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Abstract

This paper proposes SupWald tests from a threshold autoregressive model computed
with an adaptive set of thresholds. Simple examples of adaptive threshold sets are given. A
second contribution of the paper is a general asymptotic null limit theory when the threshold
variable is a level variable. We obtain a pivotal null limiting distribution under some simple
conditions for bounded or asymptotically unbounded thresholds. Our general approach is
flexible enough to allow a choice of the auxiliary threshold model or of the threshold set
involved in the test specifically designed for nonlinear stationary alternatives relevant for
macroeconomic and financial topics involving arbitrage in presence of transaction costs. A
Monte-Carlo study and an application to the interest rates spread for French, German, New-
Zealander and US post-1980 monthly data illustrate the ability of the adaptive SupWald
tests to reject unit-root when the ADF does not.
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∗The third author was with LSTA (Université Paris 6) when completing the first version of this paper. Finan-

cial supports from FCAR, CREST and LSTA are gratefully acknowledged. Previous versions were presented at

the SCSE 2002 conference, macroeconomic seminar of CREST, ESEM 2002, EMM first annual conference and
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1 Introduction

A debate on the performance of linear unit-root tests to detect nonlinear stationary alternatives
has recently grown in the econometric literature. Indeed, the presence of fixed adjustment costs,
transaction costs or arbitrage boundaries can create nonlinear adjustments in economic variables
quite close to nonstationarity. Economic policy characterized by discrete intervention to manage
exchange rate, target zone or inflation–output targets could also induce such nonlinear dynamics.
Empirical studies as Anderson [1997], Michael, Nobay and Peel [1997], Obstfeld and Taylor [1997]
or Sollis, Leybourne and Newbold [2002] also argued for nonlinear dynamics. On the other hand,
the simulation studies of Balke and Fomby [1997], Pippenger and Goering [1993] and Taylor
[2001] have risen doubts about the power of standard linear unit-root tests against nonlinear
stationary alternatives. As a consequence, a fast developing branch of the econometric literature
has proposed as a remedy to use an auxiliary nonlinear dynamic model in place of a linear
autoregression to build a unit-root test. This includes among others a Threshold Autoregressive
(TAR) specification as in Bec, Ben Salem and Carrasco [2004], Berben and van Dijk [1999],
Caner and Hansen [2001], Enders and Granger [1998], Gonzalez and Gonzalo [1998], Kapetanios
and Shin [2006], Seo [2003], Shin and Lee [2001] and Shin and Lee [2003], or a smooth transition
autoregressive specification as in Kapetanios, Shin and Snell [2003]. A substantial difficulty is
then that the threshold parameter is not identified under the null. Consequently, much attention
has been focused on the null limiting distribution of threshold unit-root tests but, as seen
from the previous references, consistency studies are limited to restricted classes of threshold
alternatives. This contrasts with the augmented Dickey-Fuller (ADF) test which is consistent
against general ergodic alternatives and is somehow paradoxical in view of the claimed power
superiority of the nonlinear approach.

A first contribution of the present paper is to examine the construction of threshold unit
root tests toward consistency and power comparison issues. In place of the linear autoregression
of the ADF statistic, a general threshold specification is considered to serve as an auxiliary
model to build a unit-root test. However, in such model, the true threshold is unknown. Our
unit-root testing strategy is based on an adaptive set of thresholds which behaves differently
under the null and the alternatives. As many of the references above, we propose a SupWald
test SupWaldT (ΛT ) which maximizes the Wald statistic over a set of thresholds ΛT , T being
the sample size. In previous works, a quantile choice of ΛT ensuring a minimal percentage of
observations in each regime was considered, see e.g. Caner and Hansen [2001]. But, due to this re-
strictive quantile choice, nothing ensures consistency since such ΛT does not necessarily contain
a threshold associated with a diverging Wald statistic. Therefore, a more general construction of
ΛT should be considered to achieve consistency. Under the alternative, the set ΛT should allow
as many thresholds as possible, including diverging thresholds corresponding to not identified
regimes that should typically be avoided under the null. We refer to this property as adaptation,
a behavior that can be achieved by defining the boundaries of ΛT as function of consistent unit-
root test statistics. The claimed benefits of adaptation are twofold. First, this gives consistency
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against any (nonlinear) stationary ergodic alternatives. This finding clarifies in particular early
critics on the possible inconsistency of threshold unit-root tests, see e.g. Balke and Fomby [1997].
As a byproduct of adaptation, we obtain bounds showing that the SupWaldT (ΛT ) is asymptoti-
cally larger than the squared ADF statistic under the alternative, indicating so potential power
improvements. Second, reconsidering usual quantile threshold sets can be useful to obtain test
statistics with smaller critical values which would have better power properties. We give exam-
ples of adaptive, asymptotically unbounded or bounded, sets of thresholds ΛT with boundaries
depending upon the consistent ADF statistic. The unbounded example is a modification of the
quantile-based ΛT while the bounded example is new.

A second contribution is a general asymptotic theory under the null. Such a theory must
cope in particular with random threshold sets ΛT and give conditions ensuring a finite null
pivotal limiting distribution. We consider a general 3-regime TAR specification as a baseline
model. Following Bec et al. [2004], Berben and van Dijk [1999], Enders and Granger [1998],
Kapetanios and Shin [2006] and Seo [2003], the lagged level variable is chosen as the threshold
variable, which is therefore nonstationary under the null. This differs from the choice of Caner
and Hansen [2001], Gonzalez and Gonzalo [1998] and Shin and Lee [2003] who consider an ad hoc
stationary threshold. By contrast, our approach is in line with many macroeconomic or financial
models involving arbitrage behavior in presence of transaction costs. Moreover, it yields a pivotal
null limit distribution which simplifies the implementation of the test. Finding the null limiting
distribution of such a SupWald test requires to establish a new functional version of the limit
results of Park and Phillips [2001] which can be useful for other nonlinear specifications.

Finally, we compare small sample properties of the existing unit root tests with the ones
proposed in simulation experiments that illustrates the interest of adaptive SupWald tests com-
pared to the linear ADF. An application to the yield spread dynamics illustrates the ability of
adaptive SupWald tests to detect stationarity when the ADF does not.

The remainder of the paper is as follows. Section 2 introduces adaptation and provides
examples of adaptive threshold. The consistency and the null limiting distribution results of the
SupWald tests for a simple autoregression of order one is also presented. Section 3 extends those
results to more general autoregression of order p and to more general auxiliary models. Section
4 is devoted to simulation experiments and Section 5 applies our proposed SupWald tests to the
yield spread dynamics. Section 6 gives some final remarks and proofs are gathered in Section 7
and in an Appendix.

2 Adaptation, consistency and null limit distributions

Consider first the basic case of a centered random walk null hypothesis given by

H0 : ∆yt = yt − yt−1 = εt,
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where y0 = 0 and {εt} is a sequence of i.i.d. centered random variables with variance σ2. Assume
that T + 1 observations y0, . . . , yT are available to test H0 against

H1 : {yt} is a non constant stationary ergodic process with a finite non vanishing variance.

A well-known example of a linear test of H0 against H1 is the Dickey-Fuller (DF) test which
uses the auxiliary model

∆yt = µ+ ρyt−1 + vt . (2.1)

and the associated t statistic DF for the null hypothesis ρ = 0. Indeed, for any alternative in
H1, the limit ρ of the OLS estimate ρ̂ captures a mean reverting effect which ensures that ρ < 0
and yields consistency of the DF test. Unfortunately, simulation studies by e.g. Pippenger and
Goering [1993] or Taylor [2001] have shown that although consistent, the DF test lacks power
against nonlinear stationary alternatives. Hence, subsequent research has focused on developing
unit-root tests based on a nonlinear auxiliary model instead of the linear one given by equation
(2.1). Among the possible nonlinear candidates, the TAR specification aims to explicitly account
for mean reversion and to allow for local unit-root in a regime where asymptotic adjustment does
not hold. For instance, motivated by the type of nonlinear behavior generated by transaction
costs in general equilibrium models, an illustration is the following symmetric mirroring 3-regime
TAR specification previously considered in Taylor [2001] and Bec et al. [2004]

∆yt = ut +


µ1 + ρ1yt−1 if yt−1 ∈ (−∞, λ1] = I1(λ),
µ2 + ρ2yt−1 if yt−1 ∈ [λ1, λ2] = I2(λ),
−µ1 + ρ1yt−1 if yt−1 ∈ (λ2,+∞] = I3(λ),

with λ2 = −λ1 = λ . (2.2)

This specification may be rewritten as the dynamic linear regression model:

∆yt = x̃t(λ)β+ ut with x̃′t(λ) =


I(yt−1 ∈ I1(λ))− I(yt−1 ∈ I3(λ))

yt−1 (I(yt−1 ∈ I1(λ)) + I(yt−1 ∈ I3(λ)))
I(yt−1 ∈ I2(λ))

yt−1I(yt−1 ∈ I2(λ))

 and β =


µ1

ρ1

µ2

ρ2

 .

In such a setup, for a given value of the threshold λ, the OLS estimators of β and Var(ut) are
given by:

β̂T (λ) =

(
T∑

t=1

x̃′t(λ)x̃t(λ)

)−1 T∑
t=1

x̃′t(λ)∆yt , σ̂
2
T (λ) =

1
T − k

T∑
t=1

(
∆yt − x̃t(λ)β̂T (λ)

)2
.

where k is the dimension of x̃t(λ). Furthermore, the Wald statistic to test that there is a unit-root
in each regime, ρ1 = ρ2 = 0, writes

WaldT (λ) =
(
Rβ̂T (λ)

)′σ̂2
T (λ)R

(
T∑

t=1

x̃′t(λ)x̃t(λ)

)−1

R′

−1 (
Rβ̂T (λ)

)
, (2.3)
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where R is a selection matrix such that (Rβ)′ = [ρ1, ρ2]. A large WaldT (λ) favors rejection of
H0. 1

In practice, an important issue in building such a Wald threshold unit-root test is the choice
of a suitable threshold level λ when its true value is unknown. To overcome this issue, the most
widespread approach (Bec et al. [2004], Caner and Hansen [2001], Gonzalez and Gonzalo [1998],
de Jong, Wang and Bae [2005], Kapetanios and Shin [2006], Park and Shintani [2005], Seo
[2003], Shin and Lee [2001] and Shin and Lee [2003]) builds on the structural change literature,
see Andrews [1993] among others, and uses a SupWald test statistic of the form:

SupWaldT (ΛT ) = sup
λ∈ΛT

WaldT (λ)

This amounts to choose for the test the threshold value which maximizes WaldT (·) over ΛT .
Following Andrews [1993], the common use in the papers cited above consists in considering

a quantile-based threshold set such as

ΛT =
[
|y|(πT ), |y|((1−π)T )

]
, π ∈ (0, 1/2) , (2.4)

where the |y|(t), t = 0, . . . , T − 1, are the ordered |yt−1| and, for x ∈ R+ with integer part
[x], |y|(x) = y([x]), so that y(πT ) is the empirical quantile of order π. For such thresholds λ, the
inequality |y|(πT ) ≤ λ ensures that the proportion of observations in the inner regime I2(λ) is at
least π. Symmetrically, λ ≤ |y|((1−π)T ) gives a minimal proportion of π observations in the outer
regime I1(λ) ∪ I3(λ). As a consequence, the parameters of each regime are correctly estimated
and SupWald(ΛT ) remains finite. Following Andrews [1993]’s suggestion, the usual choice of π
is 15%.

However, this SupWald approach does not really tackle the consistency issue. Under the
stationary alternative, a ΛT as defined in (2.4) converges to [Q(π), Q(1− π)], where Q(π) is the
πth quantile of |yt| that solves P(|yt| ≤ Q(π)) = π. But nothing ensures that there is a threshold
in [Q(π), Q(1−π)] that gives a diverging Wald statistic, even in the case of a correctly specified
TAR.2

2.1 Introducing adaptation to achieve consistency

The cornerstone of our strategy to build a consistent test is the choice of the threshold set ΛT .
We argue that the asymptotic behavior of ΛT should differ accordingly to the hypotheses at
hand. Such a suitable adaptation property can be described in the following requirements:

1Observe that bβT (λ) and WaldT (λ) may not be defined properly if
PT

t=1 ex′t(λ)ext(λ) has no inverse, in particular

if there is no observation in a regime Ij(λ). In this case, the Wald statistic can be set to its infinite limit value or

a Moore-Penrose pseudo-inverse can be used.
2The consistency issue is hardly considered in the literature and existing consistency results often build on

assumptions that are difficult to check. For instance, Kapetanios and Shin [2006] and Park and Shintani [2005]

assume that the true threshold value is in [Q(π), Q(1−π)] while de Jong et al. [2005] consider stationary alternatives

with E [∆yt−1(yt−p − m)I(yt−p > m)] < 0 for all p where m is the median.
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R0: under H0, ΛT should remain “as small as possible” so that the test statistic has a finite null
limit distribution, with moderate critical values if possible. Indeed, small critical values zα
would increase the power of the test which has a rejection region SupWaldT (ΛT ) > zα.

R1: under H1, ΛT should be “as large as possible” so that the SupWaldT (ΛT ) test would be
more powerful by considering many WaldT (λ) statistics.3

In other words, it is desirable that the boundaries of the threshold set adapt to the hypothesis
of interest, making the threshold set wider under H1 than under H0. One intuitive way to
achieve this feature is to index these boundaries with a consistent unit-root test statistic. A
natural candidate is the absolute value of the Dickey-Fuller statistic, hereafter denoted |DFT |.
Roughly speaking, by defining the lower boundary of λ1, say λT , as a decreasing function of
|DFT | and the upper boundary of λ2, say λT , as an increasing function of |DFT |, the desired
type of threshold set ΛT = [λT , λT ] would obtain. Indeed, from the consistency property of
the Dickey-Fuller statistic, it follows that |DFT | is bounded under H0 but diverges under H1.
Consequently, under the null λT (resp. λT ) would be relatively large (resp. relatively small),
implying a narrow threshold set. By contrast, under the alternative, the threshold set widens
as |DFT | diverges. The next Theorem shows that fulfilling conditions as R1 is sufficient to get
consistency against ergodic alternatives.

Theorem 1 Consider the TAR specification (2.2). Assume that ΛT is such that, for any {yt}
in H1, there is a λT converging to Q(1) which is in ΛT with a probability tending to 1. Then,
under H1, SupWaldT (ΛT ) diverges in probability, with

SupWaldT (ΛT ) ≥ DF 2
T (1 + oP(1)) . (2.5)

Importantly, it follows from Theorem 1 that adaptation is a sufficient condition for consistency
against any ergodic stationary alternative. Then, the inequality (2.5) indicates that the Sup-
Wald test can be more powerful than a DF test provided its critical values are close enough
to the squared critical values of the DFT statistic. The intuition behind (2.5) is that the TAR
specification (2.2) is asymptotically equivalent to the autoregressive linear model (2.1) when the
threshold is λT = |y|(T ). In this case, the central regime diverges and WaldT (λT ) is asymptoti-
cally equivalent to DF 2

T .

2.2 Examples of adaptive threshold sets and null limit distributions

Two examples of adaptive threshold sets will be considered here. The first one is an asymptot-
ically unbounded set directly derived from the usual threshold set (2.4). This adaptive set is

3Note that the usual threshold set (2.4) is asymptotically [Q(π), Q(1−π)] and cannot be adaptive since π > 0.

Actually, (2.4) also contradicts R0 and R1. Indeed, such a ΛT has a length of order
√

T under H0 and remains

bounded under H1.
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asymptotically unbounded in the sense that the boundaries grow with the sample size. More
precisely, we show how the latter may be amended to satisfy the adaptation property. As will
be stressed below, this version of (2.4) is not entirely satisfactory in that it does not match the
requirement R0, since its length diverges with the sample size under the null. The second ex-
ample belongs to the bounded class of threshold sets and gives up any reference to an arbitrary
proportion of observations in the definition of the threshold set boundaries. It is shown to match
both R0 and R1 requirements.

2.2.1 A class of asymptotically unbounded threshold sets

A first example of adaptive threshold set follows from a modification of the quantile-based
threshold set (2.4) that changes 1− π into a random proportion of the sample. Let π and δ > 0
be proportion and length parameters to be chosen by the econometrician, and define

ΛU
T =

[√
TλT ,

√
TλT

]
, with

√
TλT = |y|(πT T ) and

√
TλT = y((1−πT )T ) (2.6)

where

1− πT = min
(

1− π +
δ|DFT |√

T
,
T − 2
T

)
which parallels (2.4). The introduction of the term (T − 2)/T in the definition of 1−πT ensures
that there is at least 2 observations in the outer regime so that SupWaldT (ΛU

T ) is finite. To
describe the null behavior, recall that the Donsker line {y[Tv]/

√
T}v∈[0,1] converges in distribution

to {σW (v)}v∈[0,1] where W (·) is a standard Brownian Motion. For any π in [0, 1], let Q|W |(π)
be the random variable that solves

∫ 1
0 I (|W (v)| ≤ Q) dv = π. Since DFT is bounded under the

null, πT converges to π so that

(λT , λT ) d→
(
σQ|W |(π), σQ|W |(1− π)

)
, which gives

ΛU
T√
T

d→ ΛU =
[
σQ|W |(π), σQ|W |(1− π)

]
,

(2.7)
showing that ΛU

T has the same asymptotic behavior than the threshold set (2.4) and asymptot-
ically contains the same percentage (1− 2π)% of observations. Note the standardization of ΛU

T

with
√
T implies that the thresholds of ΛT are of order

√
T : in what follows, (asymptotically)

unbounded thresholds refer to thresholds with this order. Under a fixed alternative, the DFT

statistic diverges with the order T ,4 so that 1−πT has the limit of min
(
1− π + δ

√
T , (T − 2)/T

)
which goes to 1. Hence

√
TλT converges to Q(1) in probability and ΛU

T is adaptive. The
SupWaldT (ΛU

T ) thus inherits of the consistency of the DFT statistic against any ergodic sta-
tionary alternative by Theorem 1.

The next Theorem shows that SupWaldT (ΛU
T ) has a pivotal null limit distribution. Define,

4As formally established in the Proof Section for any arbitrary ergodic alternative.
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for each regime j = 1, 2, 3,

ξj,U (λ)=

∫ 1
0 W (v)IIj(λ) (W (v)) dW (v)−

R 1
0 W (v)IIj(λ)(W (v))dv
R 1
0 IIj(λ)(W (v))dv

∫ 1
0 IIj(λ) (W (v)) dW (v)[∫ 1

0 W
2(v)IIj(λ) (W (v)) dv −

�R 1
0 W (v)IIj(λ)(W (v))dv

�2

R 1
0 IIj(λ)(W (v))dv

]1/2
, (2.8)

ξO,U (λ)=

∫ 1
0 W (v)II1,3(λ)(W (v))dW (v)−

R 1
0 W (v)II1,3(λ)(W (v))dv
R 1
0 II1,3(λ)(W (v))dv

∫ 1
0

(
II1(λ) − II3(λ)

)
(W (v))dW (v)[∫ 1

0 W
2(v)II1,3(λ) (W (v)) dv −

�R 1
0 W (v)II1,3(λ)(W (v))dv

�2

R 1
0 II1,3(λ)(W (v))dv

]1/2
,

where I1,3(λ) = I1(λ) ∪ I3(λ) and ξO,U is for the outer regimes 1 and 3.

Theorem 2 Consider the TAR specification (2.2). Let ΛU
T and ΛU be as in (2.6) and (2.7) and

assume that Assumption E(s) given in Section 7 for s > 4 holds. Then, under H0, SupWaldT (ΛU
T )

converges in distribution to supλ∈ΛU

(
ξ2O,U (λ/σ) + ξ22,U (λ/σ)

)
, which has a pivotal distribution.

2.2.2 A class of bounded threshold sets

An alternative is to use bounded thresholds as also considered in Kapetanios and Shin [2006]
and Seo [2003].5 According to the asymptotic theory developed in Park and Phillips [1999], the
number of thresholds |yt−1| in a bounded interval is of order

√
T only, therefore yielding an

asymptotically vanishing percentage of observations in a bounded threshold set. Hence bounded
threshold sets can be used to produce lower SupWald critical values than asymptotically un-
bounded ones.

We now give an example of an adaptive bounded threshold set ΛB
T . The estimated variance

of the noise {εt} in the linear specification (2.1), σ̂2
εT =

∑T
t=1 (yt − µ̂− (1 + ρ̂)yt−1)

2 /(T − 2),
is used as a scaling factor in ΛB

T , where µ̂ and ρ̂ are least-squares estimators. Let δ be a length
parameter to be chosen by the econometrician and define the bounded set by

ΛB
T = [λT , λT ], with λT = |y|(2) +

σ̂εT

δ|DFT |
and λT = λT + δσ̂εT |DFT |. (2.9)

The term |y|(2) in the definition of the lower threshold λT ensures that there are at least 2
observations in the inner regime of (2.2) to allow for estimation of µ2 and ρ2. The artificial
term σ̂εT /(δ|DFT |) in λT has been added to obtain more observations in the inner regime so as
to avoid small values of the Wald statistics. The null behavior of ΛB

T depends on the limit in

5These authors consider 3-regime TAR specifications with µ2 = 0 and ρ2 = 0. This considerably simplifies the

derivation of the null limits of the resulting test since the parameters of the central regime are not estimated.

Note however that their test is not adaptive and that they limit to detection of specific TAR alternatives.
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distribution of the DFT statistic,

τ =

∫ 1
0 W (v)dW (v)−W (1)

∫ 1
0 W (v)dv[∫ 1

0 W
2(v)dv −

(∫ 1
0 W (v)dv

)2
]1/2

. (2.10)

Define
ΛB = [λ, λ], with λ =

σ

δ|τ |
and λ = λ+ σδ|τ |, (2.11)

which is such that ΛB
T

d→ ΛB, showing that the thresholds of ΛB
T are bounded under H0. Under

H1, the DFT statistic diverges, so that λT goes to the lower bound Q(0) of the support of the
|yt−1|’s and λT diverges. Hence ΛB

T is adaptive, and we now turn to the null limit distribution of
SupWald(ΛB

T ). Let B(·) be a standard Brownian Motion independent of W (·). The contribution
of the inner regime in the Wald statistic is given here by ζ2B(λ) =

∫ λ
−λ(w − λ)dB(w)/

√
2λ3/3.

Theorem 3 Consider the TAR specification (2.2). Let ΛB
T and ΛB be as in (2.9) and (2.11) and

assume that Assumption E(s) given in Section 7 for s > 4 holds. Then, under H0, SupWaldT (ΛB
T )

converges in distribution to ξO,U (0)+supλ∈ΛB ζ2B(λ), which has a pivotal distribution, and where
ξO,U (·) is as in Theorem 2.

Compared to the null limit distribution of Theorem 2, the contribution of the outer regimes
to the limit of SupWaldT (ΛB

T ) is now given by ξO,U (0) corresponding to the fixed threshold 0,
see Kapetanios and Shin [2006] and Seo [2003] for similar results. This can be useful to achieve
smaller critical values. The intuition is that the order

√
T of the yt−1’s in the outer regime

dominates the thresholds. The contribution of the inner regime supλ∈ΛB ζ2B(λ) is given by the
bounded values of the yt−1’s and remains finite since λ > 0.

3 Extensions

In this section, the consistency and null limit distribution of the SupWald test are extended to
the more general case of an autoregression of order p, as well as to more general auxiliary models
and threshold sets. The considered null hypothesis is now

H0(p): ∆yt = a(L)∆yt−1 + εt for t ≥ 1, y0 = · · · = y−p−1 = 0, where {εt} is a (strong) white
noise sequence with variance σ2 and 1 − a(L) is of known order p ≥ 0 with roots outside
the unit circle, so that σ2

y = limT→∞ Var
(
yT /

√
T
)
> 0.

To account for the additional lagged polynomial term a(L)∆yt−1, we extend the TAR specifi-
cation to include lagged variables. We also allow for asymmetric regimes by considering a two
dimensional threshold parameter λ′ = [λ1, λ2] with λ1 ≤ λ2, noting that λ1 = λ2 gives a 2-
regimes TAR as considered in Berben and van Dijk [1999], Caner and Hansen [2001], Enders
and Granger [1998] and Shin and Lee [2003].
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Extensions of the results of the preceding Section concerns first consistency. A general
definition of adaptation is given, which allow for a general threshold variable st that does not
need to be the level yt−1. Second, under the null and for st = yt−1, we derive the functional limit
distribution of baseline variables entering the SupWald test for a wide class of TAR specifications,
using unbounded or bounded thresholds. We then give general conditions on unbounded or
bounded threshold sets that ensures a pivotal limit distribution for the SupWald test.

3.1 Adaptation

Our baseline general TAR model of order p is

∆yt = ut +


µ1 + ρ1yt−1 + a1(L)∆yt−1 if st ∈ I1(λ),
µ2 + ρ2yt−1 + a2(L)∆yt−1 if st ∈ I2(λ),
µ3 + ρ3yt−1 + a3(L)∆yt−1 if st ∈ I3(λ).

(3.1)

Bec et al. [2004], Berben and van Dijk [1999], Enders and Granger [1998], Kapetanios and
Shin [2006] and Seo [2003] consider a threshold variable st = yt−1 which is integrated under
H0(p) but stationary under H1, while Caner and Hansen [2001] and Shin and Lee [2003] use
a stationary st under H0(p) and H1 as for instance st = ∆yt, see also Gonzalez and Gonzalo
[1998]. Our approach assumes that {yt, st} is stationary under H1, hence allowing for all the
choices considered in the references above. Various restrictions of (3.1) have been considered in
the literature, as for instance the symmetric mirroring 3-regime TAR specification (2.2). These
restriction can be written as

∆yt = x̃t(λ)β + ut , (λ, β) ∈ Θλ × Rk , with x̃t(λ) = xt(λ)r , (3.2)

xt(λ) = [(1, yt−1) I (st ∈ Ij(λ)) , (∆yt−1, . . . ,∆yt−p) I (st ∈ Ij(λ))] ,

for j = 1, 2, 3 where r is a known selection matrix which is given by the restriction of (3.1) of
interest. The parameters set Θλ can include various constraints for the thresholds, as λ1 = −λ2

which corresponds to a symmetric inner regime as in (2.2). The Wald statistics combined in the
SupWald test correspond to the hypothesis ρj = 0, j = 1, 2, 3, for a threshold λ, and can be
computed as in (2.3), with a matrix R such that Rβ gives the ρ coefficients of the model. In what
follows, r and R are assumed to be full-rank. As a benchmark, we now consider the Augmented
Dickey-Fuller (ADFT ) statistic, that is the t-statistic for the autoregressive coefficient ρ of the
linear specification

∆yt = µ+ ρyt−1 + a(L)∆yt−1 + vt . (3.3)

An important feature of the symmetric mirroring TAR specification (2.2) was that a growing
inner regime I2(λ) gives the dynamic linear model (2.1) as a limit, so that (2.2) asymptotically
nests (2.1), as formalized in the next Definition.

Definition 1 Consider a restriction (3.2) of the 3-regime threshold autoregressive model (3.1)
such that the parameters µj, ρj and aj(L) are constant across a subset J of regime indices. Let
S be the support of the stationary threshold variable st and IJ (λ) = ∪j∈J Ij(λ).

10
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This restricted autoregressive threshold model nests the augmented linear autoregressive
model (3.3) through the subset of regimes J if and only if

i. There exists a sequence λn ∈ Θλ such that IJ (λn) → S when n goes to infinity (i.e.
limn→∞ P(st /∈ IJ (λn)) = 0));

ii. The covariates xt(λ) admit a partition xJ t(λ), x−J t(λ), with xJ t(λ)I (st ∈ IJ (λ)) 6= 0
and x−J t = x−J tI (st /∈ IJ (λ)) (implying limIJ (λ)→S x−J t(λ) = 0). In addition, with
limIJ (λ)→S xJ t(λ) = [1, yt−1,∆yt−1, . . . ,∆yt−p].

The introduction of the regime index set J allows for strongly constrained symmetric TAR
specification as

∆yt = ut +


µ1 + ρ1yt−1 + a1(L)∆yt−1 if st ∈ (−∞,−λ] = I1(λ),
µ2 + ρ2yt−1 + a2(L)∆yt−1 if st ∈ (−λ, λ) = I2(λ),
µ1 + ρ1yt−1 + a1(L)∆yt−1 if st ∈ [λ,+∞) = I3(λ),

where λ is in R+ here. In this specification I1(λ) and I3(λ) cannot diverge to R while I1(λ)∪I3(λ)
can, so that this model asymptotically nests (3.3) through the inner regime j = 2 and the outer
regime J = {1, 3}. The next definition introduces adaptation.

Definition 2 Assume that the threshold variable st is chosen such that {yt, st} is stationary for
any alternative {yt} in H1. Let S be the support of the stationary st. Consider a restriction (3.2)
of the TAR model (3.1) which nests the linear augmented autoregressive model (3.3) through the
subset of regimes J . Then a random set ΛT of admissible thresholds is J -adaptive if and only if

i. The SupWaldT (ΛT ) has a finite null limiting distribution;

ii. For any alternatives {yt} of H1, there exists a deterministic sequence λT in Θλ with
limT→∞ IJ (λT ) = S, and λT is in ΛT with a probability tending to 1.

The statistic SupWaldT (ΛT ) is J -adaptive if and only if ΛT is.

This gives the following extension for Theorem 1 which similarly suggests that a SupWaldT (ΛT )
can improve on the ADF test.

Theorem 4 Assume that the threshold variable st is chosen such that {yt, st} is stationary for
any alternative {yt} in H1. Consider a restriction (3.2) of the TAR model (3.1) which nests the
linear augmented autoregressive model (3.3) through the subset of regimes J .

Then, if ΛT satisfies Definition 2-(ii), SupWaldT (ΛT ) diverges in probability for any {yt}
in H1 and

SupWaldT (ΛT ) ≥ ADF 2
T (1 + oP(1)) .

11



Acc
ep

te
d m

an
usc

rip
t 

3.2 Pivotal null limit distributions for asymptotically unbounded thresholds

From now on, we consider a level threshold variable, that is st = yt−1, so that (3.1) becomes

∆yt = ut +


µ1 + ρ1yt−1 + a1(L)∆yt−1 if yt−1 ∈ I1(λ),
µ2 + ρ2yt−1 + a2(L)∆yt−1 if yt−1 ∈ I2(λ),
µ3 + ρ3yt−1 + a3(L)∆yt−1 if yt−1 ∈ I3(λ).

(3.4)

We first focus on asymptotically unbounded thresholds

ΛT =
{
λ = [λ1, λ2]′ ∈ Θλ;

√
TλT ≤ λ1 ≤ λ2 ≤

√
TλT , λ2 − λ1 ≥

√
TνT

}
, (3.5)

where the inequalities
√
TλT ≤ λ1 ≤ λ2 ≤

√
TλT now control for the number of observations

in the outer regimes while λ2 − λ1 ≥
√
TνT deals with the inner regime. Finding the null

limit distribution of the SupWald statistic in this context necessitates to introduce a suitable
standardization of the baseline covariate xt(λ) in (3.2). Consider XU

j,t and ∆XU
j,t(λ) with,

XU
jt(λ) = I

(
yt−1

σy

√
T
∈ Ij(λ)

)[
1√
T
,
yt−1

T

]
,

∆XU
jt(λ) = I

(
yt−1

σy

√
T
∈ Ij(λ)

)[
∆yt−1√

T
, . . . ,

∆yt−p√
T

]
. (3.6)

for j = 1, 2, 3. Recall that W (·) is a standard Brownian Motion and define

Mj(λ) = σ

[ ∫ 1
0 I (W (v) ∈ Ij(λ)) dW (v)
σy

∫ 1
0 W (v)I (W (v) ∈ Ij(λ)) dW (v)

]
, MU (λ) =


M1(λ)
M2(λ)
M3(λ)
03p×1

 , (3.7)

Cj(λ) =

[ ∫ 1
0 I (W (v) ∈ Ij(λ)) dv σy

∫ 1
0 W (v)I (W (v) ∈ Ij(λ)) dv

σy

∫ 1
0 W (v)I (W (v) ∈ Ij(λ)) dv σ2

y

∫ 1
0 W

2(v)I (W (v) ∈ Ij(λ)) dv

]
CU (λ) = Diag [C1(λ), C2(λ), C3(λ), 03p×3p]

′ . (3.8)

The next Theorem establishes functional convergence of sums related to the standardized xt(λ)’s
under H0(p), for any p > 1. Following van der Vaart [1996] and van der Vaart and Wellner
[1996], we consider functional convergence in distribution in `∞([−a, a]2), the space of bounded
functions over [−a, a]2 equipped with the Supremum Norm.

Theorem 5 Assume that H0(p), Assumptions E (s) with s > 4 and L given in Section 7 hold,
and let Ω = Var [∆yt−1, . . . ,∆yt−p]

′.
Then, for any a > 0,[

T∑
t=1

XU
jt(·)′εt,

T∑
t=1

XU
jt(·)′XU

jt(·),
T∑

t=1

∆XU
jt(·)′∆XU

jt(·), j = 1, 2, 3

]

12
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converges in distribution in `∞([−a, a]2) to[
Mj(·), Cj(·),Ω

∫ 1

0
I (W (v) ∈ Ij(·)) dv, j = 1, 2, 3

]
and supλ∈[−a,a]2

∥∥∥∑T
t=1 ∆XU

jt(λ)′XU
jt(λ)

∥∥∥ = oP(1), for j = 1, 2, 3. Moreover
∑T

t=1 ∆yt−kεt/
√
T =

OP(1) and if s > 14, supλ∈[−a,a]2

∥∥∥∑T
t=1 ∆XU

jt(λ)′εt
∥∥∥ = OP(1), for j = 1, 2, 3.

As seen from Bec et al. [2004], a result as Theorem 5 can be used to obtain the null limit
distribution of supremum of statistics as the Likelihood ratio, Score and Wald statistics. As
shown in the Proof Section, the fact that Theorem 5 holds for any real number a > 0 is sufficient
to allow for an asymptotically random ΛT /

√
T in such statistics. The next Corollary concerns

more specifically the SupWald statistic. Let

Λ =
{
λ = [λ1, λ2]′ ∈ Θλ;λ ≤ λ1 ≤ λ2 ≤ λ, λ2 − λ1 ≥ ν

}
be the limit in distribution of ΛT /

√
T . The next Corollary extends Theorem 2 to a general TAR

specification and gives a simple condition on Λ ensuring that a SupWald(ΛT ) has an asymptotic
pivotal distribution.

Corollary 1 Assume that Assumption E(s) with s > 14 as in Section 7 holds. Assume that
(λT , λT , νT ), satisfying Assumption Λ in Section 7, converges in distribution to (λ, λ, ν) with

inf
v∈[0,1]

W (v) <
λ

σy
≤ λ

σy
< sup

v∈[0,1]
W (v) and ν > 0 . (3.9)

Consider a restriction of the TAR specification (3.4) with a covariate x̃t(λ) = xt(λ)r with entries
taken from vectors

r̃1

II1(λ)(yt−1)
II2(λ)(yt−1)
II3(λ)(yt−1)

 , r̃2

yt−1II1(λ)(yt−1)
yt−1II2(λ)(yt−1)
yt−1II3(λ)(yt−1)

 , r̃3

[∆yt−1, . . . ,∆yt−p] II1(λ)(yt−1)
[∆yt−1, . . . ,∆yt−p] II2(λ)(yt−1)
[∆yt−1, . . . ,∆yt−p] II3(λ)(yt−1)

 ,

for some suitable r̃1, r̃2, r̃3. Then, under H0(p) and if ΛT is as in (3.5), SupWaldT (ΛT ) converges
in distribution to

sup
λ∈Λ/σy

{
MU (λ)′r

(
r′CU (λ)r

)−1
R′
(
σ2R

(
r′CU (λ)r

)−1
R′
)−1

R
(
r′CU (λ)r

)−1
r′MU (λ)

}
,

which is finite and has a pivotal distribution provided that [λ, λ, ν]/σy has a pivotal distribution.

The restrictions on the covariates imply in particular that the restricted TAR does not impose
constraints linking the autoregression coefficients ρj with the mean parameters µj or the lags co-
efficients, j = 1, 2, 3. The condition (3.9) entails that each regimes are not empty asymptotically,
ensuring that inverse matrix in the limit exists so that the limit variable is finite.
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3.3 Pivotal null limit distributions for bounded thresholds

We restrict here to the common dynamic TAR specification

∆yt = ut + a(L)∆yt−1 +


µ1 + ρ1yt−1 if yt−1 ∈ I1(λ),
µ2 + ρ2yt−1 if yt−1 ∈ I2(λ),
µ3 + ρ3yt−1 if yt−1 ∈ I3(λ),

(3.10)

and consider bounded threshold sets as

ΛT =
{
λ = [λ1, λ2]′ ∈ Θλ;λT ≤ λ1 ≤ λ2 ≤ λT , λ2 − λ1 ≥ νT

}
. (3.11)

To study this case, a specific standardization is needed for the inner regime of the baseline
covariate xt(λ) in (3.2). Define

XB
2t(λ) =

I (yt−1 ∈ I2(λ))
T 1/4

[1, yt−1] , XB
jt(λ) = I (yt−1 ∈ Ij(λ))

[
1√
T
,
yt−1

T

]
, j = 1, 3,

∆XB
t =

1√
T

[∆yt−1, . . . ,∆yt−p] . (3.12)

The study of the inner regime builds here on local-time asymptotics as considered in Park and
Phillips [2001]. For a Brownian Motion W (·) over the time interval [0, 1], the occupation time
A 7→

∫ 1
0 I (W (v) ∈ A) dv defines a measure over the Borel subsets of R. This measure has a

density LW (·) with respect to the Lebesgue measure called local time, see Revuz and Yor [1999].
In particular, the local time LW (0) gives the limit distribution of the number of observations in
a central interval I2(λ) standardized with (λ2 − λ1)

√
T , see Park and Phillips [2001]. Consider

a two-sided standard Brownian Motion B(·) independent of W (·).6 Define, for Mj(·) and Cj(·)
as in (3.7) and (3.8),

MB
2 (λ) =

σL
1/2
W (0)

σ
1/2
y

[ ∫ λ2

λ1
dB(w)∫ λ2

λ1
wdB(w)

]
, MB(λ) =


M1(0)
MB

2 (λ)
M3(0)
0p×1

 , (3.13)

CB
2 (λ) =

LW (0)
σy

[
λ2 − λ1

λ2
2−λ2

1
2

λ2
2−λ2

1
2

λ3
2−λ3

1
3

]
, CB(λ) = Diag

[
C1(0), CB

2 (λ), C3(0), 0p×p

]′
.(3.14)

The next Theorem establishes limit results relevant for the bounded case under H0(p).

Theorem 6 Assume that H0(p), Assumptions E (s) with s > 4 and L given in Section 7 hold,
and let Ω = Var [∆yt−1, . . . ,∆yt−p]

′.

6Recall that a two-sided Brownian Motion is a Brownian Motion defined over R as B(w) = B+(w) for w ≥ 0,

B(w) = B−(−w) for w < 0, where {B+(w)}w∈R+ and {B−(w)}w∈R+ are independent Brownian motions over R+.
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Then, for any a > 0,[
T∑

t=1

XB
jt(·)′εt,

T∑
t=1

XB
jt(·)′XB

jt(·),
T∑

t=1

∆XB′
jt ∆XB

jt , j = 1, 2, 3

]

converges in distribution in `∞([−a, a]2) to [Mj(·), Cj(·),Ω, j = 1, 2, 3] and

sup
λ∈[−a,a]2

∥∥∥∥∥
T∑

t=1

∆XB′
jt X

B
jt(λ)

∥∥∥∥∥ = oP(1), ,
T∑

t=1

∆yt−kεt/
√
T = OP(1) .

for j = 1, 2, 3.

Kapetanios and Shin [2006] and Seo [2003] implicitly used a similar result, but that did not
include the asymptotic of the inner regime because they impose a central unit-root. The fact
that the limit variables of the outer regimes (j = 1, 3 in (3.13)) are random constant is in line
with the results of these authors. As a Corollary we derive the limit distribution under H0(p)
of a SupWald test based on a restriction of the TAR specification. As seen for the specific TAR
specification used in Theorem 3, the local time LW (0) can disappear from the limit variable
due to self-standardization of the Wald statistic. As stated below, the SupWald statistics is
asymptotically pivotal under conditions that differs from the one of the unbounded case. In
particular, the parameters of the central regime cannot depend upon the parameters of the
inner regime, but µ2 and ρ2 can be dependent.

Corollary 2 Assume that Assumption E(s) with s > 14 as in Section 7 holds. Assume that
(λT , λT , νT ), satisfying Assumption Λ in Section 7, converges in distribution to (λ, λ, ν) with
ν > 0 almost surely.

Consider a restriction of the TAR specification (3.4) with a covariate x̃t(λ) = xt(λ)r with
entries taken from vectors

r̃1

(
II1(λ)(y−1)
II3(λ)(y−1)

)
, r̃2

(
yt−1II1(λ)(y−1)
yt−1II3(λ)(y−1)

)
, II2(λ)(y−1), yt−1II2(λ)(y−1), r̃4

∆yt−1

...
∆yt−p

 ,

for some suitable r̃1, r̃2, r̃3. Then, under H0(p) and if ΛT is as in (3.11), the SupWaldT (ΛT )
statistic converges in distribution to

sup
λ∈Λ

{
MB(λ)′r

(
r′CB(λ)r

)−1
R′
(
σ2R

(
r′CB(λ)r

)−1
R′
)−1

R
(
r′CB(λ)r

)−1
r′MB(λ)

}
,

which is finite and has a pivotal distribution provided that [λ/λ, ν/λ] has a pivotal distribution.

15



Acc
ep

te
d m

an
usc

rip
t 

4 Simulation experiments

Comparing the adaptive quantile threshold set (2.6) with its non adaptive counterpart (2.4)
suggests that the practical choice of an adaptive procedure may be more delicate due to a
higher number of parameters. But adaptation allows for drastically different behaviors under
the null and the alternative as seen from requirements R0 and R1. Hence a possible practical
benefit of adopting an adaptive approach is a better trade-off between the length of ΛT under
the null and the alternatives as permitted by these additional parameters, resulting in a more
powerful test.7

In this Section, we propose a practical methodology to devise adaptive threshold sets ac-
cordingly. As suggested in Balke and Fomby [1997] and Taylor [2001], we use a set of stationary
TAR alternatives exhibiting various features for calibration of the adaptive sets (2.6) and (2.9),
see Table 2 which reports the behavior of the resulting test against some of the considered TAR
alternatives. To ease calibration, we change |DFT | into max (1, |DFT |) in (2.6) and (2.9). As a
result of the comparison of several values, the retained length parameter in (2.9) is δ = 6. For
(2.6), we fix π to .85 and retain δ = 10. Because limiting to TAR alternative would ignore that
adaptive SupWald tests can detect a larger class of ergodic alternatives, we study the power of
the test against Autoregressive Conditional Root models (ACR, see Bec, Rahbek and Shephard
[2005] and Gouriéroux and Robert [2006]). As a benchmark for comparison, we consider the
ADFT test and a nonlinear unit root test tNL introduced by Kapetanios et al. [2003].8

4.1 Critical values

Table 1 gives the critical values based on 40,000 simulations of different sample sizes. Note that
these critical values are much higher than the squared ones of ADF test, which is (−2.88)2 =
8.2944 at the 5% level. As shown later on in the simulation experiments, this will have some
consequences on the relative power of our tests with respect to the ADF test for close to linear
DGPs. Note also that the critical values of the test based upon unbounded ΛU

T are larger in
small and medium samples than the ones associated to bounded ΛB

T , suggesting that the length
of ΛT is larger in mean than the one for the bounded ΛT . The last column for WSup

U and WSup
B

contains the percentage of yt−1 ∈ ΛT and confirms this conjecture. For instance, with a sample
size of 200, the percentage of observations in ΛU

T is 20 % greater than the one for ΛB
T . Moreover,

as expected, the percentage of yt−1 in the inner regime for ΛB
T decreases sharply with the sample

7Caner and Hansen [2001], in analogy with a discussion in Andrews [1993] concerning trimming in tests for a

structural change, have already argued that an ideal choice of a quantile threshold set (2.4) should be based on a

trade-off between the null and the alternative: a small proportion π decreases the power of the test by increasing

its critical values while a large π limits the power by decreasing the set of admissible thresholds. We extend this

approach to the case of adaptive threshold sets.
8These last authors derived the model ∆yt = ρy3

t−1+vt as an approximation of a smooth transition autoregres-

sive model. The tNL test is based on the Student statistic for ρ. For comparison sake with our TAR that includes

mean parameters, we consider the demeaned version of the tNL test. From 40,000 replications of simulations with

T = 200 and T = 300, it follows that the critical value at the 5%-level is -2.94.
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size. The critical values of the two tests become closer when T increases, suggesting that the
maximum of the WaldT (λ) statistic is achieved for moderate thresholds λ.

— Insert Table 1 around here —

4.2 TAR alternatives

In order to investigate the effect of the choice of the threshold values on the power of the test,
we consider the TAR alternatives with an integrated inner regime

∆yt = a∆yt−1 + εt +


µ1 + ρ1yt−1 if yt−1 ≤ −λ,
ρ2yt−1 if |yt−1| < λ,
−µ1 + ρ1yt−1 if yt−1 ≥ λ,

, with µ1 = 1.3× |ρ1| × λ, ρ2 = 0.

and εt is an i.i.d. N (0, 1). The choice of the parameters values follows Bec et al. [2004] analysis
of real exchange rate data. Table 2 reports the 5%-level rejection rates of the ADF, WSup

U and
WSup

B for T = 200 and T = 300, using 1,000 replications.

— Insert Table 2 around here —

The percentages of |yt| contained in ΛU
T and ΛB

T , given into brackets, are greater than the ones
under the null (see Table 1) especially for ΛB

T . This illustrates the adaptive behavior of ΛU
T and

ΛB
T . It can also be seen that the percentage of data in the stationary regimes depends crucially

on the thresholds size (see the third column of Table 2).
As expected, the power of all the tests increases with the sample size. The tests based on

WSup
U and WSup

B generally outperform the standard ADF except for close to linear alternatives,
that is when the percentage in the stationary regimes is more important. However, for these
cases the power of adaptive tests is close or equal to the power of the standard ADF especially
for WSup

B . For processes characterized by a low percentage of data in the stationary regimes, the
gain of the adaptive tests can be as high as 70% compared to the ADF. The power of tNL is
always dominated by both SupWald tests. Beyond the lack of adaptation, the relative failure of
the tNL test may come from the fact that it is specifically devised for smooth transition threshold
autoregressive models under the alternative.

Finally, the test based on WSup
B outperforms the one based on WSup

U for all the cases. This
gain in power by the bounded interval compared to unbounded interval is due to the fact that
the critical values of WSup

B are relatively small since the percentage of observations in ΛU
T and

ΛB
T are quite close.

4.3 Autoregressive Conditional Root alternatives

Let us now check consistency of our SupWald test against a broader set of stationary alternatives.
We consider here an ACR model proposed by Bec et al. [2005] and Gouriéroux and Robert [2006].
This alternative is given by:

yt = (1 + ρ)styt−1 + a∆yt−1 + εt,
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where the transition variable st is binomial given the past, and specified by its conditional
probability P(st = 1|yt−1, εt) =

[
1 + exp

(
−(α+ β|yt−1|1/2)

)]−1
, ρ is a real number, β is non-

negative and α and β are finite. In this model, εt is an i.i.d. N (0, σ2). The Markov ACR model
exhibits local non stationarity when st = 0, which is more likely to arise if α+β|yt−1|1/2 is small.
When β > 0 as in our simulation experiment, this source of local stationarity corresponds to a
central regime, but with a less precise delimitation than for the TAR model (2.2). Indeed, due
to the randomness of st, local nonstationarity may also hold outside a central zone. Even though
the degree of local nonstationarity of the ACR model is related to the parameters (α, β), it is
worth computing the percentage of time spent in the stationary regime (column ‘%’ in Table 3)
for interpretation’s sake. The parameters values considered for this power analysis are motivated
by Bec et al. [2005]. In line with their ACR estimates for real exchange rate data, σ is set to
0.009, and our benchmark calibration sets a, α, β and ρ to 0.3, -10, 30 and -0.3 respectively.
The results are reported in Table 3.

— Insert Table 3 around here —

Again, the ADF test slightly dominates the other tests in the case where the time spent in the
stationary regime (st = 1) is important. In the other cases, the unit root tests based on the
threshold specification do remarkably well while the ADF test has poor power. For instance,
with the parameter values of the first DGP reported in Table 3, the time spent in the stationary
regime is equal to 4.4%, and the rejection rate of WSup

B is 75.1 percent compared to 27.2 percent
for the ADF test. Finally, the power of WSup

B slightly dominates the power of WSup
U for 13 cases

out of 16. The tNL test slightly outperforms the WSup
B test in two cases.

5 The yield spread dynamics revisited

We propose here an application of our adaptive approach to the analysis of the yield spread dy-
namics. Under costless and instantaneous portfolio adjustment assumption, arbitrage arguments
often augmented by risk considerations leads to a very general relationship between yields of
different maturities, i.e,

R(k, t) =
1
k

 k∑
j=1

Et[R(1, t+ j − 1)]

+ L(k, t), (5.1)

where R(k, t) denotes the k-period interest rate, Et is the expectation operator conditional on
time t information, and L(k, t) represents the term premium, accounting for risk and liquidity
premia.9 This in turn implies the stationarity of the yield spread between longer-term and
shorter-term interest rates. Indeed, by rearranging (5.1), the spread which prevails may be

9For instance, the pure expectation hypothesis implies that L(k, t) is zero while some other versions of the

expectations hypothesis assert that the premia are constant over time.
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expressed as:

S∗(k, 1, t) = R(k, t)−R(1, t) =
1
k

k−1∑
i=1

i∑
j=1

Et[∆R(1, t+ j)] + L(k, t), (5.2)

where the right-hand side is stationary as soon as interest rates are integrated of order one and
the risk premium is stationary. Hence, as noticed by Hall, Anderson and Granger [1992] and
Anderson [1997], equation (5.2) acts as an attractor as soon as the actual spread S(k, 1, t) differs
from the equilibrium spread S∗(k, 1, t).

However, as pointed out by Anderson [1997], if one considers homogeneous transaction costs
which reduce the investor’s yield on a purchased bond by a constant amount λ, then the investor
will convert a portfolio of one-period bonds to k−period bonds if and only if λ < S(k, 1, t) −
S∗(k, 1, t), or convert k−period bonds to 1-period bonds if and only if S(k, 1, t)−S∗(k, 1, t) < −λ.
Therefore, in presence of transaction costs, the attraction toward equation (5.2) is inactive when :

−λ < S(k, 1, t)− S∗(k, 1, t) < λ. (5.3)

Hence, there is no reason for the cointegration relation between long- and short-term rates to
hold in this area, or put in other words, for the spread to revert toward S∗(k, 1, t). This arbitrage
behavior clearly suggests a stationary but nonlinear dynamics for the yield spread, which should
be well captured by our parsimonious auxiliary model. Moreover, recent empirical evidence —
see e.g. Keim and Madhavan [1997] or Wagner [1998] — displays transaction costs estimates
ranging roughly from 0.5% to more than 2% depending on the types of costs included in the
calculation.

The interest rates data used in this study are monthly averages spanning from 1980:01 to
1998:12 for France and Germany since the Euro was introduced in January 1999, and to 2001:08
for the US10. For the New Zealand11, the available data span from 1985:01 to 2002:01. For
France, Germany, the New Zealand and the US, the short term interest rate is respectively the
3-month PIBOR, the 3-month FIBOR, the 90-day Bank Bill yield and the 3-month Treasury
Bill rate, while the long term is the 10-year public and semi-public sector bonds rate, the 9 to
10-year Bd listed federal securities rate, the 10-year secondary market government bond yield
and the 10-year Treasury constant maturity rate. The yield spreads are defined as the difference
between the long and the short-term rates, and are denoted SF , SG, SNZ and SUS .

As can be seen from Table 4, performing the standard ADF unit-root test and KPSS
stationarity test12 reveals that the US and German spreads are well characterized by a unit-root
process, whereas no clear-cut conclusion emerges for SF and SNZ .

— Insert Table 4 around here —
10European and US data come respectively from Datastream and FRED databanks.
11These data come from the Reserve Bank of New Zealand.
12The lag length for the ADF(k) is chosen according to the Ljung-Box statistic. The size of the Bartlett windows

for KPSS(`) is obtained following Andrews [1991].
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Indeed, the KPSS statistics fails to reject the null of stationarity for the French spread while
the ADF test leads to reject the unit-root for SNZ . The values obtained for the SupWald(ΛT )
statistics — and reported in Table 5 — have to be compared with the corresponding critical
values given in Table 1. The lag order of the a(L) polynomial in model (2.2) is chosen accord-
ing to the BIC and Ljung-Box statistics which suggest p = 1 for the European spreads, and
p = 4 for the remainders. For each series considered here, the same threshold value maximizes
both SupWald(ΛB

T ) and SupWald(ΛU
T ) — see column (2) in Table 5. Hence, both test statistics

reach exactly the same value which is reported in column (1). However, the SupWald(ΛB
T ) and

SupWald(ΛU
T ) statistics depart from each other by the set of thresholds considered, as can be

seen from columns (3) and (4).

— Insert Table 5 around here —

The SupWald(ΛB
T ) and SupWald(ΛU

T ) statistics lead to the same conclusion in three cases out of
four: the null is rejected by both tests at the 1%-level for SNZ and SUS and at the 5%-level for
SG. Nevertheless, the French data provide an illustration of the potential discrepancy between
the bounded and unbounded intervals approaches. Whereas the null can be rejected for SF at
the 15%-level according to the SupWald(ΛB

T ) critical values reported in Table 1, the unit root
cannot be rejected at this level on the basis of the SupWald(ΛU

T ) statistic. Hence, this empirical
application confirms the gain in power implied by the bounded interval — which has already
been emphasized by the simulation experiments in the previous section. It is also worth noting
that, as expected, the SupWald(ΛB

T ) test seems more adaptive that the SupWald(ΛU
T ) test, since

there are always more observations lying in ΛB
T than in ΛU

T . The percentage of observations lying
in ΛB

T ranges from 97.2 for the US spread to 99.5 for German and New-Zealander data, whereas
it never exceeds 86.2% for ΛU

T . Finally, this empirical investigation of yield spread data provides
support to the so-called expectations hypothesis, once the transaction costs are accounted for
— i.e. once the nonlinear feature of the stationary alternative is allowed for.

6 Conclusion

This paper develops adaptive threshold SupWald unit-root tests as an alternative to linear ones.
Adaptive threshold SupWald unit-root tests are consistent against stationary ergodic alterna-
tives, therefore including a large variety of nonlinear processes relevant in macroeconomic or
financial applications. A power bound indicates that these new unit-root tests can outperform
linear ones, hence justifying the quite recent strand in econometrics literature which searches
for such an improvement through the use of a more complex nonlinear specification to build a
unit-root test. This theoretical finding is mostly confirmed by our simulation experiment. It is
also illustrated by an empirical analysis of yield spread data: when applied to post-1980 French,
German, New-Zealander and US monthly data, our test rejects the null of unit root whereas
ADF and KPSS tests give mixed evidence at best. But the power bound suggests that the order
of the improvement crucially depends on the magnitude of the critical values of the SupWald
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test and our simulations reveal that this is especially true for alternatives close to linearity,
against which linear tests better perform. Regarding the choice of a threshold set, the simula-
tion experiments show that using bounded ones give a more powerful test, by producing smaller
critical values under the null, and because the retained choice of the bounded ΛT is larger under
the alternative. In addition, considering such bounded set of thresholds may also improve the
accuracy of the null limiting distribution, because they are smaller under the null.

7 Main assumptions and proofs

The Proof Section is organized as follows. We first state our main assumptions. We then prove Theorem
4, which implies Theorem 1 in Section 7.2. Section 7.3 contains a general functional extension of Park
and Phillips [2001] which is used in Section 7.4 to establish Theorems 5 and 6. Our main limit results
for the SupWald statistics (Theorems 2 and 3, Corollaries 1 and 2) are proved in Section 7.5, and an
Appendix groups some useful Lemmas and the proof of and intermediate result.

In what follows, P→ denotes convergence in probability, d→ stands for convergence in distribution and
d= is equality in distribution. Depending on the context, ‖ · ‖ denotes vector, matrix, or function norm,
but in case of a vector, ‖z‖ is the Euclidean norm of z. C is a generic constant that may vary from line
to line.

7.1 Assumptions

Let us first introduce a Limit Theorem for sums of transformations of the yt−1’s due to Park and Phillips
[2001], see also Park and Phillips [1999]. The next definitions are from Park and Phillips [2001]. A map
f(·) from R to R is regular if it is continuous in a neighborhood of infinity, and, for any compact subset C
of R, there exist some continuous functions f

ε
(·) and f ε(·) with limε→0

∫
(f ε − f ε

)(w)dw = 0, and δε > 0
such that f

ε
(w′) ≤ f(w) ≤ f ε(w′) for all |w − w′| ≤ δε on C. A finite-dimensional vector of functions

is regular if each entry is regular. Typical examples of such functions are the indicators I(w ∈ Ij(λ))
j = 1, 3, of the lower and upper regimes of the TAR model (3.4). A map f(·) from R to R is I-regular if
it is integrable, square integrable, and satisfies the Lipschitz condition |f(w)− f(w′)| ≤ K|w−w′| on its
support. A finite-dimensional vector of functions is I-regular if each entry is I-regular. A typical example
of such functions is the indicator I(w ∈ I2(λ)) of the central regime of (3.4) Following Park and Phillips
[2001], we shall assume that:

Assumption E(s). The i.i.d. εt’s are such that Eεt = 0 and E|εt|4+s < ∞. The εt’s have a bounded
density and limy→∞ yγE exp(iyε1) = 0 for some γ > 0.

Assumption L. For t ≥ 1 yt − yt−1 =
∑∞

i=0 πiεt−i with y0 = 0, and where π0 = 1,
∑∞

i=0 πi 6= 0 and∑∞
i=1 i|πi| <∞.

Note that H0(p) is a special case of Assumption L. The next Theorem combines Theorems 3.1 and 3.2
in Park and Phillips [2001].

Theorem 7 (Park and Phillips [2001]) Let σ2 = Var(εt), σ2
y = σ2 (

∑∞
i=0 πi)

2, {W (v)}v∈[0,1] and
{B(w)}w∈R be two independent standard Brownian motions. Let F1 and F2 be collections of regular maps
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and I-regular maps respectively. Then, under Assumptions L and E(s), s > 4, the finite dimensional
marginal distributions of the process indexed by (f1, f2),[

1
T

T∑
t=1

f1

(
yt−1√
T

)
,

1√
T

T∑
t=1

f1

(
yt−1√
T

)
εt,

1√
T

T∑
t=1

f2 (yt−1) ,
1

T 1/4

T∑
t=1

f2 (yt−1) εt

]′
,

(f1, f2) ∈ F1 ×F2, converge to the ones of[∫ 1

0

f1 (σyW (v)) dv, σ
∫ 1

0

f1 (σyW (v)) dW (v),
LW (0, 1)

σy

∫
f2(w)dw,

σL
1/2
W (0, 1)

σ
1/2
y

∫
f2(w)dB(w)

]′
.

We now give our main assumption on the boundaries λT , λT and νT of ΛT .

Assumption Λ. Set F1 = {[1, w, w2]I(w ≤ λ1), [1, w, w2]I(λ1 < w < λ2), [1, w, w2]I(w ≥ λ2), λ ∈ R2}
and F2 = {[1, w, w2]I(λ1 < w < λ2), λ ∈ R2}. Under H0, the vector [λT , λT , νT ]′ converges in distribu-
tion to the finite vector [λ, λ, ν]′ jointly with the convergence in distribution of Theorem 7. The random
vector [λ, λ, ν]′ is measurable with respect to the σ field generated by the Brownian motion {W (v)}v∈[0,1].
Moreover ν ≥ 0 and λ+ ν ≤ λ almost surely, i.e. ΛT is nonempty asymptotically.

7.2 Proof of Theorem 4

We first introduce some related notations. M−1 denotes the Moore-Penrose pseudo-inverse of M . �
denotes the usual order of symmetric matrix, i.e. M1 �M2 if and only if M2−M1 is nonnegative. We use
the following generalization of the Cauchy-Schwarz inequality. Let Y and X be random column vectors
and Y = BX + U with B = E[Y X ′]E−1[XX ′]. Then E[X ′U ] = 0 and 0 � E[UU ′] yields that

0 � E[Y X ′]E−1[XX ′]E[Y ′X] � E[Y Y ′] . (7.1)

Changing expectations into empirical means yields an empirical version of (7.1).
Let us stack the autoregressive coefficients ρj , j = 1, 2, 3 of the TAR model into a vector −→ρ . Under

H1 and stationarity of {yt, st}, the limit ρj(λ) of ρ̂j(λ) writes, for each λ

−→ρ (λ) = R (E [x′t(λ)xt(λ])−1 E [x′t(λ)∆yt] where R is a selection matrix with Rβ = −→ρ . (7.2)

The next lemma studies the ρj(λ)’s under H1 when a regime grows.

Lemma 1 Assume that the threshold variable st is chosen such that {yt, st} is stationary for any alter-
native {yt} in H1. Let S be the support of the stationary st. Consider a restriction (3.2) of the TAR model
(3.1) which nests the linear augmented autoregressive model through regimes J . Then, for any {yt} in
H1 and j ∈ J , limIJ (λ)→S ρj(λ) < 0. Hence there exists a threshold parameter λj such that ρj(λj) < 0.

Proof of Lemma 1. Denote H1 as H1,p+1 to recall that p+ 1 lags are used in the autoregressive model
(3.3). Write similarly vt = vt,p+1 and rewrite (3.3) as

Ap+1(L)(yt −m) = vt,p+1 = yt − µ− (1 + ρ)yt−1 − a(L)∆yt−1 so that Ap+1(1) = 1− (1 + ρ) = −ρ ,
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whereAp+1(L) = 1+A1,p+1L+· · ·+Ap+1,p+1L
p+1 is given by the linear regression of yt on yt−1, . . . , yt−p−1,

which is uniquely defined since Var([yt−1, . . . , yt−p−1]′) has an inverse under H1,p+1.13 In the equation
above, m is the mean of yt which can be set to 0 as done from now on, by changing yt into yt −m. We
first show that, for all p ≥ 1, the proposition P(p): Ap(1) > 0 for any {yt} in H1,p. is true. We first show
that P(1) is true. For p = 1, we have A1(L)yt = yt −A1,1yt−1 = vt,1 with

A1,1 =
Cov(yt, yt−1)

Var(yt−1)
=

Cov(yt, yt−1)

Var1/2(yt)Var1/2(yt−1)
= Corr(yt, yt−1)

by stationarity. The Cauchy Schwarz inequality then yields that

−1 ≤ A1,1 ≤ 1 with |A1,1| = 1 if and only if yt = yt−1 or yt = −yt−1.

Note that A1,1 = 1 is impossible, since it would give yt = y0 which is a process excluded by H1. Then
A1(1) = 1−A1,1 is in (0, 2] and P(1) is true.

We now show that P(p) is true for any p > 1 by a contradiction argument. Assume that Ap(1) ≤ 0.
Then, since Ap(0) = 1, Ap(·) has a root r in (0, 1] by the Mean Value Theorem. Write Ap(L) = (1 −
L/r)Ãp(L) and consider the stationary process ỹt = Ãp(L)yt. Note that {ỹt} satisfies H1,1 because {yt}
is in H1,p and ỹt = Ã(L)yt = Ã0,p−1yt + · · · + Ãp−1,p−1yt−p+1, so that Var[ỹt] = 0 would contradict
H1,p which implyes that Var([yt, . . . , yt−p+1]′) has an inverse. Observe moreover that ỹt−1 = Ã(L)yt−1 =
Ã0,p−1yt−1+· · ·+Ãp−1,p−1yt−p is uncorrelated with vt,p since Ap(L)yt = vt,p corresponds to the regression
of yt on yt−1, . . . , yt−p. Because Ap(L)yt = (1 − L/r)Ãp(L)yt = ỹt − ỹt−1/r = vt,p, ỹt − ỹt−1/r = vt,p

is then the regression of ỹt on ỹt−1. But 1 − 1/r ≤ 0 since r is in (0, 1]. This contradicts P(1), so that
Ap(1) > 0 necessarily, and P(p) is true for any p > 1.

We now return to the proof of Lemma 1. Observe that ρj = ρJ for all j in J by Definition
1. Let β(λ) = E−1[x′t(λ)xt(λ)]E[x′t(λ)∆yt]. Split β(λ) into βJ (λ) and β−J (λ) such that xt(λ)β(λ) =
xJ t(λ)βJ (λ) + x−J t(λ)β−J (λ), where xJ t(λ) and x−J t(λ) are from Definition 1-(ii). Note that ρJ is
one of the entries of βJ (λ). Let xt = [1, yt−1,∆yt−1, . . . ,∆yt−p] and β = E−1[x′txt]E[xt∆yt], noticing
that E[x′txt] has an inverse under H1. The rest of the proof shows that limIJ (λ)→S βJ (λ) = β so that
limIJ (λ)→S ρJ (λ) = ρ = −Ap+1(1) < 0 by P(p+1), which is the statement of Lemma 1. The Frish-Waugh
Theorem yields

βJ (λ) =
(
E
[
x′J t(λ)xJ t(λ)

]
− E

[
x′J t(λ)x−J t(λ)

]
E−1

[
x′−J t(λ)x−J t(λ)

]
E
[
x′−J t(λ)xJ t(λ)

])−1

×
(
E
[
x′J t(λ)∆yt

]
− E

[
x′J t(λ)x−J t(λ)

]
E−1

[
x′−J t(λ)x−J t(λ)

]
E
[
x′−J t(λ)∆yt

])
.

by Definition 1-(ii), E[x′−J t(λ)zt] = E[x′−J t(λ)ztI(st /∈ IJ (λ))] . We first show that

lim
IJ (λ)→S

E
[
x′J t(λ)x−J t(λ)

]
E−1

[
x′−J t(λ)x−J t(λ)

]
E
[
x′−J t(λ)∆yt

]
= 0 . (7.3)

Let a be a row vector. The Cauchy-Schwarz inequality and (7.1) yields∣∣aE [x′J t(λ)x−J t(λ)
]
E−1

[
x′−J t(λ)x−J t(λ)

]
E
[
x′−J t(λ)∆yt

]
a′
∣∣

≤
[
aE
[
x′J t(λ)I(st /∈ IJ (λ))x−J t(λ)

]
E−1

[
x′−J t(λ)x−J t(λ)

]
E
[
x′−J t(λ)xJ t(λ)I(st /∈ IJ (λ))

]
a′
]1/2

×
[
aE [∆ytI(st /∈ IJ (λ))x−J t(λ)] E−1

[
x′−J t(λ)x−J t(λ)

]
E
[
x′−J t(λ)I(st /∈ IJ (λ))∆yt

]
a′
]1/2

≤
[
aE
[
x′J t(λ)xJ t(λ)I(st /∈ IJ (λ))

]
a′
]1/2 [

aE
[
(∆y2

t )I(st /∈ IJ (λ))
]
a′
]1/2

= o(1) when IJ (λ) → S.
13If not yt = b0 + b1yt−1 + · · ·+ yt−p−1 so that, as a solution of such linear recurrence equation, yt is a product

of polynomial and exponential functions of t. Hence, under stationarity, yt must be a constant process, which is

excluded by definition of H1.
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Definition 1-(ii) gives, when IJ (λ) → S,

0 � E
[
x′J t(λ)x−J t(λ)

]
E−1

[
x′−J t(λ)x−J t(λ)

]
E
[
x′−J t(λ)xJ t(λ)

]
� E

[
x′J t(λ)xJ t(λ)I (st /∈ IJ (λ))

]
→ 0.

As well, limIJ (λ)→S E
[
x′J t(λ)xJ t(λ)

]
= E[x′txt] and limIJ (λ)→S E

[
x′J t(λ)∆yt

]
= E[x′t∆yt]. Therefore the

continuity of M 7→M−1 at {M ; Det(M) 6= 0}, the approximations above together with the expression of
βJ (λ) show that limIJ (λ)→S βJ (λ) = β. 2

Proof of Theorem 4. We give first a suitable expression of the Wald statistics WaldT (λ) and ADF 2
T ,

and collect important facts. Let Û(λ) and Û0(λ) be the column vector of estimated residuals ût(λ) =
∆yt−xt(λ)β̂T (λ) and û0t(λ) = ∆yt−xt(λ)β̂0T (λ), t = 1, . . . , T from the TAR model (3.2), where β̂0T (λ)
is the OLS estimator of β(λ) under the constraint −→ρ (λ) = 0. Let similarly V̂ and V̂0 be the vector of
estimated residuals of the linear model (3.3), where V̂0 is computed under the restriction ρ = 0. The Wald
statistics write (see e.g. Gouriéroux and Monfort [1995])

WaldT (λ) = T

(
1− Û ′(λ)Û(λ)

Û ′0(λ)Û0(λ)

)
and ADF 2

T = T

(
1− V̂ ′V̂

V̂ ′0 V̂0

)
. (7.4)

Note that V̂ ′V̂ and V̂ ′0 V̂0 are continuous functions of sums of empirical covariance matrices. Therefore,
under H1, the Ergodic Law of Large Numbers yields V̂ ′V̂ /T = σ2

v + oP(1) and V̂ ′0 V̂0/T = σ2
v0 + oP(1)

where σ2
v and σ2

v0 are the innovations variance of the general and constrained linear models (3.3). Under
H1, σ2

v > σ2
v0 > 0 since ρ 6= 0 as shown by P(p + 1) in the proof of Lemma 1, so that ADF 2

T diverges
with the exact order T in probability.

Let ∆Y = [∆yT , . . . ,∆y1]′, XJ (λ) = [x′JT (λ), . . . , x′J 1(λ)]′, X−J (λ) = [x′−JT (λ), . . . , x′−J 1(λ)]′,
and X = [x′T , . . . , x

′
1]
′ with xt = [1, yt−1,∆yt−1, . . .∆yt−p]. Let

Pλ = Id−X−J (λ)
(
X ′
−J (λ)X−J (λ)

)−1
X ′
−J (λ)

be the orthogonal projection on the linear span orthogonal to the columns of X−J (λ). Let λT be the de-
terministic sequence of Definition 2. Note that Û(λT ) is ∆Y minus its orthogonal projection on the linear
subspace spanned by [XJ (λT ), X−J (λT )], which is also the space spanned by [PλT

XJ (λT ), X−J (λT )].
The definition of PλT

gives X ′
−J (λT )PλT

XJ = 0 and then

Û ′(λT )Û(λT )
T

=
∆Y ′PλT

XJ (λT )
T

(
X ′
J (λT )PλT

XJ (λT )
)−1 X ′

J (λT )PλT
∆Y

T
(7.5)

+
∆Y ′X−J (λT )

T

(
X ′
−J (λT )X−J (λT )

)−1 X
′
−J (λT )∆Y

T
. (7.6)

We first study (7.5) and begin by showing that T−1∆Y ′PλT
XJ (λT ) = T−1∆Y ′X + oP(1). Note that

∆Y ′PλT
XJ (λT )
T

=
∆Y ′XJ (λT )

T
+

∆Y ′X−J (λT )
(
X ′
−J (λT )X−J (λT )

)−1
X ′
−J (λT )XJ (λT )

T

We show that T−1∆Y ′XJ (λT ) = T−1∆Y ′X + oP(1). We have by stationarity and Definition 1-(ii)

E
∥∥∥∥∆Y ′ (XJ (λT )−X)

T

∥∥∥∥ = E

∥∥∥∥∥ 1
T

T∑
t=1

∆yt (xJ t(λT )− xt)

∥∥∥∥∥ ≤ E [|∆yt| ‖xJ t(λT )− xt‖]

≤ E1/2
[
(∆yt)2

]
× E1/2

[
‖xJ t(λT )− xt‖2

]
= o(1) . (7.7)
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Therefore T−1∆Y ′XJ (λT ) = T−1∆Y ′X+oP(1) and we now show that the second item in T−1∆Y ′PλT
XJ (λT )

can be neglected. Let a be a column vector of dimension p + 2. Then the Cauchy-Schwarz inequality,
Definition 1-(ii) and (7.1) yield∣∣∣∣∣∆Y ′X−J (λT )

(
X ′
−J (λT )X−J (λT )

)−1
X ′
−J (λT )XJ (λT )a

T

∣∣∣∣∣
≤

∣∣∣∣∣∆Y ′X−J (λT )
(
X ′
−J (λT )X−J (λT )

)−1
X ′
−J (λT )∆Y

T

∣∣∣∣∣
1/2

×

∣∣∣∣∣a′X ′
J (λT )X−J (λT )

(
X ′
−J (λT )X−J (λT )

)−1
X ′
−J (λT )XJ (λT )a

T

∣∣∣∣∣
1/2

=

∣∣∣∣∣∣
(∑T

t=1 ∆ytI(st /∈ IJ (λT ))x−J (λT )
) (
X ′
−J (λT )X−J (λT )

)−1
(∑T

t=1 ∆ytI(st /∈ IJ (λT ))x′−J (λT )
)

T

∣∣∣∣∣∣
1/2

×

∣∣∣∣∣a′X ′
J (λT )X−J (λT )

(
X ′
−J (λT )X−J (λT )

)−1
X ′
−J (λT )XJ (λT )a

T

∣∣∣∣∣
1/2

≤

(
1
T

T∑
t=1

(∆yt)2I(st /∈ IJ (λT ))

)1/2( T∑
t=1

a′x′J t(λT )xJ t(λT )I(st /∈ IJ (λT ))a

)1/2

.

As in (7.7),

E

∣∣∣∣∣ 1T
T∑

t=1

ztI(st /∈ IJ (λT ))

∣∣∣∣∣ ≤ E |ztI(st /∈ IJ (λT ))| = o(1), zt = (∆yt)2, a′x′J t(λT )xJ ta, (7.8)

for any a, so that the second item of T−1∆Y ′PλT
XJ (λT ) can be neglected, and T−1∆Y ′PλT

XJ (λT ) =
T−1∆Y ′X + oP(1). Arguing similarly with (7.7) and (7.8) yields T−1X ′

J (λT )PλT
XJ (λT ) = T−1X ′X +

oP(1). Note that T−1∆Y ′X = E[∆ytxt]+oP(1) and T−1X ′X = E[x′txt]+oP(1), E[x′txt] having an inverse,
so that (7.5) equals T−1∆Y ′X(X ′X)−1X ′∆Y + oP(1), with T−1∆Y ′X(X ′X)−1X ′∆Y = T−1V̂ ′V̂ . Note
that arguing as above with (7.1) and (7.8) yields that (7.6) is oP(1), so that T−1Û ′(λT )Û(λT ) = T−1V̂ ′V̂ +
oP(1). Repeating the same steps for the restricted models yields T−1Û ′0(λT )Û0(λT ) = T−1V̂ ′0 V̂0 + oP(1).
Substituting into (7.4) now yields

SupWaldT (ΛT ) ≥ WaldT (λT ) + oP(1) = T

(
1− T−1V̂ ′V̂ + oP(1)

T−1V̂ ′0 V̂0 + oP(1)

)
+ oP(1) = ADF 2

T (1 + oP(1)) .2

7.3 Functional limit distribution for integrated processes

Theorems 5 and 6 will be derived from a functional version of Theorem 7 from Park and Phillips [2001].
Stating this more general result requires additional notations from Empirical Processes Theory that we
introduce now. For a collection of functions F and a functional z(·) over F (as for instance empirical sums),
‖z‖F = supf∈F ‖z(f)‖ is the uniform norm of z(·) over F . The functional space `∞(F) = {z(·); ‖z‖F <

∞} is the space of bounded functionals over F and is equipped with the norm ‖ · ‖F . More specifically,
let ZT (f) be a sum from Theorem 7 and F be the associated collection Fj , j = 1, 2. {ZT (f)}f∈F can be
viewed as a stochastic process indexed by the function f(·). It is convenient to consider that F is a subset
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of a larger collection E , as for instance the set of bounded measurable functions. An envelope of F is a
function F (·) such that, for any f(·) in F , |f(w)| ≤ F (w) for all w in R. Let ‖ · ‖ be a norm over E . For
f(·) and f ′(·) in E , the bracket [f, f ′] is a set of functions g(·) of E with f(w) ≤ g(w) ≤ f ′(w) for all w.
An ε-bracket is a bracket [f, f ′] with ‖f − f ′‖ ≤ ε. The bracketing number N[ ](ε,F , ‖.‖) is the minimum
number of ε-brackets of E needed to cover F . For vector-valued functions, envelope and brackets can be
defined components by components. In view of the form of the limits in Theorem 7, we use the L1 norm
with respect to the Lebesgue measure, assuming that it also controls the Lq norm, q = 2, 3, 4. Recall that
the Lq norm ‖ · ‖q with respect to Lebesgue measure is ‖f‖q =

(∫
‖f(w)‖qdw

)1/q, 1 ≤ q <∞.

Theorem 8 Assume that Assumptions E(s), s > 4, and L hold. Let F1 be a class of regular functions
with a continuous envelope, and F2 be a class of I-regular functions with a continuous envelope.

Assume that there exist some sets Ej with Fj ⊂ Ej, j = 1, 2, and some constant Cq, q = 2, 3, 4 such
that, for any f and f ′ in Ej, j = 1, 2,

‖f − f ′‖22 ≤ C2‖f − f ′‖1 , ‖f − f ′‖33 ≤ C3‖f − f ′‖1 and ‖f − f ′‖44 ≤ C4‖f − f ′‖1 . (7.9)

Assume moreover that, for C5 > 0

N[ ](ε,Fj , ‖ · ‖1) ≤ C5ε
−ζ for some ζ in (0, 1] and any ε > 0, j = 1, 2. (7.10)

Then the convergence in distribution of Theorem 7 holds in `∞(F1)× `∞(F2).

Given the finite dimensional convergence in distribution stated in Theorem 7, proving Theorem 8 works
by showing asymptotic stochastic equicontinuity. Let ZT (f) be a sum of Theorem 7 and F ⊂ E be the
associated collection Fj , j = 1, 2. Asymptotic stochastic equicontinuity of {ZT (f)}f∈F means that, for
every δ0, δ1 > 0, there exists a finite covering F1, . . . , Fn of F such that

lim sup
T→+∞

P

(
sup

1≤i≤n
sup

(f,f ′)∈F 2
i

|ZT (f ′)− ZT (f)| ≥ δ0

)
≤ δ1 .

see Theorem 18.14 in van der Vaart [1996], or Theorem 1.5.6 in van der Vaart and Wellner [1996].
As discussed by these authors, finding a covering F1, . . . , Fn can be done through any arbitrary norm
‖ · ‖ on the index set F . In what follows, we say that {ZT (f)}f∈F is asymptotically stochastically ‖ · ‖-
equicontinuous if for any δ0, δ1 > 0 there is a δ such that

lim sup
T→+∞

P

(
sup

(f,f ′)∈F2;‖f ′−f‖≤δ

|ZT (f ′)− ZT (f)| ≥ δ0

)
≤ δ1 . (7.11)

We specifically have

Lemma 2 Assume that Assumptions E(0) and L hold. Let E and F ⊂ E be some collections of functions
such that (7.9) holds over E, and that the bracketing entropy numbers of F satisfy (7.10). Then{

1
T

T∑
t=1

f

(
yt−1√
T

)}
f∈F

,

{
1√
T

T∑
t=1

f

(
yt−1√
T

)
εt

}
f∈F

,

{
1√
T

T∑
t=1

f(yt−1)

}
f∈F

and

{
1

T 1/4

T∑
t=1

f(yt−1)εt

}
f∈F
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are asymptotically stochastically ‖ · ‖1-equicontinuous.
Assume moreover that E(s) holds with s > 14, and that, for q = s+4

s+1 , 2
s+4
s+1 , 3

s+4
s+1 , q = 2 s+4

s , 4 s+4
s ,

there are some constants Cq such that for all f(·), f ′(·) in E

‖f − f ′‖q
q ≤ Cq‖f − f ′‖1 . (7.12)

Then, for any integer number k ≥ 1,
{

1√
T

∑T
t=1 ∆yt−kf

(
yt−1√

T

)
εt

}
f∈F

is asymptotically stochastically

‖ · ‖1-equicontinuous.

Proof of Lemma 2. See Appendix.

Proof of Theorem 8. Let F be F1 or F2. The convergence statement of Theorem 8 follows from
Theorem 7 and asymptotic stochastic equicontinuity given by Lemma 2, provided that each sums of the
theorem are in `∞(F). This is due to the fact that the theorem assumes that F1 and F2 have continuous
envelopes which give, respectively, finite norms ‖ · ‖F1 or ‖ · ‖F2 for each sums. 2

7.4 Proof of Theorems 5 and 6

We use here Lemmas from the Appendix. The proofs of Theorems 5 and 6 are also based on the following
preliminary result.

Lemma 3 Let f(w; θ) be I(w ≤ θ), I(w ≥ θ), wI(w ≤ θ), wI(w ≥ θ), w2I(w ≤ θ), w2I(w ≥ θ). Then,
under Assumptions L and E(0), for any a > 0,{

1
T

T∑
t=1

f

(
yt−1√
T

; θ
)}

θ∈[−a,a]

,

{
1√
T

T∑
t=1

f

(
yt−1√
T

; θ
)
εt

}
θ∈[−a,a]{

1√
T

T∑
t=1

f(yt−1; θ)

}
θ∈[−a,a]

and

{
1

T 1/4

T∑
t=1

f(yt−1; θ)εt

}
θ∈[−a,a]

satisfy Conditions (7.9) and (7.10) of Theorem 8 and are asymptotically stochastically | · |-equicontinuous.
Assume in addition that E(s) holds for s > 14. Then, if f(w; θ) denotes I(w ≤ θ) or I(w ≥ θ),{

T−1/2
∑T

t=1 ∆yt−kf(yt−1/
√
T ; θ)εt

}
θ∈[−a,a]

, k ≥ 1, is asymptotically stochastically | · |-equicontinuous.

Proof of Lemma 3. To prove the first asymptotic stochastic equicontinuity result, we satisfy the condi-
tions (7.9) and (7.10) of Theorem 8 and apply Lemma 2. Take E = F = {f(·; θ)}θ∈[−a,a]. Writting f(w; θ)
as f(w)I(w ≤ θ) or f(w)I(w ≥ θ), we have for any integer numbers q

‖f(·; θ2)− f(·; θ1)‖q
q =

∣∣∣∣∣
∫ θ1

θ2

|f(w)|qdw

∣∣∣∣∣
=


|θ2 − θ1| if f(w) = 1,
|θq+1

2 −θq+1
1 |

q+1 = |θq
2+θ1θq−1

2 +···+θq
1 |

q+1 |θ2 − θ1| if f(w) = w,
|θ2q+1

2 − θ2q+1
1 |

2q + 1
=
|θ2q

2 + θ1θ
2q−1
2 + · · ·+ θ2q

1 |
2q + 1

|θ2 − θ1| if f(w) = w2,

(7.13)
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so that (7.9) holds with Cq = 1 if f(w) = 1,

Cq = max
(θ1,θ2)∈[−a,a]2

∣∣∣∣∣θq
2 + θ1θ

q−1
2 + · · ·+ θq

1

q + 1

∣∣∣∣∣ , Cq = max
(θ1,θ2)∈[−a,a]2

∣∣∣∣∣θ2q
2 + θ1θ

q−1
2 + · · ·+ θ2q

1

2q + 1

∣∣∣∣∣ ,
for f(w) = w, f(w) = w2 respectively. For f(w; θ) = f(w)I(w ≤ θ) (the other case being sym-
metric) brackets can be taken here as [f(·; θi), f(·; θi+1)] = {f(·; θ); θi ≤ θ ≤ θi+1}. (7.13) yields
there is a C > 0 such that ‖f(·; θ2)− f(·; θ1)‖1 ≤ C|θ2 − θ1| for all θ1, θ2 in the compact interval
[−a, a], so that (7.10) holds with ζ = 1. Due to the latter inequality, asymptotic stochastic ‖ · ‖1-
equicontinuity implies here asymptotic stochastic | · |-equicontinuity. The asymptotic stochastic equicon-
tinuity of T−1/2

∑T
t=1 ∆yt−kf

(
T−1/2yt−1; θ

)
)εt on [−a, a] follows from Lemma 2 because, for f(w) = 1,

(7.13) holds for any q > 0, implying (7.12) in Lemma 2. 2

Proof of Theorem 5. Assume for brevity that σy = 1. Observe that the processes of the Theorem are
in `∞([−a, a]2). Note that T−1/2

∑T
t=1 ∆yt−kεt, k ≤ 1, is a centered martingale with E(∆yt−kεt)2 < ∞

(see Lemma A.2 in the Appendix), so that T−1/2
∑T

t=1 ∆yt−kεt = OP(1).
We first show that supλ∈[−a,a]2 ‖

∑T
t=1 ∆XU

jt(λ)εt‖ = OP(1), j = 1, 2, 3. Since ∆XU
1t(λ)+∆XU

2t(λ)+
∆XU

3t(λ) = T−1/2[∆yt−1, . . . ,∆yt−k] and T−1/2
∑T

t=1 ∆yt−kεt = OP(1), 1 ≤ k ≤ p, it is sufficient to take
j = 1, 3, and to prove the result for j = 1 by symmetry. Because the entries T−1/2

∑T
t=1 ∆yt−kI(yt−1/

√
T ≤

λ1)εt, 1 ≤ k ≤ p, of
∑T

t=1 ∆XU
1t(λ)εt are centered martingales with a variance bounded by E(∆yt−kεt)2,

T−1/2
∑T

t=1 ∆yt−kI(yt−1/
√
T ≤ λ1)εt = OP(1) for all λ1. That

sup
λ1∈[−a,a]

∣∣∣∣∣T−1/2
T∑

t=1

∆yt−kI(yt−1/
√
T ≤ λ1)εt

∣∣∣∣∣ = OP(1)

follows from the asymptotic stochastic equicontinuity established in Lemma 3.
For the rest of the Theorem, we firstly derive the finite-dimensional limit distribution. Note that

T∑
t=1

∆XU
jt(λ)′∆XU

jt(λ) =
Ω
T

T∑
t=1

I
(
yt−1√
T
∈ Ij(λ)

)

+
1
T

T∑
t=1

{
[∆yt−k∆yt−k′ ]1≤k,k′≤p − Ω

}
I
(
yt−1√
T
∈ Ij(λ)

)
(7.14)

and consider first the process{
T∑

t=1

XU
jt(λ)′εt,

T∑
t=1

XU
jt(λ)′XU

jt(λ),
Ω
T

T∑
t=1

I
(
yt−1√
T
∈ Ij(λ)

)
, j = 1, 2, 3

}
λ∈[−a,a]2

. (7.15)

Let F = {[1, w, w2]I(w ∈ Ij(λ)), j = 1, 2, 3, λ ∈ [−a, a]2} be the class of functions appearing in the
process (7.15). Observe that F is a class of regular functions, so that Theorem 7 yields that the finite
dimensional limit distribution of (7.15) is the limit distribution of the lemma. To check for the asymptotic
stochastic equicontinuity of (7.15), note that I(w ∈ I2(λ)) = 1− I(w ∈≤ λ1)− I(w ≥ λ2), so that Lemma
3 establishes that (7.15) is asymptotic stochastic equicontinuity as sum of such processes. It follows that
(7.15) converges in distribution in `∞([−a, a]2) to the limit of Theorem 5.

To complete the proof of the Theorem, it remains to show that the remainder term (7.14) and∑T
t=1 ∆XU

jt(λ)′XU
jt(λ) are uniformly negligible over [−a, a]. This is done in the next two steps which
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show (1) the asymptotic stochastic equicontinuity of
∑T

t=1 ∆XU
jt(λ)′XU

jt(λ) and
∑T

t=1 ∆XU
jt(λ)′∆XU

jt(λ)
(since, ΩT−1

∑T
t=1 I(yt−1/

√
T ∈ Ij(λ)) is asymptotically stochastically equicontinuous as shown above);

(2) pointwise convergence in probability to 0 of
∑T

t=1 ∆XU
jt(λ)′XU

jt(λ) and of the remainder term (7.14).
Step 1. Asymptotic stochastic equicontinuity. We begin with

∑T
t=1 ∆XU

jt(λ)′XU
jt(λ). Because

∆XU
1t(λ)′XU

1t(λ) + ∆XU
2t(λ)′XU

2t(λ) + ∆XU
3t(λ)′XU

3t(λ) =
1
T

[∆yt−1, . . . ,∆yt−p]
′
[
1,
yt−1√
T

]
does not depend upon λ, it is sufficient to study j = 1. The absolute values of entries of the increments
of
∑T

t=1 ∆XU
1t(λ1)′XU

1t(λ1) are such that, with fT (w) = 1 or fT (w) = w/
√
T ,∣∣∣∣∣ 1T

T∑
t=1

∆yt−kfT (yt−1)I
(
λ1 ≤

yt−1√
T
< λ′1

)∣∣∣∣∣≤
(

1
T

T∑
t=1

(∆yt−k)2
)1/2(

1
T

T∑
t=1

f2
T (yt−1)I

(
λ1 ≤

yt−1√
T
< λ′1

))1/2

= OP(1)

(
1
T

T∑
t=1

f2
T (yt−1)I

(
λ′1 <

yt−1√
T
< λ1

))1/2

,

k = 1, . . . , p, by the Cauchy-Schwartz inequality and Lemma A.2. Then the asymptotic stochastic equicon-
tinuity of

∑T
t=1 ∆XU

1t(λ)′XU
1t(λ) follows from Lemma 3 and the definition (7.11) of asymptotic stochastic

equicontinuity.
For

∑T
t=1 ∆XU

jt(λ)′∆XU
jt(λ), it is also sufficient to restrict to j = 1, and the bound∣∣∣∣∣ 1T

T∑
t=1

∆yt−k∆yt−k′I
(
λ1 ≤

yt−1√
T
< λ′1

)∣∣∣∣∣≤
(

1
T

T∑
t=1

(∆yt−k∆yt−k′)2
)1/2(

1
T

T∑
t=1

I
(
λ1 ≤

yt−1√
T
< λ′1

))1/2

= OP(1)

(
1
T

T∑
t=1

I
(
λ′1 <

yt−1√
T
< λ1

))1/2

,

1 ≤ k, k′ ≤ p similarly gives asymptotic stochastic equicontinuity.
Step 2.

∑T
t=1 ∆XU

jt(λ)′XU
jt(λ) = oP(1) and T−1

∑T
t=1 (∆yt−k∆yt−k′ − E[∆yt−k∆yt−k′ ]) I(yt−1/

√
T ∈

Ij(λ)) = oP(1) for all λ, 1 ≤ k, k′ ≤ p, j = 1, 2, 3. Since, for 1 ≤ k, k′ ≤ p,

1
T

T∑
t=1

[∆yt−1, . . . ,∆yt−p]
′
[
1,
yt−1

T

]
= oP(1) ,

1
T

T∑
t=1

(∆yt−k∆yt−k′ − E[∆yt−k∆yt−k′ ]) = oP(1)

as seen from Hamilton [1994], it is again sufficient to study j = 1. We begin with
∑T

t=1 ∆XU
1t(λ)′XU

1t(λ) =
oP(1). The entries of this matrix write, for k = 1, . . . , p,

1
T

T∑
t=1

∆yt−kfT (yt−1)I
(
yt−1√
T
≤ λ1

)
with fT (y) = 1 or fT (y) = y/

√
T .

Note that max1≤t≤T |fT (yt−1)| = OP(1), using the Donsker Theorem if fT (y) = y/
√
T . Since ∆yt−k =∑∞

i=0 πiεt−k−i, we have for any integer I,∣∣∣∣∣ 1T
T∑

t=1

(
∆yt−k −

I∑
i=0

πiεt−k−i

)
fT (yt−1)I

(
yt−1√
T
≤ λ1

)∣∣∣∣∣
≤ OP(1)

+∞∑
i=I+1

|πi|
1
T

T∑
t=1

|εt−k−i| with E

[
+∞∑

i=I+1

|πi|
1
T

T∑
t=1

|εt−k−i|

]
≤ E|εt|

+∞∑
i=I+1

|πi| (7.16)
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which can be made arbitrarily small taking I large enough. Therefore, it is sufficient to show that
T−1

∑T
t=1 εt−kfT (yt−1)I(yt−1 ≤ λ1

√
T ) = oP(1), for any k ≥ 1. For that purpose, note that∣∣∣I(yt−1 ≤ λ1

√
T )− I(yt−k−1 ≤ λ1

√
T )
∣∣∣

≤ I(yt−1 > λ1

√
T )I(yt−k−1 ≤ λ1

√
T ) + I(yt−1 ≤ λ1

√
T )I(yt−k−1 > λ1

√
T )

= I
(
yt−k−1 − yt−1 < yt−k−1 − λ1

√
T ≤ 0

)
+ I
(
0 < yt−k−1 − λ1

√
T ≤ yt−k−1 − yt−1

)
≤ I

(∣∣∣yt−k−1 −
√
Tλ1

∣∣∣ ≤ max
1≤t≤T

|∆yt−1 + · · ·+ ∆yt−k|
)

(7.17)

≤ I
(∣∣∣∣yt−k−1√

T
− λ1

∣∣∣∣ ≤ CT 1/(4+s)−1/2

)
with an arbitrary large probability

provided that C is taken large enough, see Lemma A.2. Reasoning on that event gives∣∣∣∣∣ 1T
T∑

t=1

εt−k

(
fT (yt−1)I(yt−1 ≤ λ1

√
T )− fT (yt−k−1)I(yt−k−1 ≤ λ1

√
T )
)∣∣∣∣∣

≤ 1
T

T∑
t=1

|εt−k| max
1≤t≤T

|fT (yt−1)− fT (yt−k−1)|

+
max1≤t≤T |fT (yt−1)|

T

T∑
t=1

|εt−k|I
(∣∣∣∣yt−k−1√

T
− λ1

∣∣∣∣ ≤ CT 1/(4+s)−1/2

)

= OP

(
T 1/(4+s)

√
T

)
+
OP(1)
T

T∑
t=1

|εt−k|I
(∣∣∣∣yt−k−1√

T
− λ1

∣∣∣∣ ≤ CT 1/(4+s)−1/2

)
, (7.18)

by Lemma A.2 for the first remainder term, which is due to the case fT (y) = y/
√
T , and since max1≤t≤T |fT (yt−1)| =

OP(1). Now Lemma A.1 and arguing as in (A.11) yield

E

[
1
T

T∑
t=1

|εt−k|I
(∣∣∣∣yt−k−1√

T
− λ1

∣∣∣∣ ≤ CT 1/(4+s)−1/2

)]

=
E|ε1|
T

T∑
t=1

∫ λ1
√

T+CT 1/(4+s)

λ1
√

T−CT 1/(4+s)
ϕt−k−1(v)dv ≤ C

(
kT 1/(4+s)

T
+
T 1/(4+s)

T

T∑
t=k+2

1√
t− k + 1

)
= O

(
T 1/(4+s)−1/2

)
= o(1) since s > 4. (7.19)

Therefore (7.18) with s > 4 and (7.19) shows that

1
T

T∑
t=1

εt−kfT (yt−1)I
(
yt−1√
T
≤ λ1

)
=

1
T

T∑
t=1

fT (yt−k−1)I
(
yt−k−1√

T
≤ λ1

)
εt−k + oP(1) .

Observe now that the leading term is oP(1) since this sum is a martingale with a variance bounded by
σ2T−1

∑T
t=1 Ef2

T (yt−k−1) = o(1). Therefore T−1
∑T

t=1 εt−kfT (yt−1)I(yt−1 ≤ λ1

√
T ) = oP(1) as desired

and then
∑T

t=1 ∆XU
jt(λ)′XU

jt(λ) = oP(1), j = 1, 2, 3.
We now show that T−1

∑T
t=1 (∆yt−k∆yt−k′ − E[∆yt−k∆yt−k′ ]) I(yt−1/

√
T ∈ I1(λ)) = oP(1) for all

λ, 1 ≤ k, k′ ≤ p. Let εt−k,t−k′ = εt−kεt−k′ − E[εt−kεt−k′ ] so that ∆yt−k∆yt−k′ − E[∆yt−k∆yt−k′ ] =
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∑
0≤i,i′≤+∞ πiπi′εt−k−i,t−k′−i′ . This gives, as in (7.16), for any integer I,

1
T

T∑
t=1

∆yt−k∆yt−k′ − E[∆yt−k∆yt−k′ ]−
∑

0≤i,i′≤I+1

πiπi′εt−k−i,t−k′−i′

 I
(
yt−1√
T
≤ λ1

)

≤
∑

I+1≤i,i′≤∞

|πi||πi′ |
1
T

T∑
t=1

|εt−k−i,t−k′−i′ |

with E

 ∑
I+1≤i,i′≤∞

|πi||πi′ |
1
T

T∑
t=1

|εt−k−i,t−k′−i′ |

 ≤ 2Eε2t

( ∞∑
i=I+1

|πi|

)2

I→∞−→ 0 ,

so that it is sufficient to show that T−1
∑T

t=1 εt−k,t−k′I(yt−1/
√
T ≤ λ1) = oP(1) for all k, k′ ≥ 1. Assume

that k′ = k − n ≤ k. Then arguing as in (7.18) and (7.19) gives

1
T

T∑
t=1

εt−k,t−k′I
(
yt−1√
T
≤ λ1

)
=

1
T

T∑
t=1

εt−k,t+n−kI
(
yt−k−1√

T
≤ λ1

)
+ oP(1) ,

where the leading term is again an oP(1) martingale by definition of εt−k,t+n−k. This ends the proof of
Theorem 5. 2

Proof of Theorem 6. Assume that σy = 1. That
∑T

t=1 ∆XB′
t ∆XB

t = Ω + oP(1) has been proven in
Theorem 5 since ∆XB′

t ∆XB
t = ∆XU

1t(λ)′∆XU
1t(λ)+∆XU

2t(λ)′∆XU
2t(λ)+∆XU

3t(λ)′∆XU
3t(λ). Note that all

the processes of the Lemma are in `∞([−a, a]2). The rest of the proof is divided in three steps.
Step 1. Asymptotic stochastic equicontinuity of

∑T
t=1X

B
jt(λ)′εt,

∑T
t=1X

B
jt(λ)′XB

jt(λ),
∑T

t=1 ∆XB′
t XB

jt(λ),
j = 1, 2, 3. Let

Xjt(λ) =
I (yt−1 ∈ Ij(λ))

T 1/4
[1, yt−1] , j = 1, 3 , Xt =

1
T 1/4

[1, yt−1] ,

with X1t(λ) = X1t(λ1) and X3t(λ) = X3t(λ2). The asymptotic stochastic equicontinuity over λ1 or λ2

in [−a, a] of
∑T

t=1X
′
jt(λ)εt and

∑T
t=1X

′
jt(λ)X ′

jt, j = 1, 3, directly follows from Lemma 3. This gives
the asymptotic stochastic equicontinuity of

∑T
t=1X

B
jt(λ)εt,

∑T
t=1X

B
jt(λ)′XB

jt(λ), j = 1, 3, which uses
a higher standardization (

√
T for 1 and T for yt−1 instead of T 1/4). For j = 2, note that XB

2t(λ) =
Xt − X1t(λ) − X3t(λ), XB

2t(λ)′XB
2t(λ) = X ′

tXt − X ′
1t(λ)X1t(λ) − X ′

3t(λ)X3t(λ) so that
∑T

t=1X
B
2t(λ)′εt,∑T

t=1X
B
2t(λ)′XB

2t(λ) are also asymptotically equicontinuous. The asymptotic stochastic equicontinuity of∑T
t=1 ∆XB′

t XB
jt(λ), j = 1, 2, 3 similarly follows from the one of

∑T
t=1 ∆XB′

t Xjt(λ), j = 1, 3, that we
establish now. Consider j = 1, j = 3 being similar. The entries of the increments of

∑T
t=1 ∆XB′

t X1t(λ)
between λ1 < λ′1, are such that, with f(w) = 1 or f(w) = w, k = 1, . . . , p∣∣∣∣∣ 1
T

1
2+ 1

4

T∑
t=1

∆yt−kf(yt−1)I(λ1 < yt−1 ≤ λ′1)

∣∣∣∣∣≤
(

1
T

T∑
t=1

(∆yt−k)2
) 1

2
(

1√
T

T∑
t=1

f2(yt−1)I(λ1 < yt−1 ≤ λ′1)

) 1
2

= OP(1)

(
1√
T

T∑
t=1

f2(yt−1)I(λ1 < yt−1 ≤ λ′1)

)1/2

,

by the Cauchy-Shwarz inequality and Lemma A.2. Then the asymptotic stochastic equicontinuity of∑T
t=1 ∆XB′

t XB
1t(λ) follows from Lemma 3.
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Step 2.
∥∥∥∑T

t=1 ∆XB′
t XB

jt(λ)
∥∥∥ = oP(1) for all λ, j = 1, 2, 3. For j = 2, the absolute value of the

entries of
∑T

t=1 ∆XB′
t XB

2t(λ) write as, with f(w) = 1 or f(w) = w and k = 1, . . . , p,∣∣∣∣∣ 1√
TT 1/4

T∑
t=1

∆yt−kf(yt−1)I (λ1 < yt−1 < λ2)

∣∣∣∣∣≤ max1≤t≤T |∆yt−k|
T 1/4

1√
T

T∑
t=1

|f(yt−1)| I (λ1 < yt−1 < λ2)

= OP(T 1/(4+s)−1/4)OP(1) = oP(1) ,

because s > 0 and by Lemma A.2, and since T−1/2
∑T

t=1 |f(yt−1)|I(λ1 < yt−1 < λ2) converges in
distribution to LW (0, 1)

∫ λ2

λ1
|f(w)|dw/σy by Theorem 7, f(w)I(λ1 < w < λ2) being I-regular.

Consider now j = 1, j = 3 being similar. The entries of
∑T

t=1 ∆XB
t X

B
1t(λ) write, with fT (w) = 1 or

fT (w) = w/
√
T ,

1
T

T∑
t=1

∆yt−kfT (yt−1)I (yt−1 ≤ λ1) , k = 1, . . . , p .

Up to λ1 changed into
√
Tλ1, this is exactly the items studied in Step 2 of Theorem 5. Changing

√
Tλ1

into λ1 in equations (7.16), 7.17),(7.18) and (7.19) give that these items are oP(1).
Step 3. Convergence of the finite dimensional distributions and conclusion. Because, for j = 1, 2, 3,∑T

t=1 ∆XB′
t XB

jt(λ) = oP(1) and from asymptotic stochastic equicontinuity of these processes, we get that

supλ∈[−a,a]2

∥∥∥∑T
t=1 ∆XB′

t XB
jt(λ)

∥∥∥ = oP(1). Asymptotic stochastic equicontinuity of Step 1 and Theorem 7

yield the convergence in distribution of
∑T

t=1X
B
2t(λ)′XB

2t(λ) and
∑T

t=1X
B
2t(λ)′εt, [1, w, w2]I(λ1 < w < λ2)

being I-regular. For j = 1 (the case j = 3 being similar), note that the entries of
∑T

t=1X
B
1t(λ)′XB

1t(λ)
and

∑T
t=1X

B
1t(λ)′εt write

1
T

T∑
t=1

f

(
yt−1√
T

)
I (yt−1 ≤ λ1) ,

1√
T

T∑
t=1

f

(
yt−1√
T

)
I (yt−1 ≤ λ1) εt

with f(w) = 1, f(w) = w, or f(w) = w2. Therefore (A.3) and (A.6) in Lemma A.3 yield

E
1
2

[
1
T

T∑
t=1

f

(
yt−1√
T

)
(I (yt−1 ≤ λ1)− I (yt−1 ≤ 0))

]2

≤ C√
T

∣∣∣∣∣
∫ λ1

0

|f(w/
√
T )|dw

∣∣∣∣∣+
∣∣∣∣∣
∫ λ1

0
f2(w/

√
T )dw

√
T

∣∣∣∣∣
1
2
 = o(1) ,

E
1
4

(
1√
T

T∑
t=1

f

(
yt−1√
T

)
(I (yt−1 ≤ λ1)− I (yt−1 ≤ 0)) εt

)4

≤ C

T 1/4

∣∣∣∣∣
∫ λ1

0

f2(w/
√
T )dw

∣∣∣∣∣
1
2

+

∣∣∣∣∣
∫ λ1

0

f4(w/
√
T )dw

∣∣∣∣∣
1
4
 = o(1) .

This gives that
∑T

t=1X
B
1t(λ)′XB

1t(λ) =
∑T

t=1X
B
1t(0)′XB

1t(0)+oP(1) and
∑T

t=1X
B
1t(λ)′εt =

∑T
t=1X

B
1t(0)′εt+

oP(1). Asymptotic equicontinuity and Theorem 7 yield the convergence in distribution of Theorem 6 for
j = 1, 3 because I(yt−1 ≤ 0) = I(yt−1/(

√
T ≤ 0) and because the functions I(w ≤ 0)[1, w, w2] are regular.

2
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7.5 Proof of Corollaries 1 and 2, Theorems 2 and 3

Proof of Corollary 1. The proof is divided in three steps.

Step 1. Choice of the covariates and additional notations. Let Xjt(λ) = XU
jt(λ),∆Xjt(λ) = ∆XU

jt(λ)
be as in (3.6), and Xt(λ) = [X1t(λ), X2t(λ), X3t(λ),∆X1t(λ),∆X2t(λ),∆X3t(λ)]. Since the µ’s and ρ’s
coefficients in (3.2) vanish under the null, the definition (3.6) of the covariates Xt(λ) shows that the TAR
specification (3.2) writes as

∆yt = Xt(λ)rβ0T + εt with β0T =
√
Tβ0 , (7.20)

where r is from (3.2) and β0 is given by the coefficients of a(L) in (3.3). For the matrix R such that Rβ
gives the ρ coefficient of the TAR specification, define now

W̃aldT (λ) =
1

σ̃2
T (λ)

(
Rβ̃T (λ)

)′R(r′ T∑
t=1

X ′
t(λ)Xt(λ)r

)−1

R′

−1 (
Rβ̃T (λ)

)
where

β̃T (λ) =

(
r′

T∑
t=1

X ′
t(λ)Xt(λ)r

)−1

r′
T∑

t=1

X ′
t(λ)∆yt , σ̃

2
T (λ) =

1
T

T∑
t=1

(
∆yt −Xt(λ)rβ̃T (λ)

)2

.

Observe that the Xt(λ/(σy

√
T )), t = 1, . . . , T and the xt(λ), t = 1, . . . , T in (3.2) generate the same

linear span by (3.6), so that regressing on the former or the latter gives the same residuals. Therefore the
residuals-based formula (7.4) for the Wald statistic show that WaldT (λ) = W̃aldT (λ/(σy

√
T )), and

SupWaldT (ΛT ) = sup
λ∈eΛT

W̃aldT (λ) , Λ̃T =
ΛT

σy

√
T

=
{
λ;
λT

σy
≤ λ1 ≤ λ2 ≤

λT

σy
, λ2 − λ1 ≥

νT

σy

}
. (7.21)

Define also

WaldU (λ) = MU (λ)′r (r′CU (λ)r)−1
R′
(
σ2R (r′CU (λ)r)−1

R′
)−1

R (r′CU (λ)r)−1
r′MU (λ) .

We show that this statistic only depends upon the Brownian motion W (·) and not on σy, so that Wald(·)
is pivotal, showing that the limit variable supλ∈Λ/σy

has a pivotal distribution when the distribution of
[λ, λ, ν]/σy is pivotal under Assumption Λ. Let m0(yt−1, λ) and m1(yt−1, λ) be the linear functions of the
I(yt−1 ∈ Ij(λ)) and yt−1I(yt−1 ∈ Ij(λ)), j = 1, 2, 3, entering in the TAR specification, written in columns.
Due to the choice of covariate imposed in the Corollary, the Partioned Inverse formula yields that

WaldU (λ) = M̃ ′
1(λ)

(
C̃11(λ)

)−1

M̃1(λ) (7.22)

with, for C̃ij(λ) = σi+j
y

∫ 1

0

mi (W (v), λ)m′
j (W (v), λ) dv ,

M̃1(λ) = C̃10(λ)
∫ 1

0

m0 (W (v), λ) dW (v) + C̃11(λ)σy

∫ 1

0

m1 (W (v), λ) dW (v)

C̃10(λ) = −
[
C̃00(λ)− C̃01(λ)

(
C̃11(λ)

)−1

C̃10(λ)
]−1

C̃10(λ)
(
C̃11(λ)

)−1

,

C̃11(λ) =
[
C̃11(λ)− C̃10(λ)

(
C̃00(λ)

)−1

C̃11(λ)
]−1

.
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Since M̃1(λ) is proportional to 1/σy and C̃11(λ) to 1/σ2
y, σy cancels out from the expression of WaldU (λ).

Note also that the inverse matrices are well defined for all λ in Λ/σy under (3.9).
Step 2. A truncation of ΛT . Consider a > 0 and define

Λ̃T (a) =
{
λ;λT (a) ≤ λ1 ≤ λ2 ≤ λT (a), λ2 − λ1 ≥ νT (a)

}
with λT (a) = max

(
λT

σy
,−a

)
, λT (a) = min

(
λT

σy
, a

)
, νT (a) = min

(
νT

σy
, λT (a)− λT (a)

)
,

Λ̃(a) =
{
λ;λ(a) ≤ λ1 ≤ λ2 ≤ λ(a), λ2 − λ1 ≥ ν(a)

}
with λ(a) = max

(
λ

σy
,−a

)
, λ(a) = min

(
λ

σy
, a

)
, ν(a) = min

(
ν

σy
, λ(a)− λ(a)

)
.

Observe that Λ̃T (a) and Λ̃(a) are subsets of [−a, a]2. Because λ/σy ≤ λ(a) ≤ λ(a) ≤ λ/σy and ν(a)/σy ≥
min(ν, 2a), (3.9) yields that

inf
v∈[0,1]

W (v) ≤ λ(a) ≤ λ(a) ≤ sup
v∈[0,1]

W (v) and ν(a) > 0 a.s. (7.23)

Note that

P

(
sup
λ∈Λ

WaldU

(
λ

σy

)
6= sup

λ∈eΛ(a)

WaldU (λ)

)
≤ P

(
λ

σy
≤ −a or a ≤ λ

σy

)
a→∞−→ 0.

Because [λT , λT , νT ] d→ [λ, λ, ν] by Assumption Λ, we similarly have

sup
T≥1

P

(
sup

λ∈eΛT

W̃aldT (λ) 6= sup
λ∈eΛT (a)

W̃aldT (λ)

)
≤ sup

T≥1
P
(
λT

σy
≤ −a or a ≤ λT

σy

)
a→∞−→ 0.

Therefore (7.21) and noting that supλ∈eΛ(a) WaldU (λ) converges by a.s. continuity to supλ∈Λ/σ WaldU (λ)
when a→ +∞ show that the limit result of Corollary 1 holds if, for all a,

sup
λ∈eΛT (a)

W̃aldT (λ) d→ sup
λ∈eΛ(a)

WaldU (λ) . (7.24)

Step 3. Proof of (7.24) and conclusion. Recall that
(∑T

t=1X
′
t(λ)Xt(λ)

)−1

stands for the pseudo-

inverse of
∑T

t=1X
′
t(λ)Xt(λ). We first show that, with a probability tending to 1,

∑T
t=1X

′
t(λ)Xt(λ) has

an inverse for all λ in Λ̃T (a), i.e. that limT→∞ P
(
infλ∈eΛT (a) Det

(∑T
t=1X

′
t(λ)Xt(λ)

)
> 0
)

= 1. Orthog-
onality of the regimes, Theorem 5 and Assumption Λ yield thatλT (a), λT (a), νT (a),

{
T∑

t=1

X ′
t(λ)Xt(λ)

}
λ∈[−a,a]2

 d→
[
λ(a), λ(a), ν(a), {CU (λ)}λ∈[−a,a]2

]
in R3 × `∞([−a, a]2), where CU (λ) is as in (3.8). Note that Det(Ω) > 0. It then follows by (7.23)
and continuity of {W (v)}v∈[0,1] which, moreover, cannot be constant over any non empty Ij(λ), that
Det(CU (λ)) > 0 for all λ ∈ Λ̃(a) a.s. Moreover, λ 7→ Det(CU (λ)) is a.s. continuous over Λ̃(a) which
is a.s. compact. Therefore infλ∈eΛ(a) Det(CU (λ)) > 0 a.s. In addition, because Λ̃T (a) ⊂ [−a, a]2 and

Λ̃T (a) ⊂ T [−a, a]2, the map from R3 × `∞([−a, a]2) to RλT (a), λT (a), νT (a),

{
T∑

t=1

X ′
t(λ)Xt(λ)

}
λ∈T (−a,a)

 7→ inf
λ∈eΛT (a)

Det

(
T∑

t=1

X ′
t(λ)Xt(λ)

)
,
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is continuous at [λ(a), λ(a), ν(a), {CU (λ)}λ∈[−a,a]2 ] by continuity of Det(·) and CU (·). Therefore, the
Functional Continuous Mapping Theorem (see e.g. Theorem 1.3.6 in van der Vaart and Wellner [1996])
yields that

lim
T→∞

P

(
inf

λ∈eΛT (a)
Det

(
T∑

t=1

X ′
t(λ)Xt(λ)

)
> 0

)
= P

(
inf

λ∈eΛ(a)
Det(CU (λ)) > 0

)
= 1 .

Hence
∑T

t=1X
′
t(λ)Xt(λ) has an inverse for all λ in Λ̃T (a) with a probability tending to 1. Observe also

that

σ̃2
T (λ) =

1
T

T∑
t=1

ε2t −
1
T

(
T∑

t=1

Xt(λ)rεt

)(
r′

T∑
t=1

X ′
t(λ)Xt(λ)r

)−1(
r′

T∑
t=1

X ′
t(λ)εt

)
+ ε′T (λ)

= σ2 + ε′′T (λ) with sup
λ∈bΛT (a)

(|εT (λ)|+ |ε′′T (λ)|) = oP(1) ,

where the last approximation of σ̃2
T (λ) comes from Theorem 5 and the Law of Large Numbers. Then the

Functional Continuous Mapping Theorem yields that (7.24) is proved. 2

Proof of Corollary 2. The proof follows the same steps than for Corollary 1, up to the choice of
Xt(λ) = [XB

1t(λ), XB
2t(λ), XB

3t(λ),∆XB
t ] from (3.12) in (7.20) and the use of Theorem 6 in place of Theorem

5. It remains to show that the null limit distribution is pivotal. Due to the restriction on the choice of
covariate imposed in the Corollary, this limit distribution decomposes as a sum of two independent
terms. A first term comes from the outer regimes and, as seen from (3.13) and (3.14), involves C1(0),
C3(0), M1(0) and M3(0) in a quadratic form similar to the variable WaldU (0) from (7.22). The second
is due to the inner regime and writes as supλ∈Λ ζ

2
2B(λ), where the expression of ζ2B(·) depends upon

the central regime variables retained in x̃t(λ). If none of these variables appear then ζ2B(λ) = 0, while
if yt−1I(yt−1 ∈ I2(λ) only or if I(yt−1 ∈ I2(λ) and yt−1I(yt−1 ∈ I2(λ) are retained, ζ2B(λ) respectively
writes as ∫ λ2

λ1
wdB(w)√

(λ3
2 − λ3

1)/3
,

(λ2 − λ1)
∫ λ2

λ1
wdB(w)− (λ2

2 − λ2
1)
∫ λ2

λ1
dB(w)/2√

(λ2 − λ1)2(λ3
2 − λ3

1)/3− (λ2 − λ1)(λ2
2 − λ2

1)2/4
.

Since B(ν·) d=
√
νB(·), elementary algebra yields that ζ2B(ν·) = ζ2B(·). Hence supλ∈Λ/σy

ζ2
2B(λ) d=

supλ∈Λ/ν ζ
2
2B(λ) which has a pivotal distribution if the distribution of [λ/ν, λ/ν] is pivotal. 2

Proof of Theorems 2 and 3. Elementary manipulations based on Theorem 7 shows that the threshold
sets used in Theorems 2 and 3 satisfy Assumption Λ and the conditions for achieving a pivotal limit
distribution of Corollaries 1 and 2. Hence Theorem 2 directly follows from Corollary 1 and elementary
algebra. Theorem 3 similarly follows from Corollary 2. 2

Appendix: Proof of Lemma 2

We first introduce some additional notations and preliminary results. Assumption L yields that yt =
π0εt + (π0 + π1)εt−1 + · · ·+ (π0 + · · ·+ πt−1)ε1 +

∑∞
i=0(πi+1 + · · ·+ πi+t)ε−i. Define

ψi =
i∑

j=0

πj so that yt =
t−1∑
i=0

ψiεt−i +
∞∑

i=0

(ψi+t − ψi) ε−i ,

ỹt,i =
i∑

j=t+1

ψi−jεj and yt,i = yi − ỹt,i =
t∑

j=1

ψi−jεj +
∞∑

j=0

(ψj+t − ψj) ε−j for t < i.
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Let ϕt(·) and ϕt,i(·) be the densities of yt and ỹt,i. The bound (3.7) in Akonom [1993] writes as:

Lemma A.1 (Akonom [1993]) Under Assumptions L and E (s) with s > −2, there exists a constant
C > 0 such that for all t, i with 1 ≤ t < i, supy∈R ϕt(w) ≤ C/

√
t+ 1 and supw∈R ϕt,i(w) ≤ C√

i−t
.

Lemma A.2 Under Assumptions L and E(s) with s > −3, sup−p≤t E|∆yt−1|4+s <∞, max−p≤t≤T |∆yt−1| =
OP(T 1/(4+s)) and max1≤t≤T |εt| = OP(T 1/(4+s)).

Proof of Lemma A.2. Recall that ∆yt = 0 for t ≤ 0. The Minkowski inequality yields, for all t,
E1/(4+s)|∆yt−1|4+s ≤

∑∞
i=1 |πi|E1/(4+s)|εt|4+s ≤ C <∞. We have by the Markov inequality

P
(

max
−p≤t≤T

|∆yt−1| ≥MT 1/(4+s)

)
≤ 1
MT

E max
−p≤t≤T

|∆yt−1|(4+s) ≤ 1
MT

T∑
t=−p

E|∆yt−1|4+s ≤ C

M

which can be made small by taking M large enough. The order of max1≤t≤T |εt| is similarly obtained. 2

Lemma A.3 Under Assumptions L and E(0), there exists a constant C > 0 such that, for any measurable
map f(·) from R to R,

E1/2

[
1
T

T∑
t=1

f

(
yt−1√
T

)]2

≤ C

[∫
|f(w)|dw + 2

(∫
f2(w)dw
T

)1/2
]
, (A.1)

E1/3

∣∣∣∣∣ 1T
T∑

t=1

f

(
yt−1√
T

)∣∣∣∣∣
3

≤ C

[(∫
|f(w)|dw

)3

+
∫
|f(w)|dw

∫
f2(w)dw

T
+
∫
|f(w)|3dw
T 2

]1/3

, (A.2)

E1/2

(
1√
T

T∑
t=1

f(yt−1)

)2

≤ C

[∫
|f(w)|dw + 2

(∫
f2(w)dw√

T

)1/2
]
, (A.3)

E1/3

∣∣∣∣∣ 1√
T

T∑
t=1

f(yt−1)

∣∣∣∣∣
3

≤ C

[(∫
|f(w)|dw

)3

+
∫
|f(w)|dw

∫
f2(w)dw√

T
+
∫
|f(w)|3dw

T

]1/3

, (A.4)

E1/4

[
1√
T

T∑
t=1

f

(
yt−1√
T

)
εt

]4

≤ C

[∫
f2(w)dw + 2

(∫
f4(w)dw
T

)1/2
]1/2

, (A.5)

E1/4

[
1

T 1/4

T∑
t=1

f(yt−1)εt

]4

≤ C

[∫
f2(w)dw + 2

(∫
f4(w)dy√

T

)1/2
]1/2

. (A.6)

If E(s) holds with s > 0, then for any integer number k ≥ 1,

E1/3

[
1√
T

T∑
t=1

∣∣∣∣∆yt−kf

(
yt−1√
T

)
εt

∣∣∣∣
]3

≤ C
√
T

[(∫
|f(w)|

s+4
s+1 dw

)3

+
∫
|f(w)|

s+4
s+1 dw

∫
|f(w)|2

s+4
s+1 dw

T
+
∫
|f(w)|3

s+4
s+1 dw

T 2

] 1
3

s+1
s+4

, (A.7)

E1/4

[
1√
T

T∑
t=1

∆yt−kf

(
yt−1√
T

)
εt

]4

≤ C

∫ |f(w)|2
s+4

s dw + 2

(∫
|f(w)|4

s+4
s dw

T

) 1
2


1
2

s
s+4

. (A.8)
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Proof of Lemma A.3. We begin with (A.1) and (A.3). Let fT (w) be respectively T−1/2f(T−1/2w) or

f(w), so that we have to bound E1/2
(
T−1/2

∑T
t=1 fT (yt−1)

)2

. We have

E

(
1√
T

T∑
t=1

fT (yt−1)

)2

=
1
T

T∑
t=1

Ef2
T (yt−1) (A.9)

+
2
T

T−1∑
t=1

E

[
fT (yt−1)

T∑
i=t+1

fT (yi−1)

]
. (A.10)

Lemma A.1 gives for any measurable g(·) from R to R,

1
T

T∑
t=1

E|g(yt−1)| =
1
T

T∑
t=1

∫
|g(w)|ϕt−1(w)dy ≤ C

T

∫
|g(w)|dw

T∑
t=1

1√
t

≤ C√
T

∫
|g(w)|dw since

∑T
t=1

1√
t
≤
∑T

t=1

∫ t

t−1
dv√

v
=
∫ T

0
dv√

v
=

√
T
2 . (A.11)

Therefore (A.9) is bounded by C
∫
f2

T (w)dw/
√
T . For (A.10), write yi−1 = ỹt−1,i−1 + yt−1,i−1 and note

that ỹt−1,i−1 is independent of the sigma-field Ft−1 = σ(εt−1, εt−2, . . .), i ≥ t+1. Observe also that yt−1,
yt−1,i−1, i ≥ t+ 1, are in Ft−1. Therefore Lemma A.1 yields

T∑
i=t+1

E [|g(yi−1)| |Ft−1 ] =
T∑

i=t+1

∫
|g(ỹ + yt−1,i−1)|ϕt−1,i−1(ỹ)dỹ ≤

T∑
i=t+1

C√
i− t

∫ ∣∣g(ỹ + yt−1,i−1)
∣∣ dỹ

= C

∫
|g(w)|dw

T∑
i=t+1

1√
i− t

≤ C
√
T

∫
g(w)dw (A.12)

since
∑T

i=t+1
1√
i−t

≤
∫ T

t
dx√
x−t

=
√

T−t
2 .

Applying (A.11) and (A.12) gives for (A.10)

1
T

∣∣∣∣∣
T−1∑
t=1

E

[
fT (yt−1)

T∑
i=t+1

fT (yi−1)

]∣∣∣∣∣ =
1
T

T−1∑
t=1

E

[
|fT (yt−1)|

T∑
i=t+1

E [|fT (yi−1)| |Ft ]

]

≤ C

∫
|fT (w)|dw 1√

T

T−1∑
t=1

E [|fT (yt−1)|] ≤ C

(∫
|fT (w)|dw

)2

.

It then follows that

E1/2

(
1√
T

T∑
t=1

fT (yt−1)

)2

≤

[
C√
T

∫
f2

T (w)dw + 2C
(∫

|fT (w)|dw
)2
]1/2

≤ (2C)1/2

[(∫
|fT (w)|dw

)2

+
4√
T

∫
f2

T (w)dw

]1/2

≤ C

[∫
|fT (w)|dw + 2

(∫
f2

T (w)dw√
T

)1/2
]

since (a+b)1/2 ≤ a1/2 +b1/2 for nonegative a, b. Taking fT (·) = f(·) yields that (A.3) is proven. For (A.1)
take fT (w) = T−1/2f(T−1/2w) and note that T−1/2

∫
|f(T−1/2w)|dw =

∫
|f(w)|dw, T−1

∫
f2(T−1/2w)dw =

T−1/2
∫
f2(w)dw.
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For (A.2) and (A.4), observe that

E

∣∣∣∣∣ 1√
T

T∑
t=1

fT (yt−1)

∣∣∣∣∣
3

≤ 1
T 3/2

T∑
t=1

E|fT (yt−1)|3 +
3

T 3/2

T−1∑
t1=1

E

[
f2

T (yt1−1)
T∑

t2=t1+1

|fT (yt2−1)|

]

+
6

T 3/2

T−2∑
t1=1

E

[
|fT (yt1−1)|

T−1∑
t2=t1+1

|fT (yt2−1)|
T∑

t3=t2+1

|fT (yt3−1)|

]

≤ C

[∫
|fT (w)|3dw

T
+
∫
f2

T (w)dw
∫
|fT (w)|dw√
T

+
(∫

|fT (w)|dw
)3
]
,

by (A.11) and (A.12), applied twice to bound the last sum. Computing each integrals for the corresponding
choice of fT (·) yields (A.2) and (A.4).

We now turn to (A.5) and (A.6). Let fT (w) be respectively T−1/4f(T−1/2w) or f(w), so that we

have to bound E1/4
(
T−1/4

∑T
t=1 fT (yt−1)εt

)4

. Note that
∑T

t=1 fT (yt−1)εt is a martingale with respect
to Ft. The Burkholder inequality (see e.g. Chow and Teicher [1988], Theorem 1, p.396) yields

E

(
1

T 1/4

T∑
t=1

fT (yt−1)εt

)4

≤ CE

(
1√
T

T∑
t=1

f2
T (yt−1)ε2t

)2

=
C

T

(
T∑

t=1

E
[
f4

T (yt−1)ε4t
]
+ 2

T−1∑
t=1

E
[
f2

T (yt−1)ε2tf
2
T (yt)ε2t+1

])
(A.13)

+
2C
T

T−2∑
t=1

E

[
f2

T (yt−1)ε2t
T∑

i=t+2

f2
T (yi−1)ε2i

]
. (A.14)

We first deal with the second item of (A.13). Applying the Cauchy-Schwarz inequality twice yields

1
T

T−1∑
t=1

E
[
f2

T (yt−1)ε2tf
2
T (yt)ε2t+1

]
≤ 1

T

T−1∑
t=1

E1/2
[
f4

T (yt−1)ε4t
]
E1/2

[
f4

T (yt)ε4t+1

]
≤

(
1
T

T−1∑
t=1

E
[
f4

T (yt−1)ε4t
])1/2(

1
T

T−1∑
t=1

E
[
f4

T (yt)ε4t+1

])1/2

≤ Eε4t
T

T+1∑
t=1

E
[
f4

T (yt−1)
]
,

since εt and yt−1 are independent. Therefore (A.11) yields for (A.13)

0 ≤ 1
T

(
T∑

t=1

E
[
f4

T (yt−1)ε4t
]
+ 2

T−1∑
t=1

E
[
f2

T (yt−1)ε2tf
2
T (yt)ε2t+1

])
≤ C√

T

∫
f4

T (w)dw .

For (A.14), (A.12) and (A.11) yield

0 ≤ 1
T

T−2∑
t=1

E

[
f2

T (yt−1)ε2t
T∑

i=t+2

f2
T (yi−1)ε2i

]
=

Eε2t
T

T−2∑
t=1

E

[
f2

T (yt−1)ε2t
T∑

i=t+2

E[f2
T (yi−1)|Ft+1]

]

≤
∫
f2

T (y)dy
CE2ε2t√

T

T−2∑
t=1

E
[
f2

T (yt−1)
]
≤ C

(∫
f2

T (w)dw
)2

.
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Combining the bounds above with (A.13) and (A.14) gives

E1/4

(
1

T 1/4

T∑
t=1

fT (yt−1)εt

)4

≤ C

[(∫
f2

T (w)dw
)2

+
1√
T

∫
f4

T (w)dw

]1/4

≤ C

[∫
f2

T (w)dw + 2
(∫

f4
T (w)dw√
T

)1/2
]1/2

.

Taking fT (·) = f(·) yields (A.6). For (A.5), take fT (w) = T−1/4f(T−1/2w) and note that
∫
T−1/2f2(T−1/2w)dw =∫

f2(w)dw,
∫
T−1f4(T−1/2w)dw = T−1/2

∫
f4(w)dw.

For (A.7), let q1 = (s + 4)/3 and q2 = (s + 4)/(s + 1) so that 1/q1 + 1/q2 = 1. The Hölder and
Minkowski inequalities together with Lemma A.2 and (A.2) yield

E
1
3

[
1√
T

T∑
t=1

|∆yt−kεt|
∣∣∣∣f (yt−1√

T

)∣∣∣∣
]3

≤
√
TE

1
3

( 1
T

T∑
t=1

|∆yt−kεt|q1

) 3
q1
(

1
T

T∑
t=1

∣∣∣∣f (yt−1√
T

)∣∣∣∣q2
) 3

q2


≤

√
TE

1
3q1

( 1
T

T∑
t=1

|∆yt−kεt|q1

)3
× E

1
3q2

( 1
T

T∑
t=1

∣∣∣∣f (yt−1√
T

)∣∣∣∣q2
)3


≤ C
√
T
[
E

1
3 |εt|3q1 E

1
3 |∆yt−k|3q1

] 1
q1

×

[(∫
|f(w)|q2dw

)3

+
∫
|f(w)|q2dw

∫
|f(w)|2q2dw

T
+
∫
|f(w)|3q2dw

T 2

] 1
3q2

.

For (A.8), let q3 = (s + 4)/4, q4 = (s + 4)/s so that 1/q3 + 1/q4 = 1. The Burkholder and Hölder
inequalities, Lemma A.2 and (A.1) yield

E
1
4

[
1√
T

T∑
t=1

∆yt−kf

(
yt−1√
T

)
εt

]4

≤ E
1
4

[
1
T

T∑
t=1

(∆yt−kεt)
2
f2

(
yt−1√
T

)]2

≤ E
1
4

( 1
T

T∑
t=1

(∆yt−kεt)
2q3

) 2
q3
(

1
T

T∑
t=1

f2q4

(
yt−1√
T

)) 2
q4


≤ E

1
4q3

(
1
T

T∑
t=1

(∆yt−kεt)
2q3

)2

×

E
1
2

(
1
T

T∑
t=1

f2q4

(
yt−1√
T

))2
 1

2q4

≤ C
[
E

1
2 |εt|4q3E

1
2 |∆yt−k|4q3

] 1
2q3

[∫
|f(w)|2q4dw + 2

(∫
|f(w)|4q4dw

T

) 1
2
] 1

2q4

.2

Proof of Lemma 2. Let us first recall a maximal inequality from empirical processes theory, see van der
Vaart and Wellner [1996]. Let G be a subset of E and consider a distance d over G. Let {Z(g)}g∈G be a
stochastic process such that, for some q ≥ 1 and C > 0,

E1/q|Z(g)− Z(g′)|q ≤ Cd(g, g′) .
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Let N(ε,G, d) be the covering numbers of G, that is the minimal number of d-balls with radius ε needed
to cover G. Then Theorem 2.2.4 in van der Vaart and Wellner [1996] gives, for any η, δ > 0,

E1/q sup
(g,g′)∈G:d(g,g′)≤δ

|Z(g)− Z(g′)|q ≤ K

[∫ η

0

N1/q(ε/2,G, d)dε+ δN2/q(η/2,G, d)
]
, (A.15)

where K depends on q and C only.
The proof will be divided in two parts devoted to the two kinds of sums. We first consider the case

where the εt’s do not appear explicitly in the sum (ST -type sums hereafter) and the case where it does,
yielding martingale (MT -type sums hereafter). Let us now introduce some preliminary notations. Consider
h = hT > 0 and a minimal covering of F with h-brackets [fi, fi+1], i = 1, . . . , N[ ](h,F , ‖ · ‖1) = Nh.
Choose a f̃i(·) in [fi, fi+1] ∩ F , and for f(·) ∈ [fi, fi+1] ∩ F , let ϑh(f) = f̃i. Let

Fh = ϑh(F) = {f̃i, i = 1, . . . , Nh} ⊂ F .

We use h = 1/T for Donsker asymptotics and h = 1/
√
T for Local time asymptotics (in short h = 1/rT

where rT is defined below).
We begin with the sums ST (f) which write as

1
rT

T∑
t=1

fT (yt−1) with (rT , fT (w)) =
(
T, f

(
w√
T

))
or(rT , fT (w)) = (

√
T , f(w)) .

The condition (7.9) of Theorem 8 and inequalities (A.3) and (A.6) of Lemma A.3 imply that, since
ST (f)− ST (f ′) = ST (f − f ′)

E1/2 (ST (f)− ST (f ′))2 ≤ C

[
‖f − f ′‖1 + 2

(
‖f − f ′‖1

rT

)1/2
]

(A.16)

We now show the asymptotic stochastic ‖ · ‖1-equicontinuity of {ST (ϑh(f))}f∈F = {ST (f)}f∈Fh
. Let

‖ · ‖1T be defined from (A.16), i.e.

‖f‖1T = ‖f‖1 + 2
(
‖f‖1
rT

)1/2

=
(
‖f‖1/2

1 +
1

√
rT

)2

− 1
rT

=

(
(rT ‖f‖1)1/2 + 1

)2 − 1
rT

.

Because ‖f − f ′‖1/2
1 ≤ (‖f − f ′′‖1 + ‖f ′′ − f ′‖1)1/2 ≤ ‖f − f ′′‖1/2

1 + ‖f ′′ − f ′‖1/2, ‖ · ‖1T satisfies the
triangular inequality and defines a distance. ¿From the definition of ‖ · ‖1T , we have

‖f‖1T ≤ ε if and only if ‖f‖1 ≤
(
(rT ε+ 1)1/2 − 1

)2
rT

. (A.17)

We now bound the covering number N(ε,Fh, ‖ · ‖1T ). (A.17) yields

N(ε,Fh, ‖ · ‖1T ) = N

((
(rT ε+ 1)1/2 − 1

)2
rT

,Fh, ‖ · ‖1

)
.

We now relate N(·,Fh, ‖ · ‖1) and N[ ](·,Fh, ‖ · ‖1). If |f(w)| ≤ |f ′(w)| for all w, then ‖f‖1 ≤ ‖f ′‖1. It
then follows that ‖f − (f1 + f2)/2‖1 ≤ ‖f2 − f1‖1/2 for f ∈ [f1, f2], so that [f1, f2] is a subset of the
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‖ · ‖1-ball of radius ‖f2 − f1‖1/2 and center (f1 + f2)/2. This gives N(Fh, ε, ‖ · ‖1) ≤ N[ ](Fh, 2ε, ‖ · ‖1)
and then, since Fh ⊂ F ,

N(ε,Fh, ‖ · ‖1T ) ≤ N[ ]

(
2((rT ε+1)1/2−1)2

rT
,F , ‖ · ‖1

)
,

N(ε,Fh, ‖ · ‖1T ) ≤ N[ ] (h,F , ‖ · ‖1) for ε ≤ h1T = h
2 +

√
2h
rT

,
(A.18)

because, for the latter, N(ε,Fh, ‖·‖1T ) ≤ Nh for ε ≤ h1T , where h1T is such that {f ∈ E ; ‖f‖1T ≤ h1T } =
{f ∈ E ; ‖f‖1 ≤ h/2}, so that h1T is as in (A.18) by definition of ‖ · ‖1T . Now (A.15) with η = δ, (A.16),
(A.17) and (A.18) yield, for T large enough

E1/2 sup
(f,f ′)∈F2;‖f−f ′‖1≤δ

|ST (ϑh(f))− ST (ϑh(f ′))|2 = E1/2 sup
(f,f ′)∈F2

h;‖f−f ′‖1T≤δ+2
√

δ/rT

|ST (f)− ST (f ′)|2

≤ K

[
h1TN

1/2
[ ] (h,F , ‖ · ‖1) +

∫ δ+2
√

δ/rT

h1T

N
1/2
[ ]

((
2(rT ε/2 + 1)1/2 − 1

)2
rT

,F , ‖ · ‖1

)
dε

+ δN[ ]

(
2
(
(rT δ/2 + 1)1/2 − 1

)2
rT

,F , ‖ · ‖1

)]
.

Therefore (7.10) yields since ζ < 1

E1/2 sup
(f,f ′)∈F2;‖f−f ′‖1≤δ

|ST (ϑh(f))− ST (ϑh(f ′))|2

≤ C

h1−ζ/2 +
h1/2−ζ/2

√
rT

+
∫ δ+2

√
δ/rT

h1T

(
rT(

(rT ε/2 + 1)1/2 − 1
)2
)ζ/2

dε

+ δ

(
rT(

2(rT δ/2 + 1)1/2 − 1
)2
)ζ


ε=2v/rT= C

[
h1−ζ/2 +

h1/2−ζ/2

√
rT

+ r
ζ/2−1
T

∫ (rT δ+2
√

rT δ)/2

rT h1T /2

1(
(v + 1)1/2 − 1

)ζ dv +
δ

δζ
(1 + o(1))

]

= C

[
h1−ζ/2 +

h1/2−ζ/2

√
rT

+ (δ1−ζ/2 + δ1−ζ)(1 + o(1))
]

(A.19)

using
∫ (rT δ+2

√
rT δ)/2

rT h1T /2
1

((v+1)1/2−1)ζ dv ∼ (rT δ/2)1−ζ/2

1−ζ/2 since 1

((v+1)1/2−1)ζ

v→∞∼ v−ζ/2,

and rTh1T ≥ rTh/2 = 1/2 > 0.14 The Chebychev inequality then gives

P

(
sup

(f,f ′)∈F2;‖f−f ′‖1≤δ

|ST (ϑh(f))− ST (ϑh(f ′))| ≥ δ0

)
≤ C(δ1−ζ/2 + δ1−ζ)2 + o(1)

δ20

so that (7.11) yields that {ST (ϑh(f))}f∈F is asymptotically stochastically equicontinuous. Showing that,
for a suitable choice of h, supf∈F |ST (f)−ST (ϑh(f))| = oP(1) will give that {ST (f)}f∈F is asymptotically

14Applying (A.15) directly to ST (f) would give diverging integrals at 0. This justifies the introduction of

ST (ϑh(f)). Note also that usual tightness criterion based on increment bounds (see e.g. van der Vaart and

Wellner [1996], p. 104) does not apply here.
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stochastically equicontinuous. For f ∈ [fi, fi+1], ST (fi) ≤ ST (f) ≤ ST (fi+1), and since ϑh(f) ∈ [fi, fi+1],
supf∈F |ST (f)−ST (ϑh(f))| ≤ max1≤i≤Nh

|ST (fi+1)−ST (fi)|. Repeating the steps leading to (A.19) with
fi in place of ϑh(f) yields that supf∈F |ST (f)− ST (ϑh(f))| = oP(1), ending the study of the ST (f)-type
sums.

We now consider the first martingale sums. Let MT (f) and M̃T (f) be

MT (f) =
1

√
rT

T∑
t=1

fT (yt−1)εt , M̃T (f) =
1

√
rT

T∑
t=1

fT (yt−1) (|εt| − E|εt|)

with (rT , fT (w)) =
(
T, f

(
w√
T

))
or (rT , fT (w)) = (

√
T , f(w)), so that (7.9), (A.5) or (A.6) in Lemma

A.3 yield

E1/4 (MT (f)−MT (f ′))4 ≤ C

[
‖f − f ′‖1 + 2

(
‖f − f ′‖1

rT

)1/2
]1/2

= C‖f − f ′‖1/2
1T = C‖f − f ′‖2T .

(A.20)
Note that ‖ · ‖2T defines a distance. Because N(ε,Fh, ‖ · ‖2T ) = N(ε,Fh, ‖ · ‖1/2

1T ) = N(ε2,Fh, ‖ · ‖1T ), we
obtain in place of (A.18)

N(ε,Fh, ‖ · ‖2T ) ≤ N[ ]

(
2((rT ε2+1)1/2−1)2

rT
,F , ‖ · ‖1

)
,

N(ε,Fh, ‖ · ‖2T ) ≤ N[ ] (h,F , ‖ · ‖1) for ε ≤ h2T =
√
h1T =

(
h
2 +

√
2h
rT

)1/2

.

Therefore (A.15) with η = δ, (7.10), and the change of variables ε = 2v/
√
rT yield here, arguing as in

(A.19)

E1/4 sup
(f,f ′)∈F2;‖f−f ′‖1≤δ

|MT (ϑh(f))−MT (ϑh(f ′))|4

= E1/4 sup
(f,f ′)∈F2

h;‖f−f ′‖2T≤
�

δ+2
√

δ/rT

�1/2
|MT (f)−MT (f ′)|4

≤ K

h2TN
1/4
[ ] (h,F , ‖ · ‖1) +

∫ C
�

δ+2
√

δ/rT

�1/2

h2T

N
1/4
[ ]

(
2
(
(rT ε2/4 + 1)1/2 − 1

)2
rT

,F , ‖ · ‖1

)
dε

+δN1/2
[ ]

(
2
(
(rT δ2/4 + 1)1/2 − 1)

)2
rT

,F , ‖ · ‖1

)]

≤ C

(h1−ζ/2 +
h1/2−ζ/2

r
1/2
T

)1/2

+ r
ζ/4−1/2
T

∫ (rT δ+2
√

rT δ)1/2
/2

√
rT h1T /2

dv

((v2 + 1)1/2 − 1)ζ/2

+δ

(
rT(

(rT δ2/4 + 1)1/2 − 1
)2
)ζ/2


T→+∞→ C

(
δ(1−ζ/2)/2 + δ1−ζ

)
since rTh is bounded away from 0.

It follows that {MT (ϑh(f))}f∈F is asymptotically stochastically equicontinuous, so that {MT (f)}f∈F is
asymptotically stochastically equicontinuous if supf∈F |MT (f)−MT (ϑh(f))| = oP(1). We have

sup
f∈F

|MT (f)−MT (ϑh(f))| ≤ max
1≤i≤Nh

1
√
rT

T∑
t=1

(
f(i+1)T (yt−1)− fiT (yt−1)

)
|εt|
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≤ E|εt|r1/2
T max

1≤i≤Nh

ST (fi+1 − fi) + max
1≤i≤Nh

M̃T (fi+1 − fi) .

Observe that M̃T (·) satisfies (A.20), so that under (7.10) and by definition of the fi’s

E
(

max
1≤i≤Nh

M̃T (fi+1 − fi)
)4

≤
Nh∑
i=1

E
(
M̃T (fi+1 − fi)

)4

≤ CNh

[
h+

(
h

rT

)1/2
]2

= ChN[ ](h,F , ‖ · ‖1)
[
h1/2 + r

−1/2
T

]2
= o(1) .

For r1/2
T max1≤i≤Nh

ST (fi+1 − fi), (A.4) and (A.2) of Lemma A.3, (7.9) and (7.10) yield

E
(
r
1/2
T max

1≤i≤Nh

ST (fi+1 − fi)
)3

≤ r
3/2
T

Nh∑
i=1

E (ST (fi+1 − fi))
3 ≤ Cr

3/2
T Nh

[
h3 +

h2

rT
+

h

r2T

]
= ChN[ ](h,F , ‖ · ‖1)

[
r
3/2
T h2 + r

1/2
T h+ r

−1/2
T

]
= o(1) .

The Markov inequality yields supf∈F |MT (f)−MT (ϑh(f))| = oP(1).
We now consider the martingale sums in Lemma 2 depending upon the increments ∆yt−k, k ≥ 1.

We set h = 1/T . Define

MT (f) =
1√
T

T∑
t=1

∆yt−kf

(
yt−1√
T

)
εt , ST (f) =

1√
T

T∑
t=1

∣∣∣∣∆yt−kf

(
yt−1√
T

)
εt

∣∣∣∣ .
Let q = (s+ 4)/s < 2 since s > 4. Then (A.8) of Lemma A.3 and (7.12) yields

E1/4
(
MT (f)−MT (f ′)

)4 ≤ C

[
‖f − f ′‖1 + 2

(
‖f − f ′‖1

T

)1/2
] 1

2q

= C‖f − f ′‖
1
2q

1T = C‖f − f ′‖3T ,

taking rT = T in the definition of ‖ · ‖1T . Note that ‖ · ‖3T defines a distance with, in place of (A.18),

N(ε,Fh, ‖ · ‖3T ) ≤ N[ ]

(
2((Tε2q+1)1/2−1)2

T ,F , ‖ · ‖1
)
,

N(ε,Fh, ‖ · ‖3T ) ≤ N[ ] (h,F , ‖ · ‖1) for ε ≤ h3T = h
1
2q

1T =
(

h
2 +

√
2h
T

) 1
2q

.

Therefore (A.15) with η = δ, (7.10) and the change of variables ε = 2v/T 1/(2q) yields here

E1/4 sup
(f,f ′)∈F2;‖f−f ′‖1≤δ
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.
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It follows that {MT (ϑh(f))}f∈F is asymptotically stochastically equicontinuous, so that {MT (f)}f∈F is
if supf∈F |MT (f)−MT (ϑh(f))| ≤ max1≤i≤Nh

ST (fi+1 − fi) = oP(1). But (A.7), (7.12) and (7.10) yield

E
(

max
1≤i≤Nh

ST (fi+1 − fi)
)3

≤ T 3/2
Nh∑
i=1

E
(
ST (fi+1 − fi)

)3 ≤ CT
3
2+ζ−3 s+1

s+4 ≤ CT
5
2−3 s+1

s+4 = o(1)

since 3 s+1
s+4 >

5
2 for s > 14. This ends the proof of the lemma. 2
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Table 1: Critical values (40,000 simulations)

WSup
U WSup

B

Sample size 15 % 10% 5% 1% % in ΛU
T 15 % 10% 5% 1% % in ΛB

T

100 12.00 13.20 15.24 19.83 97.78 10.82 12.04 14.01 18.64 73.69
150 11.96 13.17 15.11 19.30 93.43 10.84 12.02 13.89 17.99 67.79
200 11.80 12.99 14.84 19.33 88.79 10.80 11.98 13.83 18.05 62.89
250 11.73 12.92 14.76 19.22 87.88 10.90 12.04 13.90 17.92 61.91
300 11.57 12.77 14.74 19.27 82.61 10.90 12.01 13.82 18.14 56.21
500 11.41 12.58 14.54 18.67 77.56 11.05 12.22 14.13 18.09 48.31
1000 11.35 12.49 14.47 18.43 73.74 11.14 12.28 14.20 18.28 37.90
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Table 2: Empirical power of the unit root tests against TAR alternatives

(λ, a, ρ1) T % ADF tNL WSup
U WSup

B

(10,0,-0.1) 200 2.8 14.5 22.6 58.5 [91.9] 61.6 [93.6]

300 2.7 18.4 32.8 74.9 [86.4] 81.8 [95.8]

(10,0,-0.3) 200 1.5 18.3 66.3 84.9 [93.5] 88.6 [97.8]

300 1.4 23.4 84.1 93.9 [88.7] 96.5 [98.5]

(10,0.3,-0.1) 200 3.9 17.1 38.3 82.2 [93.8] 84.5 [97.0]

300 3.8 24.4 67.5 95.6 [88.9] 98.0 [98.8]

(10,0.3,-0.3) 200 2.1 36.4 94.2 98.3 [97.2] 98.6 [98.4]

300 2.0 77.3 98.3 99.8 [93.5] 100 [98.7]

(2,0.3,-0.1) 200 41.5 100 90.3 94.5 [98.5] 97.6 [98.3]

300 41.4 100 97.4 100 [99.0] 100 [98.7]

(2,0.3,-0.3) 200 23.9 100 100 100 [98.5] 100 [98.3]

300 23.8 100 100 100 [99.0] 100 [98.7]

Note: The column labeled % reports the percentage of data in the

stationary regimes. The figures into brackets are percentages of |yt|
contained in ΛU

T and ΛB
T .
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Table 3: Empirical power of the unit root tests against ACR alternatives
(α, β, a, ρ) T % ADF tNL WSup

U WSup
B

(-10,30,0.3,-0.3) 200 4.4 27.2 70.9 63.8 [96.5] 75.1 [98.4]

300 4.4 61.9 91.5 86.0 [92.2] 93.3 [98.8]

(-10,30,0.3,-0.1) 200 7.9 14.3 20.9 17.7 [93.7] 27.0 [94.9]

300 7.9 22.8 38.9 30.0 [88.5] 44.4 [97.9]

(-15,30,0.3,-0.3) 200 1.3 11.6 27.4 36.6 [91.7] 29.8 [79.4]

300 1.2 14.4 37.0 39.8 [85.8] 41.0 [80.8]

(-15,30,0.3,-0.1) 200 2.1 8.1 13.8 11.9 [90.9] 10.7 [67.7]

300 2.1 12.8 15.1 13.5 [85.0] 13.1 [66.9]

(-20,120,0.3,-0.3) 200 19.4 100 99.9 100 [98.5] 100 [98.4]

300 19.4 100 100 100 [99.0] 100 [98.7]

(-20,120,0.3,-0.1) 200 35.0 89.3 81.6 64.4 [98.4] 72.0 [98.4]

300 35.1 100 95.0 93.1 [98.1] 97.1 [98.8]

(-10,30,0,-0.3) 200 3.5 14.4 31.7 32.6 [93.5] 45.2 [97.5]

300 3.5 24.4 53.4 47.6 [88.5] 68.2 [98.5]

(-10,30,0,-0.1) 200 6.3 10.0 11.2 10.4 [91.7] 14.6 [92.3]

300 6.2 15.8 17.2 16.0 [86.1] 24.0 [94.5]

Note: The column labelled % reports the percentage of data in the

stationary regimes. The figures into brackets are percentages of |yt|
contained in ΛU

T and ΛB
T .
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Table 4: ADF and KPSS tests

Stat. k,` SG k,` SUS k,` SF k,` SNZ

ADF(k) 1 -1.889 4 -2.726 1 -2.672 4 -3.211
KPSS(`) 3 1.671 4 0.602 2 0.101 4 1.691

The critical values at the 5 % level are -2.88 for ADF and 0.463 for KPSS.
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Table 5: SupWald unit-root tests

SupWald(ΛB
T ) λ ΛB

T ΛU
T

(1) (2) (3) (4)
SF 10.96 1.98 [0.09;7.86] [0.29;2.77]
SG 15.42 1.03 [0.11;3.63] [0.55;2.54]
SNZ 52.16 7.98 [0.06;11.76] [0.39;9.40]
SUS 30.07 1.69 [0.04;5.98] [0.29;2.68]

Note: See text.


