |t-h|<δ A n (t) -A n (h) s t > ε = 0 by choosing η small, which completes the proof of Theorem 3.8. A c c e p t e d m a n u s c r i p t A c c e p t e d m a n u s c r i p t	2
			sup t∈[x,x]	A n (t)	1 ŝt	-	1 s t	P -→ 0.	(55)
	From Barndorff-Observing (35) the inequality s 2 t ≥ µ -2 1 (µ 2 -µ 2 1 )λ min t	≥ µ -2 1 (µ 2 -µ 2 1 ) min t∈[x,x] λ min t	> 0 holds for

t 0 h(s, X s )dst 1 0 h(s, X s )ds + o p (1). The assertion now follows from Corollary 3.4. all t ∈ [x, x], where λ min t is the smallest eigenvalue of the positive definite matrix 1 0 Σ t (s, X s )ds.

For all ε, η > 0 we have n (t) -A n (h) > ηε

Table 1

 1 Approximation of the nominal level of the tests, which reject the null hypothesis of homoscedasticity for large values of the statistics M(n) and N(n) . The critical values are obtained by the asymptotic law (36) and (37), respectively. .066 .107 .048 .096 .084 .132 .079 .124 .069 .117 x .094 .148 .071 .128 .048 .100 .069 .129 .057 .117 .054 .100 2x .082 .133 .065 .112 .063 .117 .048 .088 .043 .101 .043 .097 xt .103 .166 .068 .130 .062 .116 .049 .103 .046 .099 .063 .105

			Mt			Nt	
	n	100	200	500	100	200	500
	b/α	5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
	0	.125 .195 .081 .135 .074 .133 .052 .110 .050 .099 .061 .114
	2	.076 .126					
		A c c e p t e d	m a n u s c r i p t

Table 3

 3 Simulated level of the bootstrap test for the hypothesis (39) based on the standardized Kolmogorov-Smirnov functional of the processes ( Mt ) t∈[0,1] and ( Nt ) t∈[0,1] . (t, x) = θ 1 0.000 0.026 0.000 0.002 0.002 0.000 0.004 0.000 0.001 0.010 σ 2 (t, x) = θ 1 |x| 0.142 0.294 0.000 0.060 0.352 0.062 0.546 0.000 0.056 0.000 σ 2 (t, x) = θ 1 x 2 0.748 0.714 0.000 0.976 0.774 0.368 0.634 0.000 0.710 0.000 σ 2 (t, x) = θ 1 + θ 2 x 2 0.880 0.996 0.886 0.994 0.978 0.986 0.968 0.974 0.966 0.988 Table 5 p-values of the test based on the process (N t ) t∈[0,1] for various hypotheses on the volatility function. The table shows the results for ten weeks. The second row shows the number of the available data at each week.

	week	1th	2th	3th	4th	5th	6th	7th	8th	9th	10th
	n	714	714	713	714	714	714	708	714	718	710
	σ 2										
		A c c e p t e d	m a n u s c r i p t

Acknowledgements. The work of the authors was supported by the Deutsche Forschungsgmeinschaft (SFB 475, Komplexitätsreduktion in multivariaten Datenstrukturen). The authors are grateful to I. Gottschlich, who typed this paper with considerable technical expertise and to M.

Vetter for computational assistance. We would also like to thank three referees for their constructive comments on an earlier version of this paper.

and N (n) . The critical values are obtained by the asymptotic law ( 36) and ( 37), respectively. 
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