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Abstract

We describe exact inference based on group-invariance assumptions that

specify various forms of symmetry in the distribution of a disturbance vector

in a general nonlinear model. It is shown that such mild assumptions

can be equivalently formulated in terms of exact confidence sets for the

parameters of the functional form. When applied to the linear model,

this exact inference provides a unified approach to a variety of parametric

and distribution-free tests. In particular, we consider exact instrumental

variable inference, based on symmetry assumptions. The unboundedness

of exact confidence sets is related to the power to reject a hypothesis

of underidentification. In a multivariate instrumental variables context,

generalizations of Anderson-Rubin confidence sets are considered.
∗JEL classification: C1. Keywords: Weak instruments, exact inference, distribution-free

methods, nonparametric tests, Anderson-Rubin confidence sets.
†Corresponding author. Paul A. Bekker, Department of Economics, University of Gronin-
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P.A.Bekker@eco.rug.nl



Acc
ep

te
d m

an
usc

rip
t 

1

1 Introduction

There is a large literature that tackles departures from standard asymptotics in

an instrumental variables (IV) context. Recent theoretical contributions, with

further references, can be found in Bekker (1994), Staiger and Stock (1997),

Wang and Zivot (1998), Zivot et al. (1998), Donald and Newey (2001), Hahn

and Hausman (2002), Kleibergen (2002, 2004) and Moreira (2001, 2003). In

particular, Nelson and Startz (1990a, 1990b) considered the bimodality of the

finite-sample distribution of the IV-estimator in the presence of a single instrument.

Especially when the instrument is weak, in the sense of not being highly correlated

with the regressor, when the degree of endogeneity is high, or when the number

of observations is small, the asymptotic distribution may be a particularly poor

approximation to the true distribution (additional details are provided by Woglom,

2001). An understanding of the empirical importance of weak instruments

in econometrics stems from Angrist and Krueger’s (1991) study of returns to

education, and the discussion of their results by Bound et al. (1995). See also

Imbens and Rosenbaum (2005), who examine permutation methods, and links

with instrumental variables tests when instruments are weak, with an application

to the Angrist and Krueger (1991) dataset. Good surveys of the weak instrument

literature are Stock et al. (2002) and Hahn and Hausman (2003). In this

paper, we consider a general distribution-free approach to exact inference, with

particular emphasis on (weak) instrumental variables.

Instead of considering a specified parametric family of densities for the disturbances,

we examine a variety of nonparametric assumptions based on three basic types

of symmetry in the distribution of the disturbance vector. Such group-invariance

assumptions can be very mild. (a) The exchangeability assumption, based
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on the permutation group, is weaker than assuming that the disturbances are

independent and identically distributed (iid). In fact, it also covers the case

where sampling is performed without replacement. (b) Another group-invariance

assumption, based on the reflection group, covers the heteroscedastic case, where

the disturbances are assumed to be independent with symmetric distributions.

This is weaker than the classical parametric assumption of iid Gaussian disturbances.

(c) However, the assumption of iid Gaussianity can also be related to group

invariance by considering the infinite group of rotations.

Furthermore, based on such assumptions, the paper presents exact inference

on the parameters of the functional form. The inference is formulated in terms of

exact confidence sets whose validity does not depend on the number of observations.

So, contrary to asymptotic approximations, the approach may be applied locally,

based on very few observations. Moreover, the inference is shown to be equivalent

to the assumptions of the model if the group-invariance assumption is based on

a finite group. In that case, the assumptions are necessary and sufficient for the

inference to hold true. In particular, we consider such ‘assumption-equivalent’

inference in the linear model in an instrumental variable setting.

An important special case is given by linear regression, and as a first illustration

consider the simple model:

yi = α + βxi + ui, i = 1, . . . , n.

Let the elements yi, xi and ui be collected in n-vectors y, x and u, respectively,

and let Pj , j = 1, . . . , n! − 1, represent all n × n permutation matrices that are

different from the identity matrix In, so that Pjx contains the elements of x in
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a different order. Let Pjx �= x, and consider points

cj =
x′(In − Pj)y
x′(In − Pj)x

, j = 1, . . . , n! − 1,

such that the real line is partitioned into n! disjoint subsets Bk. It will be shown

that the assumption that states that the elements of u are iid, and independent

of x, is sufficient for exact inference that states that the probabilities for the

n! events β ∈ Bk are all equal. Consequently, the sets Bk form elementary

confidence sets for β. In fact, this inference is essentially equivalent to the

assumption that says that the distribution of u is not affected by a reordering

of its elements. A general formulation of this result, applicable to assumptions

related to other groups of transformations, will be derived in the next section

without reference to estimation or testing procedures.

This paper provides a unified approach to exact inference in the linear model

under a variety of nonparametric assumptions. Many nonparametric statistical

techniques, and early nonparametric inference in econometrics, can be recognized

as special cases of our general framework, and some of these settings are briefly

discussed. Descriptions of such distribution-free methods can be found in, inter

alia, Hájek (1969), Lehmann (1975), Dawid (1988) and Maritz (1995). However,

our main interest in this paper is in applications in an instrumental variables

context.

For the general instrumental variable case, as considered here, inference

becomes more complicated than it is for the linear regression. That is, inference

on a single parameter remains assumption-equivalent, but the exact confidence

regions need no longer be convex, symmetric or bounded. In particular, we study

the possibility of unbounded confidence sets. The probability of unboundedness
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is shown to be related to the power of the ‘first-stage regression’ to reject a

hypothesis of under-identification.

Following the main result in Section 2, we focus on inference on a single

parameter, and distinguish between two cases. First, in Section 3, monotonic

inference is considered, which allows for one-sided inference, and where there

are no complications due to unbounded confidence sets. Second, in Section

4, we assess inference based on a single instrument, which is nonmonotonic in

general. We then discuss problems of interpretation that are related to exact

confidence sets whose boundedness is not guaranteed. In Section 5, we explore

joint confidence regions and inference based on more than one instrument. We

describe nonparametric generalizations of Anderson-Rubin confidence sets and

examine dynamic and nonlinear models. Section 6 concludes the paper.

2 Symmetry and exact inference

We consider nonparametric assumptions on the distribution of a disturbance

vector. That is, instead of restricting the distribution to a parametric family,

the distribution will be assumed to satisfy only a symmetry property. The

mathematical expression of symmetry is invariance under a suitable group of

transformations. First, we consider finite groups.

2.1 Symmetry assumptions based on finite groups

Based on elementary properties of finite groups, we begin by describing a result

that can be formulated without using probability. Let the finite set P = {P0, P1, . . . , PN}
of n×n matrices be closed under the formation of products and inverses, so that

P is a finite transformation group of order N + 1. The identity matrix In is



Acc
ep

te
d m

an
usc

rip
t 

5

an element, which will be denoted by P0. Such a group defines an equivalence

relation between n-vectors ε and ε∗, i.e. ε ∼ ε∗ (mod P) if ε = Pε∗ and P ∈ P.

An equivalence class, or ‘orbit’, will be denoted by Cε = {ε, P1ε, . . . , PNε}.
Notice that Cε = Cε∗ if ε ∼ ε∗ (mod P). Examples of such finite groups are given

by permutation matrices, where Pε contains the elements of ε in a different

order, and N = n! − 1; and by reflection matrices, which are diagonal with

diagonal elements equal to either 1 or −1, and N = 2n − 1. A combination,

containing both permutations and reflections, is formed by the permutation-

reflection group where N = n!2n − 1. Subgroups will also be considered. For

example, if the elements of ε are stratified, permutations within strata form a

subgroup, which can be achieved by block-diagonal permutation matrices.1

Let g(ε) be a scalar inferential function. Then, the range of g(·) with domain

Cε, i.e.

R(g(ε)) ≡ {g(Pε) | P ∈ P},

is the reference set of g(ε). From the group structure, R(g(Pε)) = R(g(ε))

if P ∈ P. This property, and Condition 1, make it possible to formulate

assumption-equivalent inference.

CONDITION 1: All elements of the reference set R(g(ε∗)) are different, i.e.

g(Piε) �= g(Pjε) for all i, j ∈ {0, 1, . . . , N} and i �= j.

Consequently, if Condition 1 is satisfied, there is a one-to-one correspondence
1We use “strata” in a standard statistical sense, see e.g. Imbens and Rosenbaum (2003,

Section 3.1), for further details.
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between the elements of Cε∗ and the elements of R(g(ε∗)). If we define2

F (ε) ≡ #{P | g(ε) < g(Pε), P ∈ P},

with range U = {0, 1, . . . , N}, then the mapping F : Cε∗ → U is one-to-

one. Conditional on ε ∈ Cε∗ , where Condition 1 is satisfied, the following two

statements are equivalent:

ε = Piε
∗, (1)

F (ε) = F (Piε
∗). (2)

The interpretation of this equivalence becomes clearer in an econometric context,

where ε is a random disturbance vector. In particular, we consider disturbances

specified as

ε = f(y, X; βo),

where the functional form f(y, X; β) is a known function of both observable

variables (y, X) and a parameter vector β. We will use the short notation F (β)

instead of F (f(y, X; β)).

An assumed symmetry property of the distribution of ε amounts to a group

invariance assumption which states that ε and Pε have the same distribution

if P ∈ P. When conditioned on equivalence classes Cε∗ , where Condition 1 is

satisfied, such a group invariance assumption states that the conditional distribution

of ε is uniform over Cε∗ . From the equivalence of (1) and (2), we find that

the group invariance assumption holds, conditional on Cε∗ , if and only if the
2Similar to the generalized Bell-Pitman statistic, given by 1 − F (ε)(N + 1)−1, cf. Dawid

(1988).
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conditional distribution of F (βo) is uniform over U. The latter amounts to exact

assumption-equivalent inference on βo. Our findings are summarized as follows.

PROPOSITION 1: Conditional on an equivalence class, where Condition 1 is

satisfied, a group invariance assumption stating that ε is uniformly distributed

over Cε∗ is equivalent to inference on βo that says that F (βo) is distributed

uniformly over U. If Condition 1 holds almost surely (a.s.), then a group invariance

assumption implies that the marginal distribution of F (βo) is uniform over U.

If F (βo) is indeed uniformly distributed over U, the function F (β) can be used

to construct exact (as opposed to approximate asymptotic) confidence sets for βo:

C(V) ≡ {β | F (β) ∈ V ⊂ U}; (3)

with size Prob(βo ∈ C(V)) = #V/#U. If V consists of a single element, C(V) is

called an elementary confidence set.

Due to computational problems, it may be difficult to implement this inference

in practice if N is a large number. However, as is shown in the Appendix, exact

inference can also be formulated based on a random sample of matrices P ∈ P.

The function F (β), based on this random sample, can be computed for a grid

of values for β. Confidence sets can then be constructed by trial and error,

i.e. β ∈ C(V) if F (β) ∈ V. In some cases, inference on a single element of the

parameter vector can also be formulated by computing confidence limits directly.

These are the bounds of one-dimensional elementary confidence sets.
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2.2 Symmetry based on the infinite orthonormal group

The set P of n × n orthonormal matrices P , with P ′P = PP ′ = In, forms

an infinite group. Nevertheless, an infinite group-invariance assumption implies

exact inference conditional on an equivalence class, and therefore also unconditionally.

The group-invariance assumption now says that the vector ε can be rotated

without affecting its distribution. So, ε is assumed to have a spherically symmetric

distribution3: it depends only on ε′ε. A rotational-invariance assumption implies

permutation-reflection invariance. If the elements of ε are also assumed to be

independent, rotational invariance amounts to Gaussianity.

Let {P1, . . . , PN} be a random sample taken from P and let P0 = In. That

is, for any ε, the elements of {P1ε, . . . , PNε} are assumed to be independently

uniformly distributed over the surface of the sphere with radius (ε′ε)1/2. Thus,

ε and P1ε, say, have identical distributions. If we further condition on an

equivalence class ε ∈ Cε∗ = {Pε∗ | P ∈ P}, then ε and P1ε are also independent.

Consequently, conditional on Cε∗ , the random vectors Piε, and g(Piε), i =

0, 1, . . . , N will be iid. Hence, F (βo) ∼ U(U), where

F (βo) = #{i | g(ε) < g(Piε), i = 1, . . . , N}, (4)

which holds conditionally and unconditionally. We may also consider infinite

subgroups where the rotational symmetry applies to linear subspaces.
3The argument can easily be generalized to elliptical distributions.
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3 Monotonic inference and some applications

Exact inference as formulated in Proposition 1 is not unique. Each choice of

inferential function g (·) that satisfies Condition 1, a.s., provides exact inference.

Such inferences can be distinguished based on aspects of the shape of the random

function F (β). That is to say, F (β) should ideally allow relevant confidence sets

to be bounded, convex and non-empty a.s. For this reason, we pay particular

attention to inference on a single parameter based on linear inferential functions.

We then distinguish between monotonic inference, where F (β) is a monotonic

function with range U, and nonmonotonic inference. Section 5 also discusses

nonlinear inferential functions.

3.1 Monotonic inference

Inference based on F (βo) ∼ U(U) is monotonic if β is a scalar and F (β) is

a monotonically increasing function ranging from F (−∞) = 0 to F (∞) =

N . Then, ‘assumption-equivalent’ inference amounts to the formulation of an

ordered collection of N + 1 elementary convex sets that partition the real line.

Using notation (3), these elementary confidence sets can be denoted C({i}),
i = 0, 1, . . . , N . Their coverage probabilities are all equal to (N + 1)−1. The

following is a simple illustration of monotonic inference.4

Consider the example used in the Introduction:

ε = y − βox = αιn + u, (5)
4Such inference is related to distributional inference as discussed by Kroese and Schaafsma

(1998), who consider optimality in terms of proper loss functions based on the difference between
random distribution functions G(β), where G(βo) ∼ U([0, 1]), and the indicator function of
[βo,∞).
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where ιn is an n-vector of ones. The distribution of ε, conditional on x, is

assumed to be invariant under permutations of its elements. Therefore, ε and

Pε have the same distribution if P ∈ P, where P is the permutation group of

n×n matrices. Let g(ε) = x′ε and assume that Condition 1 is satisfied a.s. This

implies, for i = 1, . . . , n! − 1, that Pix �= x and, since Pi is orthogonal,

x′(In −Pi)x =
1
2
x′ [(In − Pi) + (In − Pi)

′] x =
1
2
x′(In −Pi)(In −Pi)′x > 0. (6)

Consequently, assumption equivalent inference amounts to F (βo) ∼ U(U), where5

F (β) = #
{

i | x′(In − Pi)y
x′(In − Pi)x

< β, i = 1, . . . , N

}
, (7)

and N = n! − 1. Here we need not construct confidence sets by trial and error.

Instead, we can compute confidence limits ci directly:

ci =
x′(In − Pi)y
x′(In − Pi)x

, i = 1, . . . , n! − 1. (8)

We may also consider a random sample of these limits, as described in the

Appendix.6

We find for monotonic inference that elementary confidence sets are non-

empty and convex, and that only C({0}) and C({N}) are unbounded. Due to the
5Note that g (ε) < g (Pε) as x′ε < x′Pε as x′ (In − Pi) y < x′ (In − Pi) xβ, and (7) follows

from property (6). Here, g (ε)− g (Pε) = x′ (In − P ) u, and so permutation based inference for
β is independent of α.

6The inference described here may perhaps be seen as similar to Monte Carlo methods such
as the bootstrap, which is a technique for estimating the finite-sample distribution of a statistic,
or a feature thereof, by data resampling. Bootstrap estimation provides an approximation to
exact finite-sample methods (e.g. approximation of a distribution function), and is usually
justified by asymptotic arguments under suitably general conditions. By contrast, the methods
in this paper lead to exact inference, whether based on the complete group P, or a random
sample from P. See Robinson (1987) for comparison of several bootstrap confidence intervals
as approximations to exact intervals derived from inversion of exact permutation tests.
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ordering of the elementary confidence sets, one-sided inference can be formulated

based on confidence sets C(V), or their complements, where V = {j, . . . , N}.
Two-sided inference can be based on confidence sets given by

Sj = C(Vj); (9)

Vj = {j, . . . , N − j}, 0 ≤ j ≤ N/2.

So, we find that

Prob(βo ∈ Sj) = 1 − αj , (10)

αj = 2j(N + 1)−1 = 1 − #Vj/#U.

For monotonic inference, the sets Sj are convex, non-empty and also bounded

for j > 0. Moreover, they are symmetric, which is of some importance when

interpreting the sets Sj . In particular, the median of the N confidence limits –

with some tolerance if N is even – has a distribution whose median coincides

with βo. Therefore, similar to the Hodges-Lehmann estimator (cf. Hodges and

Lehmann, 1963; or Lehmann, 1975, p. 82), this median is a median unbiased

estimator of βo. In other words, Sj has coverage probability 1−αj for scalar βo,

and a median unbiased estimator β̂med, in the scalar monotonic case, is given

by β̂med = limαj→1 Sj . See Andrews (1993) and Andrews and Phillips (1987) for

some discussion of median-unbiasedness in econometrics, and Lehmann (1997,

Section 3.5) for an introduction.

Graphically, the inference can be represented by an ‘F -plot’, where F (β) is
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plotted against β. An alternative two-sided representation is given by a P -plot,

or ‘confidence pyramid’, as used by Gabriel and Hall (1983) and Tritchler (1984),

where the two-sided confidence regions are stacked on top of each other. That

is, consider values P (β) :7

P (β) = max{αj | β ∈ Sj , j = 0, . . . , N} =
N

N + 1

(
1 −

∣∣∣∣1 − 2F (β)
N

∣∣∣∣) . (11)

Then, Ho : β = βo would be rejected at significance level αj , (i.e. βo �∈ Sj),

if and only if αj > P (βo). So, P (β) provides a representation of the sets Sj :

Sj = {β | P (β) ≥ αj}. (12)

As an example of monotonic inference based on model (5), where F (β) takes

the form (7), consider iid data generated as follows: εi = (w1 + w2
2 + 3)2i and

xi =| log | w3
w4

||, where for each i = 1, . . . , 10, independently, w ∼ N(0, I4);

βo = 1. Figure 1 gives a P -plot based on 1000 randomly chosen permutations,

and a median-unbiased estimate β̂med > βo.

[Figure 1 about here.]

The assumption-equivalent inference developed here is exact, for all sample

sizes n, irrespective of the number of random samples taken from the (permutation

or other) group P. Clearly, a “reasonable” subsample size will depend upon

the computing resources available, and the context, and will likely be case-

dependent. As an illustration, we performed a small study, using the model

following equation (12). We construct confidence sets Sj for n = {10, 25}, using

N = 10, 000 random n × n permutation matrices, where αj ∈ {0.05, 0.10, 1.00}.
7An alternative would be to use p-values: min{αj | βj �∈ Sj , j = 1, . . . , N}.
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The procedure was repeated 200 times, and we recorded the empirical mean and

standard deviation of the lower and upper bounds of the confidence sets with

95% and 90% coverage, and the median unbiased estimate β̂med. We found that

reasonable accuracy is achieved (in terms of small variability across samplings

from P), even for small samples, and especially for the median-unbiased estimate.

For instance, the 90% interval for n = 25 is given by (−3.34, 7.06), with estimated

standard errors 0.067 and 0.061 on the bounds. In a practical application, N

could be increased considerably. For the same model, we constructed P -plots,

using different subsamples from P, where N ∈ {10, 100, 500, 1000, 2500, 10000}.
It appears that N as small as 1000 gives quite accurate inference in this example

(although all display exact inference).

3.2 Some special cases

Exact inference based on confidence limits (8) was derived by Gabriel and Hall

(1983) and Maritz (1995) by inversion of permutation tests.8 Based on asymptotic

conditions, the difference between this nonparametric inference and Gaussian

inference frequently becomes negligible even for modest values of n. However,

if the regression is applied locally, e.g. as a building-block for nonparametric

regression, based on very few observations, then differences may be seen. Another

case arises when asymptotic conditions are not well satisfied, such as when two

samples are compared, one of which is small (for example, Wilcoxon’s two-

sample test, or similarly the Mann-Whitney test, easily fit within the present

framework). We now give some examples to illustrate how the group-invariance

framework can provide a unified treatment of various different problems.
8In an experimental context, given similar assumptions with respect to x instead of ε, exact

inference of the form (10) would still be valid.
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EXAMPLE 1 (Permutation):

The question is whether the permutation argument can also be applied in a

general multiple regression context:

y = xβ + X2γ + u = xβ + ε, (13)

where the elements of u are exchangeable. In that case, the matrices Pi should

satisfy the additional condition (In−Pi)X2 = 0, in order to filter out the effect of

the variables X2. In other words, the transformations Pi should affect the vector

x, i.e. Pix �= x, but they should leave the matrix X2 unaffected, i.e. PiX2 =

X2. In order to achieve this, the permutations should be performed between

observations where the variables in X2 are constant. In particular, if X2 consists

of dummy variables, defining strata, this nonparametric approach is applicable by

using a subgroup consisting of block-diagonal permutation matrices. In case X2

does not consist of dummy variables, then joint confidence sets for the parameters

in β and γ might be formulated as described in Section 5.

EXAMPLE 2 (Reflection):

Another well-known application relates to the central location of symmetric

distributions. Let y = βιn + ε (in fact, it is only necessary that the constants

multiplying β are different from zero), and let P be the reflection group. From

the independence and the symmetry of the distributions, ε and Pε have the same

distribution if P ∈ P. So, if we use g(ε) = ι′nε as an inferential function, and
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assume that Condition 1 is satisfied, we find using similar techniques to above

that F (β0) will be uniformly distributed over U, where N = 2n − 1 and

F (β0) = #
{

i | ι′n(In − Pi)y
ι′n(In − Pi)ιn

< β, i = 1, . . . , 2n − 1
}

.

This holds as ι′n (In − Pi) ιn > 0, as n = ι′nιn > ι′nPiιn. Since Pi ∈ P (reflection

group), i = 1, . . . , N, is diagonal, ι′nPiιn = trace(Pi). Noting that the diagonal

elements of Pi �= In are either 1 or −1, it follows directly that trace(Pi) < n.

The set of confidence limits is now given by the means of all 2n − 1 subsets of

{y1, . . . , yn}. Maritz (1995) derives these limits based on a permutation argument

used by R.A. Fisher. A discussion of the Fisher randomization test is given in

Basu (1980).

EXAMPLE 3 (Rotation):

Perhaps the most well-known example is given by the assumption of rotational

invariance in the context of linear regression. Consider the multiple regression

equation (13). Now assume that the conditional distribution of u, given (x,X2) :

n × (k + 1), is spherical. Then, the distribution of ε is not affected by rotations

over a linear subspace. That is, let PX2 = X2(X ′
2X2)−1X ′

2, and let L be an

n × (n − k) orthonormal complement of X2, i.e. L′X2 = 0 and L′L = In−k.

Now, consider the set

P = {P | P = PX2 + LP̃L′, P̃ ′P̃ = In−k},

where P̃ is (n − k) × (n − k). Clearly, P forms a group, and PX2 = X2, so that
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Pε = X2γ + Pu, for any P ∈ P. Consequently, ε satisfies the group-invariance

assumption ε ∼ Pε for P ∈ P. As a result, F (βo) as given in (4) will be

uniformly distributed over U. If we use g(ε) = x′ε as an inferential function,

we find confidence limits similar to those found for the other group invariance

assumptions. In fact, the inference converges to classical inference based on the

tn−k−1-distribution as N → ∞, which agrees with Efron (1969).

PROPOSITION 2 (Bekker, 2002): Let P = PX2 + LP̃L′ , where, for any v ∈
Rn−k , P̃ v is distributed uniformly over the surface of the sphere with radius

(v′v)
1
2 . Then, for any a ∈ R,

Prob
(

a <
x′(In − P )y
x′(In − P )x

| x, y

)
= Prob(a < β̂ + se(β̂)tn−k−1 | x, y),

where tn−k−1 is distributed as Student’s t with n − k − 1 degrees of freedom;

and β̂ and se(β̂) are the ordinary least squares estimator and its standard error,

respectively.

Therefore, traditional exact inference, based on Gaussianity, fits within the

present framework. Bekker (2002) also uses the present approach to describe

‘optimal’ exact inference – based on a minimum variance argument – in the case

of groupwise heteroscedasticity, where homoscedasticity is restricted to strata.9

For such a (feasible) WLS context, inference based on maximum likelihood is

only approximate.
9Bekker (2002) explores a special case (rotation invariance) of the present general group

invariance framework, in a single parameter linear model, given groupwise (hence, partial
rotation invariance) heteroscedastic Gaussian innovations.
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3.3 Measurement errors and monotonic inference

Another special case of monotonic inference is related to Wald’s (1940) problem

of fitting straight lines if both variables (y and x in (5)) are subject to error.

Wald’s approach was based on the assumption that iid errors in x did not affect its

ranking. Aigner et al. (1984, p. 1339) describe Wald’s method as an instrumental

variables technique with classification dummy variables as instruments. In fact,

Theil (1950) provided exact confidence limits for βo (cf. Lehmann, 1975, p. 312;

Maritz, 1995) given by:

yi − yj

xi − xj
, i < j, i, j = 1, . . . , n. (14)

However, the resulting 1 +
∑n−1

k=1 k = 1
2n(n − 1) + 1 confidence intervals do not

have equal coverage probabilities. Maritz (1995) gives a simple representation

of the distribution and, in a different context, it has been described by Kendall

(1938, 1975) and Mann (1945). Here we can show there is another part to the

story.

The assumption that the errors do not affect the rank numbers of x can be

used to define an inferential function g(ε) = r′ε, where r contains the rank

numbers of x. This ranking can be considered as an instrument. Due to

the errors, ε and x are correlated. However, conditional on r, ε satisfies the

exchangeability assumption. Furthermore, since all elements of x are different,

Condition 1 is satisfied, and for all permutation matrices P �= In we find
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r′(In − Pi)x > 0. Consequently, F (βo) ∼ U(U), where

F (β) = #{i | g(ε) < g(Piε), i = 1, . . . , n! − 1}

= #
{

i | r′(In − Pi)y
r′(In − Pi)x

< β, i = 1, . . . , n! − 1
}

.

Considering the subset of confidence limits generated by simple permutation

matrices, where only two elements are permuted, amounts to Theil’s inference

with confidence limits as in (14). However, this does not produce a uniform

distribution because simple permutations do not form a group. Consideration

of all possible permutations results in the monotonic, ‘assumption-equivalent’

inference presented here, i.e. F (βo) ∼ U(U), and is more precise since it extends

Theil’s original results and produces additional exact confidence limits based on

the same assumption.

4 Inference based on a single instrument

We now discuss assumption-equivalent inference based on a single instrument

z, where ε satisfies a group-invariance assumption conditional on z, and the

inferential function is g(ε) = z′ε = z′(y − xβo). First, we consider monotonic

inference. Subsequently, nonmonotonic inference and the relation between identification

and bounded confidence sets will be considered, as well as the coverage probability

conditional on their boundedness.

4.1 Monotonic instruments

The instrument z is said to be monotonic with respect to x and the group P if

z′(In − P )x > 0 a.s. for P ∈ P, and P �= In. In that case, inference based on
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F (βo) ∼ U(U), where

F (β) = #
{

i | z′(In − Pi)y
z′(In − Pi)x

< β, i = 1, . . . , N

}
, (15)

will be monotonic. Note that, for the permutation group, the rank numbers

of the elements of z and x should be the same. An example was given in the

previous section, related to Theil’s inference, where the rank numbers themselves

formed the instrument. For the reflection group, the signs of the elements of z

should be the same as those of x. For the permutation-reflection group, the rank

numbers and their signs should be the same. Finally, the rotation group requires

a monotonic instrument to be a scalar multiple of x.10 These requirements

may seem to be quite restrictive. However, the restrictions can be relaxed by

considering subgroups. For instance, for stratified data, where a permutation-

invariance assumption applies to the strata, a monotonic instrument should have

the same ordering as x only within strata. Exact inference based on monotonic

instruments with respect to a stratified rotational-invariance assumption is described

in Bekker (2002).
10For instance, z′ (In − Pi) x > 0 for Pi ∈ P (reflections) follows directly from In − Pi =

diag(c1, . . . , cn), (c)j ∈ {0, 2}, cj �= 0 for some j, whereupon z′ (In − Pi) x =
∑

j (c)j (z)j (x)j >
0 for all z, x, iff (z)j and (x)j have same sign, for all j. Moreover, for Pi ∈ P (rotations),

a geometric argument may be used: z′ (In − Pi) x > 0 as z′x > z′Pix as |z| |x| cos θ >
|z| |Pix| cos φ, where θ and φ are the angles between z and x, and z and Pix respectively.
Hence, cos θ > cos φ for all θ, φ iff cos θ = 1 (and θ = 0). Directly, z = λx, λ scalar. The proof
for P (permutations) is trivial.



Acc
ep

te
d m

an
usc

rip
t 

20

4.2 Nonmonotonic instruments

In general, an instrument z need not be monotonic. The analysis is based on

F (βo) ∼ U(U), where instead of (15) we now have

F (β) = #
{

i | z′(In − Pi)y
z′(In − Pi)x

< β, z′(In − Pi)x > 0
}

+

#
{

i | z′(In − Pi)y
z′(In − Pi)x

> β, z′(In − Pi)x < 0
}

+ (16)

#
{
i | z′(In − Pi)y < 0, z′(In − Pi)x = 0

}
.

We only consider cases where N0 ≡ #{i | z′(In − Pi)x = 0} = 0. Then F (β)

consists of two terms, F (β) = F+(β) +F−(β), say, where F+(β) and F−(β) are

based on N+ and N− points, respectively, and N+ ≡ #{i | z′(In − Pi)x > 0}
and N− ≡ #{i | z′(In − Pi)x < 0}. Hence, N = N+ + N− and both F+(β)

and F−(β) are monotonic step functions increasing from 0 to N+ and decreasing

from N− to 0, respectively. If N+ > 0 and N− > 0 with positive probability,

the nice properties of monotonic inference described above are lost.

(i) The elementary confidence sets C({i}), i = 0, . . . , N, will not form an ordered

collection of convex sets. Consequently, there is no exact one-sided inference.

(ii) Some sets C({i}) may be empty.

(iii) The two-sided confidence sets Sj , defined in (9), need not be symmetric.

(iv) The top of a P -plot, defined in (11), need not be a median unbiased estimator

of βo.
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(v) The sets Sj may be unbounded for positive values of j with positive probability.

As a result of this nonmonotonicity, the interpretation of the exact confidence

sets Sj is more complicated than in the monotonic case. Fortunately, the sets

Sj cannot be empty if N0 = 0. Furthermore, the negative effects of non-

monotonicity need not be severe, which holds in particular for large samples.

Let the degree of monotonicity be given by

dm ≡ 1
N + 1

(1+ | N+ − N− |) =
1

N + 1
(1+ | F (∞) − F (−∞) |) = 1 − P (±∞),

(17)

which is a random variable distributed over values 1 − αj , j = 0, 1, . . . ; and

j ≤ N/2, as defined in (10). If the instrument z is monotonic, then dm = 1

a.s. and inference is based on F (β) = F+(β). If dm is not close to one, the

instrument might be called weak. In particular, the weakness of an instrument

is related to unbounded confidence sets Sj . The set Sj is bounded if and only if

±∞ �∈ Sj , which holds, using (12), if and only if P (±∞) < αj . Consequently,

using (17), Sj is bounded if and only if 1 − αj < dm. So, dm is the smallest

confidence level for which Sj is unbounded.

The weakness of an instrument is related to the ‘first-stage regression’ x =

zπ + v. Without making any assumptions in addition to the group invariance

assumptions about ε = y − xβ, we may define, analogous to F (β), Sj and P (β),

F π(π) ≡ #
{

i | z′(In − Pi)x
z′(In − Pi)z

< π, i = 1, . . . , N

}
, (18)

Sπ
j ≡ {π | F π(π) ∈ {j, . . . , N − j}}, (19)
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P π(π) ≡ max{αj | π ∈ Sπ
j , j = 0, . . . , N} =

N

N + 1

(
1 −

∣∣∣∣1 − 2F π(π)
N

∣∣∣∣) , (20)

respectively. As F π(0) = N− , we find P (±∞) = P π(0). We have proved the

following:

PROPOSITION 3: The following statements are equivalent:

(a) Sj is bounded, (b) 1 − αj < dm, (c) 0 �∈ Sπ
j .

To illustrate a low degree of monotonicity, consider y = xβo + ε, where βo = 5,

and x = zπ0 + v, with π0 = 1. A sample n = 100 was generated by vi = εi =

(w1 + w2
2 + 3)2i and zi =| log | w3

w4
||, where for i = 1, . . . , 100, w ∼ i.i.d.N(0, I4).

In order to make inferences about βo, based on y, x and z, we only make a

permutation invariance assumption about ε, conditional on z. Figure 2 gives the

F -plot of β based on 1000 random permutations. The degree of monotonicity

was 0.53, which seems too low to make this inference meaningful.

Figure 3 gives a histogram of all 1000 confidence limits, based on the same

data. It shows a bimodal distribution, which is related to the bimodal distribution

of the IV-estimator:11

β̂IV =
E(z′(In − P )y | z, y)
E(z′(In − P )x | z, x)

=
z′(In − ιn(ι′nιn)−1ι′n)y
z′(In − ιn(ι′nιn)−1ι′n)x

=
z′(In − n−1ιnι′n)y
z′(In − n−1ιnι′n)x

,

where the expectation is over P ∈ P. Contrary to the exact IV-estimator

distribution, the distribution of the confidence limits can be computed as a

function of the data.
11See Nelson and Startz (1990a, 1990b).
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[Figure 2 about here.]

[Figure 3 about here.]

4.3 Bounded confidence sets and the power to reject underidentification

Dufour (1997) studies inference problems given “locally almost unidentified”

parameters, e.g. parameters that are (nearly) not identified on certain subsets

of the parameter space (see also references therein). These problems often arise

in econometrics, and result in subsets of observationally equivalent parameter

values, for instance when there are weak instruments. Dufour (1997) shows that

the usual confidence sets for β must be unbounded with probability greater

than or equal to 1 − α when the coefficients on the exogenous variables in

a standard structural model are rank-deficient. Confidence sets can also be

empty. He interprets an empty confidence set as a rejection of the model itself,

e.g. due to overidentifying restrictions. An unbounded confidence set for a

structural coefficient suggests that the data may simply be uninformative about

such coefficients, and (op. cit., p. 1383) “the occurrence of such a set may be

interpreted as a symptom of the fact that the parameter cannot be precisely

evaluated from the available data”.

Moreover, Kleibergen (2002) analyzes the Angrist and Krueger (1991) dataset,

and constructs 95% confidence sets for returns on education. For some specifications,

he finds that the confidence set is unbounded, which indicates that instruments

are weak, and that the amount of information contained therein is small (since

the parameter can take any value, and so the confidence set contains all possible

values). However, for other model specifications, Kleibergen finds bounded 95%

confidence sets that seem sensible – and this suggests that there is some information
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about returns to education in the instruments. Unbounded confidence sets may

then be seen as helping to distinguish between weak and informative specifications.

A closely-related paper is Zivot et al. (1998, especially Section 4), and we

thank a referee for drawing our attention to this. They link unboundedness of

usual confidence sets with goodness-of-fit (e.g. F test) statistics for the first-

stage regression. In particular (op. cit., p. 1130), they show that the Anderson-

Rubin statistic is unbounded whenever the F test on the first-stage regression

is insignificant. However, Zivot et al.’s (1998) treatment assumes normality of

errors, as opposed to the weak assumptions made here.

If only “informative” (about βo), i.e. bounded, confidence sets Sj are considered,

their confidence level should be corrected for the probability of being bounded.

That is, if the (1 − α)-confidence set Sj is bounded with probability pα =

Prob(Sj is bounded), then a lower bound for the coverage probability, conditional

on the boundedness of Sj , is given by

Prob(βo ∈ Sj | Sj is bounded) = 1 − Prob(βo �∈ Sj and Sj is bounded)/pα

≥ 1 − αj/pα. (21)

Consequently, pα is a relevant quantity for assessing the quality of inferences

about βo. The probability of the event in Proposition 3 equals pα by definition.

Clearly, making inferences about pα amounts to making assumptions about x,

which is the same as making assumptions about the variables in the ‘first-stage

regression’, in addition to the group-invariance assumptions imposed on ε.

First, consider a simple assumption that states that x is a function of z. In

that case, where we condition on z, N− is not random and pα equals either 1

or 0. So, there is no need to correct the confidence levels of sets Sj due to their
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boundedness. A special case is given by linear regression, where pα = 1 if and

only if αj > 0. Other assumptions describe x as a random vector conditional on

z. This may affect the identifiability of βo, and thus (cf. Dufour, 1997) it may

affect inference on βo. In particular, consider group invariance assumptions about

the ‘first-stage regression’, x = zπ0 + v, such that the conditional distribution of

v is not affected by linear transformations Pv, where P ∈ P. This assumption

excludes cases where the ‘first-stage regression’ is not necessarily linear (see e.g.

Bekker, 1994).12 Assumption-equivalent inference then amounts to F π(π0) ∼
U(U), where F π(π) is given in (18).

The first point to note is that βo may not be identified. In other words,

the group invariance assumption made about y − xβo, conditional on z, may

hold for any scalar βo. In that case, the group invariance must also hold for the

distribution of x. That is, x does not depend on z: π = 0. As a result, both F π(0)

and dm, which equals 1 − P π(0), will be uniformly distributed. Consequently,

the probability of the event in Proposition 3 equals αj . Hence pα = αj , and

the lower bound (21) for the level of bounded confidence sets is not informative:

1 − αj/pα = 0. Furthermore, a (1 − αj)-confidence set Sj will be bounded with

probability αj , j = 0, 1, . . .; and j ≤ N/2.

The null hypothesis of underidentification of β, i.e. H0 : π = π0 = 0, may be

rejected with significance level αj , if the (1 − αj)-confidence set Sj is bounded.

Following rejection, inferences about βo might be formulated based on bounded

confidence sets, whose levels have been conditioned on their boundedness. If pα

is computed under the alternative hypothesis Ha: π = πa, it equals the power of
12Note that the group-invariance assumptions about ε and v relate to their marginal

distributions. A stronger assumption would be to assume such invariance with respect to
P (ε, v), P ∈ P.
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this test of underidentification.

Conditional on an equivalence class Cv = {Pv | P ∈ P}, and given πa, this

power can be computed by recognizing that, conditional on Cv, x is distributed

uniformly over the vectors zπa + Pi(x − zπa), i = 0, . . . , N . The choice i = 0

produces x, based on which N− and dm have been computed. The choices

i = 1, . . . , N produce alternatives for x, and hence for N− and dm. Thus,

the distribution of dm, conditional on Cv, is generated. The power pα|Cv
, say,

conditional on Cv, is then found as the proportion of values dm that are larger

than 1 − αj . Of course, the true value π0 would be unknown. Fortunately, we

have a median unbiased estimator for π0 given visually by the P -plot. Using this

estimator, instead of the true value, provides an estimator for pα|Cv
that is likely

to have a very small median bias in relevant cases, where dm is close to one.

As a numerical example, artificial data were sampled in a similar manner

to Kleibergen (2002). That is, y = xβo + ε and x = zπ0 + v, where βo = 0

and π = 0.1. The disturbances εi and vi have standard Gaussian distributions

with a correlation equal to 0.99, and for i = 1, . . . , n, the draws are independent;

and n = 500. We assume permutation invariance of ε conditional on z. Figures

4 and 5 display, with restricted domain, the P -plots P (β) and P π(π), based

on 1000 random permutations. Here we find dm = 0.98 = 1 − P π(0) and the

95%-confidence set is indeed bounded, as indicated by the dotted line.

[Figure 4 about here.]

[Figure 5 about here.]

We also assume permutation invariance of v conditional on z. To verify

that the probability of an unbounded 95%-confidence set is small, we computed
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the quantity p0.05|Cx−xπ̂
= Prob(dm > 0.95|Cx−zπ̂) = 0.6, where π̂ = 0.11 is the

median unbiased estimator for π, i.e. the value for which P π (π) is maximal.

So, the confidence level of the ‘95%-confidence set’ needs to be corrected for the

probability of being bounded. The corrected confidence level is approximately

bounded by 1 − 0.05/0.60 = 0.92.13

4.4 Nonlinear inferential functions

Instead of using a linear inferential function given by g(ε) = z′ε, which produces

exact inference F (βo) ∼ U(U), with F (β) as given in (16), other functions could

be considered as well. In particular, if the distribution of the disturbances has

heavy tails it might be useful to choose, for example, g(ε) = z′rε, where rε

contains the rank numbers of ε. In that case, when Condition 1 is satisfied, we

still find P (±∞) = P π(0) if P π(0) is computed based on a similar inferential

function given by gπ(v) = z′rv. If π = 0 can be rejected with more power based

on this alternative inferential function, the confidence sets for β will be bounded

with higher probability. Also note that in these cases the inference is based on a

grid of values of β, although the reference set R(z′ry−xβ) does not depend upon

β.

If this approach is used in the numerical example of the previous section,

there is no improvement due to the Gaussianity of the disturbances. However,

if data are collected in a similar manner to the example used for Figure 2, there

is a considerable improvement. As an example, consider inference on βo, where

y = xβo+ε and x = zπ0+v. The data are based on n = 1000 draws from the same

model that was used for Figure 2, where n = 100. Again, we assume permutation
13If exact probabilities pα are computed based on full knowledge of the data generating

process, we find p0.05|Cx−zπ0
= 0.51 and p0.05|z = 0.62.
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invariance of ε conditional on z. Figures 6 and 7 give the P -plots P (β) and P π(π),

based on 1000 random permutations, both for the linear inferential function used

earlier, and for the inferential function based on the rank numbers of ε. The

improvement is striking.14

[Figure 6 about here.]

[Figure 7 about here.]

5 Assumption-equivalent inference and multiple instruments

This section considers inference based on multiple instruments. Assumption-

equivalent inference is formulated in terms of joint confidence sets, which will be

used to formulate conservative confidence intervals for separate elements of the

parameter vector.

5.1 Anderson-Rubin-type confidence sets

First, we consider quadratic inferential functions g(ε) = ε′Qε, where Q is a

function of a matrix of instruments Z. To formulate invariance assumptions, we

consider subgroups of the permutation-reflection group that satisfy Condition 1.

Note that the reflection group contains too many elements, since g(ε) = g(−ε).

However, reflecting only n − 1 elements may provide a suitable subgroup P, for

which all elements of the reference set R(g(ε)) are different a.s.

Assumption-equivalent inference on βo amounts to F (βo) ∼ U(U), with

ε = f(y, X; βo) and
14Here we find that dm = 0.98, and Prob(dm > 0.95 | Cx−zπ̂) = 0.6.
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F (β) = #{P | ε′Qε < ε′P ′QPε, P ∈ P}. (22)

In particular, we consider matrices Q such that relevant confidence sets are given

by Hj = C(V), as in (3), where V = {j, . . . , N}.
In the context of the linear model, where ε = y − Xβo, an intuitively

appealing choice for Q would be Q = PZ = Z(Z ′Z)−1Z. We assume the matrix

(y, X)′P ′(In − PZ)P (y, X) has full rank for P ∈ P a.s. Then, the same function

F (β) is found a.s. for the inferential function given by

g(ε) =
ε′PZε

ε′(In − PZ)ε
. (23)

Alternatively, in the presence of heavy tails, one might consider using the rank

numbers rε instead of ε.

If the matrix (y, X)′PZ(y, X) has full rank a.s., then g(y−Xβ) has a positive

minimum and a finite maximum a.s. As a result, elementary confidence sets

C({i}) may be empty for small and large values of i = 0, 1, . . . , N . Consequently,

confidence sets Hj may be empty or unbounded for values j > 0. For the just-

identified case, where the matrix (y, X)′PZ(y, X) has a one-dimensional null

space, the minimum of g(y − Xβ) equals zero. In that case, confidence sets Hj

can be unbounded, but they cannot be empty. Furthermore, for finite groups,

the construction of confidence sets is a matter of trial and error: β ∈ Hj if

F (β) ∈ {j, . . . , N}.
The computation of confidence sets Hj is easier for the infinite rotation group

than it is for the finite permutation-reflection group. That is, for the rotation
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group, the reference set R(g(y − Xβ)) does not depend on y, X or β.15 When

multiplied by (n− tr(PZ))/tr(PZ), the reference set has an F -distribution with

tr(PZ) and n− tr(PZ) degrees of freedom.

If βo refers only to the coefficients of endogenous variables, i.e. ε = y−Xβo−
Z1γ, then inference on βo can also be based on

g(ε) =
ε′PZ∗ε

ε′(In − PZ)ε
=

ε′PZ∗ε

ε′(In − PZ1 − PZ∗)ε
, (24)

where Z∗ = (In − PZ1)Z2 and Z = (Z1, Z2). Note that g(ε) = g(y − Xβo),

and that the reference set R(g(y − Xβ − Z1γ)) does not depend on y, β or

γ. Inference of this form, based on the rotation group, amounts to Anderson-

Rubin confidence sets (cf. Anderson and Rubin, 1949; Bartlett, 1948), which

are exact under normality. However, contrary to the classical regression context,

where Z2 = X, the Anderson-Rubin confidence sets need neither be bounded

nor convex, and they might be empty in case of overidentification.16

15This property is shared by the finite groups when rank numbers rε are used instead of ε.
16This paper can be seen as complementary to recent work on similar tests in instrumental

variables regression. For instance, Kleibergen’s (2002) K-statistic is an alternative to the
Anderson-Rubin (AR) test. It is asymptotically pivotal, and converges uniformly in distribution
to a χ2 with d.g.f. equal to the number of explanatory variables, and shows improved power
properties over AR in the overidentified case. An inferential function analogous to the K-
statistic depends on both ε and X. Instead of (23), we have g(ε, X) = ε′PZ̃ε / ε′(In−PZ)ε, with
Z̃ = PZ {X − εε′(In − PZ)X / ε′(In − PZ)ε}. Since X is not independent of ε, it is not possible
to describe the distribution of g(ε, X) conditional on an equivalence class Cε. If Π = E(X|Z)
were known then an equivalence class {P (ε, V ) | P ∈ P} could be used, where V = X −ZΠ. In
fact, Bekker and Kleibergen (2003) describe bounds for the exact distribution of the K-statistic
under Gaussianity where one of the bounds is found for Π = 0. Here, exact inference based
on group-invariance assumptions, such as the exchangeability of the rows of (ε, V ), can be
formulated for the extreme case where Π = 0. An alternative similar procedure was developed
by Moreira (2003), and is exact under normality, with known covariance matrix. When the
error distribution is unknown, Moreira shows that modified versions of similar tests based
on conditional distributions are asymptotically similar under Staiger and Stock’s (1997) weak
instrument asymptotics, and approximately similar in moderate-sized samples. A conditional
pseudo-likelihood ratio test is shown to have good power properties under weak identification.
However, the K-statistic and the conditional LR statistic have limiting χ2 and nonstandard
distributions respectively, as opposed to the exact symmetry-based procedures developed here.
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5.2 Group-invariance assumptions in a dynamic context

An example of exact inference in a dynamic context is discussed by Dufour and

Kiviet (1998). Consider the first-order autoregressive distributed lag model given

by yt = βoyt−1 + x′
tγ + εt, t = 1, . . . , n, where ε ∼ N(0, σ2In), and xt contains

strongly exogenous regressors. Let the regression equation in vector notation be

given by

y = y−1βo + Z1γ + ε. (25)

The ‘first-stage’ regression equation follows by recurrent substitution as

y−1 = y0κ(βo) + C(βo)Z1γ + C(βo)ε,

where

κ(β) =



1

β

β2

...

βn−1


, C(β) =



0 · · · 0

1 0 ·
β 1 0 ·
...

. . . ·
βn−1 . . . β 1 0


.

Dufour and Kiviet (1998) assume that the distribution of ε is known up to a

scale factor. They base their inference procedures on the more general model

y = y−1βo + Zλ + ε; (26)

Z = (Z1, Z2),

Z2 = (κ(βo), C(βo)Z1),
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where λ = (γ′, λ2, λ
′
3)

′. Equation (26) reduces to (25) when λ2 = 0 and λ3 = 0.

A monotonic transformation of the likelihood-ratio statistic, under normality,

for testing Ho : β = βo, λ2 = 0 and λ3 = 0 is given by (cf. Dufour and Kiviet,

1998, (2.25))

g(ε) =
ε′PZ̃∗ε

ε′(In − PZ̃)ε
=

ε′PZ̃∗ε

ε′(In − PZ1 − PZ̃∗)ε
=

ε′(In − PZ1)ε
ε′(In − PZ̃)ε

− 1; (27)

Z̃ = (Z1, Z̃2),

Z̃2 = (Z2, C(β)ε),

Z̃∗ = (In − PZ1)Z̃2.

We see that both Z̃ and Z̃∗ depend on ε, which is not problematic for generating

the distribution of g (ε) conditional on equivalence classes – this observation

follows as a consequence of the results of Dufour and Kiviet (1998). Also, g(ε) =

g(y − y−1βo) and so the reference set R(g(ε)) does not depend on ε if P is the

rotation group. Thus, a rotation invariance assumption about ε, conditional

on Z1, implies exact inference F (βo) ∼ U([0, 1]), where F (β) is based on the

inferential function given in (27).

Nonparametric generalizations can now easily be formulated based on group

invariance assumptions related to the finite permutation-reflection group. For

first-order autoregressive distributed lag models, inference can be based on (27).

However, for these nonparametric generalizations the reference sets do generally

depend both on the data and on the full vector of regression coefficients. Alternatively,
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other inferential functions could be considered where some, or all vectors ε in

(27) are replaced by rank numbers rε, or some other function.

We might also consider formulating nonparametric estimators for βo. That

is, if P is the rotation group, the value β that maximizes F (β) in (22), where Q =

PZ , is the limited information maximum likelihood (LIML) estimator. Similar to

the Hodges-Lehmann estimator, it is the value most supported by the confidence

sets Rj , j = 0, 1, . . . , N . As a nonparametric generalization of LIML, we might

consider an element of the set that maximizes (22) if P is not the rotation group.

This approach can be applied to other cases as well, including cases where rank

numbers are used instead of ε.

5.3 An application to nonlinear regression models

Inference of the form (22) is not restricted to linear models. For a nonlinear

model we could use Q = PZ , where

Z = ∂f(y, X; β)/∂β′. (28)

As an example, consider the simple nonlinear regression model

yi = βo1x
βo2
i + εi, i = 1, . . . , n. (29)

Based on group invariance assumptions, exact two-dimensional confidence sets

follow from F (βo) ∼ U(U), where F (β) and Z are given in (22) and (28),

respectively. In particular, if the disturbances εi are independent and symmetrically

distributed conditional on x, we may consider the reflection subgroup with

elements Pi, i = 0, . . . , 2n−1 − 1, for which the first diagonal element equals
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one: Pi11 = 1.

Consider data where the elements xi are independent and xi ∼ χ2
1; the

elements εi are independent and εi = w3
i , with wi ∼ (U([0, |x∗

i |]) − 0.5|x∗
i |),

i = 1, . . . , 100. So, there is both heteroscedasticity and non-Gaussianity. Using

an reflection invariance assumption about ε, conditional on x1, . . . , x100, and

based on a 501×501 grid and 2500 random reflections, Figure 8 gives exact joint

confidence sets for βo1 = 0.5 and βo2 = 1.

[Figure 8 about here.]

Based on such joint confidence sets, conservative confidence intervals for a

separate element βo2, say, can be bounded by the minimum and maximum of β2,

over a sufficiently large grid, such that F (β) ∈ {j, . . . , N}. However, it might be

useful to consider different inferential functions g(ε) for inferences on different

parameters.

Analogous to t-inference, which is based on rotational invariance, an inferential

function of the form

g(ε) =
z′2(In − Pz1)ε

(ε′(In − PZ)ε)1/2
, (30)

might be useful to formulate inference on βo2. When comparing conservative

confidence intervals for βo2, based on joint confidence sets generated by (23) and

(30), respectively, the latter may perform better.

Given the data used for Figure 8, inference based on (30) and reflection

invariance is displayed in Figure 9. Indeed, if βo1 and βo2 are known to be

restricted to [0,1] and [0.6,1.6], respectively, a comparison of conservative 95%

confidence sets for βo2 in Figure 8, [0.786,1.46], and Figure 9, [0.850, 1.422],

favours the latter.
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[Figure 9 about here.]

6 Conclusion

The paper provides exact inference on the parameters of the functional form

for a variety of econometric models. The inference is based on mild symmetry

assumptions about the distribution of disturbances. Exact inference based on

normality can be derived in a similar way. When applied to the linear model, the

method provides a unified approach to well-known parametric and nonparametric

tests. Especially when asymptotic methods break down, this new approach

may be useful. For example, when sample sizes are small, when distributions

of disturbances or explanatory variables are heavy-tailed, or when parameter

points are close to underidentification, or when dynamic models are explosive,

the proposed methods remain exact.

Some special attention has been given to the relation between bounded

confidence sets and the power to reject a hypothesis of underidentification. When

parameter points can be underidentified, exact confidence sets will be unbounded

with positive probability. Therefore, if the hypothesis of underidentification is

rejected and confidence sets are bounded, the coverage probability of confidence

sets must be corrected for the probability of being bounded. Our approach

provides an estimate of such a correction of the nominal size.

This leaves open the question of optimality. Usually optimality is formulated

in asymptotic terms. Not infrequently this leads to ‘optimal’ inference that

performs poorly in small samples. Whether or not it is possible to formulate

general guidelines for formulating inferential functions with desirable properties

is a matter for further research. We used intuitively motivated linear and
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quadratic functions, as well as functions based on test statistics derived under

normality. This does not exhaust all possibilities. In an example with heavy-

tailed distributed disturbances, inference based on rank numbers of the disturbances

was shown to greatly improve the quality of the inference when compared to a

linear function of the disturbances.
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A Appendix

If F (βo) ∼ U(U), where U = {0, 1, . . . , N}, then exact inference can also be

based on a random sample of M , say, matrices P ∈ P. Let FM (β) indicate

the function F when it is computed based on these M matrices instead of the

full group P. It will be shown that FM (βo) ∼ U({0, 1, . . . ,M}) if the sample

is taken without replacement. If the sample is taken with replacement, then

Prob(FM (βo) = j) = rj , where

rj =
1

(N + 1)

N∑
k=0

 M

j

 (k/N)j(1 − k/N)M−j , j = 0, . . . ,M. (A1)

Let ai, i = 1, . . . , N , be random variables equal to either 1 or 0, and let the

probability distribution of
∑N

i=1 ai over {0, . . . , N} be given by (p0, . . . , pN )′ = p,

say. Consider a random drawing a from {a1, . . . , aN}, and let the probability

distribution of
∑N

i=1 ai − a over {0, . . . , N − 1} be given by (q0, . . . , qN−1)′ = q,

say. Then, for j = 0, . . . , N − 1,

qj = Prob

(
a = 0 |

N∑
i=1

ai = j

)
pj + Prob

(
a = 1 |

N∑
i=1

ai = j + 1

)
pj+1

= (1 − j/N)pj + ((j + 1)/N)pj+1.
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Let

SN = N−1



N 1

N − 1 2 ∅
. . . . . .

∅ 2 N − 1

1 N


,

then q = SNp, which is the probability distribution of the sum of a random

sample of size N − 1 taken without replacement from {a1, . . . , aN}. Similarly,

for a random sample of size M , we find a probability distribution given by

SM+1SM+2 . . . SNp. Clearly this latter distribution is uniform if the distribution

given by p is uniform. In particular, let ai = 1 if g(ε) < g(Piε), and ai =

0 otherwise, i = 1, . . . , N . Then SM+1SM+2 . . . SNp describes the uniform

distribution of FM (βo) over {0, 1, . . . ,M} when the sample is taken without

replacement.

Let the sum sM , say, of a random sample of size M taken with replacement

from {a1, . . . , aN} have a probability distribution over {0, . . . ,M} equal to (r0, . . . , rM ).

Then, for j = 1, . . . ,M ,

rj =
N∑

k=0

Prob

(
sm = j |

N∑
i=1

ai = k

)
pk =

N∑
k=0

 M

j

 (k/N)j(1 − k/N)M−jpk.

Consequently, if pk = 1/(N + 1), we find (A1).
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Figure 1: The P -plot for βo = 1, n = 10 (P (β) against β).

Figure 2: F -plot for βo = 5, n = 100; dm = 0.53 (F (β) /N against β).

Figure 3: Histogram of confidence limits: βo = 5, n = 100; dm = 0.53 (frequency

of confidence limits against β).

Figure 4: P -plot for βo = 0, πo = 0.1; n = 500 (P (β) against β).

Figure 5: P -plot for πo = 0.1; n = 500 (P π (π) against π).

Figure 6: P -plot for βo = 5, π0 = 1;n = 1000 (P (β) against β). Solid line:

inference based on ranks. Dashed line: linear inferential function.

Figure 7: P -plot for π0 = 1; n = 1000 (P π (π) against π). Solid line: inference

based on ranks. Dashed line: linear inferential function.

Figure 8: Joint confidence sets for βo1 = 0.5, βo2 = 1; n = 100; sizes: 0.99, 0.95,

0.5, 0.05 (β2 against β1).

Figure 9: Joint confidence sets for βo1 = 0.5, βo2 = 1; n = 100; sizes: 0.99, 0.95,

0.5, 0.05 (β2 against β1).
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