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. In the unit root case our procedure is consistent and asymptotically normal unlike the standard regression smoother.

We also present the distribution theory for the parameter estimates, which is non-standard in the unit root case. We also investigate its …nite sample performance through simulation experiments.

A c c e p t e d m a n u s c r i p t 1 Introduction

In this paper we discuss the estimation of the unknown quantities in the model

B(L)Y t = A(L)m(X t ) + " t ; (1) 
where " t is a martingale di¤erence sequence with respect to the past of Y t and current and past regressors X t , while A(L) = P 1 j=0 a j L j and B(L) = P 1 j=0 b j L j are lag polynomial operators with a 0 = b 0 = 1 for identi…cation, where Lx t = x t 1 : The function m(:) is assumed to be unknown but smooth, and is the object of central interest, although the dynamics of the model represented by A(L); B(L) are also fundamental to the interpretation.

We …rst discuss a special case of central interest, the nonparametric regression model Y t = m(X t ) + u t , t = 1; : : : ; T;

(

where the covariates follow some stationary mixing process, while the residual process u t satis…es

A(L)u t = " t = 1 X j=0 a j u t j : (3) 
In this case, A(L)Y t = A(L)m(X t ) + " t ; which is a special case of (1) with A(L) = B(L): The parametric version of the regression model ( 2) and ( 3) is a standard teaching topic in graduate econometrics, Harvey (1981, Chapter 6). In the semiparametric model there are many standard estimators of m and of the parameters of A(L) that are consistent under summability conditions on A; see for example [START_REF] Robinson | Nonparametric Estimators for Time Series[END_REF], [START_REF] Bierens | Uniform consistency of kernel estimators of a regression function under generalized conditions[END_REF], [START_REF] Masry | Local polynomial estimation of regression functions for mixing processes[END_REF], [START_REF] Hidalgo | Non-parametric estimation with strongly dependent multivariate time series[END_REF],

and [START_REF] Fan | Nonlinear Time Series[END_REF]. However, unlike in the parametric case, the standard kernel regression smoothers do not take account of the correlation structure in X t or u t and estimate the regression function in the same way as if these processes were independent. Furthermore, the variance of such estimators is proportional to the short run variance of u t ; 2 u = var(u t ) and does not depend on the regressor or error covariance functions cov(X t ; X t j ); cov(u t ; u t j ); j 6 = 0: This is a bit surprising in comparison with the parametric case. One might think that there is useful information in the autocorrelation structure for estimation of the mean. This point has been addressed recently by Xiao, Linton, Carroll, and [START_REF] Xiao | More E¢ cient Local Polynomial Estimation in Nonparametric Regression with Autocorrelated Errors[END_REF] who proposed a more e¢ cient estimator of m based on a prewhitening transformation

Y t 1 X j=1 a j (Y t j m(X t j )) = m(X t ) + " t ; (4) 
where the right hand side is now a standard nonparametric regression with whitened errors. The transform implicitly takes account of the autocorrelation structure. In practice they replaced the
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unknown quantities on the left hand side by preliminary estimates of m and a j ( ): Their procedure improves in terms of variance over the usual kernel smoothers.

The model [START_REF] Bierens | Uniform consistency of kernel estimators of a regression function under generalized conditions[END_REF] is more general than nonparametric regression with autocorrelated errors and is perhaps more rightly viewed as a generalization of the distributed lag model. The traditional distributed lag model (with m(x) = x) has been very popular in economics, [START_REF] Dhrymes | Distributed Lags, Problems of Estimation and Formulation[END_REF]. 1 More recently, Hendry, Pagan, and Sargan (1984) reviewed the speci…cation of such models and gave a taxonomy of special cases. It can be motivated from some simple economic relationships being distorted by adaptive expectations, partial adjustment, etc., see Harvey (1981, Chapter 7). Suppose there is a latent variable Y that has some equilibrium relationship with covariate X; which in general can be nonlinear so that Y t = m(X t ): Then suppose that actual Y only responds to Y with some lagging mechanism, for example, Y t Y t 1 = [Y t Y t 1 ] + " t for some 2 (0; 1); then we obtain a special case of (1). 2 The lags arise because production takes time or because agents take time to respond to a signal or because there are institutional constraints. The traditional applications were in for example production studies where Y t is output and X t is the capital/labour ratio of a given …rm or industry observed over time. More recent applications have been in rational expectations models where the data are at di¤erent frequencies, [START_REF] Hansen | Forward exchange rates as optimal predictors of future exchange rates: An economeric analysis[END_REF]. The issues concerning formulation and estimation of the lag polynomials A; B are pretty much resolved in the linear case, see [START_REF] Hannan | The Statistical Theory of Linear Systems[END_REF] for a more recent discussion in the multivariate case. Linearity of m is just a convenience and was adopted many years ago when computational and technical issues were binding. We allow for nonlinear m because for some problems linear m is not well motivated and at odds with the data. Note that model [START_REF] Bierens | Uniform consistency of kernel estimators of a regression function under generalized conditions[END_REF] includes as a special case the so-called NARMAX model introduced in Chen and Billings (1989) and used frequently by systems engineers in which the function m is approximated by some polynomial with unknown coe¢ cients. Finally, we remark that the ARCH(1) model of [START_REF] Linton | Estimating semiparametric ARCH(1) models by kernel smoothing methods[END_REF] is a special case when Y t = y 2 t and X t = y t 1 ; while B(L) = 1: This model has been treated elsewhere.

We treat only the case where A(L); B(L) are described by a …nite dimensional parameter = ( ; ) 2 R p with 2 R pa parameterizing A and 2 R p b parameterizing B: We propose a strategy for estimation of m along with the parameters of A(L) in ( 2), (3). This is essentially to estimate the 1 Sims (1971) and [START_REF] Geweke | Temporal Aggregation in the Multiple Regression Model[END_REF] consider a continuous time distributed lag model where Y (t) = R 1 1 a(s)X(t s)ds + "(t) and the data are observed at discrete time intervals in which case the (high frequency) discrete time approximation to this is like (1) with B(L) = 1 and A(L) = P 1 j= 1 a j L j for some a j related to the function a(:) under some conditions: 2 The usual properties of linear dynamic regression models can be extended to the nonlinear case. Thus for example we can de…ne the average instantaneous impact E[@Y t =@X t ] as equal to the average derivative of the function m; = E[m 0 (X t )]; a quantity that has been investigated elsewhere. The total dynamic average impact

P 1 j=0 E[@Y t+j =@X t ] = E[m 0 (X t )] P 1 j=0 (B(L)=A(L)
) j is proportional to the instantaneous impact.
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transformed model (1) as an additive (possibly in…nite order) nonparametric regression, see [START_REF] Hastie | Generalized Additive Models[END_REF]. Recently, [START_REF] Linton | Estimating semiparametric ARCH(1) models by kernel smoothing methods[END_REF] have shown how to estimate similar models using the theory of linear integral equations of the second kind; see also [START_REF] Carrasco | Linear Inverse problems in Structural Econometrics[END_REF]. We obtain an estimating equation for m that is a type two linear integral equation for each parameter value . To obtain the parameters we optimize a pro…le likelihood criterion. We show that our method has attractive theoretical and …nite sample properties. In particular, in the special case of nonparametric regression with autocorrelated error it has smaller asymptotic variance than the main method of Xiao, Linton, Carroll, and [START_REF] Xiao | More E¢ cient Local Polynomial Estimation in Nonparametric Regression with Autocorrelated Errors[END_REF]. Furthermore, the asymptotics require weaker conditions with regard to the memory properties of the error terms. We de…ne our method in the general model [START_REF] Bierens | Uniform consistency of kernel estimators of a regression function under generalized conditions[END_REF]. In that case there is not such an obvious alternative estimator of the function m: We mostly consider the case where both X t ; Y t are stationary and mixing processes in which case the main statistical issue is e¢ ciency. We also consider the case where some of the variables are nonstationary. This could arise for example from a unit root in the residual u t or in X t or in both, see [START_REF] Phillips | Nonstationary density estimation and kernel autoregression[END_REF]. In this case, estimating in the original data (2) may lead to inconsistency, whereas the transformation involved in (1) yields error terms with a lower order of nonstationarity/persistence and hence consistency can be obtained, see [START_REF] Marinucci | Semiparametric Frequency Domain Analysis of Fractional Cointegration[END_REF]. The estimation method is more or less the same as in the stationary case although the justi…cation of it di¤ers. The distribution theory for the parametric part though is non standard in this case: in fact we obtain T convergence to the Dickey-Fuller distribution under the unit root.

The Stationary Case

In this section we suppose that (Y t ; X t ) are jointly stationary and weakly dependent mixing processes and describe our estimation methods and their properties for this case.

Estimation Method

Population Characterization

We …rst suppose that A(L); B(L) are known. Letting Z t = B(L)Y t we have

Z t = A(L)m(X t ) + " t = 1 X j=0 a j m(X t j ) + " t ;
which is an additive autoregression with i.i.d. errors where the additive components are subject to the restriction that they all share a common function m. In view of the assumed stationarity, de…ne 

Q( 0 ; m) = E 2 4 ( Z 0 1 X j=0 a j m(X j ) ) 2 3 
5 :

(

This problem can be viewed as a projection in a suitable Hilbert space. Let L 2 (f 0 ) be the Hilbert space of square integrable functions with respect to the marginal density of X t denoted f 0 : For the stationary mixing process fX t g 1 t= 1 ; provided P 1 j=0 ja j j < 1; the random variable

P 1 j=0 a j m(X j ) is square integrable for any function m 2 L 2 (f 0 ): The set G = f P 1 j=0 a j m(X j ) : m 2 L 2 (f 0 )
g can be viewed as a subspace of the Hilbert space of square integrable functions de…ned on the in…nite product of random variables X = (X 0 ; X 1 ; : : :): By the projection theorem there exists a unique member of G closest to the random variable Z 0 :

A necessary condition for m to be the minimizer of ( 5) is that it satis…es the …rst order condition

E "( Z 0 1 X j=0 a j m(X j ) ) 1 X k=0 a k h(X k ) # = 0 (6) 
for any measurable function h for which this expectation is well-de…ned. See [START_REF] Sagan | Introduction to the Calculus of Variations[END_REF], Theorem 1.7 for example. The second order condition is

E[f P 1 k=0 a k h(X k )g 2 ]
which is negative implying that the solution of the …rst order condition does indeed (locally) minimize the criterion. Taking h(:) to be the Dirac delta function, we have that

1 X j=0 a j E[Z 0 jX j = x] = 1 X j=0 a 2 j m(x) + X X j6 =k a j a k E[m(X j )jX k = x] (7) 
for each x:3 This is an implicit equation for m(:): It can be re-expressed as a linear type two integral equation in L 2 (f 0 ): De…ne a y j = a j = P 1 l=0 a 2 l and a j = P k6 =0 a j+k a k = P 1 l=0 a 2 l ; and let f 0;j be the joint density of (X t ; X t j ): Then

m(x) = m (x) + Z H(x; y)m(y)f 0 (y)dy; or m = m + Hm; (8) 
m (x) = 1 X j=0 a y j E[Z 0 jX j = x] H(x; y) = 1 X j= 1 a j f 0;j (y; x) f 0 (y)f 0 (x) :
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This is similar to the equation derived in [START_REF] Linton | Estimating semiparametric ARCH(1) models by kernel smoothing methods[END_REF] with the exception that there X t was lagged values of Y t : Equation ( 8) is an implicit equation in m and we need some conditions on the operator H(x; y) to guarantee that there exists a unique solution.

Assumption A1. The operator H(x; y) satis…es the Hilbert-Schmidt condition i.e., Z Z H(x; y) 2 f 0 (x)f 0 (y)dxdy < 1:

A su¢ cient condition for A1 is that the joint densities f 0;j (y; x) have compact support and f 0 (x)

is bounded away from zero on this support, which we shall assume below. However, this is not necessary and condition A1 can hold for many covariate processes with unbounded support. We shall however restrict attention to the case where the support of the marginal covariate density f 0 is a compact set [x; x]: Then the operator H is a bounded compact linear operator on the Hilbert space of functions L 2 (f 0 ). It is also self-adjoint, see [START_REF] Linton | Estimating semiparametric ARCH(1) models by kernel smoothing methods[END_REF]. It therefore has a countable number of eigenvalues4 :

1 > j 1 j j 2 j : : : ; with P 1 j=0 2 j < 1: Also, the value 0 is a cluster point of the set f j g 1 j=1 and 0 is the only cluster point, see Kress (1999, Theorem 3.9). The spectral radius of an operator H is de…ned as r(H) = sup j j j j;

and in this case it is …nite: Assumption A2. There exists no measurable function m(:) with R m(x) 2 f 0 (x)dx = 1 such that P 1 j=0 a j m(X t j ) = 0 with probability one. This condition rules out a certain 'concurvity'in the stochastic process fX t g. That is, the data cannot be functionally related in this particular way. In the AR(1) case this says that there are no nontrivial functions m that satisfy m(X t ) m(X t 1 ) = 0 with probability one. 5 A consequence of A2 is that sup j j < 1 and therefore the operator I H is strictly positive de…nite. Therefore, there exists a unique solution to (8) that satis…es

m = (I H) 1 m : (9) 
This is the main characterization used for estimation, although we must …rst extend this to the case where a general is used not necessarily the true 0 :

For each = ( ; ) 2 ; de…ne Z t ( ) = P 1 j=0 b j ( )Y t j and g j (x; ) = E[Z t ( )jX t j = x]; j = 0; 1; : : :

m (x) = 1 X j=0 a y j ( )g j (x; )
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H (x; y) = 1 X j= 1 a j ( ) f 0;j (y; x) f 0 (y)f 0 (x) ; ( 10 
)
where a y j ( ) = a j ( )= P 1 l=0 a 2 l ( ) and a j ( ) = P k6 =0 a j+k ( )a k ( )= P 1 l=0 a 2 l ( ): We now let m vary with ; that is, ( 5) is de…ned for any , and let m be the function that minimizes [START_REF] Conley | Short-Term Interest Rates as Subordinated Di¤usions[END_REF]; this satis…es m = (I H ) 1 m for all provided the conditions A1 and A2 hold uniformly over the parameter space . Furthermore, we can de…ne = 0 as the minimizer of

Q( ; m ) = E 2 4 ( Z 0 ( ) 1 X j=0 a j ( )m (X j ) ) 2 3 5 (11) 
with respect to 2 : Let m 0 = m 0 : We adopt this pro…ling approach to de…ning 0 ; m 0 as this is the way our estimation strategy works. We suppose that assumptions A1 and A2 hold uniformly over the parameter space so that for each 2 ; m = (I H ) 1 m is well-de…ned. Note that the operator H is not necessarily a contraction, i.e., it may hold that r(H ) > 1 for some 2 :

Therefore, one cannot guarantee that the in…nite sum P 1 j=0 H j exists for all 2 . In practice one has to replace m and H by estimators. Furthermore, one has also to estimate the parameters of the …lters A; B. In the sequel we provide some details on this.

Further Details

Suppose we have a sample f(Y 1 ; X 1 ); : : : ; (Y T ; X T )g: The general estimation strategy is 

T X t=j+1 fZ t ( ) c 0 c 1 (X t j x)g 2 K h (X t j x) (12) 
f 0;j (y; x) = 1 T jjj T X t=jjj+1 K h (y; X t )K h (x; X t j ) ; b f 0 (x) = 1 T T X t=1 K h (x; X t ): b m (x) = X j=0 a y j ( )b g j (x; ) ; b H (x; y) = X j= 1 a j ( ) b f 0;j (y; x) b f 0 (y) b f 0 (x) ; b H m(x) = Z b H (x; y)m(y) b f 0 (y)dy:
Here, for each x in the support of

X t ; K h (x; y) = K x h (x y) for some kernel K x such that K x h (u) = h 1 K x (h 1 u) and K x h (u) = K h (u)
for all x in the interior of the support of X t : We shall assume that the covariate is supported on [x; x] for some known x; x and that the covariate density is bounded away from zero on this support. We need to make a boundary adjustment to the kernel K in b H by using the boundary kernels K x h (y x) to ensure that the bias is the same magnitude everywhere. One can also replace the standard kernel density estimators by other suitable density estimators like the Jones, Linton and Nielsen (1995) procedure, but it is not clear if such estimators would achieve better performance. 

T ( ) = 1 T T X t= +1 ( Z t ( ) X j=0 a j ( ) b m (X t j ) ) 2 : Finally, let b m(x) = b m b (x):

Asymptotic Properties

Let F b a be the -algebra of events generated by the random variables fY t ; X t ; a j bg. A stationary processes fY t ; X t g is called strong mixing [START_REF] Rosenblatt | A central limit theorem and strong mixing conditions[END_REF]] if

sup A2F 0 1 ;B2F 1 k jPr (A \ B) Pr(A) Pr(B)j s(k) ! 0 as k ! 1: (14) 
We shall consider two cases. First, the 'weak form case'where we do not maintain that model (1) holds but only that fY t ; X t g is a stationary strong mixing process. Second, we maintain that, in addition,
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model ( 1) holds with a martingale di¤erence error sequence " t . To facilitate the asymptotic analysis, we make the following assumptions on the residuals and regressors, the kernel function k( ); and the bandwidth parameter h.

Let t;j ( ) = Z t+j ( ) E[Z t+j ( )jX t ]; t;j ( ) = m (X t+j ) E[m (X t+j )jX t ]; 1 ;t = 1 X j=0 a y j ( ) t;j ( ) and 2 ;t = 1 X j= 1 a j ( ) t;j ( ): (15) 
B1 The process fX t ; Y t g 1 t= 1 is stationary and strong mixing with a mixing coe¢ cient, s(k) such that for some C 0 and some s < 1; s(k) Cs k :

B2 E jY t j 2 < 1 for some > 2:
B3 The covariate process fX t g 1 t= 1 has absolutely continuous density f 0 supported on [x; x] for some 1 < x < x < 1 and the bivariate densities f 0;j ( ) are supported on [x; x] 2 : The function m( ) together with the densities f 0 ( ) and f 0;j ( ) are continuous and twice continuously di¤erentiable over (x; x) [and (x; x) 2 ]; and are uniformly bounded. f 0 ( ) is bounded away from zero on [x; x]; i.e., inf x w x f 0 (w) > 0:

B4 The parameter space is a compact subset of R p ; and the value 0 is an interior point of :

Also, A2 holds, and for any > 0 inf

jj 0 jj> Q( ; m ) > Q( 0 ; m 0 ):
B5 The density function of ( 1 t;j ( ); 2 t;j ( )) is Lipschitz continuous on its domain. The joint densities 0;j ; j = 1; 2; : : : ; of ( 1 t;0 ( ); 2 t;0 ( )); ( 1 t;j ( ); 2 t;j ( )) are uniformly bounded:

B6 The parameters 2 A and 2 B compact subsets of R pa and R p b respectively: The coe¢ cients satisfy sup 2A;k=0;1;2 jj@ k a j ( )=@ k jj Ca j for some a < 1 and some …nite constant C; while inf 2A P 1 j=0 a 2 j ( ) > 0: Likewise, sup 2B;k=0;1;2 jj@ k b j ( )=@ k jj Cb j for some b < 1 and some …nite constant C:

B7 The truncation sequence T satis…es T = C log T for some constant C > ( 2 log b) 1 :
B8 The bandwidth sequence h(T ) satis…es T 1=5 h(T ) ! as T ! 1 with bounded away from zero and in…nity.

B9 For each x 2 [x; x] the kernel function K x has support [ 1; 1] and satis…es R K x (u)du = 1 and R K x (u)udu = 0, such that for some constant C; sup x2[x;x] jK x (u) K x (v)j Cju vj for all u; v 2 [ 1; 1]: De…ne j (K) = R u j K(u)du and jjKjj 2 2 = R K 2 (u)du:
A c c e p t e d m a n u s c r i p t B10 " t satis…es E " t jfX t j g 1 j=0 ; f" t j g 1 j=1 = 0 a.s.

B11 (a) " t is i.i.d. and independent of the process fX t g; (b) " t is also normally distributed.

These conditions are similar to [START_REF] Linton | Estimating semiparametric ARCH(1) models by kernel smoothing methods[END_REF] but we also need conditions on the b j ( ) coe¢ cients and separate conditions on X and Y .

Note that B1-B6 imply the uniform version of conditions A1-A2. Condition B1 rules out long memory but allows a wide range of processes used in practice. We will make use of the mixing property to apply the exponential inequality of Bosq (1998) and to establish a central limit theorem for b m in the weak form case. In this weak form case we can't apply martingale limit theory. We need to apply a central limit theorem to (local) averages of the processes 1 ;t and 2 ;t de…ned above. These processes need not be mixing but are near epoch dependent processes on the strong mixing bases Y t ; X t with exponentially declining weights under our conditions on B; A; we apply a CLT due to [START_REF] Lu | Asymptotic normality of kernel density estimators under dependence[END_REF] for such processes using conditions B1 and B5,B6.

Condition B3 is quite standard in the nonparametric regression literature. Note that we only assume twice continuously di¤erentiable m.

In B4 we explicitly assume the identi…cation of the parametric part. We make this high level assumption for three reasons. First, we need identi…cation in the weak case, and this seems like a natural assumption to make in view of our de…nition of the weak form process. Second, we allow the coe¢ cients a j ( ); b j ( ) to depend on in a complicated way. Third, the mapping 7 ! m may be quite complicated to analyze. [START_REF] Hannan | The asymptotic theory of linear time series models[END_REF] used high level conditions [c.f. his condition (4)] similar to ours.

The truncation rate assumed in B7 is consistent with the exponential decaying mixing coe¢ cients.

It can be weakened at the expense of more detailed argumentation. In B8 we are anticipating a rate of convergence of T 2=5 for b m ; which is consistent with second order smoothness on the function m: The assumptions B10 are expressed in terms of the unobserved f" t j g 1 j=1 and are equivalent to assumptions on fy t j g 1 j=1 under an invertibility condition. Assumption B10 is needed for the consistency of the parameter estimates b : In the pure regression model (2, 3) one only needs a weaker assumption E " t jfX t j g 1 j=0 = 0 a.s. for consistent estimation of m and as is known from the parametric case: De…ne the functions = (I H ) 1 as solutions to the integral equations = + H ; in which:

(x) = f 0 0 (x) f 0 (x) @ @x H m (x) + H m 00 (x):
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Then de…ne

! (x) = jjKjj 2 2 f 0 (x) var[ 1 ;t + 2 ;t ]; b (x) = 1 2 2 (K) (x);
where j ;t ; j = 1; 2 were de…ned above in [START_REF] Hastie | Generalized Additive Models[END_REF]. We prove the following theorem in the appendix. Theorem 1. Suppose that B1-B9 hold. Then for each 2 and x 2 (x; x)

p T h b m (x) m (x) h 2 b (x) =) N (0; ! (x)) ; (16) 
Both the bias and variance in this result are quite complicated even though a local linear smoother has been used in estimating g j . This is a 'weak form'result, where the model ( 1) is not assumed.

We next maintain a 'semi-strong form'assumption B10, which requires the …lters to be correctly speci…ed. Under this assumption we can apply a CLT for martingale di¤erence sequences. We obtain the properties of b by an application of the asymptotic theory for semiparametric pro…led estimators, see [START_REF] Severini | Pro…le likelihood and conditionally parametric models[END_REF] and [START_REF] Newey | The asymptotic variance of semiparametric estimators[END_REF]. This requires a uniform expansion for b m (x) and for the derivatives (with respect to ) of b m (x). Under B10, we get that

1 0 ;t + 2 0 ;t = 1 X j=0 a y j " t+j :
Thus:

! 0 (x) = jjKjj 2 2 P 1 j=0 a 2 j ( 0 )E [" 2 t jX t j = x] f 0 (x) h P 1 j=0 a 2 j ( 0 ) i 2 (17) 
Let " t ( ) = Z t ( ) P 1 j=0 a j ( )m (X t j ); and let J = E @ 2 " t @ @ > ( 0 ) and I = E @" t @ @" t @ > " 2 t ( 0 ) :

Theorem 2. Suppose that Assumptions B1 to B10 hold. Then,

p T ( b 0 ) =) N (0; J 1 IJ 1 ): Furthermore, for x 2 (x; x) p T h b m(x) m(x) h 2 b 0 (x) =) N (0; ! 0 (x)) :
Remarks.

1. The quantities J ; I, and ! 0 (x) can be consistently estimated by a plug-in method thereby allowing inference, see [START_REF] Linton | Estimating semiparametric ARCH(1) models by kernel smoothing methods[END_REF]. " =f 0 (x) P 1 j=0 a 2 j ( 0 ): In the special case of nonparametric regression (2) and (3) we can compare the e¢ ciency of our procedure with that of alternative estimators like the usual kernel regression estimator: this has asymptotic variance

! Ker (x) =jjKjj 2 2 2 " P 1 j=0 c 2 j =f 0 (x); where C(L) = A(L) 1 :
We can also compare with the estimator of Xiao, Linton, Carroll, and [START_REF] Xiao | More E¢ cient Local Polynomial Estimation in Nonparametric Regression with Autocorrelated Errors[END_REF]: this has asymptotic variance ! XLCM (x) =jjKjj 2 22

" =f 0 (x): In this case, !(x) ! XLCM (x) ! Ker (x) (18) 
so that our procedure is always at least as e¢ cient as these two competitors in terms of variance.

4. We now argue that our estimator is e¢ cient in terms of variance for the special case that

2 j (x) = E[" 2 t jX t j = x]
does not depend on j. Unfortunately, there is no Cramer-Rao lower bound to rely on in nonparametic estimation. We circumvent this problem by introducing a theoretical "oracle model" where more information is available and by showing that our estimator achieves the same asymptotic variance as a classical nonparametric estimator in the oracle model, see [START_REF] Linton | E¢ cient estimation of additive nonparametric regression models[END_REF]. We consider the following oracle model where one observes X t and Z tj for 1 t T , j 0 with Z tj = a j m(X t j ) + " tj ;

where (" tj : 1 t T ) are independent copies of (" t : 1 t T ). In this model each equation in the original model Z t = P 1 j=0 a j m(X t j ) + " t is replaced by an in…nite series of equations where for each new equation all summands beside one are known. Thus we argue that this model is more informative.

In the oracle model for each value of j a kernel estimator b m j (x) of m(x) is available. We now consider linear combinations b m w (x) = P 1 j=1 w j b m j (x) with P 1 j=1 w j = 1. This is the most e¢ cient way to combine the information of b m j (x) because these estimators are asymptotically independent.

We now look for the weights w j that lead to minimal asymptotic variance. The variance is equal to 1 . This is minimized for the choice

P 1 j=1 w 2 j 2 j (x)a 2 j kKk 2 2 f 0 (x)
w j = a 2 j 2 j (x)= P 1 l=1 a 2 l 2 l (x) resulting in the asymptotic variance kKk 2 2 P 1 j=1 a 2 j 2 j (x) f 0 (x) 1 h P 1 j=1 a 2 j 2 j (x) i 2 :
This variance coincides with !(x) if 2 j (x) does not depend on j. If this is not the case one can proceed with a slight modi…cation of our estimator that achieves the e¢ ciency bound. Instead of A c c e p t e d m a n u s c r i p t using (7) we use

1 X j=0 b j E[Z 0 jX j = x] = 1 X j=0 b j a j m(x) + X X j6 =k a j b k E[m(X j )jX k = x] with b j = a j 2 j (x)= P 1 l=1 a 2 l 2 l (x).
Proceeding as after equation [START_REF] Dhrymes | Distributed Lags, Problems of Estimation and Formulation[END_REF] this results in another integral equation with di¤erent intercept m and kernel H. Because b j depends on x both, m and H depend also on x. That means for each value of x one has to solve another integral equation. The empirical implementation of the method requires a consistent estimate of the conditional variances 2 j (x). 5. The bias expression b 0 (x) does not apparently simplify, which makes comparison with other estimators according to mean squared error inconclusive. However, our estimator can be modi…ed to get an asymptotic bias expression of the form that is asymptotically equivalent to

b(x) = 1 2 2 (K)m 00 (x); (19) 
which is as for a standard local linear estimator in regression. Then we get a straight mean squared error reduction over the local linear regression estimator. There exist two proposals for additive models to achieve a bias term of the form [START_REF] Jones | A simple bias reduction method for density estimation[END_REF]. The …rst approach is local linear smooth back…tting of Mammen, Linton, and Nielson (1999). In the smooth back…tting approach the back…tting algorithm updates estimates of the functions and its derivatives. This approach could be implemented in our setting by using an appropriate integral operator that acts on tuples of two functions (…tting m and its derivative). A modi…cation of local linear smooth back…tting has been proposed in [START_REF] Mammen | A simple smooth back…tting method for additive models[END_REF]. Their back…tting only uses one dimensional operators but achieves the same asymptotic behaviour as local linear smooth back…tting. In our setting their approach works as follows. One

replaces b H by b H mod (y; x) = T X j= 1 a j ( ) " e f 0j (y; x) e f 0 (y) e f 0 (x) R e f 0j (u; x)du e f 0 (x) R e f 0 (u)du # ; e f 0 (y) = b f 0 (y) b f 0 (y) 2 b f 0 (y) ; e f 0;j (y; x) = b f 0;j (y; x) b f 0;j (y; x) b f 0 (y) b f 0 (y) ; b f 0 (y) = 1 T jjj T X t=jjj+1 K h (X t ; y)(X t y) ; b f 0 (y) = 1 T jjj T X t=jjj+1 K h (X t ; y)(X t y) 2 ; b f 0;j (y; x) = 1 T jjj T X t=jjj+1 K h (X t ; y)L h (x; X t j ) ; b f 0;j (y; x) = 1 T jjj T X t=jjj+1 K h (X t ; y)L h (x; X t j )(X t y):
Here, the kernel L is de…ned as

L(u) = 2K 1= p 2 (u) K p 2 (u). Furthermore, L h is de…ned as L h (u; v) = fa(v; h)u + b(v; h)g L h 1 (v u)
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with a and b chosen so that: R x x L h (u; v)du = 1 and R x x (u v)L h (u; v)du = 0: Note that the integration runs over u and not over v. Thus the kernel is not a boundary corrected kernel in the usual sense.

A similar proposal has been made in Linton and Mammen (2005, p789).

6. The modi…ed estimator has bias [START_REF] Jones | A simple bias reduction method for density estimation[END_REF] and variance ! 0 (x). The ranking in [START_REF] Horowitz | Optimal Estimation in additive regression[END_REF] then applies also to the comparison of mean squared errors. Our (modi…ed) estimator is therefore better according to asymptotic mean squared error than these two estimators in this case. [START_REF] Dhrymes | Distributed Lags, Problems of Estimation and Formulation[END_REF]. The above e¢ ciency discussion has just involved pairwise comparison of estimators. It may be possible to establish a further e¢ ciency property following the work of Horowitz, Klemelä, and Mammen (2006). They showed in the context of additive nonparametric regression that the local linear smooth back…tting method of Mammen, Linton, and Nielsen (1999) is Best Linear Minimax, that is, there does not exist a linear procedure that has smaller minimax error.

8. The asymptotic distribution can be used to guide bandwidth selection. The IMSE optimal bandwidth is

h = jjKjj 2 2 2 2 (K) 1=5 " 2 " (x x) P 1 j=0 a 2 j ( 0 )E [m 00 (X t ) 2 ] # 1=5 T 1=5
for the modi…ed estimator under homoskedasticity, where 2 " is the variance of " t . In practice one must replace these quantities by estimates based on a parametric or nonparametric scheme.

A Nonstationary Case

In this section we investigate the case where Y t can be nonstationary but X t is stationary mixing as before. We wish to allow for the possibility of unit roots even if they might be quite rare in practical applications of this technology.

The most general case would be where both A; B contained unit roots either simple or complex.

For expositional reason we shall focus on the special case where B(L) = A(L) = 1 L: Consider the model

(1 L)Y t = (1 L)m(X t ) + " t ; (20) 
where in fact 0 = 1 and " t obeys B11: In this case,

Y t = m(X t ) + u t ; (21) 
where u t = u t 1 + " t is a unit root process, [START_REF] Phillips | Time Series Regression with a Unit Root[END_REF]. We suppose that u 0 = 0:

Direct estimation of Y t on X t will produce inconsistent estimates of m: The Xiao, Linton, Carroll, and [START_REF] Xiao | More E¢ cient Local Polynomial Estimation in Nonparametric Regression with Autocorrelated Errors[END_REF] procedure is also inconsistent in this unit root case because it relies on the initial
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standard nonparametric regression estimator that is inconsistent. On the other hand our estimation of the additive model

Y t Y t 1 = m(X t ) m(X t 1 ) + " t
with white noise errors will produce consistent estimates of m: In fact, the theory for m 0 is exactly as in Theorem 2. The task here is to determine that we can estimate the parameter in [START_REF] Kress | Linear Integral Equations[END_REF] consistently and thence estimate m consistently. 6One issue is that for 6 = 1; the process (1 L)Y t is non-stationary and so some of the de…nitions of the previous section do not make sense. Instead we de…ne m T to be the potentially time varying minimizer of

Q T (m) = 1 T T X t=1 E fY t Y t 1 m(X t ) + m(X t 1 )g 2 :
A necessary condition for m to be the minimizer is that it satis…es the …rst order condition

1 T T X t=1 E[Y t Y t 1 jX t = x] E[Y t Y t 1 jX t 1 = x] (22) 
= (1 + 2 )m T (x) (E[m T (X t )jX t 1 = x] + E[m T (X t 1 )jX t = x]) :
Then note that from [START_REF] Lin | Nonparametric Function Estimation for Clustered Data When the Predictor is Measured Without/With Error[END_REF],

Y t Y t 1 = m(X t ) m(X t 1 )+" t +(1 )u t 1 ; and so E[Y t Y t 1 jX t = x]
and E[Y t Y t 1 jX t 1 = x] are time invariant. Furthermore, we have assumed that X t is stationary and " t is i.i.d. Therefore, there exists a time invariant solution to equation [START_REF] Linton | E¢ cient estimation of additive nonparametric regression models[END_REF]. 7 Furthermore, the solution is characterized by the integral equation [START_REF] Fan | Nonlinear Time Series[END_REF] with in this special case:

m (x) = 1 1 + 2 (E[Y t Y t 1 jX t = x] E[Y t Y t 1 jX t 1 = x]) H (x; y) = 1 + 2 f 0;1 (y; x) f 0 (y)f 0 (x) + f 0;1 (x; y) f 0 (y)f 0 (x) :
What is di¤erent here is the error in estimating E [Y t Y t 1 jX t 1 = x] for example can be large unless is close to one in which case the term Theorem 3. Suppose that assumption B1 holds for X t ; that B2 holds for " t ; that B3, B7-B9 and B11 hold. Then

b Q T ( ) = 1 T T X t=2 fY t Y t 1 b m (X t ) + b m (X t 1 )g 2
T (b 1) =) R 1 0 B(s)dB(s) R 1 0 B 2 (s)ds : Furthermore, p T h b m(x) m(x) h 2 b(x) =) N (0; !(x)) ; where b(x) = (I H 1 ) 1 f 0 0 f 0 @ @x H 1 m + H 1 m 00 (x)
and

!(x) = jjKjj 2 2 E [" 2 t ] 2f 0 (x) :
Note that the asymptotics for b are the same as those of the infeasible least squares estimator

= P T t=2 u t u t 1 = P T t=2 u 2 t 1
; so that estimation of m has no e¤ect on the limiting distribution. One can also obtain local to unity asymptotics which are the same as those of . The distribution theory can be used to perform a test of the null hypothesis of a unit root.

We remark that out theory can be generalized easily to allow for short run dynamics in addition to the unit root. Suppose that in [START_REF] Lin | Nonparametric Function Estimation for Clustered Data When the Predictor is Measured Without/With Error[END_REF], (1 L)u t = C(L)" t ; where C(L) = P 1 j=0 c j L j and P 1 j=0 jjc j j < 1: Then by the Beveridge-Nelson decomposition we have u t = C(1) P t s=1 " s + C (L)" t under our assumptions, where C (L) = P 1 j=0 c j L j with c j = P 1 i=j+1 c i being summable. Then the result in Theorem 3 follows (for the corresponding estimator) with the correction factor C(1) in the variance:

Numerical Results

We investigate the performance of our procedure on simulated data in the context of a nonparametric regression with correlated errors. Our purpose is to compare the performance of our estimator to the natural competitor for that case, the local linear estimator. We focus on the relative performance of two optimally implemented methods to dispense with issues about bandwidth selection and the small sample performance of the benchmark estimator.

We suppose that Y t = m(X t ) + u t ; u t = 0 u t 1 + " t with m(x) = 0 x 2 =2; where X t N (0; 1); and " t N (0; 2 " ): We take 0 = 1 and 2 " = 1: We examine the cases T 2 f800; 400; 200g and 0 2 f0; 0:05; 0:1; : : : ; 0:95; 1:0g; and use ns = 1000 We chose bandwidth to be optimal according to (asymptotic) weighted mean squared error

P c 1 ( b m) = plim T !1 T 4=5 Z c c [ b m(x) m(x)] 2 f 0 (x)dx; which gives h opt = c K c M T 1=5 ; where c K = (2cjjKjj 2 2 = 2 2 (K))
1=5 is to do with the kernel and c M = ( 2" =(1

+ 2 0 ) 2 0 (F 0 (c) F 0 ( c))) 1=5
; where F 0 (x) is the c.d.f. of the covariate, is to do with the model. We have taken c = 2; which corresponds to an interval containing almost 95% of the covariate distribution. For the standard local linear estimator the optimal bandwidth is c K c M T 1=5 with

c M = ( 2 " =(1 2 0 ) 2 0 (F 0 (c) F 0 ( c))
1=5 provided 0 6 = 1 (when 0 = 1 we set 0 in the formula arbitrarily to 0.95):

In Figure 1 below we report the relative value of the performance measure P T ( b m)=P T ( e m); where

P T ( b m) = E Z c c [ b m(x) m(x)] 2 f 0 (x)dx
and where E is computed by the mean or median over Monte Carlo simulations and the integral is computed by the average over our grid of estimation points. 9 Both estimators use their optimal bandwidths, and consequently their theoretical relative e¢ ciency is ((1 We also looked at the case where X t is autocorrelated, speci…cally, X t = 0:95X t 1 + u t ; where u t is normally distributed such that X t is marginally N (0; 1): Theoretically, this does not make any di¤erence, and in practice if anything relative performance is improved for this case. The results are not shown for brevity.

We next examine the performance of b : When < 1 the MSE decreases pretty much as predicted and the distribution approximates a normal for the larger sample size. When 0 = 1; our simulations show that the variance of b decreases rapidly with sample size with standard deviation being 0:0161, 0:00896; and 0:00458 for T = 200; 400; and 800 respectively, which is consistent with superconsistency.

Below we show the qq plots of the empirical quantiles against those of the Dicky-Fuller density in this unit root case. As the sample size increases the distribution approaches the asymptotic distribution.
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Figure 2. Shows the q-q plots of b against the Dicky-Fuller density for three di¤erent sample sizes:

X t = 0:95X t 1 + u t with X t N (0; 1):

Overall these results are much better than obtained in [START_REF] Xiao | More E¢ cient Local Polynomial Estimation in Nonparametric Regression with Autocorrelated Errors[END_REF] in terms of the small sample relative performance, and show in some cases substantial gains over the standard smoothing methods widely employed in practice. However, we acknowledge that in more complicated settings where the order of the polynomials A; B is higher and perhaps has to be determined that the results will worsen.

Extensions

We conclude the paper with a discussion of two important extensions.

Nonstationary X

Suppose that

X t = X t 1 + t
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with t also white noise and uncorrelated with " t : Thus X t is a unit root process. This makes a substantial di¤erence to the asymptotics since the corresponding operator H (x; y) is random.

Provided X t is null recurrent, we might expect consistency (Phillips and Park (1998)) but the rates of convergence are slower and the asymptotic distributions change. Simulation results support the consistency of b m. In particular, the corresponding graphic to Figure 1 is almost identical.

An alternative type of nonstationarity for X t is deterministic trend. Suppose that

X t = (t=T ) + (t=T ) t ; ( 23 
)
where t is a stationary mixing process, see [START_REF] Dahlhaus | Fitting time series models to nonstationary processes[END_REF]. If 0; X t is purely deterministic. In this case, the asymptotics of kernel regression smoother are di¤erent and re ‡ect the autocorrelation in u t ; see [START_REF] Hart | Kernel Regression Estimation with Time Series Errors[END_REF] and Fan and Yao (2003, Theorem 6.1). Also, there is a problem applying our method because of concurvity. Speci…cally, we have for any j; m((t j)=T ) = m(t=T ) + O(j=T ) and so assumption A2 is violated. In this case we have B(L)Y t ' A(1)m(t=T ) + " t and there appears to be no estimator that improves over the standard nonparametric regression. This is a bit like the well known result that OLS=GLS when the regressors are polynomial or trigonometric time trends. See Opsomer, Wang, and Yang (2001) for a review of nonparametric methods and results in this case.

In the more general locally stationary case, our method may work due to the stochasticness of t :

6.2 Multivariate X; Y When X t is multivariate the above method can be applied with obvious changes in the dimensionality of various quantities. However, it may be appealing in that case to consider the following model

B(L)Y t = d X j=1 A j (L)m j (X jt ) + " t ;
where the functions m 1 (:); : : : ; m d (:) are unknown and the …lters A j (L) = P 1 k=0 a jk ; j = 1; : : : ; d: The estimation strategy involves a combination of Mammen, Linton, and Nielsen (1999) and the methods above. Instead one might want to make the function m(X 1t ; : : : ; X dt ) obey some other dimensionality reducing restrictions.

A Appendix

A.1 Computational Appendix

We discuss brie ‡y how we solve the equation ( 13) in practice. Note that one can rewrite (9) as an integral equation on [0; 1] 2 as m y (s) = m y (s) + R 1 0 H y (s; t)m (t)dt; where H y (s; t) = H (F 1 0 (s); F 1 0 (t))
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with y = F 1 0 (s); x = F 1 0 (t) and m y (t) = m (F 1 0 (t)) and m y (t) = m (F 1 0 (t)) and F 0 is the c.d.f. of X t . For simplicity we drop the super ‡uous y superscript in the sequel. Let ft j;n ; j = 1; : : : ; ng be some equally spaced grid of points in [0; 1]; and let q j;n = b F 1 0 (t j;n ) be the empirical t j;n quantile of

X t : Now approximate (13) by b m (q i;n ) = b m (q i;n ) + n X j=1
b H (q i;n ; q j;n ) b m (q j;n ); i = 1; : : : ; n:

The linear system (24) can be written in matrix notation

(I n b H ) b m = b m ; (25) 
where

I n is the n n identity, b m = ( b m (q 1;n ); : : : ; b m (q n;n )) > and b m = ( b m (q 1;n ); : : : ; b m (q n;n )) > ; while b H = X k= 1 a + k ( ) " b f 0;k (q i;n ; q j;n ) b f 0 (q i;n ) b f 0 (q j;n ) # n i;j=1
is an n n matrix. We then …nd the solution values b m = ( b m (q 1;n ); : : : ; b m (q n;n )) > to this system (25) by direct inversion when n is less than say 2000. The error that is made in such discrete approximations is well studied, see for example [START_REF] Porter | Integral Equations[END_REF]. Under our smoothness conditions, we expect the error to decline like O(1=n) as n ! 1:

We next describe a method proposed to us by a referee, which follows from arguments of [START_REF] Carrasco | Linear Inverse problems in Structural Econometrics[END_REF]. This method actually provides an explicit solution to the integral equation [START_REF] Hart | Kernel Regression Estimation with Time Series Errors[END_REF]. Write the operator action on function m as

( b H m)(x) = X j= 1 a j ( ) 1 b f 0 (x) 1 T jjj T X t=jjj+1 K h (x; X t j ) (X t );
where (X t ) = R K h (y; X t )m(y)dy: Premultiplying both sides of the integral equation ( 13) by K h (x; X t ) and integrating over x; we obtain a system of T linear equations

b = b U b + b w ; ( 26 
)
where b is the T 1 vector with typical element b

(X t ) = R K h (y; X t ) b m (y)dy; b U = P j= 1 b U j ;
where b U j is the T T matrix with (t; t j) element equal to The integrals R K h (x; X t )K h (x; X t j )dx can be computed explicitly in some cases. This method is a nice complement to the method we have used in practice. The advantage of the method is that it provides an exact solution. The disadvantage is that it can be quite computationally demanding since one has to invert T T matrices, which obviously limits the sample sizes one can work with. In addition, the above method only yields a solution at a single point x; whereas the method we have used automatically yields a solution at all grid points. where

X j= 1 a j ( ) 1 b f 0 (x) 1 T jjj Z K h (x; X t )K h (x; X t j )dx if t jjj + 1

A.2 Proof of Theorems

m (x) m (x) = b m ;B (x) + b m ;C (x) + b m ;D (x) (27) 
( b H H )m (x) = b m ;E (x) + b m ;F (x) + b m ;G (x); (28) 
m ;B (x) = h 2 2 2 (K) m 00 (x) @ 2 @x 2 (H m )(x) b m ;E (x) = h 2 2 2 (K) H m 00 (x) + @ 2 @x 2 (H m )(x) + 2 f 0 0 (x) f 0 (x) @ @x (H m )(x) ; while: b m ;C (x) = 1 T f 0 (x) X t K h (x; X t ) 1 ;t b m ;F (x) = 1 T f 0 (x) X t K h (x; X t ) 2 ;t ;
X int = [x + h; x h].
From this one obtains an expansion Our proof below make use of the following results. For T = T 3=10+ with > 0 small enough, max

b m (x) m (x) h m B (x) + m E (x) + b m ;C (x) + b m ;F (x) i = o p (T 2=5 ); (29) 
1 j T sup x;y2[x;x] b f 0;j (x; y) f 0;j (x; y) = o p ( T ) (30) 
sup x2[x;x] b f 0 (x) f 0 (x) = o p ( T ): (31) 
This follows by the exponential inequality of Bosq (1998, Theorem 1.3), see Linton and Mammen (2005, p817).

Proof of [START_REF] Marinucci | Semiparametric Frequency Domain Analysis of Fractional Cointegration[END_REF]. Write

Z t ( ) Z t ( ) = 1 X j= +1 b j ( )Y t j :
We have

E[Z t ( ) Z t ( )] = E[Y t ] P 1 j= +1 b j ( ) = O(b ) and var [Z t ( ) Z t ( )] = 1 X j= +1 1 X j 0 = +1 b j ( )b j 0 ( )cov(Y t j ; Y t j 0 ) 1 X j= +1 1 X j 0 = +1 jb j ( )jjb j 0 ( )jj Y (j j 0 )j sup u j Y (u)j 1 X j= +1 jb j ( )j ! 2 = O(b 2 ) = o(T 1 )
for each : Similar bounds can be obtained for the covariance cov [Z t ( ) Z t ( ); Z s ( ) Z s ( )] :

Let e g j (x; ) denote ( 12) with Z t ( ) replacing Z t ( ): Then Then for each j 0; e g j (x; ) 

g j (x; ) = 1 T f 0 (x) T j X t=1 K h (x; X t ) t;j ( ) + h 2 2 2 (K)b j (x; ) + R T j (x; );
T j X t=1 K h (x; X t ) t;j ( ) = T X t=1 T t X j=0 K h (x; X t ) a y j ( ) t;j ( ) = T X t=1 K h (x; X t ) 1 X j=0 a y j ( ) t;j ( ) T X t=1 K h (x; X t ) 1 X j=T t+1 a y j ( ) t;j ( ) = T X t=1 K h (x; X t ) 1 X j=0 a y j ( ) t;j ( ) T X j= +1 a y j ( ) T X t=T j+1 K h (x; X t ) t;j ( ) 1 X j=T +1 a y j ( ) T X t=1 K h (x; X t ) t;j ( );
where the terms apart from the …rst are of smaller order. Speci…cally,

max 1 j sup 2 sup x2[x;x] 1 T f 0 (x) T X j= +1 a y j ( ) T X t=T j+1 K h (x; X t ) t;j ( ) = o p (T 2=5 ) (33) max 1 j sup 2 sup x2[x;x] 1 T f 0 (x) 1 X j=T +1 a y j ( ) T X t=1 K h (x; X t ) t;j ( ) = o p (T 2=5 ): (34) 
These follow by standard arguments. Therefore, uniformly over x; due to the uniform decay rates on a j ( ): Speci…cally,

X j=0 a y j ( )[b g j (x; ) g j (x; )] = 1 T f 0 (x) T X t=1 K h (x; X t ) 1 X j=0 a y j ( ) t;j ( ) + h 2 2 2 (K) X
sup 2 sup x2[x;x] 1 X j= 1 a j ( ) Z f 0;j (x; y) f 0 (x) m (y)dy Ca m = o(T 2=5 );
where sup 2 sup y2[x;x] jm (y)j = m < 1.

Denote by Z f 0;j (x; y)

f 0 (x) m (y)dy = E [m(X t j )jX t = x] r j (x): Then write R b f 0;j (x; y)m (y)dy b f 0 (x) = 1 T P t K h (x; X t ) m t j 1 T P t K h (x; X t ) ; (35) 
where

m t = Z K y h (y X t )m (y)dy: Then note that for X t 2 X int Z K y h (y X t )m (y)dy m (X t ) = Z K y h (y X t ) [m (y) m (X t )] dy = m 0 (X t ) Z K y h (y X t )(y X t )dy + 1 2 Z K y h (y X t )(y X t ) 2 m 00 (X t (y))dy = h 2 2 2 (K)m 00 (X t ) + o(h 2 )
by a second order Taylor expansion, a change of variables and property B9 of the kernels. The error is uniformly o(h 2 ) over t with X t 2 X int and . Note that ( 35) is just like a local constant smoother of m t j on X t and can be analyzed in the same way. 

P t K h (x; X t ) m t j r j (x) 1 T P t K h (x; X t ) = 1 T P t K h (x; X t ) [m (X t j ) r j (x)] 1 T P t K h (x; X t ) + 1 T P t K h (x; X t ) m t j m (X t j ) 1 T P t K h (x; X t ) (36) 
'

1 T P t K h (x; X t ) [m (X t j ) r j (X t )] 1 T P t K h (x; X t ) + 1 T h P t K h (x; X t ) [r j (X t ) r j (x)] 1 T h P t K h (x; X t ) + h 2 2 2 (K)E[m 00 (X t j )jX t = x] ' 1 T h 1 f 0 (x) X t K h (x X t ) t;j + h 2 2 2 (K) r 00 j (x) + 2r 0 j (x)f 0 0 (x) f 0 (x) + E[m 00 (X t j )jX t = x] (37) 
by standard arguments for Nadaraya-Watson smoothers. The approximation is of order o(T 2=5 ), uniformly over j T ; over x in X int , and over 2 : Summing this up, gives (28) for x 2 X int . The proof for the boundary follows by standard arguments.

Proof of Theorem 2. The consistency of b follows along the lines of Linton and Mammen (2005) using the expansions obtained above uniform over : Note that the solution value m is twice continuously di¤erentiable in under our assumptions and

@m @ = @m @ + @H @ m + H @m @ (38) 
@ 2 m @ @ > = @ 2 m @ @ > + @ 2 H @ @ > m + @H @ @m @ > + H @ 2 m @ @ > :

These de…ne @m =@ and @ 2 m =@ @ > as solutions to integral equations with di¤erent intercepts but the same operator H as [START_REF] Hannan | The asymptotic theory of linear time series models[END_REF], so the solution to these equations exists and is unique by the arguments given above.

Let Q( ) = Q( ; m ) with Q( ; m ) de…ned in [START_REF] Hannan | The Statistical Theory of Linear Systems[END_REF]. We …rst show that 

sup 2 b Q T ( ) Q( ) P ! 0; (40 
b Q T ( ) @ = 1 T T X t=2 b " t ( ) @b " t ( ) @ @ 2 b Q T ( ) @ @ > = 1 T T X t=2 @b " t ( ) @ @b " t ( ) @ > + b " t ( ) @ 2 b " t ( ) @ @ > ;
where b " t ( ) = Z t ( ) P j=0 a j ( ) b m (X t j ): One then establishes a CLT for the score function at = 0 and a local uniform law of large numbers for the Hessian, which establish the CLT for b :

We can now e¤ectively take = 0 in Theorem 1. The asymptotic statement on the distribution of b m 0 (x) m(x) directly follows from Theorem 1. Note that 1 ;t + 2 ;t = P 1 j=0 a j " t+j .

A.2.2 Nonstationary Case

Proof of Theorem 3. Let

" t ( ) = Y t Y t 1 m (X t ) + m (X t 1 ) = Y t Y t 1 m(X t ) + m(X t 1 ) = " t + (1 )u t 1 b " t ( ) = Y t Y t 1 b m (X t ) + b m (X t 1 ):
We have

Q T ( ) = 1 T T X t=2 " 2 t ( ) = 1 T T X t=2 " 2 t + T (1 ) 2 1 T 2 T X t=2 u 2 t 1 + 2(1 ) 1 T T X t=2 " t u t 1 ' 2 " + T (1 ) 2 2 " Z B 2 (s)ds + 2(1 ) 2 " Z B(s)dB(s):
The least squares estimator that minimizes Q T ( ); denoted ; has closed form expression

= P T t=2 u t u t 1 = P T t=2 u 2 t 1 :
It is consistent at rate T and furthermore

T ( 1) =) R B(s)dB(s) R B 2 (s)ds : (41) 
We next consider the di¤erence between b Q T ( ) and Q 

T ( ): We have b Q T ( ) = Q T ( ) + 1 T T X t=2 fb " t ( ) " t ( )g 2 + 2 1 T T X t=2 fb " t ( ) " t ( )g " t ( ); (42) 
b " t ( ) " t ( ) = ( b m (X t ) m (X t )) + ( b m (X t 1 ) m (X t 1 )):
Q T (1) ! p q (43)
for some q > 0 (hence b Q T (1)=T ! p 0); and lim The intercept function m is

T !1 inf j 1j> 1 T b Q T ( ) > 0: (44 
m (x) = 1 1 + 2 (E[Y t Y t 1 jX t = x] E[Y t Y t 1 jX t 1 = x]) = 1 1 + 2 [g 0 (x) g 1 (x)] ; a linear combination of g 0 (x) = E[Y t Y t 1 jX t = x] and g 1 (x) = E[Y t Y t 1 jX t 1 = x]: Therefore,
we must establish the properties of b g j (x) g j (x); j = 0; 1; where b g j (x) are the estimates of g j (x) The terms m(X t ) m(x) and m(X t 1 ) m(x) on the right hand side contribute to biases; the stationary error terms (m(X t 1 ) E[m(X t 1 )jX t = x]) + " t and m(X t ) E[m(X t )jX t 1 = x] + " t may contribute to the variance but are standard, it is the term (1 )u t 1 containing the unit root that is di¤erent. We have b g j (x) g j (x) = 1 T f 0 (x) conditions; while the remainder term is of smaller order than T 2 (x). This approximation is valid because the X process is stationary so the terms except T 2 (x) are standard.

when 6 = 1: We have Y t Y t 1 E [Y t Y t 1 jX t = x] = m(X t ) m(x) (m(X t
T X t=j+1 K h (x; X t j ) " t + (1 ) 1 T f 0 (x) T X t=j+1 K h (x; X t j ) u t 1 + h 2 2 
We consider the term T 2 (x) and write T 2 (x) = p T (1 ) T (x) + p T (1 ) T (x) with

T (x) = 1 T T X t=1 E 1 f 0 (x) K h (x; X t j ) u t 1 p T T (x) = 1 T T X t=1 1 f 0 (x) K h (x; X t j ) E 1 f 0 (x) K h (x; X t j ) u t 1 p T :
Clearly, because E h 1 f 0 (x) K h (x; X t j ) i = 1 + O(h 2 ) uniformly in x;

T (x) = 1 T T X t=1 u t 1 p T + o p (1) = O p (1)
uniformly in x:

We argue that sup x2[x;x] j T (x)j = o p (1): Note that E[ T (x)] = 0 by assumption B11. De…ne

T t = 1 f 0 (x) K h (x; X t j ) E 1 f 0 (x) K h (x; X t j ) : (45) 
This has (approximately as T ! 1) covariance function cov( T t ; T t r ) = E 1 f 2 0 (x) K h (x; X t ) K h (x; X t r ) E 2 1 f 0 (x) K h (x; X t ) ' f 0;t r (x; x) f 2 0 (x) 1 (t r);

by the standard change of variable and dominated convergence argument.

Furthermore, Note that the right hand side is the same regardless of location x and j and the error is uniform over these quantities. By the usual arguments (Phillips (1987)), T 3=2 P T t=1 u t 1 =) " R 1 0 B(s)ds: Therefore, (b g j (x) g j (x))= p T =) (1 ) " R 1 0 B(s)ds for all x and j = 0; 1: In fact this convergence is uniform over x:

var [ T (x)] = 1 T 3 T X t=j+1 E 2 T t E[u 2 t 1 ] + 1 T 3 X X t6 =s E [ T t T s ] E[u t u s ] ' 2 "
It holds that: 

We just show the argument for (47). We have 

1 T 2 T X t=2 fb " t ( ) " t ( )g 2 = 1 T 2 T X t=2 f( b m (X t ) m(X t )) ( b m (X t 1 ) m(X t 1 ))g 2 = 1 T 2 T X t=2 ( b m m )(X t ) ( b m m )(X t 1 ) 2 + o p (1) = 1 (1 + 2 ) 2 1 T 2 T X t=2 [b g 0 g 0 ](X t ) + 2 [b g 1 g 1 ](X t 1 ) [b g 0 g 0 ](X t 1 ) [b g 1 g 1 ](X t ) 2 + o p (1) = (1 ) 6 (1 + 2 ) 2
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  the function m as the minimizer of the criterion

1 .m of m 3 .

 13 For each compute estimators of b m ; b H of m ; H 2. Solve an empirical version of the equation (8) to obtain an estimator b Choose b to minimize the pro…led least squares criterion with respect to : Let b m(x) = b m b (x): Let = (T ) be some truncation parameter and de…ne Z t ( ) = P j=0 b j ( )Y t j : The choice of truncation depends on the dependence model A(L); B(L): For geometrically declining parameters (as we shall assume) one can work with logarithmic truncation. There are many suitable estimators of the regression functions and density functions; we shall use local linear regression estimators for m and a fairly standard kernel density estimator for H but other choices are possible. For any sequence fZ t ( )g and any lag j de…ne the estimator b g j (x; ) = b c 0 ; where (b c 0 ; b c 1 ) are the minimizers of the weighted sums of squares criterion
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  with respect to (c 0 ; c 1 ); where K is a symmetric probability density function, h is a positive bandwidth, and K h (:) = K(:=h)=h. Further de…ne b

  Then de…ne b m as any solution to the equation m = b m + b H m; (13) in L 2 ( b f 0 ): We discuss the computation of this solution in the appendix. Let b = arg min 2 b Q T ( ); where b Q

A c c e p t e d m a n u s c r i p t 2 . 3 .

 23 Under the 'strong form' assumption B11 b is semiparametrically e¢ cient, see[START_REF] Linton | Estimating semiparametric ARCH(1) models by kernel smoothing methods[END_REF]. There is generally an information loss from the necessity of estimating the function m: For the nonparametric estimator the form of the asymptotic variance is quite natural as it decreases with the value of the covariate density and increases with the error variance. Under the 'strong form' special case B11(a), ! 0 (x) =jjKjj 22 2

( 1 )u t 1

 11 is small and the process Y t Y t 1 is almost stationary. The di¤erence in behaviour of the resulting b m for = 1 and 6 = 1 is what drives the faster rate of convergence for b : De…ne
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  and let b = arg min b Q T ( ): We use a subset of the regularity conditions B that are relevant. Let B denote the standard Brownian Motion on [0; 1].

A c c e p t e d m a n u s c r i p t replications :

 replications We compute our estimator b m using 200 grid points and use a grid search method to select 2 [ 0 ; 0 + ] for = 0:2: 8 We also compute the standard local linear estimator e m; in both cases the Gaussian kernel was used.

2 0A c c e p t e d m a n u s c r i p tFigure 1 .

 21 Figure 1. Shows the empirical performance ratio P T ( b m)=P T ( e m) for di¤erent sample sizes along with the asymptotic value P 1 ( b m)=P 1 ( e m) predicted from the asymptotic theory. X t iid N (0; 1):
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  and zero otherwise, and b w is the T 1 vector with typical element R K h (x; X t ) b m (x)dx: Provided I b U is invertible, b = (I b U ) 1 b w : One then obtains b m (x) from the original equation m(x) = b m (x) + ( b H m)(x):

A. 2 . 1

 21 Stationary CaseProof of Theorem 1. The proof strategy uses the general result in Linton and[START_REF] Linton | Estimating semiparametric ARCH(1) models by kernel smoothing methods[END_REF] for the treatment of empirical integral equations. First, for general we apply Linton and Mammen (2005, Proposition 1). Thus we write b

  where b m ;B (x) and b m ;E (x) are deterministic and O(T 2=5 ); b

  and the remainder terms b m ;D (x) and b m ;G (x) satisfy sup 2 sup x2X int b m ;j (x) = o p (T 2=5 ); j = D; G; (x) = O p (T 2=5 ); j = D; G;

A c c e p t e d m a n u s c r i p t uniformly for 2

 2 and for x 2 X int and = O p (T 2=5 ); elsewhere. Here m B = (I H ) 1 b m ;B and m E = (I H ) 1 b m ;E . From this expansion we obtain the main result. Speci…cally, b m ;C (x)+ b m ;F (x) is asymptotically normal with zero mean and the stated variance after applying a CLT for near epoch dependent functions of mixing processes. The asymptotic bias comes from m B (x) + m E (x): Note that because of the boundary modi…cation to the kernel we have E b f 0 (x) = f 0 (x) + O(h 2 ) and E b f 0;j (x; y) = f 0;j (x; y) + O(h 2 ) for all x; y:

  jb g j (x; ) e g j (x; )j = o p (T 1=2 ):(32)This follows using the above moment bounds and because of the assumed uniform decay rates on b j ( )andits derivatives and the moment condition on Y: See Xiao et al. (2003) for a similar argument.
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  where b j (x; ) is the bias function and R T j (x; ) is the remainder term, which is o p (T 2=5 ) uniformly over j T ; x 2 [x; x] and 2 B. By interchanging the order of summation we obtain for x 2 X int X
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  b j (x; ) + o p (T 2=5 ) uniformly over x 2 [x; x]. Claim (27) now follows from b j (x; ) + o p (T 2=5 ) uniformly for x 2 X int and 2 ; b j (x; ) + O p (T 2=5 ) uniformly for x 2 x 2 [x; x] n X int and 2 : Proof of (28). We have Z b H (x; y)m (y) b f 0 (y)dy Z H (x; y)m (y)f 0 (ydy + o(T 2=5 )
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  Using b a= b b c = (b a b bc)= b b; we have R b f 0;j (x; y)m (y)dy b f 0 (x) Z f 0;j (x; y) f 0 (x) m (y)dy = 1 T
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  ) which follows from sup 2 sup x2[x;x] j b m (x) m (x)j P ! 0 given the moment and mixing conditions etc. This follows from the expansions in Theorem 1 and standard uniform convergence arguments for kernel smoothers. Speci…cally, sup 2 sup x2[x;x] j b m ;j (x)j = o p (1); j = B; C: The uniformity over comes from analysis of @m (x)=@ and @ b m ;j (x)=@ : Then apply assumption B4 to yield consistency of b : De…ne the score function and Hessian @
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  Proof of Consistency. We prove: b

P ! 1 .m m for 6 = 1 :

 161 ) Combine (43) and (44) yields b Proof of (43). The properties of b Q T (1) can be derived using the expansion of Theorem 1, and speci…cally the uniform over x consistency of b m 1 (x): We have b Q T (1) P ! E(" 2 t ) > 0: Proof of (44). We …rst derive the properties of b As in the stationary case we can approximate b m m in terms of b m m and ( b H H )m : The expansion for ( b H H )m is as above. The main di¤erence concerns the fact that the expansion for b m m contains a term that is large when 6 = 1 and indeed b m does not consistently estimate m unless = 1: Therefore, b m m is dominated by the large term in b m m : Speci…cally, (28) holds but (27) needs to be modi…ed.
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  2 (K)b j (x; ) + R T (x; )T 1 (x) + T 2 (x) + T 3 (x) + R T (x; );where sup x2[x;x] T 1 (x) = O p ( p log T T 2=5 ) and sup x2[x;x] T 3 (x) = O p (T 2=5 ) under our bandwidth

  so that var [ T (x)] = O(T 1 ) and T (x) = O p (T 1=2 ) for each x 2 [x; x]: The pointwise result can be extended to uniformity over x 2 [x; x] by standard arguments, so sup x2[x;x] j T (x)j = o p (1) as required. Therefore b g j (x) g j (x) = p T

2 + o p ( 1 )

 21 by(46). From this (47) follows. The arguments for (48) and (49) are similar.

2 : 2 : 6 = 1 :

 2261 By the Cauchy-Schwarz inequalityR 1 0 B 2 (s)dsR 1 0 B(s)ds Therefore, with probability one: This establishes (44). Proof of Asymptotic Distribution. Reparameterizing 7 ! r = 1 =T we get b Q T (r) ' dB(s) + o(T 1 );so that the terms from the nonparametric estimation drop out. Therefore, the asymptotic distribution is the Dickey-Fuller distribution, i.e.,

This equation can also be derived at by directly taking conditional expectations of Z t given each X t k ; multiplying by a k ; and then summing over k:

These are real numbers for which there exists functions e j (:) such that He j = j e j :

One example where this condition is not satis…ed (and where the subsequent conclusions also do not hold) is when X t = t=T:

Di¤erencing can be expected to eliminate unit roots so long as enough di¤erencing is undertaken. However, di¤erencing produces additive models for which the optimal estimation strategy is a similar type of method to ours.

Note also that m = m for all :

The value = 0:2 was large enough in our case such that nearly all values of b were interior points of the parameter set.

We also examined an integrate mean absolute error performance measure, but the results were similar and are not reported here.
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