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Testing slope homogeneity in large panels
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This paper proposes a standardized version of Swamy's test of slope homogeneity for panel data models where the cross section dimension (N ) could be large relative to the time series dimension (T ). The proposed test, denoted by ∆, exploits the cross section dispersion of individual slopes weighted by their relative precision. In the case of models with strictly exogenous regressors, but with non-normally distributed errors, the test is shown to have a standard normal distribution as (N, T )

When the errors are normally distributed, a mean-variance bias adjusted version of the test is shown to be normally distributed irrespective of the relative expansion rates of N and T . The test is also applied to stationary dynamic models, and shown to be valid asymptotically so long as N/T → κ, as (N, T ) j → ∞, where 0 ≤ κ < ∞. Using Monte Carlo experiments, it is shown that the test has the correct size and satisfactory power in panels with strictly exogenous regressors for various combinations of N and T . Similar results are also obtained for dynamic panels, but only if the autoregressive coefficient is not too close to unity and so long as T ≥ N.

A c c e p t e d m a n u s c r i p t 1 Introduction

In many empirical studies, it is assumed that the slope coefficients of interest in panel data models are homogeneous across individual units. When the cross section dimension (N) is relatively small and the time series dimension of the panel (T ) large, the hypothesis of slope homogeneity can be tested using the SURE (seemingly unrelated regression equation) framework of Zellner (1962). This framework is particularly attractive as it also automatically deals with the possibility of cross section error correlations and dynamics when N is reasonably small (around 5-10) and T sufficiently large (around 80-100). However, in many microeconometric applications N is often much larger than T and the SURE approach would not be applicable.

In view of this [START_REF] Pesaran | Dynamic linear models for heterogenous panels[END_REF] proposed the application of the [START_REF] Hausman | Specification tests in econometrics[END_REF] testing procedure where the standard fixed effects estimator is compared to the mean group estimator. However, as will be discussed below, such a procedure is not applicable in the case of panel data models that contain only strictly exogenous regressors and/or in the case of pure autoregressive models. Recently [START_REF] Phillips | Dynamic panel estimation and homogeneity testing under cross section dependence[END_REF] have also proposed a 'Hausman type' test for slope homogeneity for stationary first-order autoregression (AR(1)) panel data models in presence of cross section dependence, with N fixed as T goes to infinity. It will be shown below that their testing approach is not valid under cross section independence.

This paper proposes dispersion type tests based on the early work of Swamy (1970) that are applicable to panel data models where the cross section dimension could be large relative to the time series dimension. One version of the test, denoted by ∆, makes use of the Swamy statistic, Ŝ, and another version, denoted by ∆, is based on a modified version of the Swamy statistic where regression standard errors for the individual cross section units are computed using the pooled fixed effects, rather than the ordinary least squares estimator. It is shown that in the case of models with strictly exogenous regressors, but with non-normal errors, both versions of the ∆ test tend to the standard normal distribution as (N, T ) j → ∞, subject to certain restrictions on the relative expansion rates of N and T . For the ∆ we require √ N/T → 0, as (N, T ) j → ∞, whilst for ∆ test the condition is less restrictive and is given by √ N/T 2 → 0. When the errors are normally distributed mean-variance bias adjusted versions of the ∆ tests, denoted by ∆adj and ∆adj , are proposed that are valid as (N, T ) j → ∞ without any restrictions on the relative expansion rates of N and T . The paper also considers the problem of testing homogeneity of slopes in the case of stationary dynamic models, and shows that under the null hypothesis ∆ tends to the standard normal distribution so long as N/T → κ, as (N, T ) j → ∞, where 0 ≤ κ < ∞. This condition is more restrictive than the one obtained for panels with exogenous regressors, but is the same as the condition required for the validity of fixed effects estimator of the slope in AR(1) models in large N and T panels derived independently by [START_REF] Hahn | Asymptotically unbiased inference for a dynamic panel model with fixed effects when both n and T are large[END_REF] and [START_REF] Alvarez | The time series and cross-section asymptotics of dynamic panel data estimators[END_REF].

The small sample properties of the proposed tests are investigated along with the existing tests of slope homogeneity (namely the Hausman and Swamy's tests) by means of Monte Carlo experiments. In these experiments we focus on the ∆adj test, and show that for panels with different number of exogenous regressors (1 to 4), the test has the correct size for all combinations of T = 10, 20, 30, 50, 100, 200 and N = 20, 30, 50, 100, 200, and is robust to non-normal errors. It also has good power properties, with the power rising with both T and N, but more rapidly with T than with N, as predicted by the asymptotic theory. This is in contrast to the results obtained for the Swamy's test that exhibit significant over-rejections particularly for values of N > T. Also as predicted by our theoretical analysis, the Hausman test has the correct size but lacks power in the case of panels with exogenous regressors and randomly distributed slopes under the alternatives. Similar results are also obtained for dynamic panels, but only if the autoregressive coefficient (β)
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is not too close to unity and so long as T ≥ N. In cases where N > T and/or β is close to unity a bootstrap version of the ∆ test might be required. This is the subject of our on going research. The plan of the paper is as follows. Section 2 sets up the model and reviews existing tests of slope homogeneity. Section 3 considers the asymptotic distribution of alternative dispersion type tests of slope homogeneity and establishes their asymptotic distribution in the context of panel data models where N could be large relative to T . Section 4 considers the application of the proposed ∆ test to stationary dynamic panel data models. Section 5 sets up the Monte Carlo design and summarizes the small sample results. Section 6 provides some concluding remarks.

Notations: K stands for a finite positive constant, A = [T r(AA )] 1/2 is the Euclidean norm of the m × n matrix A, a n = O(b n ) states the deterministic sequence {a n } is at most of order b n , x n = O p (y n ) states the vector of random variables, x n , is at most of order y n in probability, → p convergence in probability, → d convergence in distribution, and d ∼ asymptotic equivalence of probability distributions. All asymptotics are carried under (N, T ) j → ∞, which denote joint convergence of N and T → ∞. Restrictions (if any) on the relative expansion rates of N and T will be specified separately.

The Model and Existing Tests of Slope Homogeneity

Consider the panel data model with fixed effects and heterogeneous slopes

y it = α i + β i x it + ε it , i = 1, ..., N, t = 1, ..., T (1) 
where α i is bounded on a compact set, x it is a k × 1 vector of strictly exogenous regressors, β i is a k × 1 vector of unknown slope coefficients, such that β i < K. Stacking the time series observations for i yields

y i = α i τ T + X i β i + ε i , i = 1, 2, .., N, (2) 
where y i = (y i1 , ..., y iT ) , τ T is a T × 1 vector of ones, X i = (x i1 , ..., x iT ) , and ε i = (ε i1 , ..., ε iT ) . The null hypothesis of interest is H 0 :

β i = β for all i, (3) 
against the alternatives H 1 : β i = β j , for a non-zero fraction of pairwise slopes for i = j.

( 4 )

The Standard F Test

There are a number of procedures that can be used to test H 0 , the most familiar of which is the standard F statistic defined by

F = N (T -k -1) k (N -1) RSSR -USSR USSR , ( 5 ) 
where RSSR and USSR are restricted and unrestricted residual sum of squares, respectively, obtained under the null (β i = β) and the alternative hypotheses. A test based on F is valid for a fixed N, and when the regressors are strictly exogenous and the error variances are homoskedastic, σ 2 i = σ 2 . Under these assumptions and assuming H 0 holds, it is distributed as F with k(N -1) and N(Tk -1) degrees of freedom.

A c c e p t e d m a n u s c r i p t 2.2 Hausman Type Test by Pesaran, Smith and Im

For cases where N > T, [START_REF] Pesaran | Dynamic linear models for heterogenous panels[END_REF] propose using the [START_REF] Hausman | Specification tests in econometrics[END_REF] test where the standard fixed effects (FE) estimator of β,

βFE = N i=1 X i M τ X i -1 N i=1 X i M τ y i , ( 6 ) 
is compared to the mean group (MG) estimator defined by

βMG = N -1 N i=1 βi , (7) 
where M τ = I Tτ T (τ T τ T ) -1 τ T , I T is an identity matrix of order T , and

βi = X i M τ X i -1 X i M τ y i . (8) 
For the Hausman test to have the correct size and be consistent two conditions must be met: (a) Under H 0 , βFE and βMG must both be consistent, with βFE being asymptotically more efficient such that AV ar βMG -βFE = AV ar βMG -AV ar βFE > 0,

where AV ar (•) stands for the asymptotic variance operator. (b) Under H 1 , βMG -βFE should tend to a non-zero vector.

In the context of dynamic panel data models with exogenous regressors both of these conditions are met, so long as the exogenous regressors are not drawn from the same distribution. In such a case a Hausman type test based on the difference βFE -βMG would be valid and is shown to have reasonable small sample properties. See [START_REF] Pesaran | Dynamic linear models for heterogenous panels[END_REF] and [START_REF] Hsiao | Random coefficient panel data models[END_REF].

However, as is well known the Hausman procedure could lack power for certain parameter values, as its implicit null does not necessarily coincide with the null hypothesis of interest. [START_REF] Holly | A remark on Hausman's specification test[END_REF] provides a general discussion of this point. This problem is, however, much more serious in the application of the Hausman procedure to the testing problem that concerns us here. For example, in the case of panel data models containing only strictly exogenous regressors a test of slope homogeneity based on βFE -βMG will lack power in all directions, if under the alternative hypothesis the slopes are random draws from the same distribution. To see this suppose that under H 1 the slopes satisfy the familiar random coefficient specification

β i = β + v i , v i ∼ IID(0, Σ v ),
where Σ v = 0 is a non-negative definite matrix, and E(X j v i ) = 0 for all i and j. Then

βFE -βMG = N i=1 X i M τ X i -1 N i=1 X i M τ X i v i -N -1 N i=1 v i + N i=1 X i M τ X i -1 N i=1 X i M τ ε i -N -1 N i=1 X i M τ X i -1 X i M τ ε i ,
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and it readily follows that under the random coefficients alternatives and strictly exogenous regressors, we have E βFE -βMG |H 1 = 0. This result holds for N and T fixed as well as when N and T → ∞, and hence condition (b) of Hausman's procedure is not satisfied.

Another important case where the Hausman test does not apply arises when testing the homogeneity of slopes in pure autoregressive panel data models. To simplify the exposition consider the following stationary AR(1) panel data model

y it = α i (1 -β i ) + β i y i,t-1 + ε it .
( 1 0 )

It is now easily seen that with N fixed and as T → ∞, under H 0 (where

β i = β) we have √ NT βFE -β → d N 0,1 -β 2 ,
and

√ NT βMG -β → d N 0,1 -β 2 .
Hence the variance inequality part of condition (a), namely (9), is not satisfied, and the application of the Hausman test to autoregressive panels will fail to have the correct size.

G Test of Phillips and Sul

Phillips [START_REF] Phillips | Dynamic panel estimation and homogeneity testing under cross section dependence[END_REF] propose a different type of Hausman test where instead of comparing two different pooled estimators of the regression coefficients (as discussed above), they propose basing the test of slope homogeneity on the difference between the individual estimates and a suitably defined pooled estimator. In the context of the panel regression model ( 2), their test statistic can be written as

G = βN -τ N ⊗ βFE Σ-1 g βN -τ N ⊗ βFE ,
where βN = ( β 1 , β 2 , ..., β N ) is an Nk × 1 stacked vector of all the N individual least square estimates, βFE is a fixed effect estimator as before, and Σg is a consistent estimator of Σ g , the asymptotic variance matrix of βNτ N ⊗ βFE , under H 0 .1 Under standard assumptions for stationary dynamic models (see Assumption D1-D4 below), and assuming H 0 holds and N is fixed, then G → d χ 2 (Nk) as T → ∞, so long as the Σ g is a non-stochastic positive definite matrix.

As compared to the Hausman test based on βMG -βFE , the G test is likely to be more powerful; but its use will be limited to panel data models where N is small relative to T . Also, the G test will not be valid in the case of pure dynamic models, very much for the same kind of reasons noted above in relation to the Hausman test based on βMG -βFE . This is easily established in the case of the stationary first order autoregressive panel data model considered by [START_REF] Phillips | Dynamic panel estimation and homogeneity testing under cross section dependence[END_REF]. Consider the AR(1) specification given by (10), and for simplicity impose homoskedastic assumption, σ 2 i = σ 2 , for all i. It is then easily verified that under H 0

Avar √ T βi -βFE = Avar √ T βi -β - √ T βFE -β = 1 -β 2 - 1 -β 2 N , Acov √ T βi -βFE , √ T βj -βFE = - 1 -β 2 N .
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Therefore

Σ g = 1 -β 2 T I N -N -1 τ N τ N ,
where Rank(Σ g ) = N -1 and Σ g is non-invertible.

Swamy's Test

Swamy (1970) bases his test of slope homogeneity on the dispersion of individual slope estimates from a suitable pooled estimator. Like the F test, Swamy's test is developed for panels where N is small relative to T , but allows for cross section heteroskedasticity. Swamy's statistic applied to the slope coefficients can be written as

Ŝ = N i=1 βi -βWFE X i M τ X i σ2 i βi -βWFE , ( 1 1 ) 
where

σ2 i = y i -X i βi M τ y i -X i βi (T -k -1) , ( 12 
)
and βWFE is the weighted FE (WFE) pooled estimator of slope coefficients defined by

βWFE = N i=1 X i M τ X i σ2 i -1 N i=1 X i M τ y i σ2 i .
In the case where N is fixed and T tends to infinity, under H 0 the Swamy statistic, Ŝ, is asymptotically chi-square-distributed with k (N -1) degrees of freedom.2 

Dispersion Type Tests for Large Panels

Our survey of the literature suggests that there are no satisfactory tests of slope homogeneity in panels where N is large relative to T . The standard F test and its extension by Swamy (1970) are appropriate for panels where N is small relative to T . Hausman type tests advanced by [START_REF] Pesaran | Dynamic linear models for heterogenous panels[END_REF] apply to large N panels, but are not generally applicable and can suffer from low power. In this paper we propose standardized dispersion statistics that are asymptotically normally distributed as (N, T ) j → ∞, with certain condition on the relative expansion rates of N and T , if any.

In addition to Swamy's test statistic, Ŝ, defined by (11), we also consider the following modified version

S = N i=1 βi -βWFE X i M τ X i σ2 i βi -βWFE , (13) 
where instead of σ2 i , we use σ2 i which is based on βFE , namely

σ2 i = y i -X i βFE M τ y i -X i βFE T -1 , ( 1 4 ) 
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and in place of βWFE we use βWFE which is the weighted FE estimator computed using σ2

i (instead of σ2 i ), namely βWFE = N i=1 X i M τ X i σ2 i -1 N i=1 X i M τ y i σ2 i . ( 15 
)
Although the difference between Ŝ and S might appear slight at first, as we shall see below the choice of the estimator of σ 2 i can have important implications for the properties of the two dispersion tests as N and T tends to infinity.

∆ Tests

As set out above the two versions of the Swamy's statistics, Ŝ and S, are valid for a fixed N and as T → ∞. In this section we consider tests based on Ŝ and S for panels where N and T are both large, and establish relative expansion rates of N and T under which the new tests are asymptotically valid. We refer to these tests as ∆ tests, and denote the standardized test statistics corresponding to Ŝ and S, by ∆, and ∆, respectively. To this end first let

Q iT = T -1 X i M τ X i , (16) 
Q NT = (NT ) -1 N i=1 X i M τ X i , (17) 
P i = M τ X i X i M τ X i -1 X i M τ , (18) 
M i = I T -Z i (Z i Z i ) -1 Z i , ( 1 9 ) 
where Z i = (τ T , X i ), and consider the following assumptions:

Assumption 1:

(i) ε it |X i ∼ IID(0, σ 2 i ), σ 2 max = max 1≤i≤N (σ 2 i ) < K, and σ 2 min = min 1≤i≤N (σ 2 i ) > 0.
(ii) ε it and ε js are independently distributed for i = j and/or t = s,

(iii) E(ε 9 it |X i ) < K.
Assumption 2:

(i) The k × k matrices Q iT , i = 1, 2, ..., N, defined by ( 16) are positive definite and bounded, max 1≤i≤N E Q iT < K, and Q iT tends to a non-stochastic positive definite matrix,

Q i , max 1≤i≤N E Q i < K, as T → ∞.
(ii) The k × k pooled observation matrix Q NT defined by ( 17) is positive definite, and Q NT tends to a non-stochastic positive definite matrix,

Q = lim N→∞ N -1 N i=1 Q i , as (N, T ) j → ∞.
Assumption 3:

There exists a finite T 0 such that for

T > T 0 , E{[υ i M τ υ i /(T -1)] -4-} < K and E{[υ i M i υ i /(T - k -1)] -4-} < K,
for each i and for some small positive constant , where υ i = ε i /σ i .

Assumption 4:

Under H 1 , the fraction of slopes that are not the same does not tend to zero as N → ∞.

A c c e p t e d m a n u s c r i p t

The following theorem establishes the asymptotic expansions of the two dispersion statistics.

Theorem 1 Consider the panel data model ( 1), and suppose that Assumptions 1-3 hold. Then under H 0 , the dispersion statistics Ŝ and S defined by ( 11) and ( 13), respectively, can be written as

N -1/2 Ŝ = N -1/2 N i=1 ẑiT + O p N -1/2 + O p T -1/2 , (20) 
N -1/2 S = N -1/2 N i=1 ziT + O p N -1/2 + O p T -1/2 , ( 21 
)
where

ẑiT = (T -k -1)υ i P i υ i υ i M i υ i , and ziT = (T -1)υ i P i υ i υ i M τ υ i . ( 22 
)
See Appendix A.2 for a proof.

Remark 1 In the case where the errors, ε it , are normally distributed Assumption 3 is met for T 0 = k + 11. See Lemma 1. In the case of non-normal errors further restrictions might be required. However, following [START_REF] Pesaran | A simple panel unit root test in the presence of cross section dependence[END_REF], it is possible to relax some of these conditions by developing "truncated" versions of Ŝ and S. For example, consider Ŝ = N i=1 ŝi , where

ŝi = βi -βWFE X i M τ X i σ2 i βi -βWFE ,
and note that under fairly general conditions ŝi

→ d χ 2 (k), as T → ∞. Consider now the truncated version of Ŝ defined by Ŝ * = N i=1 ŝ * i where ŝ * i = ŝi , if ŝi < M k M k , if ŝi ≥ M k ,
and M k is a positive constant such that Pr[ŝ i ≥ M k ] < , with a sufficiently small positive number. Given that for each i, ŝi is approximately distributed as χ 2 (k), the value of M k can also be obtained approximately. For example, with set at 0.0001 we have M k = 23.51 for k = 4. For large N and T a test based on Ŝ and Ŝ * will be equivalent. But the truncated version is likely to be better behaved in small samples. Monte Carlo evidence supporting this conjecture is available from the authors on request.

Under Assumptions 1-3, ẑiT and ziT are independently (but necessarily identically) distributed random variables across i with finite means and variances. Also as shown in Appendix A.3 for all i we have 

E(ẑ iT ) = k + O(T -1 ), V ar(ẑ iT ) = 2k + O(T -1 ), (23) 
E(z iT ) = k + O(T -2 ), V ar(z iT ) = 2k + O(T -1 ), (24) 
E |ẑ iT | 2+ /2 < K, and E |z iT | 2+ /2 < K. ( 2 
∆ → d N(0, 1), as (N, T ) j → ∞, so long as √ N/T → 0, ∆ → d N(0, 1), as (N, T ) j → ∞, so long as √ N/T 2 → 0,
where the standardized dispersion statistics, ∆ and ∆ are defined by

∆ = √ N N -1 Ŝ -k √ 2k , (26) 
∆ = √ N N -1 S -k √ 2k . (27) 
See Appendix A.4 for a proof. This theorem also suggests that tests of slope homogeneity based on ∆ is likely to have better size properties than the tests based on ∆. Similar results also follow under normally distributed errors. In this case, as shown in Appendix A.5 we have

E(ẑ iT ) = k + O(T -1 ), and E(z iT ) = k, ( 2 8 ) 
and the requirement on the relative expansion rate of N and T for the ∆ test gets relaxed. The results for the normally distributed case are summarized in the following Corollary.

Corollary 1 Suppose that the conditions of Theorem 2 are met, and the errors, ε it , are normally distributed. Then under H 0 ∆ → d N(0, 1), as (N, T ) j → ∞, so long as

√ N/T → 0, ∆ → d N(0, 1), as (N, T ) j → ∞.
See Appendix A.5 for a proof.

Remark 2

The small sample properties of the dispersion tests can be improved under the normally distributed errors by considering the following mean and variance bias adjusted versions of ∆ and

∆ ∆adj = √ N N -1 Ŝ -E(ẑ iT ) V ar(ẑ iT ) , ∆adj = √ N N -1 S -E(z iT ) V ar(z iT ) , (29) 
where

E(ẑ iT ) = k(T -k -1) T -k -3 , V ar(ẑ iT ) = 2k (T -k -1) 2 (T -3) (T -k -3) 2 (T -k -5) , (30) 
E(z iT ) = k, V ar(z iT ) = 2k(T -k -1) T + 1 . ( 31 
)
See Appendix A.5.
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Remark 3 The proposed testing approach can be readily extended to testing the homogeneity of a sub-set of slope coefficients. Consider the following partitioned form of (1)

y i T ×1 = α i τ T + X i1 T ×k 1 β i1 + X i2 T ×k 2 β i2 + ε i , i = 1, 2, .., N, or y i T ×1 = Z i1 T ×(k 1 +1) θ i + X i2 T ×k 2 β i2 + ε i ,
where Z i1 = (τ T , X i1 ) and θ i = α i , β i1 . Suppose the slope homogeneity hypothesis of interest is given by H 0 :

β i2 = β 2 , for i = 1, 2, ..., N. ( 32 
)
Our version of the dispersion test statistic in this case is given by

S2 = N i=1 βi2 -β2,WFE X i2 M i1 X i2 σ2 i βi2 -β2,W F E , where βi2 = X i2 M i1 X i2 -1 X i2 M i1 y i , β2,W F E = N i=1 X i2 M i1 X i2 σ2 i -1 N i=1 X i2 M i1 y i σ2 i , M i1 = I T -Z i1 Z i1 Z i1 -1 Z i1 , σ2 i = y i -X i2 β2,FE M i1 y i -X i2 β2,FE T -k 1 -1 , and 
β2,F E = N i=1 X i2 M i1 X i2 -1 N i=1 X i2 M i1 y i .
Using a similar line of reasoning as above, it is now easily seen that under H 0 defined by (32), and

for (N, T ) j → ∞, such that √ N/T 2 → 0, then ∆2 = √ N N -1 S2 -k 2 √ 2k 2 → d N (0, 1) .
In the case of normally distributed errors the following mean-variance bias adjusted statistics apply

∆2,adj = √ N N -1 Ŝ2 -E(ẑ iT ) V ar(ẑ iT ) , ∆adj = √ N N -1 S2 -E(z iT ) V ar(z iT ) ,
where

E(ẑ iT ) = k 2 (T -k -1) T -k -3 , V ar(ẑ iT ) = 2k 2 (T -k -1) 2 (T -k 1 -3) (T -k -3) 2 (T -k -5) , (33) 
E(z iT ) = k 2 , V ar(z iT ) = 2k 2 (T -k -1) T -k 1 + 1 . (34) 
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Remark 4 The proposed slope homogeneity tests can also be extended to unbalanced panels. Denoting the number of time series observations on the i th cross section by T i , our version of the standardized dispersion statistic is given by

∆ = 1 √ N N i=1 di -k √ 2k , ( 35 
) di = βi -βWFE X i M τ i X i σ2 i βi -βWFE , X i = (x i1 , ..., x iT i ) , M τ i = I T i -τ T i τ T i τ T i -1 τ T i with τ T i being a T i × 1 vector of unity, βi = X i M τ i X i -1 X i M τ i y i , (36) 
βWFE = N i=1 X i M τ i X i σ2 i -1 N i=1 X i M τ i y i σ2 i , (37) 
y i = (y i1 , ..., y iT i ) , σ2 i = y i -X i βFE M τ i y i -X i βFE T i -1 , and βFE = N i=1 X i M τ i X i -1 N i=1 X i M τ i y i . (38) 
Our proofs go through by replacing T with min 1≤i≤N T i . An extension to testing the homogeneity of a sub-set of slope coefficients in the case of the unbalanced panels is straightforward and is easily derived using the result in Remark 3.

Asymptotic Local Power of ∆ Test

The two versions of the dispersion test have the same asymptotic power properties and for simplicity we shall focus on the ∆ test. To bound the asymptotic power we adopt the following local alternatives H 1,NT :

β i = β + δ i N 1/4 T 1/2 , i = 1, 2, ..., N, (39) 
where δ i , i = 1, 2, ..., N are k × 1 vectors of fixed constants, δ i < K. Under Assumptions 1-3, and assuming that H 1,NT holds we have3 

∆ = 1 √ N N i=1 ẑiT -k √ 2k + ψ NT √ 2k + O p N -1/4 + O p T -1/2 ,
where

ψ NT = 1 N N i=1 σ-2 i δ i Q iT δ i - 1 N N i=1 σ-2 i δ i Q iT 1 N N i=1 σ-2 i Q iT -1 1 N N i=1 σ-2 i Q iT δ i .
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Hence, it readily follows that under H 1,NT

∆ → d N ψ √ 2k , 1 , as (N, T ) j → ∞,
where

ψ = lim N→∞ ⎧ ⎨ ⎩ 1 N N i=1 σ -2 i δ i Q i δ i - 1 N N i=1 σ -2 i δ i Q i 1 N N i=1 σ -2 i Q i -1 1 N N i=1 σ -2 i Q i δ i ⎫ ⎬ ⎭ .
Recall that

Q i = p lim T →∞ T -1 X i M τ X i .
The ∆ test has power against local alternatives if ψ > 0. Since Q i is a symmetric positive definite matrix, using the the Cholesky decomposition, Q i = L i L i , and setting δi = L i δ i /σ i , and

W i = σ -1 i L i we have ψ = lim N→∞ ⎧ ⎨ ⎩ 1 N N i=1 δ i δi - 1 N N i=1 δ i W i 1 N N i=1 W i W i -1 1 N N i=1 W i δi ⎫ ⎬ ⎭ = lim N→∞ 1 N ⎧ ⎨ ⎩ N i=1 δ i δi - N i=1 δ i W i N i=1 W i W i -1 N i=1 W i δi ⎫ ⎬ ⎭ .
Let δ = δ 1 , δ 2 , ..., δ N , and W = (W 1 , W 2 , ...., W N ) , and write ψ as

ψ = lim N→∞ δ M w δ N ,
where M w = I T -W (W W) -1 W. Hence, ψ ≥ 0, and in general the ∆ test is asymptotically powerful if δ i = 0 for a non-zero fraction of the cross section units in the limit, as specified under Assumption 4. Such an alternative, for example, allows a sub-set of the slope coefficients and/or a sub-set of cross section units to be homogeneous. The above result also suggests that the power of ∆ (or ∆) test is likely to increase faster with T than with N.

Testing Slope Homogeneity in Autoregressive Panels

To simplify the exposition we focus on the AR(1) model

y i = α i (1 -β i )τ T + β i y i,-1 + ε i , for i = 1, 2, ..., N, (40) 
where y i,-1 = (y i0 , y i1 , ..., y iT -1 ) . In this dynamic case we shall focus on the modified version of the Swamy test. The test statistic in this case is given by

S = N i=1 σ-2 i βi -βWFE 2 y i,-1 M τ y i,-1 , ( 4 1 ) 
where

βWFE = N i=1 y i,-1 M τ y i,-1 σ2 i -1 N i=1 y i,-1 M τ y i σ2 i , (42) 
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σ2 i = y i -βFE y i,-1 M τ y i -βFE y i,-1 T -1 . ( 4 3 ) 
For future use also let

Q iT = y i,-1 M τ y i,-1 T , (44) 
Q NT = N i=1 y i,-1 M τ y i,-1 NT , (45) 
and consider the following assumptions:

Assumption D1:

(i) {ε it }, t = 1, 2, ..., T , i = 1, 2, ...N, are independently distributed across time and cross section units, and independently of the initial values, y i0 , with finite moments up to order four,

E(ε it ) = 0, V ar(ε it ) = σ 2 i , σ 2 max = max 1≤i≤N (σ 2 i ) < K, and σ 2 min = min 1≤i≤N (σ 2 i ) > 0.
Assumption D2:

|β i | < 1 for all i, α i is bounded on a compact set, and lim N/T = κ, as (N, T ) j → ∞, where 0 ≤ κ < ∞.

Assumption D3:

The initial observations satisfy

y i0 = α i + u i0 ,
where u i0 , i = 1, 2, ..., N are distributed independently across i, and independently of ε i , with E(u i0 ) = 0, V ar(u i0 ) = δ 2 i , 0 < δ 2 i < K for all i, and with finite moments up to order four.4 

Theorem 3 Consider the panel data model (40), and suppose that Assumptions D1-D3 hold. Then under H 0 , the dispersion statistic, S, defined by (41), can be written as

N -1/2 S = N -1/2 N i=1 wi + O p (N -1/2 ) + O p (T -1/2 ), (46) 
where

wi = (T -1) T -1/2 ε i M τ y i,-1 2 (ε i M τ ε i ) T -1 y i,-1 M τ y i,-1 . (47) 
See Appendix A.7 for a proof.

It is interesting to note that the orders of the asymptotic expansion of S for the dynamic panel considered here are the same as those of panels with exogenous regressors (see ( 21)). However, in the dynamic case the additional condition N/T → κ, 0 ≤ κ < ∞ is required. This condition ensures that the asymptotic bias of the FE estimator of β in the dynamic case, discussed in [START_REF] Hahn | Asymptotically unbiased inference for a dynamic panel model with fixed effects when both n and T are large[END_REF] and [START_REF] Alvarez | The time series and cross-section asymptotics of dynamic panel data estimators[END_REF], remains bounded as (N, T ) j → ∞. Another important difference between the two cases is the differences that exist between the asymptotic expansions of E(z iT ) and V ar(z iT ) in the static case (given by ( 24)), and the corresponding expressions for E( wi ) and V ar( wi ) in the dynamic case.
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To derive the order of expansions of E( wi ) and V ar( wi ) we first note that wi defined by (47), can be written as

wi = (ν i A i ν i ) 2 (ν i Bν i ) (ν i C i ν i ) , ( 4 8 ) 
where ν i = (u i0 /δ i , ε i1 /σ i , ..., ε iT /σ i ) ∼ IID(0,I T +1 ), and A i , B, and C i are (T + 1) × (T + 1) non-stochastic matrices defined in Appendix A.8 by (A.37), (A.38) and (A.39), respectively. It is clear that unlike ziT which is the ratio of quadratic forms, wi is in fact the ratio of the products of quadratic forms, and to our knowledge there exists no result in the literature on the moments of such ratios for the case of non-normal (or for that matter normal) errors.

To develop suitable expansions of E ( wi ) and V ar ( wi ) we introduce the following additional assumption Assumption D4:

For each i, ν i = (u i0 /δ i , ε i1 /σ i , ..., ε iT /σ i ) ∼ IIDN(0,I T +1 ), and T > 17.
With this additional assumption the following theorem can now be established.

Theorem 4 Consider the panel data model ( 40), suppose that Assumptions D1-D4 hold. Then under H 0 , S, defined by ( 41) satisfies

1 N S = 1 N N i=1 w * i + O p (T -1 ) + O p (N -1 ) + O p (N -1/2 T -1/2 ),
where

w * i = (ν i A i ν i ) 2 E [(ν i Bν i ) (ν i C i ν i )] 1 - (ν i Bν i ) (ν i C i ν i ) -E [(ν i Bν i ) (ν i C i ν i )] E [(ν i Bν i ) (ν i C i ν i )] . (49) 
Furthermore,

E (w * i ) = 1 + O(T -1 ), V ar (w * i ) = 2 + O(T -1/2 ), (50) 
and

∆ → d N (0, 1) , as (N, T ) j → ∞, such that N/T → κ, 0 ≤ κ < ∞ where ∆ = √ N N -1 S -1 √ 2 . ( 51 
)
See Appendix A.8 for a proof. One would expect that a similar result holds for higher order autoregressive models. The relevant standardized statistic for a p th order process would be given by N 2p N -1 Sp . This is supported by Monte Carlo evidence for AR(2) panel specification in the following section, where we shall also examine the robustness of the test to non-normal errors.

Finite Sample Properties by Monte Carlo Experiments

In this section we investigate the finite sample properties of two main tests of slope homogeneity advanced in the literature and compare their performance to a bias adjusted version of the dispersion test proposed in this paper. The tests already available in the literature are Swamy's test based on
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Ŝ statistic defined by ( 11), and Hausman's test of slope homogeneity proposed in [START_REF] Pesaran | Dynamic linear models for heterogenous panels[END_REF] which in the case of application is defined by5 

H = βMG -βWFE V-1 H βMG -βWFE , (52) 
where βMG and βWFE are given by ( 7) and ( 15), respectively, and

VH = 1 N 2 N i=1 σ2 i X i M τ X i -1 - N i=1 X i M τ X i σ2 i -1 , (53) 
with σ2 i and σ2 i being defined by ( 12) and ( 14), respectively. Under the null hypothesis of slope homogeneity, H tends to a χ 2 (k) as T, N → ∞, and Ŝ tends to χ 2 (k(N -1)) for a fixed N and as T → ∞. We also considered the G test of [START_REF] Phillips | Dynamic panel estimation and homogeneity testing under cross section dependence[END_REF], but the G statistic could not be computed due to the singularity problem discussed in Section 2.3. 6As far as the standardized dispersion tests proposed in this paper are concerned we considered all the four versions, namely ∆ and ∆ defined in ( 26) and ( 27), respectively, and their mean and variance adjusted versions ∆adj and ∆adj , defined by ( 29). As to be expected the adjusted versions performed much better under normal errors, and interestingly enough turned out to be reasonably robust to non-normal errors, as well. So to save space we shall only report the results for ∆adj computed as

∆adj = N (T + 1) T -k -1 N -1 S -k √ 2k , (54) 
where S is defined by ( 13). The full set of results for all the four versions of the ∆ test are available on request. We report empirical size and power at the nominal 5 per cent level, for various pairs of N and T , including cases where N is much larger than T , often encountered with micro data sets, as well as when T > N which is more prevalent in the case of macro data sets. We consider panels with strictly exogenous regressors, as well as simple dynamic panels. Under the former the data generating process (DGP) is defined by

y it = α i + k =1 x i t β i + ε it ,
for i = 1, 2, ..., N; t = 1, 2, ..., T, where α i ∼ N (1, 1). The regressors, x i t , = 1, 2, ..., k, are generated as

x i t = α i (1 -ρ i ) + ρ i x i ,t-1 + (1 -ρ 2 i ) 1/2 v i t , (55) 
for t = -48, ..., 0, ..., T ; i = 1, 2, ..., N, where

ρ i ∼ IIDU[0.05, 0.95], v i t ∼ IIDN(0, σ 2 i x ) with σ 2 i x
∼ IIDχ 2 (1). ρ i and σ 2 i x are fixed across replications with x i ,-49 = 0. The first 49 observations are discarded to reduce the effect of initial value on the generated values of In the dynamic case we consider pure autoregressions, AR(1) and AR(2), and a simple autoregressive distributed lag (ARDL) model. The DGP for the AR specifications are given by

x i t , t = 1, 2, ..., T . ε it ∼ IID(0, σ 2 i ) is drawn from (i) standard normal distribution, or (ii) χ 2 (2) -2 /2 with σ 2 i ∼ IID(kχ 2 (2)/2), k = 1, 2, 3, 4, so that the population R 2 of
y it = (1 -β i ) α i + β i y it-1 + ε it , ( 5 6 
)

y it = (1 -β i1 -β 2 ) α i + β i1 y it-1 + β 2 y it-2 + ε it , ( 5 7 ) 
for t = -M, ..., 0, ..., T ; i = 1, 2, ..., N, where α i ∼ N (1, 1) and ε it generated as in the static case (setting k = 1 ), with y i,-M = 0, The first M observations are discarded with M = 49 and 48 for the AR(1) and AR(2) specifications, respectively. For the AR(1) model, the null hypothesis is defined by β i = β = (0.50, 0.80, 0.90), against the alternatives

β i ∼ IIDU[β -0.1, β + 0.1).
For the AR(2) specification the null is set as

β 1i = β 1 = β 2 = (0.25, 0.4, 0.45), against the alternatives, β 1i ∼ IIDU[β 2 -0.1, β 2 + 0.1).
For these experiments, we consider all the combinations of sample sizes N and T = 20, 30, 50, 100, 200.

The ARDL model is generated as

y it = (1 -β i1 ) α i + β i1 y it-1 + β i2 x it + ε it ,
where t = -48, ..., 0, ..., T , i = 1, 2, ..., N, ε it 's are generated as before,

x it = α i (1 -ρ i ) + ρ i x i,t-1 + (1 -ρ 2 i ) 1/2 v it , v it ∼ IIDN(0, σ 2 ix )
, and α i , σ 2 i , ρ i and σ 2 ix are drawn randomly across i and then fixed across replications. The initial values are set at y i,-49 = x i,-49 = 0, with the first 49 observations discarded. The homogeneity tests considered are (a) H 0 : 

β i1 = β 1 , (b) H 0 : β i2 = β 2 ,
β i2 = β 2 . Under the alternative β i1 ∼ iidU [β 1 -0.05, β 1 + 0.05] and β i2 ∼ iidU [β 2 -0.1, β 2 + 0.1]
for all these cases. The parameter values are set at β 1 = 0.5, 0.8, 0.9, and β 2 = 1. To make the experimental results comparable across different values of β 1 , σ 2 ix is set as

σ 2 ix = 10 - 1 (1 -β 2 1 ) σ 2 i (1 -β 2 1 )(1 -β 1 ρ i ) (1 + β 1 ρ i )β 2 2 . so that R 2 i = 1 -σ 2 i /V ar(y it ) = R 2 = 0.9.
For the subset tests in (a) and (b) the Swamy statistic is computed as (in case (a), for example)

Ŝ1 = N i=1 βi1 -β1,W F E y i,-1 M i2 y i,-1 σ2 i βi1 -β1,WF E ,
where

M i2 = I T -Z i2 (Z i2 Z i2 ) -1 Z i2 , Z i2 = (τ T , x i ), x i = (x i1 , x i2 , ..., x iT , ) , βi1 = y i,-1 M i2 y i,-1 -1 y i,-1 M i2 y i , β1,WF E = N i=1 y i,-1 M i2 y i,-1 σ2 i -1 N i=1 y i,-1 M i2 y i σ2 i ,
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and

σ2 i = y i -y i,-1 βi1 M i2 y i -y i,-1 βi1 T -3 .
The ∆1,adj test statistic is computed using the results in Remark 3. The Hausman test statistic of H 0 : β i1 = β 1 is defined as

H 1 = β1,MG -β1,WF E 2 /v H where β1,MG = N -1 N i=1 βi1 , β1,WF E = N i=1 y i,-1 M i2 y i,-1 σ2 i -1 N i=1 y i,-1 M i2 y i σ2 i , σ2 i = y i -y i,-1 β1,FE M i2 y i -y i,-1 β1,F E T -2 ,
and

v H = N -2 N i=1 σ2 i y i,-1 M i2 y i,-1 -1 - N i=1 y i,-1 M i2 y i,-1 σ2 i -1
.

The ∆1,adj test is based on a two-sided N(0, 1) test. The H 1 test and the Ŝ1 test are based on χ 2 (1) and χ 2 (N -1) distributions, respectively. All tests are conducted at 5% nominal level. The H 2 , Ŝ2 and ∆1,adj test statistics for testing H 0 : β i2 = β 2 are defined in a similar manner.

Results

Size and power of the tests in the case of the experiments with exogenous regressors are summarized in Tables 123. Table 1 provides the results for models with one exogenous regressor and normal errors, and give size and power rejection frequencies for a wide range of N and T . Table 2 presents the results for models with k = 2, 3 and 4 regressors and normal errors, but for a subset of samples with moderate values of T = 20, 30, 50. Table 3 summarizes the same results but when the errors are non-normal. First, it is clear that in all the experiments the Hausman test, H, has the correct size, but, as predicted by our theoretical discussion in Section 2.2, it has no power irrespective of the sample size. On the other hand, the Swamy's Ŝ test has power, but tends to over-reject when T is small relative to N; with the extent of over-rejection diminishing only as T is increased relative to N. For example, in the case of T = 10 and N = 200 in Table 1, the empirical size of the Ŝ test is as much as 82.5%, and only approaches the nominal size of 5% slowly when T is increased to 200. The tendency of the Ŝ test to over-rejection gets accentuated as the number of the regressors is increased or when non-normal errors are considered.

By contrast, the adjusted version of the dispersion test, ∆adj , has the correct size for all combination of sample sizes, even when T is very small relative to N. The size of the test seems also to be very well controlled as the number of regressors is increased to 2 and beyond (in Table 2), or when the errors are generated as draws from a χ 2 (2) distribution that represents a significant degree of departure from normality. This last result is particularly welcome and encouraging since the finite sample adjustments are derived under normally distributed errors. 7 The ∆adj test also seems to

A c c e p t e d m a n u s c r i p t

have reasonable power properties. Its power rises quite rapidly with both N and T , although as predicted by our theoretical derivations in Section 3.2, the power of ∆adj test rises much faster with T than with N, and comparing the results in Tables 2 and3 suggest that the power is not much affected by the shape of the error distribution. But the results show that there is a clear tendency for the power to decline with the number of regressors. This is plausible considering that we have controlled the population fit of the regressions so that it remains invariant to the included number of regressors in the panel. The Monte Carlo results for the dynamic panels are summarized in Tables 45678910. Tables 4 and5 report the size and power of the ∆adj test in the case of the AR(1) specification, for different values of β = 0.5, 0.8, 0.9, and for normally and non-normally distributed errors, respectively. Tables 6 and7 provide the corresponding results for the AR(2) specification. It is firstly clear that the H test now grossly over-rejects, with the extent of over-rejection in fact rising (rather than falling) with N and T . This is in line with our theoretical derivations in Section 2.2 which shows the application of the test to pure dynamic panels fails to satisfy one of the key conditions of the Hausman test. Swamy's Ŝ test performs reasonably well when β is around 0.5 and errors are normally distributed, but begins to show substantial over-rejections when β is increased. Similar patterns can also be seen when the results of the AR(2) specification are considered. It is also interesting that the effects of non-normal errors on the size of the Ŝ test seems to operate in the opposite direction to the effect of increasing the value of β under the null hypothesis. But as predicted by the theory the size distortion of the Ŝ test declines as T is increased relative to N.

Turning to the ∆adj test, we first note that its size is very close to the nominal value of 5% in the case of those experiments with T ≥ N, which is in line with our asymptotic result for the AR(1) case that requires N/T → κ as (N, T ) j → ∞, where 0 ≤ κ < ∞. This conclusion seems to be quite robust to the value of the autoregression coefficient, and the shape of the error distribution. In cases where N > T, the test outcome crucially depends on the value of β. It seems to improve when β is raised from 0.5 to 0.8, followed by a substantial deterioration as β is further increased to 0.9.8 But overall the ∆adj test can not be relied on if N is much larger than T . Also as in the case of the experiments with exogenous regressors, the power of the ∆adj test rises much more rapidly with T than with N. Similar conclusions are obtained if we consider the results for the AR(2) specification.

The panel ARDL results based on normal errors are summarized in Tables 8910. Table 8 (resp. Table 9) reports size and power of tests of homogeneity of β i1 (β i2 ) whilst allowing β i2 (β i1 ) to vary across i. Table 10 reports size and power of homogeneity tests applied to β i1 and β i2 , jointly. Qualitatively, these results are similar to the ones reported above for the AR specifications, although the sub-set test results for β i2 = β 2 are generally more satisfactory as compared to the sub-set test results for β i1 . The Hausman test continues to over-reject, with the extent of over-rejection falling as T rises. The Swamy's test performs well only when T is much larger than N. The size of the ∆adj test is very close to the nominal value of 5% in the case of experiments with T ≥ N. When N > T, the size of the ∆adj test deteriorates as β 1 increases. The power of all tests decreases as the value of β 1 rises, which largely reflects the nature of the experimental designs. That is, in order to keep R 2 i fixed as β 1 is increased, the relative variation of the exogenous regressor to the variation of y i,t-1 is decreased, which causes a reduction in power of the test.
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In this paper we have developed simple tests of slope homogeneity in linear panel data models where N could be larger than T . The proposed tests are based on modifications of Swamy's dispersion statistic and examine the cross section "dispersion" of individual slopes weighted by their relative precision. It is shown that this test is valid when earlier tests based on [START_REF] Hausman | Specification tests in econometrics[END_REF] procedure fail to be applicable. The Monte Carlo evidence shows ∆adj test, defined in (29), to have satisfactory size and power properties for all combinations of N and T in the case of panels with exogenous regressors, irrespective of whether the errors are normally distributed or not. In the case of dynamic panels the ∆adj test continues to have satisfactory properties for most combinations of N and T , so long as the dominant root of the dynamic model, β, under the null hypothesis is not too close to unity. When N > T, and β is around 0.9 or more, the ∆adj test tends to over-reject, which is primarily due to the fact that for large values of N/T the small sample bias of the fixed effects estimator of β can be substantial. Our preliminary investigation suggests that in such cases a bootstrapped version of the test that makes use of the bias-corrected FE estimator proposed in [START_REF] Hahn | Asymptotically unbiased inference for a dynamic panel model with fixed effects when both n and T are large[END_REF] could be more appropriate.

Another important extension of the tests developed in this paper is to consider testing slope homogeneity in panel data models with multi-factor error structures recently examined in [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF]. This is, however, beyond the scope of the present paper.

A c c e p t e d m a n u s c r i p t A Mathematical Appendix

A.1 Preliminary Results

Lemma 1 Let υ ∼ IIDN(0, I T ), and A be a T × T positive semi-definite symmetric matrix of rank m ≤ T . Then the r th moment of the inverse of υ Aυ exists if m > 2r.

Proof. See Smith (1988).

Corollary 2 Let A 1 and A 2 be T × T positive semi-definite symmetric matrices of rank m 1 and m 2 , respectively. Then the r th moment of the inverse of (υ

A 1 υ)(υ A 2 υ) exists if m 1 > 4r and m 2 > 4r.
Proof. The result is immediate from Lemma 1 using the Cauchy-Schwarz inequality.

Lemma 2 Let

ξ iT = T -1/2 X i M τ ε i , ξ NT = N -1/2 N i=1 ξ iT .
Then, under Assumptions 1 and 2, for each i,

ξ iT → d N(0,σ 2 i Q i ), as T → ∞, (A.1) and ξ NT → d N(0, Q σ ), as (N, T ) j → ∞, (A.2)
where

Q σ = lim N→∞ N -1 N i=1 σ 2 i Q i , where Q i is defined by Assumption 2(i).
Proof. The first result follows from Assumption 1 by familiar central limit theorems used for the classical linear regression models. The second result follows since ε 1 , ε 2 , ..., ε N are assumed to be independently distributed, and E Q iT < K for all i. See Lemma 4 in [START_REF] Pesaran | Estimation and inference in large heterogeneous panels with a multifactor error structure[END_REF].

Lemma 3 Suppose that D is a p ×p stochastic matrix; non-singular with probability one, such that

D = O p (1), E(D) = O(1), and D -E(D) = O p (T -1/2
). Then,

D -1 = [E(D)] -1 + O p (T -1/2 ). (A.3)
Proof. See Kiviet and Phillips (1994, Lemma 2).

Lemma 4 Let Φ be a T × T symmetric matrix and Γ a positive definite T × T matrix, and suppose that υ ∼ IID(0, I T ), where υ = (υ 1 , υ 2 , ..., υ T ) . Denote the p th cumulant of υ Γυ by κ p , and the γ = 1 +m order, δ = r + m degree generalized cumulant of (υ Φυ) r (υ Γυ) by κ rm and assume that the following conditions hold

• Condition 1 For p = 1, 2, ..., κ p = O(T ). • Condition 2 For r = 1, 2, ..., κ r0 = E(υ Φυ) r = O(T r ).
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• Condition 3 For r, m = 1, 2, ..., κ rm = O(T ), with ≤ r.

Then the Laplace approximate expansion for the r th moment of υ Φυ/υ Γυ is given by

E υ Φυ υ Γυ r = E[(υ Φυ) r ] [E(υ Γυ)] r + ϕ 1T + ϕ 2T + O(T -3 ), (A.4)
where

ϕ 1T = r(r + 1) 2 E [(υ Φυ) r ] κ 2 [E(υ Γυ)] r+2 -r κ r1 [E(υ Γυ)] r+1 , (A.5) ϕ 2T = r(r + 1) 2 κ r2 [E(υ Γυ)] r+2 - r(r + 1)(r + 2) 2 3E[(υ Φυ) r ]κ 3 + κ r1 κ 2 [E(υ Γυ)] r+3 + r(r + 1)(r + 2)(r + 3) 8 E[(υ Φυ) r ]κ 2 2 [E(υ Γυ)] r+4 , (A.6) and κ r1 = E[(υ Φυ) r υ Γυ] -E[(υ Φυ) r ]E(υ Γυ), κ r2 = E[(υ Φυ) r (υ Γυ) 2 ] -2E(υ Γυ)E[(υ Φυ) r (υ Γυ)] -E[(υ Γυ) 2 ]E[(υ Φυ) r ] + 2[(E υ Γυ ] 2 E[(υ Φυ) r ].
Proof. [START_REF] Lieberman | A Laplace approximation to the moments of a ratio of quadratic forms[END_REF].

A.2 Proof of Theorem 1

For the Swamy's version of the dispersion test, under H 0 we have

βi -βWFE = T -1/2 Q -1 iT ξ iT -T -1/2 N -1/2 N -1 N i=1 σ-2 i Q iT -1 N -1/2 N i=1 σ-2 i ξ iT , (A.7)
where Q iT and ξ iT are defined by ( 16) and (A.1), respectively. Using this result in (11) it is easily seen that

1 N Ŝ = 1 N N i=1 ξ iT Q -1 iT ξ iT σ2 i - 1 N N i=1 σ-2 i ξ iT √ N N i=1 σ-2 i Q iT N -1 N i=1 σ-2 i ξ iT √ N . (A.8)
We first note that (by Cauchy-Schwarz inequality)

E T 1/2 σ-2 i -σ -2 i ξ iT ≤ E T σ-2 i -σ -2 i 2 E||T -1/2 X i M τ ε i || 2 ,
and by Assumptions 1-2

E T -1/2 X i M τ ε i 2 ≤ σ 2 max T r(Q i ) < K, for all i. Also E T σ-2 i -σ -2 i 2 = T E σ 2 i -σ2 i σ 2 i σ2 i 2 ≤ 1 σ 4 min T 2 E 1 - σ2 i σ 2 i 4 E σ 2 i σ2 i 4
.
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But by Assumptions 1(i) and 3

E σ 2 i σ2 i 4 = E T -k -1 υ i M i υ i 4 < K,
and by using the results of [START_REF] Bao | Expectation of quadratic forms in normal and nonnormal variables with econometric applications[END_REF] for the 4th order moments of the quadratic form of non-normal errors, after some tedious algebra, we obtain 9

E 1 - σ2 i σ 2 i 4 = O(T -2 ). Hence E T 1/2 σ-2 i -σ -2 i ξ iT = O(1),
and

E N i=1 T 1/2 σ-2 i -σ -2 i ξ iT N ≤ N i=1 E T 1/2 σ-2 i -σ -2 i ξ iT N = O(1). Thus, since σ2 i -σ 2 i = O p T -1/2
, by Lemma 3, and noting that

E T 1/2 σ-2 i -σ -2 i ξ iT < K uniformly over i, we conclude that N i=1 σ-2 i ξ iT N = N i=1 σ -2 i ξ iT N + O p T -1/2 . (A.9) Also as (N, T ) j → ∞ N i=1 σ -2 i ξ iT √ N → d N(0, Q * ),
where

Q * = lim N→∞ N -1 N i=1 σ -2 i Q i , and E Q * < K. 10 Hence N i=1 σ-2 i ξ iT √ N = O p (1) + O p N T . (A.10) Similarly N i=1 σ-2 i Q iT N = N i=1 σ -2 i Q iT N + O p T -1/2 ,
and by Lemma 3

N i=1 σ-2 i Q iT N -1 = N i=1 σ -2 i Q i N -1 + O p T -1/2 . (A.11)
Using the above results we now have

N i=1 σ-2 i ξ iT √ N N i=1 σ-2 i Q iT N -1 N i=1 σ-2 i ξ iT √ N = O p (1) + O p T -1/2 + O p N T ,
9 Details are provided in a supplement and are available upon request. 10 Note that

E N -1 N i=1 σ -2 i Q i ≤ σ -2 min N -1 N i=1 E Q i < K,
by assumption.

A c c e p t e d

m a n u s c r i p t

and 1 N Ŝ = 1 N N i=1 ξ iT Q -1 iT ξ iT σ2 i + O p 1 N + O p 1 NT . (A.12) Also ξ iT Q -1 iT ξ iT σ2 i = ε i M i ε i T -k -1 -1 ξ iT Q -1 iT ξ iT = (T -k -1)υ i P i υ i υ i M i υ i .
Hence

N -1/2 Ŝ = N -1/2 N i=1 ẑiT + O p N -1/2 + O p T -1/2 , (A.13)
as required.

Similar results also hold for the modified version of Swamy's statistic, S. Under H 0 we have

1 N S = 1 N N i=1 ξ iT Q -1 iT ξ iT σ2 i - 1 N N i=1 σ-2 i ξ iT √ N N i=1 σ-2 i Q iT N -1 N i=1 σ-2 i ξ iT √ N . (A.14)
Using ( 14), and after some algebra (under H 0 ) we obtain

σ2 i = ε i M τ ε i T -1 + 1 N(T -1) ξ NT Q -1 NT Q iT Q -1 NT ξ NT + 2 √ N(T -1) ξ NT Q -1 NT ξ iT . (A.15)
Also under Assumptions 1-2, and using Lemma 2 it is easily seen that

ξ NT Q -1 NT Q iT Q -1 NT ξ NT = O p (1) and ξ NT Q -1 NT ξ iT = O p (1). Therefore σ2 i = ε i M τ ε i T -1 + O p N -1/2 T -1 ,
and following a similar line of reasoning as above we have

N -1/2 N i=1 σ-2 i ξ iT = N -1/2 N i=1 σ -2 i ξ iT + O p T -1/2 , N -1 N i=1 σ-2 i Q iT = N -1 N i=1 σ -2 i Q iT + O p T -1/2 , and 1 
N N i=1 ξ iT Q -1 iT ξ iT σ2 i = 1 N N i=1 (T -1) ξ iT Q -1 iT ξ iT ε i M τ ε i + O p N -1/2 T -1 .
Hence, using these results in (A.14) we obtain

N -1/2 S = N -1/2 N i=1 ziT + O p T -1/2 + O p N -1/2 , (A.16)
where ziT is defined by (22).

A c c e p t e d m a n u s c r i p t A.3 Moments of ẑiT and ziT under Nonnormality

To obtain the first two moments of ẑiT , defined by ( 22), under nonnormal error we exploit a slightly extended version of Lieberman's results, reproduced in Lemma 4 for convenience, that allows Γ defined in that Lemma to be a semi-positive definite matrix. In the case of our application, Γ is defined by the symmetric, idempotent matrix, M i , with rank Tk -1, and it is easily seen that Pr[υ i M i υ i = 0] = 0.11 Also it is possible to show that Conditions 1, 2 and 3 of Lemma 4 are satisfied.12 In particular, it is possible to show that ϕ i1T , defined by by (A.5) for ẑiT , is O(T -1 ) for all i, and using (A.4), we have

E(ẑ iT ) = (T -k -1)E (υ i P i υ i ) E (υ i M i υ i ) + ϕ i1T + O(T -2 ) (A.17)
uniformly over i. Now using results from Ullah ( 2004) and [START_REF] Bao | Expectation of quadratic forms in normal and nonnormal variables with econometric applications[END_REF] on the moments of quadratic forms in nonnormal variables 13 we have

ϕ i1T = 2(T -k -1) + γ i2 T r(M i M i ) (T -k -1) 2 - γ i2 T r(M i P i ) (T -k -1) ,
where γ i2 is the Pearson's measure of kurtosis, which is zero when υ it is standard normal, and is Hadamard product. Since

|γ i2 | < K by Assumption 1(iii), tr(M i M i ) ≤ (T -k -1)
, and 0 ≤ tr(M i P i ) ≤ k,14 then it follows that ϕ i1T = O(T -1 ), uniformly over i. Hence, using (A.17)

we have

E(ẑ iT ) = k + O(T -1 ) uniformly over i. Similarly V ar(ẑ iT ) = (T -k -1) 2 E (υ i P i υ i ) 2 [E (υ i M i υ i )] 2 -k 2 + O(T -1 ) (A.18) = 2k + O(T -1 ),
uniformly over i.

Consider now ziT = (T -1)υ i P i υ i υ i M τ υ i ,
and note that Pr[υ i M τ υ i = 0] = 0 for T -1 > 0, and Lemma 4 is applicable to ziT so long as T > 1. Also, it is easily verified that

(T -1)E(υ i P i υ i ) E(υ i M τ υ i ) = k,
and the Conditions 1, 2 and 3 in Lemma 4 are satisfied for the first two moments of ziT . Also after some algebra (details of which are available on request) it can be established that ϕ i1T = 0 and ϕ i2T = O(T -2 ) uniformly over i (See (A.5) and (A.6).). Therefore, Using (20), first note that

E(z iT ) = k + O(T -2 ),
∆ = 1 √ N N i=1 ẑiT -k √ 2k + O p (T -1/2 ) + O p (N -1/2 ),
and write

1 N N i=1 ẑiT -k √ 2k = 1 N N i=1 ẑiT -E(ẑ iT ) √ 2k + 1 N N i=1 E(ẑ iT ) -k √ 2k . Using E(ẑ iT -k) = O T -1 , established by (A.17), 1 N N i=1 ẑiT -k √ 2k = 1 N N i=1 ẑiT -E(ẑ iT ) √ 2k + O(T -1 ). Hence ∆ = 1 √ N N i=1 ẑiT -E(ẑ iT ) √ 2k + O(N 1/2 T -1 ) + O p (T -1/2 ) + O p (N -1/2 ). (A.21)
Under our assumptions, ẑiT is independently but not necessarily identically distributed across i. But by Cauchy-Schwarz inequality

E |ẑ iT | 2+ /2 < E (υ i P i υ i ) 4+ E T -k -1 υ i M i υ i 4+ ,
for some small positive constant , and under Assumptions 1 and 3 E |ẑ iT | 2+ /2 < K < ∞, and hence the Lindberg-Feller Central Limit Theorem is directly applicable to the first term of (A.21), (White (2001, Section 5.2)), and

1 √ N N i=1 ẑiT -E(ẑ iT ) √ 2k → d N(0, ĝ2 ), where ĝ2 = lim N→∞ N -1 N i=1 V ar(ẑ iT ) 2k . But since V ar(ẑ iT ) = 2k + O(T -1
) for all i, then ĝ2 = 1 + O(T -1 ) and using the above results we have

∆ → d N(0, 1) as (N, T ) j → ∞, so long as √ N/T → 0. Similarly ∆ = 1 √ N N i=1 ziT -k √ 2k + O p (T -1/2 ) + O p (N -1/2 ),
and as before we have

1 N N i=1 ziT -k √ 2k = 1 N N i=1 ziT -E(z iT ) √ 2k + 1 N N i=1 E(z iT ) -k √ 2k .
A c c e p t e d m a n u s c r i p t

However, using (A.19), E (z iT ) = k + O(T -2 ) 1 N N i=1 ziT -k √ 2k = 1 N N i=1 ziT -E(z iT ) √ 2k + O(T -2 )
and

∆ = 1 √ N N i=1 ziT -E(z iT ) √ 2k + O(N 1/2 T -2 ) + O p (T -1/2 ) + O p (N -1/2 ).
As in the case of ∆, 1

√ N N i=1 ziT -E(z iT ) √ 2k → d N(0, g2 ),
where

g2 = lim N→∞ N -1 N i=1 V ar(z iT ) 2k , with V ar(z iT )/2k = 1 + O(T -1 ). Therefore, ∆ → d N(0, 1) as (N, T ) j → ∞ so long as √ N/T 2 → 0.
A.5 Proof of Corollary 1

A.5.1 Moments of ẑiT and ziT under Normality

For the moments of ẑiT =

ε i P i ε i /[ε i M i ε i /(T -k -1)]
, where P i and M i are defined by ( 18) and (19) respectively, noting

P i M i = M i P i = 0, ε i P i ε i /σ 2 i ∼ χ 2 (k) and ε i M i ε i /σ 2 i ∼ χ 2 (T -k -1
), which are independent of each other,

ε i P i ε i /k ε i M i ε i /(T -k -1) ∼ F (k, T -k -1),
where F (v 1 , v 2 ) is a F distribution with v 1 and v 2 degrees of freedom. It is well known that mean and variance of

F (v 1 , v 2 ) is v 2 /(v 2 -2) (for v 2 > 2) and 2v 2 2 (v 2 + v 1 -2) v 1 (v 2 -2) 2 (v 2 -4) , (for v 2 > 4),
respectively. Using these results we have 

E (T -k -1)ε i P i ε i ε i M i ε i = k(T -k -1) T -k -3 = k + O(T -1 ) (A.22) V ar (T -k -1)ε i P i ε i ε i M i ε i = 2k (T -k -1) 2 (T -3) (T -k -3) 2 (T -k -5) = 2k + O(T -1
[υ i M τ υ i /(T -1)] r } = E(z r iT )E{[υ i M τ υ i /(T -1)] r }, which yields E(z r iT ) = E[(υ i P i υ i ) r ]/E{[υ i M τ υ i /(T -1)] r }. Therefore E (z iT ) = E (ε i P i ε i ) E (ε i M τ ε i ) / (T -1) = (T -1)tr (P i ) tr (M τ ) = k,
and

E z2 iT = E[(ε i P i ε i ) 2 ] E[(ε i M τ ε i ) 2 ]/ (T -1) 2 = T -1 T + 1 k 2 + 2k , so that V ar (z iT ) = 2k (T -1) -2k 2 T + 1 . (A.24)
Using the above results in conjunction with proof of Theorem 2 now yields the desired results.

A.6 Proof of Asymptotic Power

Under the local alternatives (defined by ( 39))

β i = β + δ i N 1/4 T 1/2 , we first note that √ T βi -βWFE = κ iNT + κ iNT ,
where

κ iNT = Q-1 iT ξiT -N -1/2 Q-1 N ξN , κ iNT = δ i N 1/4 - 1 N 1/4 Q-1 N N i=1 QiT δ i N , with QiT = σ-2 i Q iT , ξiT = σ-2 i ξ iT , (A.25)
and

QN = N -1 N i=1 QiT , ξN = N -1/2 N i=1 ξiT . (A.26) Hence N -1 Ŝ = T N N i=1 βi -βWFE QiT βi -βWFE = 1 N N i=1 κ iN T QiT κ iNT + 1 N N i=1 κ iNT QiT κ iNT + 2 N N i=1 κ iNT QiT κ iNT .
The first term is the component of the test statistic that remains under the null hypothesis and is already shown to be given by

1 N N i=1 κ iN T QiT κ iNT = 1 N N i=1 ẑiT + O p N -1/2 T -1/2 + O p N -1 . (A.27)

A c c e p t e d m a n u s c r i p t

Similarly,

1 N N i=1 κ iNT QiT κ iNT = N -3/4 N i=1 ξ iT δ i √ N -ξ N Q-1 N N i=1 QiT δ i N , (A.28) and 1 N N i=1 κ iNT QiT κ iNT = ψ NT √ N , (A.29)
where

ψ NT = 1 N N i=1 δ i QiT δ i - 1 N N i=1 δ i QiT 1 N N i=1 QiT -1 1 N N i=1
QiT δ i .

Consider now the terms in (A.28) and note that (as in Section A.2)

ξ N Q-1 N N i=1 QiT δ i N = O p (1). (A.30) Further N i=1 ξ iT δ i √ N = 1 √ NT N i=1 ε i M τ X i δ i (T -k -1) -1 ε i M i ε i ,
and since ε i 's are assumed to be independently distributed, we have

V ar N i=1 ξ iT δ i √ N = 1 N N i=1 E T -1/2 ε i M τ X i δ i 2 [(T -k -1) -1 ε i M i ε i ] 2 - 1 N N i=1 E T -1/2 ε i M τ X i δ i (T -k -1) -1 ε i M i ε i 2 .
But by Cauchy-Schwarz inequality and under our assumptions

E T -1/2 ε i M τ X i δ i (T -k -1) -1 ε i M i ε i ≤ E T -1/2 ε i M τ X i δ i 2 E 1 [(T -k -1) -1 ε i M i ε i ] 2 ≤ K, and E T -1/2 ε i M τ X i δ i 2 [(T -k -1) -1 ε i M i ε i ] 2 ≤ E T -1/2 ε i M τ X i δ i 4 E 1 [(T -k -1) -1 ε i M i ε i ] 4 ≤ K, and hence V ar N -1/2 N i=1 ξ iT δ i < K, which establishes that N -1/2 N i=1 ξ iT δ i = O p (1).
Substituting this result together with (A.30) in (A.28) now gives N -1 N i=1 κ iNT QiT κ iNT = O p (N -3/4 ), and if used in conjunction with (A.29) and (A.27) yields

N -1 Ŝ = 1 N N i=1 ẑiT + ψ NT √ N + O p N -3/4 + O p N -1/2 T -1/2 .
Finally, using this result in (26) gives

∆ = 1 √ N N i=1 ẑiT -k √ 2k + ψ NT √ 2k + O p N -1/4 + O p T -1/2 ,
as required.

A c c e p t e d m a n u s c r i p t A.7 Proof of Theorem 3

First note that under H 0 , and Assumptions D1 to D3, E |Q iT | < K and15 

Q iT = y i,-1 M τ y i,-1 T = σ 2 i 1 -β 2 + O p (T -1/2 ) Q NT = N i=1 y i,-1 M τ y i,-1 NT = σ2 1 -β 2 + O(T -1 ) + O p (N -1/2 T -1/2 ),
where σ2 = lim N→∞ N -1 N σ 2 i , and 0 < σ2 < K. Also (re [START_REF] Alvarez | The time series and cross-section asymptotics of dynamic panel data estimators[END_REF]Arellano (2003, p.1140))

Q -1 iT = 1 -β 2 σ 2 i + O p (T -1/2 ), and 
Q -1 NT = 1 -β 2 σ2 + O p (T -1 ) + O p (N -1/2 T -1/2 ). Let ξ iT = y i,-1 M τ ε i √ T , ξ NT = N i=1 ξ iT √ N .
Similarly (using (A10) in [START_REF] Alvarez | The time series and cross-section asymptotics of dynamic panel data estimators[END_REF])

E (ξ NT ) = - N T 1/2 σ2 1 -β 2 + O T -1 N T , and 
ξ iT → d N 0, σ 2 i 1 -β 2 , ξ NT -E (ξ NT ) = N i=1 y i,-1 M τ ε i √ NT -- N T 1/2 σ2 1 -β 2 + O T -1 N T → d N 0, σ4 1 -β 2 ,
where σ4 = lim N→∞ N -1 N i=1 σ 4 i . Therefore, since under Assumption D2 N/T → κ, where 0 ≤ κ < ∞, then ξ NT = O p (1). It is also clear that

ξ iT = O p (1), Q -1 iT = O p (1), and Q -1 NT = O p (1).
Using these results in

σ2 i = ε i M τ ε i T -1 + 2ξ NT Q -1 NT ξ iT √ N(T -1) + ξ 2 NT Q -2 NT Q iT N(T -1) , (A.31) now yields σ2 i = ε i M τ ε i T -1 + O p N -1/2 T -1 .

A c c e p t e d m a n u s c r i p t

Also σ-2 i = σ -2 i + O p (T -1/2 ) + O p N -1/2 T -1 .
Assuming that T > T 0 so that E σ-2 i < K, we now have16 

N i=1 σ-2 i Q iT N = N i=1 σ -2 i Q iT N + O p (T -1/2 ) + O p N -1/2 T -1 , N i=1 σ-2 i ξ iT √ N = N i=1 σ -2 i ξ iT √ N + O p ( N T ) + O p T -1 ,
and under Assumptions D1 and D2 (N/T → κ, 0 ≤ κ < ∞) we also have

N i=1 σ -2 i Q iT N = O p (1), N i=1 σ -2 i ξ iT √ N = O p N T .
Using these results in

1 N S = 1 N N i=1 ξ 2 iT Q -1 iT σ2 i - 1 N N i=1 σ-2 i ξ iT √ N 2 N i=1 σ-2 i Q iT N -1 , now gives (assuming N/T → κ, 0 ≤ κ < ∞) 1 N S = 1 N N i=1 ξ 2 iT Q -1 iT σ2 i + O p (N -1 ) + O p (N -1/2 T -1/2 ).

Substituting for σ2

i = ε i M τ ε i /(T -1) + O p N -1/2 T -1 , we now have 1 N S = 1 N N i=1 (T -1)ξ 2 iT Q -1 iT ε i M τ ε i + O p (N -1 ) + O p (N -1/2 T -1/2 ), or 1 N S = 1 N N i=1 wi + O p (N -1 ) + O p (N -1/2 T -1/2 ), (A.32) where wi = (T -1) T -1/2 ε i M τ y i.-1 2 (ε i M τ ε i ) T -1 y i,-1 M τ y i,-1 . (A.33)
A.8 Proof of Theorem 4

First note that under H 0 , the AR(1) model, (40), can be written in matrix notations as

y * i = a i τ T +1 + B -1 D i ν i , (A.34)
where a i = (1β)α i , y * i = (y i0 , y i1 , ..., y iT ) , ν i = (u i0 /δ i , ε i1 /σ i , ..., ε iT /σ i ) so that ν i ∼ N (0 T +1×1 , I T +1 ), 0 T +1×1 is a (T + 1) × 1 vector of zeros, I T +1 is an identity matrix of order

A c c e p t e d m a n u s c r i p t

T + 1, τ T +1 is a (T + 1) × 1 vector of ones, D i is a (T + 1) × (T + 1) diagonal matrix with its first element equal to δ i and the remaining elements equal to σ i , and

B = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 • • • 0 0 -β 1 • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • 1 0 0 0 • • • -β 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ . (A.35) Also y i = G 0 y * i , y i,-1 = G 1 y * i
, where G 0 = (0 T ×1 , I T ) and G 1 = (I T , 0 T ×1 ). Hence, noting that M τ G 1 τ T +1 = 0, and using the above results in (A.33) we have

wi = (T -1) T -1/2 υ i M τ y i.-1 2 (υ i M τ υ i ) T -1 y i,-1 M τ y i,-1 , (A.36) or wi = X iT /Y iT , where X iT = (ν i A i ν i ) 2 , Y iT = (ν i Bν i ) (ν i C i ν i ). A i = G 0 M τ G 1 B -1 D i √ T , (A.37) B = G 0 M τ G 0 T -1 , (A.38)
and noting G 0 G 0 = I T ,

C i = A i A i = D i B -1 G 1 M τ G 1 B -1 D i T . (A.39)
First note that B and D i are non-singular matrices, and

G 0 M τ G 0 = 0 1×1 0 1×T 0 T ×1 M τ , G 1 M τ G 1 = M τ 0 T ×1 0 1×T 0 1×1 , (A.40)
where G 0 M τ G 0 and G 1 M τ G 1 are idempotent matrices. Therefore, it readily follows that B and C i are non-negative definite matrices with rank T -1. Therefore, by Corollary 2

E(Y -4 iT ) = E (ν i Bν i ) -4 (ν i C i ν i ) -4 < K if T -1 > 16. Also E X 4 iT = E (ν i A i ν i ) 8 < K. (see (A.54) below). Hence, if T > 17, by Cauchy-Schwarz inequality E( w2 i ) = E X 2 iT Y 2 iT ≤ E X 4 iT 1/2 E(Y -4 iT ) 1/2 < K,
and the first two moments of wi exist for each i.

A mean value expansion of wi around

ϕ i = E(Y iT ) > 0, now yields wi = X iT Y iT = X iT ϕ i - X iT ϕ 2 i (Y iT -ϕ i ) + X iT Ȳ 3 iT (Y iT -ϕ i ) 2 , (A.41)
where

ȲiT = λY iT + (1 -λ) ϕ i , λ ∈ [0, 1]. But in view of (A.58) and (A.62), (ν i Bν i ) (ν i C i ν i ) = O p (1), and 1 Ȳ 3 iT = 1 [λ (ν i Bν i ) (ν i C i ν i ) + (1 -λ)ϕ i ] 3 = O p (1).

A c c e p t e d m a n u s c r i p t

Also

E X iT (Y iT -ϕ i ) 2 ≤ E X 2 iT 1/2 E (Y iT -ϕ i ) 4 1/2 = O(T -1 ),
by (A.53) and (A.63). Therefore, the last term of (A.41) is O p (T -1 ), and,

wi -w * i = O p (T -1 ), (A.42)
where

w * i = (ν i A i ν i ) 2 E [(ν i Bν i ) (ν i C i ν i )] 1 - (ν i Bν i ) (ν i C i ν i ) -E [(ν i Bν i ) (ν i C i ν i )] E [(ν i Bν i ) (ν i C i ν i )] . (A.43)
Using (A.42) in (A.32), and recalling that E | wi | < K for each i, we now have

1 N S = 1 N N i=1 w * i + O p (T -1 ) + O p (N -1 ) + O p (N -1/2 T -1/2 ),
and 

∆ = 1 √ N N i=1 (w * i -1) √ 2 + O p (N 1/2 T -1 ) + O p (N -1/2 ) + O p (T -1/2 ). (A.44) Hence under N/T → κ, 0 ≤ κ < ∞, ∆ d 1 √ N N i=1 (w * i -1) √ 2 as (N, T ) j → ∞. A.8
E (ν i A i ν i ) 4 {E [(ν i Bν i ) (ν i C i ν i )]} 2 = 3 + O(T -1 ). (A.46)
Also using (A.54), (A.62) and (A.63) we have (recall that 

ϕ i = E [(ν i Bν i ) (ν i C i ν i )]) E ν i A i ν i 4 ν i Bν i ν i C i ν i -ϕ i ≤ E ν i A i ν i 8 1/2 E ν i Bν i ν i C i ν i -ϕ i 2 1/2 = O(T -1/2 ), (A.47) E ν i A i ν i 4 ν i Bν i ν i C i ν i -ϕ i 2 ≤ E ν i A i ν i 8 1/2 E ν i Bν i ν i C i ν i -ϕ i
V ar (w * i ) = E w * 2 i -[E (w * i )] 2 (A.50) = 2 + O(T -1/2 ).
Using this result together with (A.45) in (A.44), and bearing in mind that w * i are independently distributed across i, we have

∆ d 1 √ N N i=1 (w * i -1) √ 2 → d N(0, 1), as (N, T ) j → ∞.
A.9 Moments for Products of Quadratic Forms

Consider the non-stochastic matrices A, B, and C (suppressing subscription i) defined in Appendix A.8 by (A.37), (A.38), and (A.39), respectively, suppose that ν ∼ IIDN(0, I T +1 ), and let Proof. We first note that

tr(A) = a, tr(B) = b = 1, tr(C) = c. (A.51) Then E ν Aν 2 = [tr (A)] 2 + tr A 2 +A A (A.52) = c + O(T -1 ), E ν Aν 4 = [tr(A)] 4 + 4tr(A) 2tr(A 3 ) + 6tr(A A 2 ) +3 tr(A A) + tr(A 2 ) 2 + 6 [tr(A)] 2 tr(A A) + tr(A 2 ) +6{tr(A 4 ) + 3tr(A 3 A ) + 2tr[(A A) 2 ] + 2tr[(A ) 2 A 2 ]} (A.53) = 3c 2 + O(T -1 ), E ν Aν 8 = 105c 4 + O(T -1 ), (A.54) E ν Aν 2 ν Cν = [tr (A)] 2 tr (C) + 4tr A 2 C + 2tr A AC + 2tr AA C +4tr (A) tr (AC) + tr (C) tr A 2 + A A = tr (C) tr A A + O(T -1 ) = c 2 + O(T -1 ), (A.55) E ν Aν 2 ν Bν = [tr (A)] 2 tr (B) + 4tr A 2 B + 2tr A AB + 2tr AA B (A.56) +4tr (A) tr (AB) + tr (B) tr A 2 + A A = tr (B) tr A A + O(T -1 ) = c + O(T -1 ),
H 01 = G 0 M τ G 1 = 0 1×T 0 1×1 M τ 0 T ×1 ,
and .40), are (T +1)×(T +1) idempotent matrices with two zero eigenvalues and T -1 unit eigenvalues. Also since B, defined by (A.35), is a lower triangular matrix with unit diagonal elements and D is a diagonal matrix with σ max = Max(σ, δ) < K we have, using (A.39),

G 0 M τ G 0 and G 1 M τ G 1 , defined by (A
0 ≤ ν t (C) ≤ σ max T ,
where ν t (C) for t = 0, 1, ..., T are the eigenvalues of C. Also it is easily verified that

A B = B -1 G 1 M τ G 0 G 0 M τ G 0 T 1/2 (T -1) = (T -1) -1 A , (A.69) AA B = (T -1) -1 AA . (A.70)
To prove the results in (A.64), we first note that

tr(B) = 1, tr (B s ) = tr [(G 0 M τ G 0 )] (T -1) s = 1 (T -1) s-1 = O T -(s-1) , tr(C) = T t=0 ν t (C) ≤ (T + 1)σ max T = O(1), (A.71) thus tr(C s ) = T t=0 ν s t (C) ≤ (T + 1)σ max T s = O(T -(s-1) ).
Since σ max is bounded, to simplify the derivations and without loss of generality in what follows we set δ = σ = 1, (so that D = I T +1 ) and note that

B -1 = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 0 • • • 0 0 β 1 • • • 0 0 . . . . . . . . . . . . . . . β T -1 β T -2 • • • 1 0 β T β T -1 • • • β 1 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ,

A c c e p t e d m a n u s c r i p t

A = T -1/2 G 0 M τ G 1 B -1 = T -1/2 (E -F) , (A.72) E = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 • • • 0 0 0 1 0 • • • 0 0 0 β 1 • • • 0 0 0 . . . . . . . . . . . . . . . . . . β T -2 β T -3 • • • 1 0 0 β T -1 β T -2 • • • β 1 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , F = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 0 0 • • • 0 0 g T -1 g T -2 • • • g 0 0 . . . . . . . . . . . . . . . g T -2 g T -2 • • • g 0 0 g T -1 g T -2 • • • g 0 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , where g = 1 T j=0 β j = 1 T 1 -β +1 1 -β = O T -1 (since |β| < 1), for = 0, 1, ..., T -1.
Therefore,

tr (A) = -1 √ T T -2 =0 g = -1 T √ T T -2 =0 1 -β +1 1 -β = O(T -1/2 ). (A.73)
Consider now tr A 2 . Using (A.72)

tr A 2 = T -1 tr E 2 + tr F 2 -2tr (EF) . (A.74)
But it is easily seen that

tr E 2 = 0, tr F 2 = T -1 =0 g T -2 =0 g = O(1), tr (EF) = T -3 =0 1 -β T --2 1 -β g = 1 T T -3 =0 1 -β T --2 1 -β 1 -β +1 1 -β = O(1),
which together with (A.74) establishes that tr

A 2 = O T -1 .
To prove the results in (A.65), we observe that17 

tr A AC = tr C 2 = T t=0 ν 2 t (C) ≤ σ max T = O T -1 .
By Cauchy-Schwarz inequality Therefore, since tr(C) =O(1), it follows that |tr

tr AA C 2 ≤ tr AA AA tr C C = tr A A 2 tr C 2 = tr C 2 2 ,
(A C)| = O(T -1/2 ).
To establish the results in (A.66), by Cauchy-Schwarz inequality

tr A 2 B 2 ≤ tr AA C tr B 2 . But tr B 2 = tr (G 0 M τ G 0 ) 2 (T -1) 2 = tr [(G 0 M τ G 0 )] (T -1) 2 = 1 T -1 = O T -1 , hence, tr A 2 B = O T -1 . Similarly, tr A AB 2 = [tr (CB)] 2 ≤ tr C 2 tr B 2 = O T -2 , which establishes |tr (A AB)| = O T -1 . Using (A.70) tr AA B =(T -1) -1 tr A A = (T -1) -1 tr (C) = O T -1 . Also tr (AB) = T -1/2 (T -1) -1 tr G 0 M τ G 1 B -1 G 0 M τ G 0 = T -1/2 (T -1) -1 tr G 0 M τ G 1 B -1 = 1 T -1 tr (A) = O T -3/2 .
To prove the results in (A.67), a further application of the Cauchy-Schwarz inequality to A and BC now yields 

tr A 2 BC 2 ≤ tr AA C tr C 2 B 2 = O T -4 , tr A 2 CB 2 ≤ tr AA C tr C 2 B 2 = O T -4 .
Similarly,

[tr (ABAC)] 2 ≤ tr ABB A tr C A AC = tr B 2 C tr C 3 = O(T -4 ).
Furthermore,

tr AA BC 2 = tr A BCA 2 ≤ tr A BB A tr A C CA = tr B 2 AA tr C 2 AA , and 
tr A BAC 2 ≤ tr A BB A tr C A AC = tr B 2 AA tr C 3 , tr ABA C 2 ≤ tr ABB A tr C AA C = tr B 2 C tr C 2 AA .
Also using (A.69) and (A.70) we have

tr AA B 2 = 1 T -1 tr AA B = 1 (T -1) 2 tr AA = tr(A A) (T -1) 2 = O(T -2 ). tr C 2 AA 2 = tr AA C 2 2 ≤ tr AA AA tr C 4 = tr A AA A tr C 4 = tr(C 2 )tr C 4 = O(T -4 ).
Finally, it is easily established that

tr B 2 C = O(T -2 ), tr C 3 = O(T -2 ).
Hence all the terms in (A.68) are of order O(T -2 ). 

A c c e p t e d m a n u s c r i p t

+ xitβ i + εit, i = 1, 2, ..., N, t = 1, 2, ..., T , where αi ∼ N(1, 1), with xit = α i (1-ρ i )+ρ i x i,t-1 +(1-ρ 2 i ) 1/2 v it , t = -48, ..., 0, ..., T , i = 1, 2, ..., N, where ρ i ∼ IIDU[0.05, 0.95], v it ∼ IIDN(0, σ 2 ix ) with σ 2 ix ∼ IIDχ 2 (1)
. ρ i and σ 2 ix are fixed across replications with xi,-49 = 0. The first 49 observations are discarded to reduce the effect of initial value on the generated values of xit, t = 1, 2, ..., T . εit ∼ IIDN(0, σ 2 i ) with σ 2 i ∼ IID(χ 2 (2)/2). Under the null hypothesis, β i = 1 for all i, and under the alternative hypothesis β i = 1 for i = 1, ..., [N/2] and β i ∼ N(1, 0.04) for i = [N/2] + 1, ..., N, with [N/2] being the nearest integer value of N/2. αi and σ 2 i are fixed across replications. H is the heteroskedasticity robust Hausman test statistic defined by (52). Ŝ is the Swamy's statistic defined by (11), ∆adj is the adjusted ∆ test statistic defined by ( 54). H and Ŝ tests are based on χ 2 (k) and χ 2 (k(N -1)) distributions, respectively. ∆adj test is based on a two-sided N(0, 1) test. All tests are conducted at 5% nominal level, and the experiments are based on 2000 replications. 

A c c e p t e d m a n u s c r i p t

= αi + k =1 x i t β i + εit, i = 1, 2, ..., N, t = 1, 2, ..., T , where αi ∼ N (1, 1), with x i t = αi(1 -ρ i ) + ρ i x i ,t-1 + (1 -ρ 2 i ) 1/2 v i t , t = -48, ..., 0, ..., T , i = 1, 2, ..., N , where ρ i ∼ IIDU[0.05, 0.95], v i t ∼ IIDN (0, σ 2 i x ) with σ 2 i x ∼ IIDχ 2 (1)
. ρ i and σ 2 i x are fixed across replications with x i ,-49 = 0. The first 49 observations are discarded. εit ∼ IIDN(0, σ 2 i ) with σ 2 i ∼ IID(kχ 2 (2)/2), k = 2, 3, 4, so that the population R 2 of individual equations in the panel are invariant to the number of included regressors. Under the null hypothesis, β i = 1 for all i and , and under the alternative hypothesis β i = β i1 for = 2, 3, 4, where β i1 = 1 for i = 1, ..., [N/2] and β i1 ∼ N (1, 0.04) for i = [N/2] + 1, ..., N, with [ . ] being the nearest integer value. αi and σ 2 i are fixed across replications. Size:

A c c e p t e d m a n u s c r i p t

u it ∼ IID((χ 2 (2) -2)/2), σ 2 i ∼ IID(kχ 2 (2)/2).

A c c e p t e d m a n u s c r i p t

β i = β = 0.5
Size:

β i = β = 0.8
Size: 

β i = β = 0.9 N,T 20 
β i ∼ IIDU[0.4, 0.6] 
Power:

β i ∼ IIDU[0.7, 0.9] 
Power: 99.90 100.00 100.00 100.00 100.00 50 99.95 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

β i ∼ IIDU[0.8, 1.0) N,T 20 
-β i )α i + β i y it-1 + ε it , t = -48, ..., 0, ..., T , i = 1, 2, ..., N,
where

α i ∼ N(1, 1), β i is as specified in the table. ε it ∼ IIDN(0, σ 2 i ) with σ 2 i ∼ IIDχ 2
(2)/2. α i and σ 2 i are fixed across replications with y i,-49 = 0. The first 49 observations are discarded. Size:

A c c e p t e d m a n u s c r i p t

β i = β = 0.5
Size:

β i = β = 0.8
Size: 

β i = β = 0.9 N,T 20 
= σ i u it with u it ∼ IID((χ 2 (2) -2)/2), σ 2 i ∼ IID(χ 2
(2)/2). Size:

A c c e p t e d m a n u s c r i p t

β i1 = β 2 = 0.25
Size:

β i1 = β 2 = 0.4
Size: Size:

β i1 = β 2 = 0.
β i1 = β 2 = 0.25
Size:

β i1 = β 2 = 0.4
Size: 

β i1 = β 2 = 0.
= σ i u it with u it ∼ IID((χ 2 (2) -2)/2), σ 2 i ∼ IID(χ 2
(2)/2). 

A c c e p t e d m a n u s c r i p t

β 1i = β 1 ,
for Panel ARDL Specifications with Normal Errors (Per cent) 

Size:β i1 = β 1 = 0.5, β i2 ∼ IIDU[0.9, 1.1] Size:β i1 = β 1 = 0.8, β i2 ∼ IIDU [0.9, 1.1] Size:β i1 = β 1 = 0.9, β i2 ∼ IIDU[0.9, 1.1] N,T 20 
it = (1 -β i1 ) α i + β i1 y it-1 + β i2 x it + ε it with x it = α i (1 -ρ i ) + ρ i x i,t-1 + (1 -ρ 2 i ) 1/2 v it , t = -48, ..., 0, ..., T , i = 1, 2, ..., N,
where 

α i ∼ N (1, 1), ε it ∼ IIDN(0, σ 2 i ) with σ 2 i ∼ IIDχ 2 (2)/2, ρ i ∼ IIDU[0.05, 0.95], v it ∼ IIDN(0, σ 2 ix ). α i , σ 2 i , ρ i and

  Consider the panel data model (1), suppose that the k × 1 regressors, x it , are strictly exogenous and Assumptions 1-3 hold. Then under H 0

β

  individual equations in the panel are invariant to the number of included regressors. Under the null hypothesis, β i = 1 for all i and , and under the alternative hypothesis β i = β i1 for = 2, 3, 4, where β i1 = 1 for i = 1, ..., [N/2] and i1 ∼ N (1, 0.04) for i = [N/2] + 1, ..., N, with [N/2] being the nearest integer value of N/2. α i and σ 2 i are fixed across replications. For k = 1, all combinations of T = 10, 20, 30, 50, 100, 200 and N = 20, 30, 50, 100, 200 are used as sample sizes. For k = 2, 3, 4, to save space only the combinations of T = 20, 30, 50 and N = 20, 30, 50, 100, 200 are included.

  and (c) H 0 : β i1 = β 1 and β i2 = β 2 jointly. Different nulls are entertained depending on the nature of the homogeneity tests. Under (a), the null DGP considered is β i1 = β 1 and β i2 ∼ iidU [β 2 -0.1, β 2 +0.1); under (b), β i1 ∼ iidU [β 1 -0.05, β 1 + 0.05] and β i2 = β 2 , and under (c), β i1 = β 1 and

  = O T -1/2 , tr A AC = O T -1 , tr AA C = O T -1 , tr A 2 C = O T -1 , (A.65) tr A AB = O T -1 , tr AA B = O T -1 , tr (AB) = O T -3/2 , tr A 2 B = O T -1 , (A.66) tr (BC) = O T -1 , tr A BC = O T -3/2 , tr (ABC) = O T -3/2 , (A.67) and tr A 2 BC , tr A ABC , tr AA BC , tr A 2 CB , tr (ABAC) , tr A BAC , tr ABA C are at most O T -2 . (A.68)

  which establishes |tr (AA C)| = O T -1 . Similarly, again by Cauchy-Schwarz inequality and noting that A A = C, tr A 2 C 2 ≤ tr AAA A tr C 2 = tr AA C tr C 2 , tr A 2 C = O T -1 . To derive the order of tr (A C), again by Cauchy-Schwarz inequality tr A C 2 ≤ tr A A tr C C = tr(C)tr(C 2 ).

  tr A BC 2 ≤ tr A A tr C B BC = tr(C)tr B 2 C 2 , [tr (ABC)] 2 ≤ tr AA tr C B BC = tr(C)tr B 2 C 2 . But as easily seen tr B 2 C 2 2 ≤ tr B 4 tr C 4 ≤ O T -6 so that tr B 2 C 2 ≤ O T -3 , and hence tr A BC = O(T -3/2 ), and |tr (ABC)| = O(T -3/2 ). Similarly, [tr (BC)] 2 ≤ tr B 2 tr C 2 = O T -2 , and |tr (BC)| = O(T -1 ). Finally, the various higher order terms in (A.68) can be established following similar lines. Firstly, tr A ABC = tr(BC 2 ), [tr(BC 2 )] 2 ≤ tr(B 2 )tr(C 4 ) = O(T -4 ), tr(BC 2 ) = O(T -2 ), and

  i,-49 = y i,-48 = 0. The first 48 observations are discarded.

  Consider now the moments of ziT under normality. Using Pitman's (1937) result, ziT and its denominator υ i M τ υ i are independent. Hence, zr

	).	(A.23)

iT and (υ i M τ υ i ) r are independently distributed, A c c e p t e d m a n u s c r i p t and we have E{z r iT

Table 1 :

 1 Size and Power of Slope Homogeneity Tests with a Single Exogenous Regressor and Normal Errors

	(Per Cent)

Notes: Data are generated as yit = αi

Table 2 :

 2 Size and Power of Slope Homogeneity Tests with k = 2, 3 and 4 Exogenous Regressors and Normal Errors Notes: See notes to Table 1. Data are generated as yit

	(Per cent)

Table 3 :

 3 Size and Power of Slope Homogeneity Tests with k = 2, 3 and 4 Exogenous Regressors and Nonnormal (Chi-Squared) Errors Notes: See notes to Table 1. Data are generated in the same way as specified in Table 2, except εit = σiuit with

	(Per cent)

Table 4 :

 4 Size and Power of the Slope Homogeneity Tests for Heteroskedastic AR(1) Specifications

	(Per cent)
	with Normal Errors

Table 5 :

 5 Size and Power of the Slope Homogeneity Tests for Heteroskedastic AR(1) Specifications with Nonnormal (Chi-squared) Errors

	(Per cent)

  Notes: See notes to Table1. Data are generated in the same way as specified in Table4, except ε

	78.95 90.75 94.55 97.60 91.80 96.10 98.80 99.55 99.90 95.35 97.35 99.40 99.85 99.95	81.75 92.80 98.10 99.35 99.50 97.75 99.45 100.00 100.00 100.00 99.20 99.60 99.95 100.00 100.00	94.45 98.75 99.75 100.00 100.00 99.80 100.00 100.00 100.00 100.00 99.95 100.00 100.00 100.00 100.00	99.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Ŝ Test	2.20 2.50 2.75 3.60 3.70 7.55 6.40 5.25 4.30 5.15 17.50 12.55 10.90 7.95 7.05	2.50 1.95 2.15 3.45 3.45 9.10 5.95 5.30 5.40 3.75 22.15 14.95 12.70 8.35 5.85	1.40 0.85 2.45 2.55 3.35 9.70 6.75 5.95 4.50 3.80 29.75 19.90 14.60 9.80 7.15	1.05 0.70 1.30 2.45 2.65 12.30 7.90 5.60 4.15 4.20 47.45 32.20 18.95 12.45 7.75	0.35 0.05 0.95 1.15 3.15 14.85 8.95 6.00 4.10 4.45 66.95 47.75 31.30 17.70 11.10	∆adj Test	5.60 4.00 3.40 3.55 2.70 3.55 4.40 3.20 3.30 2.90 5.40 6.10 4.40 4.50 3.85	8.15 6.35 4.35 4.25 3.50 3.75 3.40 3.85 3.85 3.85 5.95 4.70 6.15 4.80 4.80	15.95 11.05 5.85 4.90 4.40 4.30 4.55 4.85 4.30 3.85 8.10 7.00 6.55 5.50 4.75	30.45 20.80 10.90 7.05 5.50 5.45 5.00 4.00 5.10 4.75 10.25 10.45 7.60 6.95 5.65	60.85 40.10 22.35 10.80 6.80 8.65 6.95 5.25 5.80 5.85 15.35 13.50 10.60 7.80 7.00	Power: β i ∼ IIDU[0.4, 0.6] Power: β i ∼ IIDU[0.7, 0.9] Power: β i ∼ IIDU[0.8, 1.0) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200	H Test	70.85 85.00 95.45 99.35 100.00 93.50 97.95 99.85 100.00 100.00 96.50 99.00 99.95 100.00 100.00	85.45 95.65 99.70 99.95 100.00 98.70 99.80 100.00 100.00 100.00 99.55 99.95 100.00 100.00 100.00	95.80 99.55 99.85 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	99.85 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Ŝ Test	3.70 5.50 11.65 26.50 64.85 14.05 29.00 33.30 52.90 90.75 99.70 17.10 29.25 66.00 95.75	4.65 4.95 11.70 36.45 77.25 16.85 39.45 43.75 65.05 97.05 100.00 19.30 38.85 79.75 98.90	3.80 5.55 14.95 47.85 93.25 20.80 52.60 60.00 83.95 99.80 100.00 27.95 51.85 92.70 99.95	3.45 5.75 19.70 73.60 99.55 32.90 76.95 83.50 97.75 100.00 100.00 43.05 73.10 99.55 100.00	2.00 6.95 31.85 92.90 100.00 50.50 93.50 96.75 99.95 100.00 100.00 64.45 94.20 100.00 100.00	∆adj Test	4.05 3.05 5.40 16.80 53.75 4.85 11.15 16.80 37.55 85.90 99.30 7.00 17.60 53.75 93.50	5.30 3.80 5.40 23.55 68.20 5.40 13.85 23.15 49.70 95.25 99.95 8.05 21.65 69.65 98.35	8.60 3.65 6.80 34.15 89.05 4.70 19.75 34.60 71.30 99.50 100.00 9.50 32.65 86.10 99.90	14.95 6.50 8.05 59.20 99.00 6.95 34.55 57.55 92.90 100.00 100.00 15.40 52.25 98.75 100.00	33.60 8.50 11.85 84.45 100.00 7.35 54.80 82.85 99.65 100.00 100.00 25.25 79.85 100.00 100.00	it
		30	50	100	200		20	30	50	100	200		20	30	50	100	200	N,T		20	30	50	100	200		20	30	50	100	200		20	30	50	100	200	

Table 6 :

 6 Size and Power of the Slope Homogeneity Tests for Heteroskedastic AR(2) Specifications

	(Per cent)
	with Normal Errors

Table 7 :

 7 Size and Power of the Slope Homogeneity Tests for Heteroskedastic AR(2) Specifications with Nonnormal (Chi-squared) Errors

	(Per cent)

  Notes: See notes to Table1. Data are generated in the same way as specified in Table6, except ε

	45	20 30 50 100 200 20 30 50 100 200 20 30 50 100 200	H Test	78.80 89.70 95.65 98.80 99.35 92.55 97.25 98.75 99.65 99.90 95.50 98.20 99.35 99.85 99.85	94.10 97.15 99.25 100.00 99.90 98.85 99.50 99.85 100.00 100.00 99.50 99.85 100.00 100.00 100.00	99.25 99.95 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Ŝ Test	4.35 3.15 4.00 3.65 4.35 10.55 7.40 6.80 5.35 5.65 18.05 13.25 10.90 8.25 6.85	5.10 3.45 3.40 3.65 3.80 13.60 9.05 6.55 6.00 4.70 23.70 15.65 11.60 9.20 7.00	4.55 3.20 2.80 3.20 3.70 15.70 10.35 6.45 6.30 5.80 30.40 22.30 13.90 11.50 8.70	3.20 2.00 2.45 3.30 3.25 19.15 11.20 7.20 7.20 4.95 43.85 32.20 18.50 14.75 9.75	1.75 1.20 0.95 2.60 2.50 25.50 13.00 9.35 7.05 5.20 63.25 43.75 30.00 18.60 12.30	∆adj Test	11.50 8.00 6.80 5.10 5.05 5.80 5.65 5.80 3.80 4.55 4.30 4.45 5.15 4.25 4.90	14.65 9.20 7.85 5.35 5.30 7.00 5.15 5.30 4.20 4.90 5.25 5.30 5.20 4.55 5.00	19.95 12.30 9.65 6.25 5.15 8.75 5.75 5.45 5.25 4.80 5.35 5.45 4.80 5.55 5.60	37.05 23.80 14.65 8.15 6.35 10.15 7.00 5.90 5.75 5.30 5.75 5.45 5.15 7.85 6.00	63.40 42.45 25.75 12.60 7.40 14.90 10.10 7.80 6.05 5.85 5.45 6.15 8.00 7.20 6.05	Power: β i1 ∼ IIDU[0.15, 0.35], β 2 = 0.25 Power: β i1 ∼ IIDU[0.3, 0.5], β 2 = 0.4 Power: β i1 ∼ IIDU[0.35, 0.55), β 2 = 0.45 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200	H Test	82.40 92.05 97.75 99.55 99.50 93.50 97.75 99.30 99.25 98.55 94.75 98.50 99.40 98.85 97.95	94.70 98.75 99.95 99.95 99.80 99.20 99.75 99.95 99.85 99.45 99.35 99.95 99.90 99.50 98.80	99.60 99.95 100.00 99.95 100.00 100.00 100.00 100.00 100.00 99.90 100.00 100.00 99.95 100.00 98.85	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.50	99.45 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Ŝ Test	6.95 6.35 9.00 19.25 43.20 14.95 13.95 18.80 23.50 21.80 30.00 60.60 95.15 39.05 76.70	5.15 6.60 9.55 22.15 54.05 15.70 15.20 21.35 26.35 28.45 36.45 74.95 98.95 48.35 88.30	6.60 6.35 10.30 30.55 73.35 22.60 21.35 27.35 40.85 40.70 49.15 90.70 100.00 64.85 97.60	6.25 7.50 13.20 42.80 93.50 32.40 28.30 41.95 61.55 61.90 78.40 99.55 100.00 87.55 100.00	4.90 7.00 17.75 68.75 99.80 42.05 43.90 66.45 80.65 83.15 94.25 100.00 100.00 98.90 100.00	∆adj Test	9.80 5.90 5.55 9.15 29.05 6.55 4.80 6.80 6.40 7.20 12.75 43.35 90.40 22.15 64.35	11.20 6.70 5.15 10.65 38.30 5.40 5.15 8.15 5.50 8.10 17.00 60.00 98.00 29.70 79.60	15.85 8.30 4.40 15.60 58.60 5.25 5.50 9.20 7.05 11.80 24.00 79.85 100.00 46.30 94.90	26.50 11.75 5.65 24.60 84.75 6.45 5.65 16.60 8.95 19.30 50.35 98.00 100.00 73.85 99.85	47.45 19.35 5.20 44.30 98.95 6.80 7.25 28.50 10.65 29.35 73.60 99.95 100.00 95.85 100.00	it
		N,T		20	30	50	100	200		20	30	50	100	200		20	30	50	100	200	N,T		20	30	50	100	200		20	30	50	100	200		20	30	50	100	200	

Table 8 :

 8 Size and Power of the Slope Homogeneity Tests of

	H 0 :

  σ 2 ix are fixed across replications with y

	i,-49 = x i,-49 = 0. The first 49	observations are discarded. β i1 and β i2 are as specified in the table. σ 2 ix is chosen so that R 2 i = 1 -σ 2 i /V ar(y it ) = 0.9 for all experiments. All test statistics are constructed for testing slope homogeneity of subset of slopes, H 0 : β i1 = β 1 , Ŝ1 and ∆1,adj test statistics. The are the Hausman test, the Swamy's test, and the adjusted ∆ 1 for all i. H	test is based on a two sided N(0, 1) test, all conducted at 5% significance (N -1) distribution, and the ∆1,adj H 1 test is based on χ 2 (1) level. All experiments are based on 2 distribution, the Ŝ1 test is based on χ 2 replications.

Table 9 :

 9 Size and Power of the Slope Homogeneity Tests of

	2 ,
	2i = β
	β
	H 0 :

  , σ 2 i , ρ i and σ 2 ix are fixed across replications with y i,-49 = x i,-49 = 0. The first 49 observations are discarded. β i1 and β i2 are as specified in the table. σ 2 ix is chosen so that R 2 ) = 0.9 for all experiments. All test statistics are constructed for testing slope homogeneity of subset of slopes, H Ŝ2 and ∆2,adj are the Hausman test, the Swamy's test, and the adjusted ∆

	12.20 12.30 15.65 25.80 10.30 11.10 10.00 11.45 12.75 10.45 10.60 9.25 8.75 8.95	30 11.00 11.70 12.40 17.75 22.25 12.35 12.70 12.60 12.55 13.90 11.05 11.45 10.45 10.30 10.90	50 14.20 15.05 15.85 17.20 21.60 15.65 18.00 19.20 17.00 16.00 12.60 14.45 17.10 15.60 12.90	100 20.25 22.40 22.55 20.95 23.70 22.70 27.40 30.20 25.35 20.60 15.20 20.25 24.40 22.00 18.10	200 34.10 38.50 37.20 30.20 30.55 35.65 49.10 54.50 43.60 36.25 21.40 32.25 40.05 39.85 34.65	Ŝ2 Test	20 25.65 30.85 43.35 76.35 97.15 20.30 17.20 18.65 29.35 54.00 24.85 18.25 14.60 14.55 20.20	30 34.40 39.90 55.80 88.05 99.70 27.45 23.25 21.80 36.65 68.35 32.80 23.65 17.05 18.00 24.05	50 45.75 53.45 74.30 97.95 100.00 35.80 31.25 31.45 50.10 86.85 42.00 33.05 24.90 22.30 34.10	100 70.05 79.75 95.45 100.00 100.00 55.25 47.95 52.35 80.00 99.10 63.85 47.60 36.20 34.60 56.55	200 89.85 95.25 99.55 100.00 100.00 79.50 69.55 72.65 95.25 100.00 87.40 71.55 54.40 51.55 77.20	∆2,adj Test	20 8.30 14.45 28.95 66.05 94.75 7.60 6.55 9.65 19.20 45.25 7.85 6.75 7.50 7.80 12.15	30 11.50 18.30 38.20 81.70 99.25 8.85 8.95 11.60 24.80 57.90 10.80 9.10 8.20 10.55 15.90	50 14.65 26.70 56.55 95.35 100.00 9.90 10.70 17.35 36.95 79.70 12.55 11.40 12.00 13.25 23.40	100 25.85 48.05 87.15 100.00 100.00 14.05 16.90 29.10 67.00 98.10 19.25 17.10 16.60 20.50 41.50	200 38.10 73.70 98.15 100.00 100.00 22.65 28.50 44.45 87.70 100.00 35.45 29.95 26.85 32.75 64.95	Notes: Data are generated as y it = (1 -β i1 ) α i + β i1 y it-1 + β i x i,t-1 + (1 -ρ 2 i ) 1/2 v it , t = -48, ..., , i = 1, 2, ..., N, where α i ∼ N (1, 1), 0, ..., T ε it ∼ IIDN(0, σ 2 i ) with σ 2 i ∼ IIDχ 2 (2)/2, ρ i ∼ IIDU[0.05, 0.95], v it ∼ IIDN(0, σ 2 ix ). α i = 1 i /V ar(y -σ 2 test statistics. The 0 : β i2 = β 2 for all i. H	1) test, all conducted at 5% significance test is based on a two sided N(0, (N -1) distribution, and the ∆2,adj H 2 test is based on χ 2 (1) level. All experiments are based on 2 distribution, the Ŝ2 test is based on χ 2 replications.

i2 x it + ε it , with x it = α i (1 -ρ i ) +ρ i it 2 ,
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  , σ 2 i , ρ i and σ 2 ix are fixed across replications with y i,-49 = x i,-49 = 0. The first 49 observations are discarded. β i1 and β i2 are as specified in the table. σ 2 ix is chosen so that R 2

	35.10 48.75 72.20 65.40 67.65 71.05 80.40 93.40 87.30 89.90 94.95 97.95 99.70	30 41.95 43.95 46.30 60.65 79.60 84.45 87.00 87.85 94.85 98.80 97.40 98.85 99.10 99.90 100.00	50 61.75 60.75 64.40 75.05 89.45 98.10 98.15 98.60 99.35 100.00 99.95 100.00 99.95 100.00 100.00	100 89.05 88.20 87.35 92.70 97.70 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	200 99.80 99.75 99.30 99.70 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	Ŝ Test	20 36.90 43.85 63.20 93.50 100.00 34.05 33.40 40.30 68.40 96.50 41.65 37.65 37.60 56.45 88.85	30 49.50 56.55 78.05 98.55 100.00 46.10 43.10 51.50 84.35 99.55 55.55 51.20 49.45 73.35 96.25	50 64.40 76.10 92.10 99.90 100.00 62.55 57.90 69.15 95.20 100.00 72.40 66.30 67.00 88.15 99.75	100 87.70 94.10 99.55 100.00 100.00 85.30 82.85 92.20 99.85 100.00 92.50 87.95 89.30 98.85 100.00	200 99.10 99.65 100.00 100.00 100.00 98.00 97.65 99.60 100.00 100.00 99.75 99.05 99.65 100.00 100.00	∆adj Test	20 10.00 17.35 40.65 86.30 100.00 9.45 10.35 19.30 52.40 92.35 11.10 12.55 17.85 40.15 80.70	30 12.65 26.50 54.85 96.70 100.00 11.20 17.60 27.40 70.50 98.55 16.10 20.10 26.35 57.40 93.60	50 19.85 38.70 78.70 99.85 100.00 17.25 22.95 44.15 87.95 99.95 25.60 29.70 41.30 77.30 99.35	100 34.70 67.70 96.90 100.00 100.00 27.85 42.25 72.15 99.50 100.00 43.40 50.35 67.90 96.75 100.00	200 59.90 92.50 100.00 100.00 100.00 52.35 71.35 95.70 100.00 100.00 79.20 86.20 95.35 99.95 100.00	Notes: Data are generated as y it = (1 -β i1 ) α i + β i1 y it-1 + β i x i,t-1 + (1 -ρ 2 i ) 1/2 v it , t = -48, ..., 0, ..., T , i = 1, 2, ..., N, where α i ∼ N (1, 1), ε it ∼ IIDN(0, σ 2 i ) with σ 2 i ∼ IIDχ 2 (2)/2, ρ i ∼ IIDU[0.05, 0.95], v it ∼ IIDN(0, σ 2 ix ). α i = 1 -σ 2 i /V ar(y it ) = 0.9 and ∆adj test is are the Hausman (2(N -1)) distribution, and the ∆adj for all experiments. H, Ŝ based on a two sided N(0, 1) test, the Swamy's test, and the adjusted ∆ test statistics. The H test is based on χ 2 (2) test, all conducted at 5% significance level. All experiments are based on 2 distribution, the Ŝ test is based on χ 2 replications.

i2 x it + ε it , with x it = α i (1 -ρ i ) +ρ i

Phillips and Sul consider a number of different estimators, including Andrew's (1993) median unbiased estimator and its extension to panels. But, as they note, all such estimators yield the same asymptotic covariance matrix as T → ∞.

See alsoHsiao (2003, p.149).

For a proof see Appendix A.6.

The choice of δi depends on the initialization of the process and will be given by δi = σi 1β 2 i -1/2 if the process has started at t = -M , with M → ∞.

We also tried a number of other variants of the Hausman test. But they all performed very similarly.

In e-mail correspondences Dr. Sul has confirmed to us that there is an error in equation (27) in[START_REF] Phillips | Dynamic panel estimation and homogeneity testing under cross section dependence[END_REF] that defines the G statistic.

See Corollary 1 and Remark 2. Also recall that a mean adjustment was not needed in the case of the ∆ test.

The non-monotone nature of the size of test as a function of β can be seen more clearly from additional experiments we have carried out for β = 0.3 and 0.7 which we do not report here.

We are grateful to Dr. Lieberman for this extension of his published results through a private communication.

The proof of the conditions 1-3 of Lemma 4 can be obtained from the authors on request.

Details are provided in a supplement to the paper that can be obtained from the authors on request.

Note that all diagonal elements of Mi and Pi are non-negative and bounded by unity.

See, for example,[START_REF] Alvarez | The time series and cross-section asymptotics of dynamic panel data estimators[END_REF], pp. 1127-1128 and Appendix A.1) where the results are derived under σ 2 i = σ 2 .

Note that E |QiT | < K and E |ξ iT | < K .

Recall that C = C and A A = C.

constructive and most helpful comments. Also our thanks go to Donggyu Sul for the Gauss codes used for the implementation of Phillips and Sul's G test. Financial support from the ESRC (Grant No. RES-000-23-0135) is gratefully acknowledged.

By using (A.58) to (A.61), it is easily shown that

Proof. Using results in [START_REF] Magnus | The moments of products of quadratic forms in normal variables[END_REF][START_REF] Magnus | The expectation of products of quadratic forms in normal variables: the practice[END_REF], together with (A.64) to (A.68).

A.10 Results on Trace of Matrices

Consider the non-stochastic matrices A, B, and C defined by (A.37), (A.38), and (A.39) in Appendix A.8, respectively (suppressing the subscript i). Then,