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Abstract

This paper proposes a standardized version of Swamy’s test of slope homogeneity for panel
data models where the cross section dimension (N) could be large relative to the time series
dimension (T"). The proposed test, denoted by A, exploits the cross section dispersion of indi-
vidual slopes weighted by their relative precision. In the case of models with strictly exogenous
regressors, but with non-normally distributed errors, the test is shown to have a standard normal

distribution as (N, T) % oo such that v/N/T? — 0. When the errors are normally distributed, a
mean-variance bias adjusted version of the test is shown to be normally distributed irrespective
of the relative expansion rates of N and 7. The test is also applied to stationary dynamic
models, and shown to be valid asymptotically so long as N/T' — &, as (N,T) - oo, where
0 < k < oo. Using Monte Carlo experiments, it is shown that the test has the correct size
and satisfactory power in panels with strictly exogenous regressors for various combinations of
N and T'. Similar results are also obtained for dynamic panels, but only if the autoregressive

coefficient is not too close to unity and so long as 7' > N.
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Key Words: Tests of Slope Homogeneity, Dispersion Tests, Large Panels, Monte Carlo Re-
sults.
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1 Introduction

In many empirical studies, it is assumed that the slope coefficients of interest in panel data models
are homogeneous across individual units. When the cross section dimension (V) is relatively small
and the time series dimension of the panel (T") large, the hypothesis of slope homogeneity can
be tested using the SURE (seemingly unrelated regression equation) framework of Zellner (1962).
This framework is particularly attractive as it also automatically deals with the possibility of cross
section error correlations and dynamics when N is reasonably small (around 5-10) and 7" sufficiently
large (around 80-100). However, in many microeconometric applications N is often much larger
than T" and the SURE approach would not be applicable.

In view of this Pesaran, Smith and Im (1996) proposed the application of the Hausman (1978)
testing procedure where the standard fixed effects estimator is compared to the mean group es-
timator. However, as will be discussed below, such a procedure is not applicable in the case of
panel data models that contain only strictly exogenous regressors and/or in the case of pure au-
toregressive models. Recently Phillips and Sul (2003) have also proposed a ‘Hausman type’ test for
slope homogeneity for stationary first-order autoregression (AR(1)) panel data models in presence
of cross section dependence, with N fixed as T' goes to infinity. It will be shown below that their
testing approach is not valid under cross section independence.

This paper proposes dispersion type tests based on the early work of Swamy (1970) that are
applicable to panel data models where the cross section dimension could be large relative to the
time series dimension. One version of the test, denoted by A, makes use of the Swamy statistic,
S , and another version, denoted by A, is based on a modified version of the Swamy statistic where
regression standard errors for the individual cross section units are computed using the pooled fixed
effects, rather than the ordinary least squares estimator. It is shown that in the case of models
with strictly exogenous regressors, but with non-normal errors, both versions of the A test tend

to the standard normal distribution as (N, T) 75 o0, subject to certain restrictions on the relative

expansion rates of N and T. For the A we require VN /T — 0, as (N, T) -2 EX 00, whilst for A test the
condition is less restrictive and is given byy/N/T? — 0. When the errors are normally distributed
mean-variance bias adJusted versions of the A tests, denoted by Aadj and Aadj, are proposed that

are valid as (N, T 25 00 without any restrictions on the relative expansion rates of N and 7.
The paper also considers the problem of testing homogeneity of slopes in the case of stationary
dynamic models, and shows that under the null hypothesis A tends to the standard normal distri-

bution so long as N/T — &, as (N, T) 25 00, where 0 < k < co. This condition is more restrictive
than the one obtained for panels with exogenous regressors, but is the same as the condition re-
quired for the validity of fixed effects estimator of the slope in AR(1) models in large N and T'
panels derived independently by Hahn and Kuersteiner (2002) and Alvarez and Arellano (2003).
The small sample properties of the proposed tests are investigated along with the existing
tests of slope homogeneity (namely the Hausman and Swamy’s tests) by means of Monte Carlo
experiments. In these experiments we focus on the Aadj test, and show that for panels with
different number of exogenous regressors (1 to 4), the test has the correct size for all combinations
of T' = 10, 20, 30,50, 100,200 and N = 20, 30, 50, 100, 200, and is robust to non-normal errors. It
also has good power properties, with the power rising with both 7" and N, but more rapidly with T
than with IV, as predicted by the asymptotic theory. This is in contrast to the results obtained for
the Swamy’s test that exhibit significant over-rejections particularly for values of N > T. Also as
predicted by our theoretical analysis, the Hausman test has the correct size but lacks power in the
case of panels with exogenous regressors and randomly distributed slopes under the alternatives.
Similar results are also obtained for dynamic panels, but only if the autoregressive coefficient (3)



is not too close to unity and so long as T' > N. In cases where N > T and/or § is close to unity a
bootstrap version of the A test might be required. This is the subject of our on going research.

The plan of the paper is as follows. Section 2 sets up the model and reviews existing tests of
slope homogeneity. Section 3 considers the asymptotic distribution of alternative dispersion type
tests of slope homogeneity and establishes their asymptotic distribution in the context of panel data
models where N could be large relative to T'. Section 4 considers the application of the proposed
A test to stationary dynamic panel data models. Section 5 sets up the Monte Carlo design and
summarizes the small sample results. Section 6 provides some concluding remarks.

Notations: K stands for a finite positive constant, ||A| = [Tr(AA’ )}1/ ? is the Euclidean norm
of the m x n matrix A, a, = O(b,) states the deterministic sequence {a,} is at most of order
by, xp, = Op(yn) states the vector of random variables, x,, is at most of order y, in probability,

. e e d . .
—p convergence in probability, —4 convergence in distribution, and ~ asymptotic equivalence

of probability distributions. All asymptotics are carried under (N, T) EN 0o, which denote joint
convergence of N and T' — oco. Restrictions (if any) on the relative expansion rates of N and T'
will be specified separately.

2 The Model and Existing Tests of Slope Homogeneity
Consider the panel data model with fixed effects and heterogeneous slopes
yit:ai+,3;;Xit+5it7 1= 17-~'7N7 t = 17"'7T (1)

where «; is bounded on a compact set, x;; is a k x 1 vector of strictly exogenous regressors, 3;
is a k x 1 vector of unknown slope coefficients, such that ||3;|| < K. Stacking the time series
observations for 7 yields
Yi:aiTT+Xiﬁi+€i7 i:172,"aN7 (2)
where y; = (i1, ..., i7), T7 is a T x 1 vector of ones, X; = (X;1,...,X;7)’, and &; = (g1, ..., gi1)’".
The null hypothesis of interest is
Hy: B; = 3 for all 1, (3)

against the alternatives
Hy : B; # 3, for a non-zero fraction of pairwise slopes for i # j. (4)

2.1 The Standard F' Test

There are a number of procedures that can be used to test Hp, the most familiar of which is the
standard F’ statistic defined by

o {N(Tkl)} <RSSRUSSR>7 )

k(N —1) USSR

where RSSR and USSR are restricted and unrestricted residual sum of squares, respectively,
obtained under the null (3; = 3) and the alternative hypotheses. A test based on F is valid for a

fixed N, and when the regressors are strictly exogenous and the error variances are homoskedastic,
0? = 02. Under these assumptions and assuming Hg holds, it is distributed as F' with k(N — 1)

(2

and N(T — k — 1) degrees of freedom.



2.2 Hausman Type Test by Pesaran, Smith and Im

For cases where N > T, Pesaran, Smith and Im (1996) propose using the Hausman (1978) test
where the standard fixed effects (FE) estimator of 3,

N -1 N
Brr = (Z X;MTXi> > X{M,y;, (6)
i=1

i=1

is compared to the mean group (MG) estimator defined by

N
BMG:N_IZBiv (7)
=1

-1

where M; = Ip — 77 (7/p77) " 7/, Ir is an identity matrix of order 7', and

B = (XM, X;) ' XM, y;. (8)

For the Hausman test to have the correct size and be consistent two conditions must be met:
(a) Under Hy, Brg and B,;; must both be consistent, with Bz being asymptotically more
efficient such that

AVar (['}MG — BFE> = AVar (BMG) — AVar (BFE) > 0, 9)

where AVar (-) stands for the asymptotic variance operator.

(b) Under Hy, By;c — Brg should tend to a non-zero vector.

In the context of dynamic panel data models with exogenous regressors both of these conditions
are met, so long as the exogenous regressors are not drawn from the same distribution. In such
a case a Hausman type test based on the difference 3 FE — B wma would be valid and is shown to
have reasonable small sample properties. See Pesaran, Smith and Im (1996) and Hsiao and Pesaran
(2007).

However, as is well known the Hausman procedure could lack power for certain parameter
values, as its implicit null does not necessarily coincide with the null hypothesis of interest. Holly
(1982) provides a general discussion of this point. This problem is, however, much more serious
in the application of the Hausman procedure to the testing problem that concerns us here. For
example, in the case of panel data models containing only strictly exogenous regressors a test of
slope homogeneity based on 3 rE — B wmc will lack power in all directions, if under the alternative
hypothesis the slopes are random draws from the same distribution. To see this suppose that under
H; the slopes satisfy the familiar random coefficient specification

Bi =B+ Vi, vi~I1ID(0,%,),

where 3, # 0 is a non-negative definite matrix, and E(X vl) =0 for all ¢ and j. Then

N -1 N
Bre—Buc = (Z X{LMTXi> > (XIM-X) -1 Zvl
i=1 i=1
N -1 N N
(Z XéMTXz) S XM - NS (XIM,X,) T X Mey,
i=1 i=1 i=1



and it readily follows that under the random coefficients alternatives and strictly exogenous regres-
sors, we have E (B FE — B MG |H1) = 0. This result holds for IV and T fixed as well as when N

and 7" — oo, and hence condition (b) of Hausman’s procedure is not satisfied.

Another important case where the Hausman test does not apply arises when testing the homo-
geneity of slopes in pure autoregressive panel data models. To simplify the exposition consider the
following stationary AR(1) panel data model

Yir = ;i (1 — B;) + Biyij—1 + it (10)

It is now easily seen that with NV fixed and as T' — oo, under Hy (where [3; = ) we have
VNT (Bpp = 8) —a N (01— 5,

and

VNT (BMG - /3) —4 N (0,1 —5%).

Hence the variance inequality part of condition (a), namely (9), is not satisfied, and the application
of the Hausman test to autoregressive panels will fail to have the correct size.

2.3 G Test of Phillips and Sul

Phillips and Sul (2003) propose a different type of Hausman test where instead of comparing two
different pooled estimators of the regression coefficients (as discussed above), they propose basing
the test of slope homogeneity on the difference between the individual estimates and a suitably
defined pooled estimator. In the context of the panel regression model (2), their test statistic can
be written as

G= (BN - TN®BFE),2g_1 (IBN - TN@BFE>7

where B N = (Bll,,@;, ,BlN)’ is an Nk x 1 stacked vector of all the N individual least square
estimates, 3 rg is a fixed effect estimator as before, and f}g is a consistent estimator of 3, the
asymptotic variance matrix of By — T ® Bpg, under Hy.! Under standard assumptions for
stationary dynamic models (see Assumption D1-D4 below), and assuming Hy holds and N is fixed,
then G —4 x?(Nk) as T — oo, 8o long as the Y., is a non-stochastic positive definite matrix.

As compared to the Hausman test based on ,C:] MG — B rg, the G test is likely to be more powerful;
but its use will be limited to panel data models where N is small relative to T'. Also, the G test
will not be valid in the case of pure dynamic models, very much for the same kind of reasons noted
above in relation to the Hausman test based on 3 MG — B rg- This is easily established in the
case of the stationary first order autoregressive panel data model considered by Phillips and Sul
(2003). Consider the AR(1) specification given by (10), and for simplicity impose homoskedastic
assumption, o2 = o2, for all 4. It is then easily verified that under Hy

Avar [\/T(Bz_BFE)] = Avar [ﬁ(Bl_’B) _ﬁ(BFE_ﬂ)}
= (1-p5%) - (1_Tﬁ2>
Acov [\/T(BZ—BFE),\/T(&_BFE)] = _(1—52>.

N

! Phillips and Sul consider a number of different estimators, including Andrew’s (1993) median unbiased estimator
and its extension to panels. But, as they note, all such estimators yield the same asymptotic covariance matrix as
T — oo.



Therefore

1— 2
B, = <—Tﬁ > Iy — N7 'rythy),

where Rank(X,) = N — 1 and X, is non-invertible.

2.4 Swamy'’s Test

Swamy (1970) bases his test of slope homogeneity on the dispersion of individual slope estimates
from a suitable pooled estimator. Like the F' test, Swamy’s test is developed for panels where N
is small relative to T', but allows for cross section heteroskedasticity. Swamy’s statistic applied to
the slope coefficients can be written as

§= é (Bz - IQWFE>/ Xgl}j/l—l;XZ (Bz - BWFE) ) (11)
where ., )
o= (Yi - X?T> —1\::(?; - Xﬁ) ) (12)

and By pp is the weighted FE (WFE) pooled estimator of slope coefficients defined by

N

-1 N

~ X;MTXZ' X;MTyi

Bwrs = (z—) y T
=1 ? i=1 ?

In the case where N is fixed and T tends to infinity, under Hy the Swamy statistic, .S, is asymp-
totically chi-square-distributed with k (N — 1) degrees of freedom.?

3 Dispersion Type Tests for Large Panels

Our survey of the literature suggests that there are no satisfactory tests of slope homogeneity in
panels where N is large relative to. 7. The standard F' test and its extension by Swamy (1970) are
appropriate for panels where N is small relative to 7. Hausman type tests advanced by Pesaran,
Smith and Im (1996) apply to large N panels, but are not generally applicable and can suffer from
low power. In this paper we propose standardized dispersion statistics that are asymptotically

normally distributed as (N, T) < oo, with certain condition on the relative expansion rates of N
and 7T, if any.

In addition to Swamy’s test statistic, S, defined by (11), we also consider the following modified
version

S_i<ﬁi_BWFE>/m (Bi_EWFE)’ (13)
i=1

57
where instead of 52, we use 52 which is based on By p, namely

52— <Yi - Xz‘BFE>;1\f71(Yi - XZBFE) | (14)

2See also Hsiao (2003, p.149).



and in place of BW FE We use BW pE Which is the weighted FE estimator computed using 52 (instead
of %), namely

N -1 N

~ X;MTXZ‘ XgMTyi

Bwre = (Z T) > — 5 (15)
i—1 i i—1 i

Although the difference between S and S might appear slight at first, as we shall see below the
choice of the estimator of 022 can have important implications for the properties of the two dispersion
tests as N and T tends to infinity.

3.1 A Tests

As set out above the two versions of the Swamy’s statistics, S and S , are valid for a fixed N and as
T — oo. In this section we consider tests based on S and S for panels where N and T are both large,
and establish relative expansion rates of N and 7" under which the new tests are asymptotically
valid. We refer to these tests as A tests, and denote the standardized test statistics corresponding
to S and S , by A, and A, respectively. To this end first let

Qir =7 (X{M:X,), (16)

N
Qur = (NT)™ (Z XéMer) : (17)

i=1
P, = M, X; (X;M,X,) " X/M,, (18)
M, = Iy — Z(Z;Z;) ' Z, (19)

where Z; = (77, X;), and consider the following assumptions:

Assumption 1:
(i) €it|X; ~ I1D(0,0?), 025 = maxi <<y (07) < K, and 02, = minj<;<y(c7) > 0.
(ii) e and €5 are independently distributed for ¢ # j and/or t # s,
(iii) B(e%X;) < K.

Assumption 2:

(i) The k x k matrices Q;7, ¢ = 1,2,..., N, defined by (16) are positive definite and bounded,
maxi<i<n F ||Qir|| < K, and Q;r tends to a non-stochastic positive definite matrix, Q;,
maxi<i<y Bl|Qi| < K, as T — oo.

(ii) The k x k pooled observation matrix Q7 defined by (17) is positive definite, and Qn7 tends

to a non-stochastic positive definite matrix, Q = limy oo N} Zfi 1Qq, as (N,T) 2 .
Assumption 3:

There exists a finite Ty such that for T > Ty, E{[v/M,v;/(T—1)]7*¢} < K and E{[viM;v; /(T —
k—1)747¢} < K, for each i and for some small positive constant e, where v; = €;/0;.

Assumption 4:

Under Hi, the fraction of slopes that are not the same does not tend to zero as N — oo.



The following theorem establishes the asymptotic expansions of the two dispersion statistics.

Theorem 1 Consider the panel dc}ta model (1), and suppose that Assumptions 1-3 hold. Then
under Hy, the dispersion statistics S and S defined by (11) and (13), respectively, can be written as

N
N-128 = N-1/2 Z%T 40, (N—1/2> 1o, (T—1/2> : (20)
i=1
) N
N-1/25 = Ny-1/2 Zgﬁ +0, (N‘1/2> 40, (T—1/2> ’ (21)
i=1
where (T k 1) /P ( 1) P
s L — k= DvFv, 2 A ke
AT = ’U;jMiUi ’ and s = /MTUZ (22)

See Appendix A.2 for a proof.

Remark 1 In the case where the errors, €;, are normally distributed Assumption 8 is met for
To = k+11. See Lemma 1. In the case of non-normal errors further restrictions might be required.
However, following Pesaran (2007) it is possible to relax some of these ‘conditions by developing
“truncated” versions of Sand S. For example, consider S = ZZ 181, where
. - - ! X’ M X; -
5; = (/Bi - ﬁWFE) — 3 (/6@ IBWFE) )
and note that under fairly general conditions §; —g Xz(k), as T — oco. Consider now the truncated
version of S defined by S* = val 8F where

§*:{ S, if§i<Mk

' My, if $i = My,

and My, is a positive constant such that Pr[s; > My] < €, with € a sufficiently small positive number.
Given that for each i, §; is approvimately distributed as x*(k), the value of My can also be obtained
approximately. For example, with € set at 0.0001 we have My = 23.51 for k = 4. For large N
and T a test based on S and S* will be equivalent. But the truncated version is likely to be better
behaved in small samples.. Monte Carlo evidence supporting this conjecture is available from the
authors on request.

Under ‘Assumptions 1-3, 2,7 and Z;7 are independently (but necessarily identically) distributed
random variables across ¢ with finite means and variances. Also as shown in Appendix A.3 for all

1 we have
E(zr) =k+O(T"), Var(zir) =2k +O(T™1), (23)
E(Zir) = k+O(T72), Var(Zr) = 2k + O(T™1), (24)
E|20? < K, and E|%7|*? < K. (25)

Using these results in conjunction with Theorem 1, we have



Theorem 2 Consider the panel data model (1), suppose that the k x 1 regressors, X, are strictly
exogenous and Assumptions 1-3 hold. Then under Hy

A -4 N(0,1),as (N, T) 4, 00, s0 long as VN /T — 0,

A —4N(0,1), as (N,T) i>oo, so long as VN /T? — 0,

where the standardized dispersion statistics, A and A are defined by

R N-1§—k
A:vﬁ<—75§—>, (26)

. NS —k
A=¢N(—7§?—>. (27)

See Appendix A.4 for a proof.

This theorem also suggests that tests of slope homogeneity based on A is likely to have better
size properties than the tests based on A. Similar results also follow under normally distributed
errors. In this case, as shown in Appendix A.5 we have

E(%47) =k +0(T™Y), and E(%7) =k, (28)

and the requirement on the relative expansion rate of N and T for the A test gets relaxed. The
results for the normally distributed case are summarized in the following Corollary.

Corollary 1 Suppose that the conditions of Theorem 2 are met, and the errors, €;, are normally
distributed. Then under H

A —4 N(0,1), as (N,T) Rl 00, so long as VN /T — 0,
A -4 N(0,1), as (N,T) % oo
See Appendix A.5 for a proof.

Remark 2 The small sample properties of the dispersion tests can be improved under the normally
distributed errors by considering the following mean and variance bias adjusted versions of A and

Aot = VF <LE<>> . (LEH) | (29

Var (Z,A’Z'T) Var (ézT)
where
A k(T —k — X k(T —k—1)*(T —
E(zr) = H’ Var(zir) = é Ej;f — 3)2 31 ETk _35))a (30)
FGir) = hvhﬂhﬁ=%%%i%19~ (31)

See Appendix A.5.



Remark 3 The proposed testing approach can be readily extended to testing the homogeneity of a
sub-set of slope coefficients. Consider the following partitioned form of (1)
yi =oitr+ X B+ XieBpp+ei, 1 =1,2,., N,
Tx1 Txkq Txko
or
yi = Zi 0i+ Xi2 B + e,
Tx1l  Tx(ki1+1) Txks
where Z;1 = (17,X;1) and 0; = (ai,ﬁgl)l, Suppose the slope homogeneity hypothesis of interest is
given by
H[) . IBiQ :ﬁg, fOTi: 172,...,N. (32)

Our version of the dispersion test statistic in this case is given by

N XM X;
o P = 7 71432 e =
So = Z (ﬁm - /32,WFE> QT (/31‘2 - ,32,WFE> )
=1 7
where
e / =1 7/
Bz = (XpMiuXio) ™ XjpMiy;,
N -1 N
~ Xl M1 Xz XMty
Bowre = (Z 12~72) > T
i=1 i i=1 i
M =1Ir —Za (Zﬁ-lzn)_l P
R / R
o (Yi - XiQﬁQ,FE) M1 (3%‘ - Xi2132,FE)
% = Tk 1 ’
and

N -1 N
BorE = (Z XézMﬂXn) > XMy

i=1 i=1
Using a similar line of reasoning as above, it is now easily seen that under Hy defined by (32), and
for (N, T) L o0, such that /N /T? — 0, then

~ _1~ —_
8=V (5 v,
2

In the case of mormally distributed errors the following mean-variance bias adjusted statistics apply

-1&, _ 2, - -1g _ 7.
AZadj _ \/N (N SQ E(ZzT)) ,Aadj _ \/N (N SZ E(ZzT)) ’

VCLT’(,%Z'T) V(I’I”(ZZ*T)
where
2
Blar) = Pt Ve = 2B T TR, (33)
EGir) = ko, Var(zr) = 220~ k=1 (34)

T—k +1



Remark 4 The proposed slope homogeneity tests can also be extended to unbalanced panels. De-
noting the number of time series observations on the i cross section by Tj;, our version of the
standardized dispersion statistic is given by

" 1 XN (d—k
AZW?&(@)’ )

1 . ) )
X; = (Xi1, s xiry), My, =1, — 173 (T’TiTTi) T’Ti with T, being a T; x 1 vector of unity,

B; = (X'M,,X;)” ' X!M,,yi, (36)
N I N
~ X! Mn X X; MTi Yi
Bwre = <Z ZT) Z 1572" 37)
i=1 g i=1 ‘

yi = Wity vity)

and
N -1 N
e (X0 x) 3 Xy, 3
i=1 i=1
Our proofs go through by replacing T with minj<,<n T;. An extension to testing the homogeneity

of a sub-set of slope coefficients in the case of the unbalanced panels is straightforward and is easily
derived using the result in Remark 3.

3.2 Asymptotic Local Power of A Test

The two versions of the dispersion test have the same asymptotic power properties and for sim-
plicity we shall focus on the A test. To bound the asymptotic power we adopt the following local
alternatives 6
where §;, ¢ = 1,2,..., N are k x 1 vectors of fixed constants, ||d;|| < K. Under Assumptions 1-3,
and assuming that /11 y7 holds we have3

A:\/_l_z_:('éﬁ— > 1\/;1\21_24_01) (N_1/4)+Op (T—1/2>7

i=1,2,..,N, (39)

where

1 & N 1 & o ol
Yy = NZW%QQM - ( Z _26/Q1T> (NZ _2QZT> ( Z _2QZT5>
=1 1

=1 =1

3For a proof see Appendix A.6.

10



Hence, it readily follows that under H; y7

A ¥ > i
ASyN(—21), as (N, T ,
—d < o as ( ) = o0

where

L& LN LN -1 N
_ 1; — '—2 "O.5 — | — f2 'O - f2 . J— ,_2 205
= A}gl(l)o ~ E o; “0;Qid; (N E o; 6ZQ1> (N ;:1 o; Qz> (N ;:1 o; QZ&)

i=1 i=1

Recall that Q; = plimy_ (T ’1X;M7Xi). The A test has power against local alternatives if
¢ > 0. Since Q; is a symmetric positive definite matrix, using the the Cholesky decomposition,
Q; = L/L;, and setting d; = L;d;/0;, and W; = O'Z-_lLi we have

. 1 N -1~ 1 N ~/ 1 N , - 1 N s
Y = ngnoo N;‘szfsi— N;@Wz N;szz N;Wzdz
N N N -1 /N ~
= Jlim =0 50— (Zaiwi (ZWQWZ) (Zw;&)
i=1 i=1 i=1 i=1

-~ -~ ~ ~ !/
Let & = (6/1,5/2, ...,J/N) , and W = (W1, W} ..., W)’ and write 7 as

, &' M,,8
¥ = Jim ( N ) ’

where M, = Iy — W (W’VV)_1 W. Hence, v > 0, and in general the A test is asymptotically
powerful if §; # 0 for a non-zero fraction of the cross section units in the limit, as specified under
Assumption 4. Such an alternative, for example, allows a sub-set of the slope coefficients and/or a
sub-set of cross section units to be homogeneous.

The above result also suggests that the power of A (or A) test is likely to increase faster with
T than with N.

4 Testing Slope Homogeneity in Autoregressive Panels
To simplify the exposition we focus on the AR(1) model
yi = ai(1—=B;)Tr + B;yi—1+e€i, fori=1,2,..., N, (40)

where y; 1 = (Yi0, Yi1, ---, ¥ir—1)’. In this dynamic case we shall focus on the modified version of
the Swamy test. The test statistic in this case is given by

N
. . 2
S= 20;2 (51‘ - BWFE) (vi-1Mryi 1), (41)
i=1
where )
N N
. Yi-1Mryi 1 yi_1Mryi
Bwre =Y =] Y. =, (42)
i=1 i i=1 i
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~ / ~
(Yi - ﬁFEyi,—1) M, (Yi - 5FEY¢,—1)

5% = = . (43)
For future use also let DM
Yi—1VrYi—1
Qup = LYl (14)
Zi]\il yioiMryi—1
QnNT = NT : ) (45)

and consider the following assumptions:
Assumption D1:

(i) {ea}t, t =1,2,...,T,i=1,2,..N, are independently distributed across time and cross section

units, and independently of the initial values, y;9, with finite moments up to order four,

E(eit) =0, Var(eir) = 02, 02, = maxj<i<n(0?) < K, and 02, = minj<;<n(0?) > 0.

Assumption D2:

|B;] < 1 for all ¢, o; is bounded on a compact set, and lim N/T = &, as (N,T) EN 0o, where
0< kK< oo

Assumption D3:
The initial observations satisfy
Yio = o + Ujo,
where u;g, i = 1,2, ..., N are distributed independently across ¢, and independently of g;, with

E(ui) = 0, Var(up) = 67, 0 < §? < K for all 4, and with finite moments up to order four.*

Theorem 3 Consider the panel data model (40), and suppose that Assumptions D1-D3 hold. Then
under Hy, the dispersion statistic, S, defined by (41), can be written as

N
N-1/25— N~1/2 Zwi n Op(N‘l/z) + O,,(T_l/z), (46)
i=1

where )
(T — 1) (T~Y2e\M,y; 1)

(EQMTsi) <T71y;’71MTYi,fl) '

w; =

See Appendix A.7 for a proof.

It is interesting to note that the orders of the asymptotic expansion of S for the dynamic panel
considered here are the same as those of panels with exogenous regressors (see (21)). However,
in the dynamic case the additional condition N/T — k, 0 < k < oo is required. This condi-
tion ensures that the asymptotic bias of the FE estimator of 8 in the dynamic case, discussed in
Hahn and Kuersteiner (2002) and Alvarez and Arellano (2003), remains bounded as (N, T) % oo.
Another important difference between the two cases is the differences that exist between the asymp-
totic expansions of E(Z;r) and Var(Z;r) in the static case (given by (24)), and the corresponding
expressions for E(w;) and Var(w;) in the dynamic case.

“The choice of §; depends on the initialization of the process and will be given by &; = o4 (1 — 65)71/2 if the
process has started at t = —M, with M — oo.
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To derive the order of expansions of E(w;) and Var(w;) we first note that w; defined by (47),
can be written as

(VA
(VBv;) (ViCiv;)’
where v, = (uio/di,ail/ai, ...,81'T/(J'i), ~ IID(O,ITJrl), and AZ',B, and Ci are (T+ 1) X (T + ].)
non-stochastic matrices defined in Appendix A.8 by (A.37), (A.38) and (A.39), respectively. It is
clear that unlike z;7 which is the ratio of quadratic forms, w; is in fact the ratio of the products of
quadratic forms, and to our knowledge there exists no result in the literature on the moments of
such ratios for the case of non-normal (or for that matter normal) errors.

To develop suitable expansions of F (w;) and Var (w;) we introduce the following additional
assumption

w; =

(48)

Assumption D4:
For each i, V; = (uio/éi,sﬂ/m, ...,é‘iT/O'Z')/ ~ IIDN(O,IT+1), and T > 17.
With this additional assumption the following theorem can now be established.

Theorem 4 Consider the panel data model (40), suppose that Assumptions D1-D4 hold. Then
under Hy, S, defined by (41) satisfies

N
15 1 * -1 -1 —1/2—1/2
—S——;:lwiJrOp(T )4+ Op(N7Y) O, (NTV2T71/2),

where
. WA (viBv;) (v;Cv;) — E[(v;Bv;) (viCivi)]
wi — ) 1 _ 7 7 7 7 (49)
E[(viBv;) (v;Civ)] E|(viBv;) (v;Civ)]
Furthermore,
Ew}) =1+0(T7Y, Var (w}) =2+ O0(T~/?), (50)
and _ .
A—gN(0,1), as (N,T) L oo, such that N/T — k, 0 < k < 00
where

. N-1§-1
A=+vN <7\/§ ) . (51)

See Appendix A.8 for a proof.
One would expect that a similar result holds for higher order autoregressive models. The

relevant standardized statistic for a p* order process would be given by £/ % (N 15— p). This

is supported by Monte Carlo evidence for AR(2) panel specification in the following section, where
we shall also examine the robustness of the test to non-normal errors.

5 Finite Sample Properties by Monte Carlo Experiments

In this section we investigate the finite sample properties of two main tests of slope homogeneity
advanced in the literature and compare their performance to a bias adjusted version of the dispersion
test proposed in this paper. The tests already available in the literature are Swamy’s test based on

13



S statistic defined by (11), and Hausman'’s test of slope homogeneity proposed in Pesaran, Smith
and Im (1996) which in the case of application is defined by®

~ ~ AN _ ~ -~
H = <5MG—ﬂWFE> \7% (ﬁMG—ﬁWFE> ; (52)
where B¢ and By pp are given by (7) and (15), respectively, and
N

N , N\ !
Vi = 5 2o (M) - (Z m)

=1 =1 g

(53)

with 67 and 62 being defined by (12) and (14), respectively. Under the null hypothesis of slope
homogeneity, H tends to a x2(k) as T, N — oo, and S tends to x2(k(N — 1)) for a fixed N and as
T — oo. We also considered the G test of Phillips and Sul (2003), but the G statistic could not be
computed due to the singularity problem discussed in Section 2.3.

As far as the standardized dispersion tests proposed in this paper are concerned we considered
all the four versions, namely A and A defined in (26) and (27), respectively, ‘and their mean and
variance adjusted versions Aadj and Aadj, defined by (29). As to be expected the adjusted versions
performed much better under normal errors, and interestingly enough turned out to be reasonably
robust to non-normal errors, as well. So to save space we shall only report the results for Aadj

computed as
. N(T+1) (N7'S—k
Aggi = , 4

where S is defined by (13). The full set of results for all the four versions of the A test are available
on request.

We report empirical size and power at the nominal 5 per cent level, for various pairs of N and
T, including cases where N is much larger than T, often encountered with micro data sets, as
well as when T' > N which is more prevalent in the case of macro data sets. We consider panels
with strictly exogenous regressors, as well as simple dynamic panels. Under the former the data
generating process (DGP) is defined by

k
Yit = a; + Z TietBig + Eits
=1
for i = 1,2,...,N;t = 1,2,....,T, where o; ~ N (1,1). The regressors, zjy, { = 1,2,....k, are
generated as
Tin = oi(1 = pyg) + pugiea—1 + (1 — pi)viar, (55)

for t = —48,...,0,...,T; i = 1,2, ..., N, where p;; ~ IIDU[0.05,0.95], vt ~ IIDN(0,0%,) with 02,
~ ITDx?(1). p;; and 0%, are fixed across replications with z;,,_49 = 0. The first 49 observations
are discarded to reduce the effect of initial value on the generated values of x;y, t = 1,2,...,T.
eit ~ I1D(0,0?) is drawn from (i) standard normal distribution, or (ii) (x?(2) —2) /2 with o2 ~
IID(kx?(2)/2), k = 1,2,3,4, so that the population R? of individual equations in the panel are
invariant to the number of included regressors. Under the null hypothesis, 5,, = 1 for all ¢ and /,
and under the alternative hypothesis 3;, = 8;; for £ = 2,3, 4, where 8,; =1 for i = 1,...,[N/2] and

"We also tried a number of other variants of the Hausman test. But they all performed very similarly.
%In e-mail correspondences Dr. Sul has confirmed to us that there is an error in equation (27) in Phillips and Sul
(2003) that defines the G statistic.
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Bi ~ N(1,0.04) for ¢ = [N/2] +1,...,N, with [N/2] being the nearest integer value of N/2. «;
and U% are fixed across replications. For k = 1, all combinations of T' = 10, 20, 30, 50, 100, 200 and
N = 20, 30, 50, 100, 200 are used as sample sizes. For k = 2, 3,4, to save space only the combinations
of T'= 20, 30, 50 and N = 20, 30, 50, 100, 200 are included.

In the dynamic case we consider pure autoregressions, AR(1) and AR(2), and a simple autore-
gressive distributed lag (ARDL) model. The DGP for the AR specifications are given by

yit = (1 — ;) ai + Biyit—1 + €it, (56)

Yit = (1 — By — Ba) i + B ¥Yit—1 + Boyit—2 + €it, (57)
fort = —M,...,0,...,T; i =1,2,...,N, where a; ~ N (1,1) and &;; generated as in the static case
(setting k = 1), with y; _ar = 0, The first M observations are discarded with M = 49 and 48
for the AR(1) and AR(2) specifications, respectively. For the AR(1) model, the null hypothesis is
defined by 8, = 8 = (0.50,0.80,0.90), against the alternatives 8; ~ IIDU[S — 0.1,8 + 0.1). For
the AR(2) specification the null is set as 8;; = 81 = B = (0.25,0.4,0.45), against the alternatives,
B1; ~ IIDU[By — 0.1, 85+ 0.1). For these experiments, we consider all the combinations of sample
sizes N and T = 20, 30, 50, 100, 200.

The ARDL model is generated as

vit = (1 — Bi1) o + Bi¥ir—1 + BiaTis + €t
where t = —48,...,0,....,T,i=1,2,..., N, e;4’s are generated as before,
zit = oi(1— p;) + pyig—1 + (L= p2) vy,

vit ~ IIDN(0,02,), and oy, 02, p; and o2, are drawn randomly across ¢ and then fixed across
replications. The initial values are set at y; _49 = ;49 = 0, with the first 49 observations
discarded. The homogeneity tests considered are (a) Hy : 8,7 = 81, (b) Hg : B;9 = B9, and (c)
Hy: B;; = 51 and ;5 = B, jointly. Different nulls are entertained depending on the nature of the
homogeneity tests. Under (a), the null DGP considered is 3;; = 5; and 3;5 ~ iidU[B5—0.1, B5+0.1);
under (b), 8;; ~ tdU[B; — 0.05, 3, + 0.05] and S, = B9, and under (c¢), 3;; = 1 and B;5 = Bs.
Under the alternative §;; ~ #dU|[5; =0.05, 81 +0.05] and 3,5 ~ #idU[B5 — 0.1, 85+ 0.1] for all these
cases. The parameter values are set at 5; = 0.5, 0.8, 0.9, and 85 = 1. To make the experimental
results comparable across different values of 3y, U%x is set as

i (10- ) (A2l

so that R? = 1 = 02/Var(yi) = R* = 0.9. For the subset tests in (a) and (b) the Swamy statistic
is computed as (in case (a), for example)

N /

5 ~ 5 1y —1Mi2yi -1 /4 .

S1 = Z (ﬁﬂ - 51,WFE> e 52 (Bﬂ - 51,WFE> )
i=1 i

where Myp = It — Z;2 (Zégziz)fl Zy, Zip = (T7,%;), Xi = (Ti1, Tiz,s .., TiT, ),

> -1
B = (vi 1My 1) " yi_1Mayi,

1
. al yi1Miyi—1 al yi_1Mayi
Biwre = Z s Z —

)
i=1 i i—1 op
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and

~ / ~
e (Yi - yi,flﬁil) Mo (yz‘ - yaaﬂu)
O—Z‘ = .

T-3

The ALadj test statistic is computed using the results in Remark 3. The Hausman test statistic of
Hy : B;1 = By is defined as

. _ 2
Hy, = (51,MG - 51,WFE) /vH
. e -
where 81 e = N7' Y005, B,
~1
> al yi_1Mayi 1 al yi_1Mayi
Brwre =Y —————| D =
; ; ; oF
i=1 3 i=1 ?
N / N
(Yi - Yi,—1617FE) M, <Yi - Yi,—lﬁl,FE>
T—2 ’

~2 _
g;

and
N

Al _ L Moy 1\
v = N72Y 67 (vi 1 Mayi1)  — (Z m1~—;zyll> .
=1

- g
i=1 i

The Alﬂdj test is based on a two-sided N(0,1) test. The Hj test-and the Sy test are based on
XQ(l)A and X2~(N — 1) distributions, respectively. All tests are conducted at 5% nominal level. The

Hj, So and A 44 test statistics for testing Hy : 3;5 = 35 are defined in a similar manner.

5.1 Results

Size and power of the tests in the case of the experiments with exogenous regressors are summarized
in Tables 1-3. Table 1 provides the results for models with one exogenous regressor and normal
errors, and give size and power rejection frequencies for a wide range of N and 7T'. Table 2 presents
the results for models with k = 2, 3 'and 4 regressors and normal errors, but for a subset of samples
with moderate values of T' = 20,30, 50. Table 3 summarizes the same results but when the errors
are non-normal.

First, it is clear that in all the experiments the Hausman test, H, has the correct size, but, as
predicted by our theoretical discussion in Section 2.2, it has no power irrespective of the sample
size. On the other hand, the Swamy’s S test has power, but tends to over-reject when T is small
relative to N; with the extent of over-rejection diminishing only as 7' is increased relative to V.
For example, in the case of T'= 10 and N = 200 in Table 1, the empirical size of the S test is as
much as 82.5%, and only approaches the nominal size of 5% slowly when T is increased to 200.
The tendency of the S test to over-rejection gets accentuated as the number of the regressors is
increased or when non-normal errors are considered.

By contrast, the adjusted version of the dispersion test, Aadj, has the correct size for all combi-
nation of sample sizes, even when 7' is very small relative to IN. The size of the test seems also to be
very well controlled as the number of regressors is increased to 2 and beyond (in Table 2), or when
the errors are generated as draws from a x?(2) distribution that represents a significant degree of
departure from normality. This last result is particularly welcome and encouraging since the finite
sample adjustments are derived under normally distributed errors.” The Aadj test also seems to

"See Corollary 1 and Remark 2. Also recall that a mean adjustment was not needed in the case of the A test.
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have reasonable power properties. Its power rises quite rapidly with both N and T, although as
predicted by our theoretical derivations in Section 3.2, the power of Aadj test rises much faster with
T than with N, and comparing the results in Tables 2 and 3 suggest that the power is not much
affected by the shape of the error distribution. But the results show that there is a clear tendency
for the power to decline with the number of regressors. This is plausible considering that we have
controlled the population fit of the regressions so that it remains invariant to the included number
of regressors in the panel.

The Monte Carlo results for the dynamic panels are summarized in Tables 4-10. Tables 4 and 5
report the size and power of the Aadj test in the case of the AR(1) specification, for different values
of B =0.5,0.8,0.9, and for normally and non-normally distributed errors, respectively. Tables 6 and
7 provide the corresponding results for the AR(2) specification. It is firstly clear that the H test
now grossly over-rejects, with the extent of over-rejection in fact rising (rather than falling) with N
and T'. This is in line with our theoretical derivations in Section 2.2 which shows the application
of the test to pure dynamic panels fails to satisfy one of the key conditions of the Hausman test.
Swamy’s S test performs reasonably well when f is around 0.5 and errors are normally distributed,
but begins to show substantial over-rejections when g is increased. Similar patterns can also be
seen when the results of the AR(2) specification are considered. It is also interesting that the effects
of non-normal errors on the size of the S test seems to operate in the opposite direction to the
effect of increasing the value of 8 under the null hypothesis. But as predicted by the theory the
size distortion of the S test declines as T is increased relative to N-

Turning to the Aadj test, we first note that its size is very close to the nominal value of 5%
in the case of those experiments with 7' > N, which is in line with our asymptotic result for the

AR(1) case that requires N/T — £ as (N, T) < oo, where 0 < & < co. This conclusion seems to be
quite robust to the value of the autoregression coefficient, and the shape of the error distribution.
In cases where N > T, the test outcome crucially depends on the value of 8. It seems to improve
when (3 is raised from 0.5 to 0.8, followed by a substantial deterioration as 3 is further increased to
0.9.% But overall the Aadj test can not be relied on if N is much larger than T'. Also as in the case
of the experiments with exogenous regressors, the power of the Aadj test rises much more rapidly
with 7' than with N. Similar conclusions are obtained if we consider the results for the AR(2)
specification.

The panel ARDL results based on-normal errors are summarized in Tables 8-10. Table 8 (resp.
Table 9) reports size and power of tests of homogeneity of 3;; (8;2) whilst allowing S5 (8;1) to
vary across i. Table 10 reports size and power of homogeneity tests applied to §;; and §;5, jointly.
Qualitatively, these results are similar to the ones reported above for the AR specifications, although
the sub-set test results for 8;, = 3, are generally more satisfactory as compared to the sub-set test
results for §,;. The Hausman test continues to over-reject, with the extent of over-rejection falling
as T rises.- The Swamy’s test performs well only when T' is much larger than V. The size of the
Aadj test is very close to the nominal value of 5% in the case of experiments with 7' > N. When
N > T, the size of the Aadj test deteriorates as 3, increases. The power of all tests decreases as the
value of 3 rises, which largely reflects the nature of the experimental designs. That is, in order to
keep R? fixed as (; is increased, the relative variation of the exogenous regressor to the variation
of y; +—1 is decreased, which causes a reduction in power of the test.

8 The non-monotone nature of the size of test as a function of 8 can be seen more clearly from additional experiments
we have carried out for § = 0.3 and 0.7 which we do not report here.
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6 Concluding Remarks

In this paper we have developed simple tests of slope homogeneity in linear panel data models where
N could be larger than T'. The proposed tests are based on modifications of Swamy’s dispersion
statistic and examine the cross section “dispersion” of individual slopes weighted by their relative
precision. It is shown that this test is valid when earlier tests based on Hausman (1978) procedure
fail to be applicable.

The Monte Carlo evidence shows Aadj test, defined in (29), to have satisfactory size and power
properties for all combinations of NV and T in the case of panels with exogenous regressors, irre-
spective of whether the errors are normally distributed or not. In the case of dynamic panels the
Aadj test continues to have satisfactory properties for most combinations of NV and T, so long as the
dominant root of the dynamic model, £, under the null hypothesis is not too close to unity. When
N > T, and ( is around 0.9 or more, the Aadj test tends to over-reject, which is primarily due to
the fact that for large values of N/T the small sample bias of the fixed effects estimator of 8 can
be substantial. Our preliminary investigation suggests that in such cases a bootstrapped version
of the test that makes use of the bias-corrected FE estimator proposed in Hahn and Kuersteiner
(2002) could be more appropriate.

Another important extension of the tests developed in this paper is'to consider testing slope
homogeneity in panel data models with multi-factor error structures recently examined in Pesaran
(2006). This is, however, beyond the scope of the present paper.
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A Mathematical Appendix

A.1 Preliminary Results

Lemma 1 Let v ~ IIDN(0,I7), and A be a T x T positive semi-definite symmetric matriz of
rank m < T. Then the " moment of the inverse of v' Av exists if m > 2r.

Proof. See Smith (1988).

Corollary 2 Let Ay and Ay be T x T positive semi-definite symmetric matrices of rank my and
ma, respectively. Then the ™" moment of the inverse of (V' Ajv)(v' Agv) exists if my > 4r and
mo > 4r.

Proof. The result is immediate from Lemma 1 using the Cauchy-Schwarz inequality.
Lemma 2 Let N
Lir =T 'PX[M,e;, Eygp = N71/2 Z&iT'
i=1
Then, under Assumptions 1 and 2, for each 1,
€7 —a N(0,0?Q;), as T — oo, (A1)

and \
£NT —d N(Oa Qa)a as (N7 T) i’ 00, (A2)

where Qy = limy_ 0o N1 Zfil 02Q;, where Q; is defined by Assumption 2(i).

Proof. The first result follows from Assumption 1 by familiar central limit theorems used for the
classical linear regression models. The second result follows since €1, €3, ...,€x are assumed to be
independently distributed, and E'||Q;r|| < K for all i. See Lemma 4 in Pesaran (2006).

Lemma 3 Suppose that D is a.p X p stochastic matriz; non-singular with probability one, such that
D = 0,(1), E(D) = O(1), and D.— BE(D) = O,(T~/?). Then,

D! = [ED)]! + 0,(T7/?). (A.3)
Proof. See Kiviet and Phillips (1994, Lemma 2).
Lemma 4 Let ® be a T xT symmetric matrix and T' a positive definite T X T matrixz, and suppose
that v ~ I1D(0,17), where v = (v1,v2, ...,vr)". Denote the p'* cumulant of v'Tw by k,, and the
~ = 1+m order, § = r+m degree generalized cumulant of (V' ®v)"(v'T'W) by krm and assume that
the following conditions holdl]
e Condition 100For p=1,2,...,5, = O(T).

o Condition 201For r = 1,2, ..., ko = E(v/'®v)" = O(T").
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e Condition 30 For r,m = 1,2, ..., ke = O(T), with £ < r.
Then the Laplace approzimate expansion for the r'" moment of v/'®wv/v'Tw is given by

(o) -

+ Qi1 + o + O(T72), (A.4)

where

_r(r+1) [E[(v'®v)]k Ky
1T = 2 [ [E(U/FU)]rJrQZ] — |:[E(’U’F’ll))]r+1:| ) (A.5)
pur = TCFD [ Fr2 ] D +2) [3E[(U"1>v)’”}ff3 i mm]
2T 2 [E(U’I‘U)]rJrQ 2 [E(U’I"v)]r+3
r(r+1)(r+2)(r +3) [ E[(v'®v)"]k3
* 8 { [E(U/I‘U)]T—HLQ] ’ (A.6)
and

k1 = E[(v'®v)"v'Tv] — E[(v'®v)"|E(v'Tv),

Kra = E[(vV®v)" (vTw)?] — 2E(v'Tv)E[(v'®v)" (v'T)]
—E[(v'Tv)YE[(v/®v)"] + 2[(E (v'Tv) | E[(v'®v)"].

Proof. Lieberman (1994).

A.2 Proof of Theorem 1

For the Swamy’s version of the dispersion test, under Hy we have

N -1 N
(ﬁi - ﬁWFE) =T V2Q & — T PNT2 (Nl Z &;2Qz‘T> (Nl/Q Z &;2£iT> , (A7)
i=1 i=1

where Q;7 and &, are defined by (16) and (A.1), respectively. Using this result in (11) it is easily
seen that

Lg 1Q e 1 (XN 6%, ) (2N 60%Qr ) (XN, 6%,
N NZ T T N(Z i/ﬁ T) <Z lN T) Z i/ﬁ T ] (A.8)

We first-note that (by Cauchy-Schwarz inequality)

< /B[ - o)) BT

B||T2 (672 - 07%) €

and by Assumptions 1-2

EHT‘l/zX’-M el <02, Tr(Q) < K, forall i
1 T=1 — Y'max ? I .

Also




But by Assumptions 1(i) and 3

a2\ * T—k—1\*
El=%) =E(|———— ] <K,
((5?) ( viMv; )
and by using the results of Bao and Ullah (2006) for the 4th order moments of the quadratic form
of non-normal errors, after some tedious algebra, we obtain’
a2\*
E (1 — ?> =0O(T™?).

7

Hence
B (572 - o)

|=oq),

and
S T2 (672 = 07%) &ir

N J2 (A2 =2\ ¢
N < Y BT (6% —07") &ir| =0(1

E
N

).

Thus, since 67 — 07 = O, (T~1/2), by Lemma 3, and noting that E||T'2 (67° —0;?) &ir|| < K
uniformly over i, we conclude that

Y67 % _ Y 0 —1/2
e S (T ) . (A.9)
Also as (N, T) RS
N 2
AP p
M —4 N(0,Q,),

VN
where Q. = limy_oo N 32N 072Q;, and E [|Q.]| < K10 Hence

Zf\; 6% A N
1T =0,(1)+ 0, ( T) . (A.10)

Similarly

Y6 Qi _ Y 0 Qur Lo <T_1/2)
N N P ’
and by Lemma 3

N a-2g.\ ! N os2q.\
(Zizlyvi Qm) _<Z—+Q> +Op(T—1/2). (A.11)

Using the above results we now have

(E?_l @%)' (Ziil anQz—T) - (Zi& fn%)
VN N VN
sl

9Details are provided in a supplement and are available upon request.
1'Note that

N
<omN Y E|Qi <K,
i=1

N
E "Nl > oiQ
=1

by assumption.
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and

% ~ Z szTQ’T LTS <%> +0, ( NLT> . (A.12)
Also
&TQ;Tl T _ ( elMe; >_ €.QE,, (T k—1)viP; i
67 T-k—1 AT ST VM, v
Hence .
N2 =NT2N 2040, (N‘1/2> +0, (T‘1/2> , (A.13)
=1

as required. 3
Similar results also hold for the modified version of Swamy’s statistic, S. Under Hy we have

zTQ £zT i Ziv 1 U QEZT sz\il 5-1‘_2QiT B Zz 1 &_2£zT
= Z ~ \/N ¥ N . (A.14)

Using (14), and after some algebra (under Hp) we obtain

~o _ giMre; 1 / -1 .. 0-1 2 / -1 4
0; = T 1 + N(T— 1)£NTQNTQ1TQNT€NT + \/N(T - 1)£NTQNT£zT' (A15)

Also under Assumptions 1-2, and using Lemma, 2 it is easily seen that

EnrQurQir Qurént = Op(1) and €y Qyiréir = Op(1).

Therefore

/'MT 7
67 = S 0, (N7,

and following a similar line of reasoning as above we have

N
N2 Z ~—2£ o= N2 20;25” +0, <T71/2) :

=1

N N
N-1 25;2(9@ _ N1 ZU;QQiT +0, (T—1/2> :
i=1

i=1
and
€7,TQ EzT o 1 zTQ ézT —-1/2m—1
N Z N e'M-e; O (N r ) ’
Hence, using these results in (A.14) we obtain
) N
NS = N2z 40, (T‘l/z) +0, (N—1/2) , (A.16)
i=1

where Z;7 is defined by (22). m
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A.3 Moments of %, and Z;r; under Nonnormality

To obtain the first two moments of Z;7, defined by (22), under nonnormal error we exploit a slightly
extended version of Lieberman’s results, reproduced in Lemma 4 for convenience, that allows T°
defined in that Lemma to be a semi-positive definite matrix. In the case of our application, I' is
defined by the symmetric, idempotent matrix, M;, with rank T"— k£ — 1, and it is easily seen that
Prv/M;v; = 0] = 0. ' Also it is possible to show that Conditions 1, 2 and 3 of Lemma 4 are
satisfied.!? In particular, it is possible to show that ¢;,7, defined by by (A.5) for 2,7, is O(T™1)
for all 4, and using (A.4), we have

(T —k— 1)E (v;Plvl)

. T2 Al
E(’U,:Ml’vl) +¢21T+O( ) ( 7)

E(zir) =

uniformly over i. Now using results from Ullah (2004) and Bao and Ullah (2006) on the moments
of quadratic forms in nonnormal variables'? we have
2Tk —1) +ypTr(MiOM;) 5T (MiOP;)
par = (T —k— 1) (T—k—1) °

where 7,9 is the Pearson’s measure of kurtosis, which is zero when v;; is standard normal, and ®
is Hadamard product. Since |y;3] < K by Assumption 1(iii), ¢r(M; © M;) < (T'— k — 1), and
0 < tr(M; ® P;) <k, then it follows that o;;7 = O(T~1), uniformly over i. Hence, using (A.17)
we have E(2;r) = k + O(T~!) uniformly over i. Similarly

(T — k= 12E [(v/Pw:)’]
Var(3r) = TP ~ KR +o(r) (A.18)

2k +O(T™ 1),

uniformly over 1.

Consider now
8 (T — 1)’1)2131"01‘

2T = ’

viM,v;
and note that Pr[v/M,;v; = 0] = 0 for T'— 1 > 0, and Lemma 4 is applicable to Z;7 so long as
T > 1. Also, it is easily verified that
(T - 1)E(’U£Pi’ljl’)
E(viM;v;)

:kj’

and the Conditions 1, 2 and 3 in Lemma 4 are satisfied for the first two moments of Z;7. Also after
some algebra (details of which are available on request) it can be established that ¢;;7 = 0 and
Gior = O(T—2) miformly over i (See (A.5) and (A.6).). Therefore,

E(Zir) = k + O(T~?), uniformly over 4. (A.19)

Similarly, using (A.4) we have
Var(Zir) =2k +0(T™1), (A.20)

uniformly over . m

"We are grateful to Dr. Lieberman for this extension of his published results through a private communication.
12The proof of the conditions 1-3 of Lemma 4 can be obtained from the authors on request.

3Details are provided in a supplement to the paper that can be obtained from the authors on request.

Note that all diagonal elements of M; and P; are non-negative and bounded by unity.
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A.4 Proof of Theorem 2
Using (20), first note that

N
A 1 Zir — k _ -
AR <T >+0p<T Y2+ Op(NTH),

and write

Using E(Z — k) = O (T™!), established by (A.17),

3 (25) - w2 () w0y

i=1
Hence
A 1 iiT—E(éiT)) 1/20—1 —1/2 —1/2
A= 3 (BLZEED) | (N1 4 0,(112) £ 0y (N12). A2l

Under our assumptions, Z;7 is independently but not necessarily identically distributed across
i. But by Cauchy-Schwarz inequality

4
E|Z 2+e/2< /E /PU 4+-e e
’L /M 'U»L ?

for some small positive constant €, and under Assumptions 1 and 3 F |Z;7] < K < o0, and
hence the Lindberg-Feller Central Limit Theorem is directly applicable to the first term of (A.21),
(White (2001, Section 5.2)), and

N <ZT Q%é”)) —a N0, 5%,

=1

2+¢/2

where
Var(2
A2 —1 T
- ()

But since Var(Zip) = 2k + O(T 1) for all i, then g2 = 1 + O(T~!) and using the above results we

have .
A -4 N(0,1) as (N,T) % oo, so long as VN /T — 0.

Similarly




However, using (A.19), E (Z;7) = k+ O(T~?)

1L (5 — 1 L [z — E(G -
2 () v S () ror
and N
A:LZ(zZT E(ZzT)> +O(N1/2T_2)+Op(T_1/2)+Op(N_1/2).

As in the case of A,

1 Zir — E(Zﬂ“)) -9
N(0, g*),
_N;( ) N0,
where
Var(z
~2 —1 T
o (M)

with Var(Z7)/2k = 14+ O(T~1). Therefore,
A —4N(0,1) as (N,T) 9, 50 s0 long as VIN/T? — 0.

A.5 Proof of Corollary 1
A.5.1 Moments of Z;;7 and Z;ry under Normality

For the moments of z;r = €;P;e;/[e;M;e; /(T —k — 1)], where P; and M, are defined by (18) and
(19) respectively, noting P;M; = M;P; = 0, €/P;e;/0? ~ x%(k) and €M;e;/0? ~ x*(T — k — 1),
which are independent of each other;

E;Plel/k
eM;e; /(T —k—1)

~FkT—-k-1),
where F(v1,v9) is a F' distribution with v; and vy degrees of freedom. It is well known that mean
and variance of F'(v1,v2) is va/(ve — 2) (for v > 2) and

21)%(1}2 + v — 2)
U1 (’02 — 2)2(1)2 — 4)

, (for vy > 4),

respectively. Using these results we have

T*k*lE%PiEi k(T —k—-1 _
E[( E,AM‘; } = (T—k:—3) =k+0(T™) (A.22)

Var {(T— k— 1)5;Piel} _ 2k(T—k—1)*(T-3)

eiMe; (T —k—=3)2(T—k-5)

Consider now the moments of Z;r under normality. Using Pitman’s (1937) result, Z;7 and its
denominator v,M,v; are independent. Hence, z/, and (v;M,v;)" are independently distributed,

=2k+O(T™H). (A.23)
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and we have E{z[ [vIM,v;/(T — 1)|"} = E(Zi;)E{[viM,v;/(T — 1)]"}, which yields E(z};) =
E[(vP;v;)"]/E{[viM,v; /(T — 1)]"}. Therefore

S E (e/P;e;) (T =Dtr (P;y)
E(zr) = E(EM,e;)/(T-1) tr(M,) &
and
2y _ E[(¢jPie:)’] (T (2
E (Zr) = E[(ngTsi)Z]/(T — 1) = <T+ 1) (K* + 2k),
so that

2k (T — 1) — 2k?
T+1

Using the above results in conjunction with proof of Theorem 2 now yields the desired results.

Var (Z’LT) =

(A.24)

A.6 Proof of Asymptotic Power
Under the local alternatives (defined by (39))

di
b= Pt N

we first note that

VT (BZ - ,@WFE> = K;NT + %NT,

where N A
A a oA 1a d; 1 A i1 Qird;
KiNT = Qij‘lEiT - N 1/2QN1£N> HNT = —N1/4 - N1/4QN1 <_Z 1N ) )
with R R
Qir =6;°Qur, & = 6; %, (A.25)
and
N N
Qv =N "Qir, En =N & (A.26)
i=1 i=1
Hence
. T .. P (s
NS = ~ Z (ﬁi — ﬁWFE) Qir (/61‘ - 5WFE)
i—1
1 & 1
J— l A . . —_ I A ., .
= ¥ ; RinT QITRiNT + & ; N7 Qir 7NT
5 N
+5 Z KiNTQiT 2N T
=1

The first term is the component of the test statistic that remains under the null hypothesis and is
already shown to be given by

N N
% ZKJ%NTQiTKiNT = % ZéiT + Op (N_1/2T_1/2) + Op (N_l) . (A27)
i=1 i=1
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Similarly,

N N N A~
1 A - i=1 §ir0i 2 O i=1 Qird;
D R Qursany = N7 K%) -8,ay (Zl%ﬂ S A
=1
and
1 o A UNT
N ;%NTQz‘T%iNT = UN (A.29)
where

1 1 &L LN N
TN ;&Qm&i — (N ;&Qﬁ) (ﬁ ; QiT) (ﬁ ;QiTJZ) .

Consider now the terms in (A.28) and first note that (as in Section A.2)

N A
- =1 Qirdi
EvQy (ZITT> = Op(1). (A.30)
Further Ny
S &l Z &/ M, X5,
\/— \/ T k‘—l 1€;Mi€i7

and since g;’s are assumed to be independently dlstrlbuted, we have

SN &rds T-12eM X5, \]
Var | &=L500 Z E iM-2:9;
VN N — (T —k—1)"te/M;e;

But by Cauchy-Schwarz inequality and under our assumptions

T-1/2s M, X:6)" ] 1
— 1) leMig* | N &

T-1/2e\M. X6,

E
(T —k— 1)_1€;Mi.€i

<E [(T—l/2 ‘M X&) }

L | <k
[(T —k— 1)_1€2Mi€i]
and

(T-1/2/M, X6,)°

3 K
[(T —k— 1)*1€;Mi€i]

<E [(T—1/25§M7Xi5i)4] E

)

1 | <
[(T — k- 1)*18;1\/[1'6@'}
and hence Var (N_1/2 >N E;T(si) < K, which establishes that N~1/25N E;Téi = 0py(1).

Substituting this result together with (A.30) in (A.28) now gives N~! Zf\il /‘%NTQiT%z‘NT =
O,(N—3/%), and if used in conjunction with (A.29) and (A.27) yields

=% Z i + m +0, (N*S/‘*) +0, (N*1/2T*1/2) :

Finally, using this result in (26) gives

. 1 N Zir — k VNT —1/4 -1/2
- w2 () o () ror (),

as required. m
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A.7 Proof of Theorem 3
First note that under Hp, and Assumptions D1 to D3, F |Q;r| < K and"

!
yi,_lMTYi,fl o?

Qir = T =7 _iﬁg +0,(T71/?)
Sy Meyia o2 _ /9
Qnr = TR = o H O+ OV,

where 62 = limy oo N"' 32N 62, and 0 < 5% < K. Also (re Alvarez and Arellano (2003, p.1140))

o 1-p _
QiT1 = o2 +OP(T 1/2)7
and
-1 1-— 52 -1 —1/2p—1/2
Q TZT“'OP(T )+Op(N T )-
Let , N
o= Yi1Mrei Enp = iz i
T ﬁ s SNT \/N

Similarly (using (A10) in Alvarez and Arellano (2003))

N\2 52 N
E(nr) =— <T> 1i—52 +0 (T_l T) ;

and
o
fiT — N <071_—52>a
Ez‘]\il yg,—lMTEi

Ent — E(ny) = JNT -

=4
< (0 5)

where 7% = limy_s N1 Zfil a?. Therefore, since under Assumption D2 N/T — &k, where

0 < k < 00, then {yp = Op(1). 1t is also clear that

Eir = Op(1), Q;Tl = Op(1), and Q]:f}l“ = Op(1).

N\Y2 52 /N
‘(?) T?E+O<T T

Using these results in

~2:€§Mr€i 2UnrQuréir  ErQurQir

i , A31
T T NI -1 | NT-1) (A.31)
now yields

az_—T_1+0p(N ).

5See, for example, Alvarez and Arellano (2003, pp. 1127-1128 and Appendix A.1) where the results are derived

under o? = o2,
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Also
672 = 072+ 0T + 0, (N7

7

Assuming that T > Tj so that E (5; %) < K, we now have!®

N ~-2 N -2
2.i=10; Qir _ 2.i=17; QiT—i—Op(T_l/Q)—i—Op (N_I/QT_1>,

N N
N ~—2 N 2
=107 & iz10; & N -
Z 1/N T _ Z 1/N T+Op( 7) Op(T 1)’

and under Assumptions D1 and D2 (N/T — &, 0 < k < 00) we also have

i 07 Qr —0,(1), iy 07 —0, ( N) .

N VN T

Using these results in

N _ o 2 o -1
ig _ 1 Z ErQi 1 S 6 SN 67 Qir
N°TN&ZT TN\ N N ’
now gives (assuming N/T — k, 0 < k < 00)
N 2 ~-1
I & 1 ngQ'T -1 ~1/2n—1/2
N5 = w2 T H Op(NT) + O (NTETTYE),

Substituting for 57 = €/M,¢;/(T — 1) + O, (N~/2T71), we now have

or
O XN: Wi+ Op(N~1) + Op(N~V2T71/2) (A.32)
N N £ i ™ Up P )
where ,
w; = (T -1 (T 2eMyyi) . (A.33)
(eMres) (71, Mryi1 )
|
A.8 Proof of Theorem 4
First note that under Hy, the AR(1) model, (40), can be written in matrix notations as
yi = aitry1 + B D, (A.34)

where a; = (1 — flas, y7 = (Wio, Yir, - ¥ir), Vi = (uio/di,€i1/0i,...,ei7/03) so that v; ~
N (0741x1,I711), Oryix1 is a (T4 1) x 1 vector of zeros, Ipyq is an identity matrix of order

'%Note that E|Qir| < K and E ;1| < K .
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T+1, 7741 is a (T'+ 1) x 1 vector of ones, D; is a (I'+ 1) x (T'+ 1) diagonal matrix with its first
element equal to 0; and the remaining elements equal to o;, and

1 0 0 0
—8 1 0 0

B=| @ =+ . i . (A.35)
0 0 10
0 0 -8 1

Also yi= Goy}, yi—1 = Gy}, where Go = (0O7x1,17) and G1 = (I, 07,,). Hence, noting that
M, Gi7r41 = 0, and using the above results in (A.33) we have

(T —1) (T2 M,y; 1)

w; = , (A.36)
(ViMv;) (T_lyg,_1MTYi,—1)
or ’lI)l' = XiT/}/iT; where XiT = (I/;Ail/i)Q, Y;T = (VéBI/i) (I/;Clllz)
A M, 71Di
A, = GMGIE Di (A.37)
VT
G{M. Gy
B 20770 A.
Lo (A.38)
and noting GoG{, = Ir,
=117 —11.
Ci=AA; = D.5 Gll\ijlg Di. (A.39)
First note that B and D; are non-singular matrices, and
01x1 Oixr / M;  Opx
G\M,Gg = , GIM,.G1 = , A.40
0 0 < Orx1 M, > ! ! < 0157 O1x1 ) (4.40)

where G{M; Gy and G|M;G are idempotent matrices. Therefore, it readily follows that B and
C; are non-negative definite matrices with rank 7' — 1. Therefore, by Corollary 2 E(Yi}‘l) =

E [(V;Byi)—“ (V;Ciui)_ﬂ <K T—1>16. Also E(X4) = E [(V;Aiui)g} < K. (see (A.54)
below). Hence, if T' > 17, by Cauchy-Schwarz inequality

Bt = £ (3) < 18 (e (B0 < &

and the first two moments of w; exist for each 1.
A mean value expansion of w; around ¢; = E(Y;7) > 0, now yields

. Xir X X; Xir 2

where Y7 = \Y;r + (1 — X) ¢;, A € [0,1]. But in view of (A.58) and (A.62), (V.Bv;) (V.Civ;) =
O,(1), and

1
? N A (V/By;) (viCiv;) + (1 — )\)%]3 = Op(1).
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Also
2 2 \11/2 N
B X (Yo -] < [B(XE)]" B —e)!]
= o),
by (A.53) and (A.63). Therefore, the last term of (A.41) is O,(T 1), and,
Wi —w; = Op(T71)7

where

W = (ViAw:)* [1 _ WiBvy) (viCivi) — E[(vjBvi) (v;Civi)]
' E[(viBy) (viCivi)] E[(viBv;) (v;Civi)]

Using (A.42) in (A.32), and recalling that E |w;| < K for each i, we now have

N
leg 1 * —1 -1 —1/27—1/2
Rﬁ—ﬁgw+%@)+%W)+%W/T/)
and
A 1 a (wy —1) 1/2—1 1/2 1/2
A= L + Op(NT77) + Op(N_77%) + Op(T77/7).
TR OV 0N VL O
Ad 1 N (wi-1) J
HenceunderN/T—u@,0§/@<oo,Aw\/—NZi:1—7\/§— as (N, T) = oo.

A.8.1 Asymptotic Expansion of F(w}) and Var(w})

(3

Consider w}, defined by (A.43), and use (A.52), (A.57), and (A.58) to obtain
E(w)=1+0(T™1).
Similarly, using (A.53) and (A.58)
E [(V;All/l)4:|
{E[(viBv)) (viCiwi)]}

s =3+0(T").
Also using (A.54), (A.62) and (A.63) we have (recall that ¢; = E [(v/Bv;) (v,Civ;)])

FE [(V;Ail/i)4 [(V;Bljz‘) (V;Cﬂ/i) — (pl”

< {B[waw) ]} (B ((@wBv) wiow) - ¢]*)}
o2,
E{(viaw)" [(vBr,) WiCw) — o]’}

< {e[wiaw)’ ]} (£ ((0mv) tiow) - 01')}

= OT™).
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Using (A.46), (A.47) and (A.48),

E (w?) =3+0(T V3. (A.49)
Finally, by (A.45) and (A.49)
Var (w}) = FE (w;@) —[E (w))]? (A.50)
= 2+ 0(T71/?).

Using this result together with (A.45) in (A.44), and bearing in mind that w} are independently

distributed across i, we have A& ﬁ Zf\il (ﬂ‘:/%—l) —q N(0,1), as (N,T) 5 00.m

A.9 Moments for Products of Quadratic Forms

Consider the non-stochastic matrices A, B, and C (suppressing subscription i) defined in Appendiz
A.8 by (A.87), (A.88), and (A.39), respectively, suppose that v ~ ITDN(0,Ip41), and let

tr(A) =a, tr(B)=b=1,tr(C) =c. (A.51)
Then
E [(V’Al/) 2} = [tr (A)]> +tr (A%+A’A) (A.52)
= c+0(T™),
E [(V'Ay)‘*] = [tr(A)]* + 4tr(A) [2tr(A®) + 6tr(AA?)]
+3 [tr(A’A) +tr(A%)]* + 6 [tr(A)]? [tr(A/A) + tr(A%)]
+6{tr(A%) + 3tr(ASA’) + 2tr[(A’A)?] + 2tr[(A')2A?]} (A.53)
= 3¢ +0(T Y,
E [(V'Au)ﬂ = 105¢* + O(TY), (A.54)

B[/ Av)* (V'C¥)| =" [tr (A) tr (C) + dir (A2C) + 2tr (A’AC) + 217 (AA'C)
+4tr (A)tr (AC) +tr (C) tr (A? + A'A)
= tr(C)tr (A'A)+0(T™1)

= 2401, (A.55)

E|(VAv)" (VBu)| = [r(A)]tr(B) +4tr (A’B) +2tr (A’AB) + 2tr (AA'B) (A.56)
+4tr (A)tr (AB) +tr (B) tr (A% + A’A)
= tr(B)tr (A’/A)+0(T™1)
= c+0(T™),
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E|(VAv)? (VBy) (VCv)| = [tr (A) tr (B) tr (C) (A.57)
+8tr (A)tr (ABC + A'BC) + tr (B) [4tr (A%C) + 2tr (A’AC) + 2tr (AA'C)]

+tr (C) [4tr (A’B) +2tr (A’AB) + 2tr (AA'B)]

+2tr (A?) tr (BC) + 2tr (A’A) tr (BC) + 8tr (AB) tr (AC)

+2[tr (A)]* tr (BC) + 4tr (A) tr (B) tr (AC) + 4tr (A) tr (C) tr (AB)

+tr (B) tr (C)tr (A%) +tr (B)tr (C)tr (A’A)

+ 8tr (A’BC) + 8tr (A’ABC) + 8tr (AA'BC) + 8tr (A’CB)

+ 8tr (ABAC) + 4tr (A'BAC) + 4tr (ABA'C)

=tr(B)tr (C)tr (A'A) +O(T")

=24+ 0(T7Y),
E[(v'Bv) (V' Cv)] =tr (B)tr (C) + 2tr(CB) = c+ O(T '), (A.58)
E [(V'By)“‘ (u'cuﬂ — [tr (B)]? [tr (C))? + 16 {tr(C)tr(CB?) + tr(B)tr(BC?)} (A.59)

+4 {m«(cQ)tr(B?) +2 [tr(CB)}Q} +2 {[tr(C)]2 tr(B2) + 4tr(B)tr(C)tr(BC) + [tr(B)]? tr(C2)}
+ 16 {tr [(CB)?] + 2tr(C*B?)}
=2 +0(T™h),

E [(U’BV)S (u’cu)ﬂ = [tr (B) [t (C)P + 6 [tr (B)] r (C) tr (C?) (A.60)
+ 18 [tr (B))? [tr (C))* tr (BC) + 6tr (B) [tr (C)]* tr (B?) + O(T2),

E|(vBy)* (v Cv) } — [t (B)]* [ (O] (A61)
+ 12 [tr (B)]* [tr (C >[tr (C )] +32[tr (B)]? [tr (C))* tr (BC) + 12 [tr (B)]* [t (C)]* tr (B?)
+32[tr (B) tr (C?) + -2,

By using (A.58) to (A.61), it is easily shown that

Var [(VBv) (V'Cv)] =O(T1), (A.62)

E{(V'Bv) (W'Cv) - E[(v/Bv) (V'Cv)]}' = O(T7?). (A.63)

Proof. Using results in Magnus (1978,1979), together with (A.64) to (A.68). m

A.10 Results on Trace of Matrices

Consider the mon-stochastic matrices A, B, and C defined by (A.87), (A.38), and (A.39) in
Appendiz A.8, respectively (suppressing the subscript i). Then,

tr(B) = 1,tr (A’A) =tr(C) =0 (1),tr (B%) = O(T~ V),
tr(CY) = O V) tr(A) =0 (T7Y2) tr (A%) =0 (T7), (A.64)
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tr (A'C) = O (T71/2) 1 (A'AC) = O (T™") ,tr (AA'C) = O (T™) ,tr (A%C) = O (T7),

A.65)
tr (A’AB) = O (™) tr (AA'B) = O (T") ,1r (AB) = O (T™?) ,r (A’B) = O (1),
A.66)
tr (BC) = O (T™1),tr (A'BC) = O (T*?’/?) .tr (ABC) = O (T*S/Q) : (A.67)
and
tr (ABC) ,tr (A’'ABC) ,tr (AA'BC) ,tr (A’CB),
tr (ABAC), tr (A'BAC) , tr (ABA/C) are at most O (T2). (A.68)

Proof. We first note that

0 01x1
H :G/M G _ 1xT X >7
oo e (M 071

and GHM,;Go and G| M, G, defined by (A.40), are (T'+1) x (T'+1) idempotent matrices with two
zero eigenvalues and T — 1 unit eigenvalues. Also since B, defined by (A:35), is a lower triangular
matrix with unit diagonal elements and D is a diagonal matrix with omax = Maxz(0,d) < K we
have, using (A.39),

Omax
OSVI‘(C) S Ta7

where v4(C) for t =0, 1, ..., T are the eigenvalues of C. Also it is easily verified that

. B! Gll M, Gg G{)MT Go A

A'B = T—-1)tA A.
e () A (A.69)
AA'B=(T-1)"'AA". (A.70)
To prove the results in (A.64), we first note that
tr[(GoM;Gy)] 1 (51
t B — 17 t B'S — 3 = :O T (S ) ,
rB) =1, b (B = I = o =0 (170)
d (T+1)o
= < JTmax 1 A.T1
(€)= 3 m(©) < % o), (A7)
thus .
s s T+ 1)omax —(s—
r(©) = Y wi(c) < TEDTmn oty
=0

Since omax is bounded, to simplify the derivations and without loss of generality in what follows
we set § = 0 =1, (so that D =Ip11) and note that

1 0 0 0
I} 1 0 0

B = : ,
ﬁTfl BT72 1 0



A = T7YV2G)M,G B!

T2 (E-F), (A.72)
R R
B 1 000 gr—-1 g9gr-2 - 9o 0
E=  F= : : N
/B:ﬁ—Q 6f—3 1 0 0 gr—2 gr-2 -+ go O
gr-1 g2 10 gr-1 gr—2 -+ go O
where
1§‘: . 1(1—%“) )
== F==|——1=0(T"") (since || <1),for£=0,1,...,T — 1.
T = T 1-0
Therefore,
T2 1 T2/ _ gt e
Consider now ¢r (A?). Using (A.72)
tr (A?) =T [tr (E?) + tr (F?) = 2tr (EF)] . (A.74)
But it is easily seen that
tr (E*) = 0,
T-1 T—2
o) = (L) (Zo)-ow)
£=0 £=0
T— T—(—2 T-3 T—(—2 041
1-8 1 1-8 1-8
tr (EF) = <7> g = — ( ) ( ) =0(1),
— 1-p5 Te:o 1-p 1-p5

which together with (A.74) establishes that ¢tr (A?) = O (T1).
To prove the results in (A.65), we observe that!”

T
tr (A'AC) = tr (C?) = Y 1}(C) < = =0 (7).
t=0
By Cauchy-Schwarz inequality
[t (AA'C)]” < tr (AA'AA) tr (C'C) = tr ([A’A]) tr (C?) = [tr (C?)]7,

which establishes [tr (AA'C)| = O (T!). Similarly, again by Cauchy-Schwarz inequality and
noting that A’A = C,

[tr (A2C)]? < tr (AAA’A') tr (C?) = tr (AA'C) tr (C?),

1"Recall that ¢’ = C and A’A = C.
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which establishes |t7“ (A2C) | =0 (Tﬁl). To derive the order of ¢tr (A’C), again by Cauchy-Schwarz
inequality
[tr (A'C)]* < tr (A’A) tr (C'C) = tr(C)tr(C?).
Therefore, since tr(C) =0(1), it follows that |tr (A'C)| = O(T~/2).
To establish the results in (A.66), by Cauchy-Schwarz inequality
[tr (A%B)]® < tr (AA'C) tr (B?).

But

r [(GMGo)’|  riepMeo) 1
T-1° (T-1° T-1

hence, |tr (A’B)| = O (T~!). Similarly,

tr (BQ) =

[tr (A’AB)]? = [tr (CB)]* < tr (C?) tr (B?) = O (T"?),
which establishes |tr (A’AB)| = O (T~!). Using (A.70)
tr (AA'B) =(T — 1) 'tr (A’A) = (T — 1) 'r (C) =0(T1).
Also
tr (AB) = T YT —1)"'tr (GHM,G18 7 G{M;,Gy)

— TVAT - 1) M (GHM, G B ) = Tl_ —tr (A) = O (T79/2).

To prove the results in (A.67), a further application of the Cauchy-Schwarz inequality to A and
BC now yields

[tr (A'BC)]?
[tr (ABC))?

tr (A’A) tr (C'B'BC) = tr(C)tr (B*C?),

<
< tr (AA') tr (C'B'BC) = tr(C)tr (B*C?).

But as easily seen
[tr (B2C?)]? < tr (BY) tr (C*) < O (T°)

so that
[tr (B2C?)| <O (T7?),
and hence
|t7" (A’BC)| = O(T—3/2)7 and |t7" (ABC)| _ O(T_3/2).
Similarly,

tr (BC)]* < tr (B?) tr (C?) =0 (T7?),

and |tr (BC)| = O(T1).
Finally, the various higher order terms in (A.68) can be established following similar lines.
Firstly,
tr (A’/ABC) = tr(BC?), [tr(BC?)]? < tr(B*)tr(C*) = O(T™*),
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so that |t7"(BCQ)} = O(T~2), and

[tr (A’BC)]® < tr (AA'C)tr (C*B?) =0 (T™Y),
[tr (A2CB)]® < tr (AA'C)tr (C?B?) =0 (T™).
Similarly,
[tr (ABAC)]? < tr (ABB'A') tr (C'A’AC) = tr (B2C) tr (C%) = O(T™%).
Furthermore,

[tr (AA'BC)]” = [tr (A'BCA)]? < tr (A'BB'A) tr (A/C'CA) = tr (B*AA/) tr (C?AA’),
and

[tr (A'BAC)]?
[tr (ABA'C)]

tr (A'BB'A) tr (C'A’AC) = tr (B2 AA) tr (C?),

<
< tr (ABB'A’)tr (C'AA'C) = tr (B*C) tr (C*AA’).

Also using (A.69) and (A.70) we have

’ . / . n o tr(AIA) - -
tr (AA'B?) =7t (AA'B) = T 1)2tr (AA') = @1 o(T2).
[tr (C?AAY)]” = tr (AA’AA")tr (CY) = tr (A’AA'A) tr (CY)

[tr (AA'C?)]” < tr
= tr(CHtr (C4) = O(T™).
Finally, it is easily established that

tr (B2C) = O(T?), tr (C*) = O(T?).

Hence all the terms in (A.68) are of order O(T~2). m
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Table 1: Size and Power of Slope Homogeneity Tests
with a Single Exogenous Regressor and Normal Errors

(Per Cent)

Size Power
N,T 10 20 30 50 100 200 10 20 30 50 100 200
H Test

20 5.80 4.55 5.95 5.00 5.10 4.65 5.80 5.25 6.25 7.20 9.65 13.90

30 5.45 4.50 4.90 4.35 560 5.35 7.15 7.70 11.30 16.20 31.20 47.30

50 7.00 7.80 5.70 6.20 4.40 5.05 7.00 7.95 5.75 6.20 4.45 4.90
100 5.50 6.10 5.30 495 575 4.95 5.20 6.10 5.45 5.05 5.60 4.95
200 7.15 5.85 5.10 540 535 5.25 7.25 5.90 5.05 5.25 5.25 5.40
S Test

20 | 24.25 13.40 8.45 7.55 6.95 5.05 | 56.90 72.20 82.20 92.90 98.80 99.85

30 | 30.95 13.45 10.15 7.40 6.95 6.00 | 72.30 82.10 89.60 97.05 99.60 100.00

50 | 41.20 17.15 11.60 8.70 6.40 6.05 | 90.60 96.85 99.10 99.90 100.00 100.00
100 | 61.80 23.90 16.45 9.55 6.70 5.95 | 94.00 97.40 99.60 100.00 © 100.000 100.00
200 | 82.50 34.10 20.05 12.75 845 6.35 | 99.95 100.00 100.00 100.00  100.00 100.00
Aadj Test

20 4.20 4.00 2.95 4.60 450 3.25 | 13.75 47.20 67.05 87.90 97.85 99.85

30 4.75 4.65 4.70 3.60 445 4.20 | 17.85 56.60 77.95 93.50 99.35 100.00

50 5.05 4.25 4.05 4.55 4.20 6.05 | 32.20 81.00 96.35 99.70 100.00 100.00
100 5.20 5.00 5.70 4.15 450 4.75 | 24.65 77.75 96.25 100.00 100.00 100.00
200 4.65 4.25 4.80 540 4.45 4.85 | 56.00 99.10 99.95 100.00 100.00 100.00

Notes: Data are generated as yit = o + xit3; + €it, ¢ = 1,2,..., Nt = 1,2,...,T, where a; ~ N(1,1), with x4 =
ai(1=p;)4+p;xit—1+(1—p2)Y 205, t = =48, ...,0,..,T,i = 1,2, ..., N, where p, ~ IIDU[0.05,0.95], vis ~ IIDN(0,0%,)
with o2, ~ ITDx?(1). p; and ¢%, are fixed across replications with x; 49 = 0. The first 49 observations are
discarded to reduce the effect of initial value on the generated values of x, t = 1,2,...,T. € ~ IIDN(0,0?) with
a? ~ IID(x*(2)/2). Under the null hypothesis, 8, =1 for all i, and under the alternative hypothesis 3, = 1 for
t=1,..,[N/2] and 8; ~ N(1,0.04) for i = [N/2] + 1,..., N, with [N/2] being the nearest integer value of N/2. «;
and o2 are fixed across replications. H is the heteroskedasticity robust Hausman test statistic defined by (52). S is
the Swamy’s statistic defined by (11), Auq; is the adjusted A test statistic defined by (54). H and S tests are based
on x2(k) and x2(k(N — 1)) distributions, respectively. Aq; test is based on a two-sided N(0,1) test. All tests are
conducted at 5% nominal level, and the experiments are based on 2000 replications.
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Table 2:

Size and Power of Slope Homogeneity Tests with k£ = 2,3 and 4 Exogenous

Regressors and Normal Errors

(Per cent)
Size
k=2 k=3 k=4
N,T 20 30 50 20 30 50 20 30 50
H Test
20 6.40 5.70 6.05 6.55 7.05 6.10 6.60 6.15 5.80
30 5.05 5.10 5.45 6.40 4.90 4.90 6.20 6.10 5.15
50 6.35 6.60 5.20 6.20 4.55 6.30 7.20 6.00 6.15
100 5.45 6.35 4.85 6.65 6.45 6.10 7.25 6.10 6.70
200 6.50 5.20 5.10 7.40 5.35 5.70 6.55 6.40 6.05
S Test
20 14.40 12.65 8.60 21.00 13.40 7.90 24.65 15.40 10.15
30 18.45 11.75 8.45 25.05 14.00 10.65 31.95 18.25 11.45
50 24.90 14.30 10.65 31.05 20.55 11.15 41.80 22.05 15.25
100 37.30 21.90 12.50 48.75 27.75 13.65 61.25 33.30 17.60
200 52.75 30.35 16.50 69.65 39.80 20.00 82.55 51.45 25.40
Aadj Test
20 4.70 5.30 4.95 5.70 5.05 5.25 5.95 4.65 4.50
30 4.55 3.75 5.00 5.40 4.25 5.95 6.35 5.65 4.90
50 4.90 4.25 3.45 4.40 4.45 4.90 5.50 5.60 5.20
100 5.70 4.90 4.75 5.20 5.15 4.25 4.95 4.95 5.40
200 5.20 4.70 5.00 4.55 5.60 6.30 5.50 4.75 5.65
Power
k=2 k=3 k=4
N,T 20 30 50 20 30 50 20 30 50
H Test
20 6.05 6.35 6.35 6.60 7.20 6.00 6.90 6.35 5.90
30 5.55 5.30 5.70 6.45 5.25 5.40 6.65 6.10 5.60
50 6.10 6.55 5.35 6.40 4.65 6.45 7.15 5.75 6.50
100 5.55 6.45 5.15 6.70 6.90 5.85 7.30 6.40 6.50
200 6.45 5.25 5.20 7.35 5.15 5.60 6.40 6.40 6.05
S Test
20 47.50 60.05 75.05 54.20 63.25 78.45 52.35 57.10 71.85
30 67.30 80.45 91.90 62.60 67.55 85.80 66.10 67.60 84.40
50 86.00 94.10 98.80 90.35 95.65 98.80 89.65 93.20 99.00
100 | 100.00 100.00 = 100.00 99.95 100.00 100.00 99.90 100.00 100.00
200 | 100.00 100.00 100.00 | 100.00 100.00 100.00 | 100.00 100.00 100.00
Aadj Test
20 15.00 32.95 56.70 13.85 29.85 56.10 7.85 17.00 43.65
30 25.70 48.70 79.85 12.85 26.45 61.85 8.85 20.95 53.50
50 38.90 71.65 95.60 30.70 65.85 93.60 22.45 53.55 89.65
100 94.75 99.85 100.00 83.05 98.95 100.00 67.75 96.35 100.00
200 92.15 99.80 100.00 81.00 99.05 100.00 75.35 98.70  100.00

Notes:

are fixed across replications.

See notes to Table 1.

Data are generated as yir = a; + Z?:lx’ihﬁié + eit, t = 1,2,...,N,t
where a; ~ N (1,1), with @ier = ai(1 — pyp) + pieTiee—1 + (1 — p?e)1/2’l)i1gt, t=-48,...,0,..,T,i=1,2
pie ~ IIDU[0.05,0.95], vigy ~ IIDN(0,02,) with 0%, ~ IIDx*(1). p;, and 0%, are fixed across replications with
Ti¢,—a9 = 0. The first 49 observations are discarded. e;; ~ ITDN(0,07%) with o7 ~ IID(kx?(2)/2), k = 2,3, 4, so that
the population R? of individual equations in the panel are invariant to the number of included regressors. Under the
null hypothesis, 5,, = 1 for all ¢ and ¢, and under the alternative hypothesis 38,, = 5,; for £ = 2,3,4, where 5,; =1
for i = 1,...,[N/2] and B;; ~ N (1,0.04) for i = [N/2] +1,..., N, with [ . | being the nearest integer value. a; and o?
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Table 3: Size and Power of Slope Homogeneity Tests with k = 2,3 and 4
Exogenous Regressors and Nonnormal (Chi-Squared) Errors

(Per cent)
Size
k=2 k=3 k=4
N,T 20 30 50 20 30 50 20 30 50
H Test
20 6.20 6.00 5.40 7.05 6.55 5.70 7.40 5.55 5.30
30 5.75 5.70 5.60 5.75 5.00 5.60 5.65 5.10 5.50
50 5.30 6.85 4.90 7.05 5.60 5.00 6.65 5.95 6.00
100 6.30 6.00 6.15 7.15 5.85 5.65 8.10 7.00 6.70
200 6.90 5.60 6.45 6.35 5.50 4.10 7.20 6.45 5.20
S Test
20 15.90 10.40 8.15 19.50 12.90 9.45 24.70 14.10 9.25
30 19.10 12.75 8.85 24.35 17.00 10.30 33.00 18.80 10.95
50 25.75 14.55 9.65 31.90 18.45 12.05 41.15 24.60 12.95
100 39.10 23.05 13.00 48.30 29.65 16.05 61.40 33.15 17.65
200 54.85 30.45 17.00 69.50 40.40 21.75 81.05 49.50 23.60
Aqq; Test
20 4.15 3.70 4.25 4.40 4.35 5.00 5.90 5.80 5.60
30 4.05 4.25 4.25 5.00 5.15 3.55 5.35 5.55 5.75
50 4.20 5.00 4.95 5.35 4.95 5.60 5.30 5.60 5.50
100 4.95 4.85 5.20 4.65 6.10 4.15 4.70 5.35 4.75
200 5.50 4.75 5.30 4.15 5.65 5.40 5.60 5.10 5.45
Power
k=2 k=3 k=4
N,T 20 30 50 20 30 50 20 30 50
H Test
20 6.45 6.40 6.00 7.15 6.80 5.70 7.10 5.50 5.90
30 5.95 6.15 6.35 6.60 5.60 5.95 6.10 5.45 5.80
50 5.60 6.80 5.05 7.25 5.40 5.20 6.95 5.80 5.75
100 6.10 5.95 6.10 7.15 5.80 6.20 8.05 6.85 6.65
200 6.95 5.60 6.55 6.45 5.55 4.25 7.20 6.60 5.35
S Test
20 55.75 62.95 76.40 58.10 67.45 79.85 57.05 60.10 73.05
30 75.75 81.70 93.70 66.70 73.80 87.35 70.40 73.65 86.10
50 90.55 94.40 98.60 90.70 95.20 98.95 92.95 95.80 98.65
100 99.95  100.00 = 100.00 99.95 100.00 100.00 | 100.00 100.00 100.00
200 | 100.00 100.00 100.00 | 100.00 100.00 100.00 | 100.00 100.00 100.00
Aqq; Test
20 19.85 33.95 59.75 15.50 30.45 60.40 9.10 20.00 46.60
30 29.95 54.30 82.10 16.05 33.75 67.20 12.95 22.85 56.35
50 47.90 75.75 95.20 35.70 70.80 94.20 26.85 61.20 91.55
100 97.05 100.00 100.00 89.50 98.90 99.95 76.30 97.50  100.00
200 96.60 100.00 100.00 87.60 99.35 100.00 82.65 99.40 100.00

Notes: See notes to Table 1. Data are generated in the same way as specified in Table 2, except i

uie ~ IID((x*(2) - 2)/2), oF ~ I1D(kx*(2)/2).
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