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Abstract

A class of stochastic unit-root bilinear processes, allowing for GARCH-type effects with asymmetries, is

studied. Necessary and sufficient conditions for the strict and second-order stationarity of the error process

are given. The strictly stationary solution is shown to be strongly mixing under mild additional assumptions.

It follows that, in this model, the standard (non-stochastic) unit-root tests of Phillips-Perron and Dickey-

Fuller are asymptotically valid to detect the presence of a (stochastic) unit-root. The finite sample properties

of these tests are studied via Monte Carlo experiments.
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1 Introduction

It is now recognized that many economic series display nonstationarities and nonlinearities. Em-

pirical researchers often find standard linear models, i.e. with iid (independent and identically

distributed) innovations, inappropriate for differenced series. For this reason, recent papers dealing

with unit roots have been concerned with modeling the error term of the linear dynamics as a

non-iid process. Results on estimating and testing unit roots with non-iid errors can be found in

Phillips (1987), Kim and Schmidt (1993), Seo (1999), Ling and Li (2003), Ling (2004), Rodrigues

and Rubia (2005) and the references therein.

Charemza, Lifshits and Makarova (2005) showed that unit-roots models with bilinear errors

have interesting economic interpretations, and are empirically relevant. Following this paper, we

also consider a unit-root model with bilinear errors, but our specification is different. Our model

allows for stationary increments, contrary to the model by Charemza et al (2005). A natural

practice, followed by Charemza et al (2005), is to test for the presence of unit roots in a first

step, and then to perform specifications tests on the noise dynamics in a second step. Caution is

needed, however, in the blind application of standard unit root tests in the framework of non-iid

errors. Rodrigues and Rubia (2005) present numerical experiments showing that non-iid errors

may cause severe distortions in conventional unit-root tests. Ling (2004) provided an example of

a unit-root model with non-iid errors, namely the so-called double-autoregressive model, in which

the LS estimator of the AR coefficient does not converge in law to the standard Dickey-Fuller (DF)

distribution. For such models, the most commonly used unit-root tests, i.e. the Phillips-Perron and

augmented DF tests, may not have the correct asymptotic size.

An important issue for linear models with non-iid errors thus concerns the validity of those unit-

root tests. Phillips (1987) and Phillips and Perron (1988) showed that, under moment and mixing

conditions on the noise process, the unit-root hypothesis can be tested using the standard DF

asymptotic distribution. The main goal of this paper is to establish the validity of those standard

unit-root tests for the bilinear model under consideration. This requires analyzing in detail the

probability structure of the model, in particular its mixing properties.1 Apart from the unit-root

testing problem, these properties have of course independent interest.

The paper is organized as follows. The general model is presented in Section 2, and the existence

of stationary solutions is studied. Under a mild additional assumption on the distribution of the

1Mixing is one way to characterize the decrease of dependence when the variables become sufficiently far apart

(see e.g. Davidson, 1994).
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iid process, the strictly stationary solution is shown to be strongly mixing in Section 3. Section 4 is

devoted to examining the validity of the Phillips-Perron and augmented DF unit-root tests in our

framework. Monte Carlo experiments are presented in Section 5. Concluding remarks are given in

Section 6.

2 ECM with bilinear innovations

We consider the following ECM(p)-BL(q) model


















∆yt = φyt−1 + ψ1∆yt−1 + · · · + ψp∆yt−p + ut,

ut = (1 + b1ut−1 + · · · + bqut−q)ǫt, ǫt iid (0, σ2
ǫ )

(1)

where φ,ψ1, . . . , ψp, b1, . . . , bq are real coefficients and σ2
ǫ > 0. The two equations have the follow-

ing interpretations. The first one is a standard error correction form of an autoregressive model,

capturing the linear behaviour of the possibly I(1) (when φ = 0) series yt. Nonlinear effects are

introduced in the second equation through a bilinear specification. Bilinear models have been stud-

ied by Granger and Andersen (1978), who introduced them in the time series literature, by Subba

Rao and Gabr (1984) and by many others. As will be seen, under appropriate conditions on the

coefficients bi, (ut) is a white noise, i.e. a centered non-correlated process. It is an iid white noise

when all the coefficients bi are equal to zero (i.e. when no nonlinear effects are present in the data).

Bilinearity is a very general way to introduce nonlinearity in economic series. Its main advantage

over other types of nonlinearities (e.g. Threshold AR, SETAR, Exponential AR) is that it is com-

patible with the properties of a noise. These properties are of course shared by ARCH models. The

ECM(p)-BL(q) can be seen as an alternative to the extensively studied ECM(p)-ARCH(q).

Remark 2.1 The first two conditional moments of ut are given by

E(ut | ut−1, . . .) = 0, Var(ut | ut−1, . . .) = (1 + b1ut−1 + · · · + bqut−q)
2σ2
ǫ .

This form of conditional variance is a particular case of the quadratic ARCH, introduced by Sen-

tana (1995), and also a particular case of Linear ARCH (LARCH), introduced by Robinson (1991)

and recently studied by Giraitis, Robinson and Surgailis (2000), Giraitis and Surgailis (2002). It

is seen that the conditional variance is asymmetric: a negative shock ut−i may increase the con-

ditional variance by a larger amount than a positive shock of the same magnitude. This so-called

leverage-effect property is often described as one of the main stylized facts of financial time series,

3



Acc
ep

te
d m

an
usc

rip
t 

and constitutes the main motivation of numerous extensions of the standard GARCH models, in

particular the EGARCH (see Nelson, 1991), the GJR (Glosten, Jagannathan and Runkle, 1994),

the TARCH (Zakoïan, 1994) and the APARCH models (Ding, Granger and Engle, 1993). Many

nonlinear models, for instance the Markov-switching models introduced by Hamilton (1989), or

nonparametric methods (see Pagan and Schwert, 1990) can also be employed to take into account

asymmetric conditional heteroscedasticity. An interesting feature of the ECM-BL model, which is

transparent on the news impact curve displayed in Figure 1, is that the volatility is not minimal at

zero. In other words, an increase of small positive returns may lower volatility. One can imagine

that the volatility is minimal when the returns correspond to the free-risk return (−1/b1 on the

figure). This interpretation, as well as the leverage effect, of course require b1 < 0. Finally, the

volatility is not bounded away from 0, contrary to most GARCH models.

Var(ut | ut−1)

ut−1
-10 -5 5 10 15 20

2

4

6

8

10

Figure 1: News impact curve of ut in Model

(1) with q = 1, b1 = −0.2 and σǫ = 1 (full line)

compared with the news impact curve of the

ARCH(1) model ut =
√

1 + b2
1
u2

t−1
ǫt (dotted

line).

b2

b1-1.5 -1 -0.5 0.5 1 1.5
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Figure 2: Strict and second-order stationarity

regions of the bilinear model

ut = (1 + b1ut−1 + b2ut−2)ǫt, ǫt iid N (0, 1)

A: second order stationarity, A ∪ B: strict sta-

tionarity, and C: non stationary.

Remark 2.2 This model allows for stochastic unit-root interpretations (see Granger and Swanson

(1997), Leybourne, McCabe and Tremayne (1996) for details on stochastic unit-root models). Tak-

ing p = 0 and q = 1, we have yt = ρtyt−1 + vt, where ρt = 1 + φ+ b1ǫt has mean 1 (justifying the

name stochastic unit-root) when φ = 0, and vt = {1 − b(1 + φ)yt−2}ǫt is an error term which is

uncorrelated with the yt−i for i > 0.

Remark 2.3 For the dynamics of ut, Charemza, Lifshits and Makarova (2005) used a slightly

different bilinear specification given by

ut = ǫt + bǫt−1yt−1, ǫt iid (0, σ2
ǫ ), y0 = ǫ0 = 0.
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This model has received an economic interpretation as being derived from a model of speculative

behavior. In their paper Charemza et al (2005) were mostly concerned by testing the assumption

that b = 0, giving rise to the so-called “b-test”. When b 6= 0 the error term is not stochastically

stable (in particular, as demonstrated by the authors, the variance of ut tends to infinity). Therefore

this model is not suitable for I(1) series.

2.1 Strict stationarity

We first give a condition for the existence of a strictly stationary white noise solution (ut). Be-

cause, strictly speaking, (ut) does not belong to the standard class of bilinear models 2, exist-

ing results, e.g. those established by Liu and Brockwell (1988), cannot be directly applied. Let

ut = (ut, . . . , ut−q+1)
′ ∈ R

q and ct = (ǫt, 0, . . . , 0)
′ ∈ R

q. Then, the second equation in (1) is

equivalently written as

ut = ct +Atut−1 :=





ǫt

0q−1



+





b1:q−1ǫt bqǫt

Iq−1 0q−1



ut−1, (2)

where b1:q−1 = (b1, . . . , bq−1) and Ik is the k × k identity matrix. Notice that (ct, At) is an iid

sequence of matrices. Let ‖A‖ =
∑ |aij| for any matrix A = (aij) and let log+ x = max(log x, 0)

for any positive number x. Since E(log+ |ǫt|) ≤ E|ǫt| < ∞ we have E(log+ ‖At‖) < ∞, and thus

we can define the top-Lyapunov exponent γ(A) of the sequence A = (At):

γ(A) := inf
t∈N∗

1

t
E(log ‖AtAt−1 . . . A1‖) = lim

t→∞
a.s.

1

t
log ‖AtAt−1 . . . A1‖. (3)

If γ(A) < 0, the unique strictly stationary solution to (2), in view of Bougerol and Picard (1992,

Theorem 1.1), is

ut = ct +

∞
∑

k=1

AtAt−1 . . . At−k+1ct−k. (4)

It is straightforward that the strict stationarity of (ut) is equivalent to the strict stationarity of (ut).

It is also seen that the strictly stationary solution is nonanticipative (i.e. with ut function of the

ǫt−i, i ≥ 0) and ergodic, as a function of the iid process (ǫt). By Lemma 2 given in the appendix,

and Theorem 2.5 in Bougerol and Picard (1992), the sufficient condition γ(A) < 0 is also necessary

for the existence of a nonanticipative strictly stationary solution.

When q = 1 we have γ(A) = E log |b1ǫt| = log |b1| + E log |ǫt|, and the strict stationarity

condition γ(A) < 0 takes the simpler form:

|b1| < e−E log |ǫt|. (5)

2Standard bilinear models only allow terms of the form ǫt−iut−j with i, j > 0.
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When ǫt is Gaussian, the necessary and sufficient condition is |b1|σǫ < 1.88736.

When q > 1, the strict stationarity region can not be given explicitly. In Figure 2, the strict

stationarity region has been evaluated using (3) and simulations of the sequence (At) in the case

q = 2 and ǫt ∼ N (0, 1) (see Cline (2006) for methods to delineate stationarity regions in a more

general framework). The strict stationarity curve passes at the points (b1, b2) =
(

±e−E log |ǫt|, 0
)

,

as can be seen from (5), and at the points (b1, b2) =
(

0,±e−E log |ǫt|
)

, as can be shown by algebraic

computations. It is interesting to note that the stationarity region is not symmetric with respect

to the diagonal b1 = b2.

2.2 Second-order stationarity

Results concerning the existence of second-order stationary solutions of bilinear models are well-

known, and they can be straightforwardly extended to our model. Let (ut) be a solution to the 2nd

equation in (1). Then it is easily seen that E(ut) = 0 and E(utut−h) = E(ǫt)E(1 + b1ut−1 + · · · +
bqut−q)ut−h = 0 for any h > 0. Moreover, we have

(

1 −
q
∑

i=1

b2i σ
2
ǫ

)

Eu2
t = σ2

ǫ > 0.

It follows that
q
∑

i=1

b2i σ
2
ǫ < 1 (6)

is a necessary condition for second-order stationarity. It is shown in the appendix that the condition

is also sufficient. Note that Giraitis, Robinson and Surgailis (2000) show that when q = ∞, condition

(6) is necessary and sufficient for the existence of a strictly stationary and covariance stationary

solution. However, as in GARCH models, strict stationarity is less restrictive than second-order

stationarity when q is finite, since our condition for strict stationarity is both necessary and sufficient.

Whether necessary and sufficient conditions for strict stationarity can be obtained for infinite-order

models is an open issue, to our knowledge. The results of this section are summarized in the next

theorem.

Theorem 2.1 The second equation of (1) admits a strictly stationary solution (ut) if and only if

γ(A) < 0, where A = (At) is defined in (2). Under this condition, the strictly stationary solution

is unique, nonanticipative and ergodic. This solution admits a second order moment if and only if
∑q

i=1 b
2
i σ

2
ǫ < 1. In this case, the solution is a conditionally heteroskedastic white noise.

As illustrated in Figure 2, the second order stationarity region is generally much more restrictive

than the strict stationarity region.
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3 Mixing properties

The result of this section is stated in Theorem 3.1 below. It concerns mixing properties of the process

(ut), which will be crucial for applying unit-root tests to Model (1). The proof relies on Markov

chain techniques, and consists in showing geometric ergodicity. General conditions for ergodicity

and mixing of Markov chains are provided in the book by Meyn and Tweedie (1993). References

dealing with mixing properties of various classes of processes can be found in Francq and Zakoïan

(2006).

Theorem 3.1 Let f be the density of ǫt and assume that f > 0. If γ(A) < 0, where A = (At) is

defined in (2), then the strictly stationary solution (ut) is strongly mixing with geometric rate.

It is worth noting that the mixing property of Theorem 3.1 is shown without moment assumption

on ut. The proof of is given in the appendix, and relies on the following lemma.

Lemma 1 Assume that

(i) (Xt) is a µ-irreducible Feller chain, for some measure µ on (E, E) whose support has non-

empty interior,

(ii) (Xt) is an aperiodic chain,

(iii) there exists a compact set C ⊂ E, an integer m ≥ 1, and a nonnegative continuous function

(test function) g : E → [0,+∞) such that

E[g(Xt+m)|Xt = x] ≤ (1 − β)g(x) − β, x ∈ Cc,

E[g(Xt+m)|Xt = x] ≤ b, x ∈ C,

for some strictly positive constants β and b. Then (Xt) is geometrically ergodic.

Lemma 1 is a criterion for geometric ergocity, which has the particularity of being based on m-

step transitions, instead of 1-step transitions as is usually the case. The proof is obtained from a

straightforward adaptation of Meyn and Tweedie (1993, Theorem 19.1.3).

4 Unit-root testing

The Phillips-Perron and augmented DF tests are arguably the most popular unit-root tests. Both

of them have been derived under precise assumptions, the validity of which is questionable for the

model of this paper.
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Indeed, a number of researchers (e.g. Gonzalo and Lee (1998), Yoon (2004) or Rodrigues

and Rubia (2005)) have found, by means of numerical experiments or with theoretical arguments,

that the standard unit-root tests may be in failure, or may suffer from severe size distortion or

inconsistency, when the errors are not iid. The result obtained by Ling (2004) is particularly

interesting: he shows that for the double autoregressive model







yt = yt−1 + φyt−1 + ǫt

ǫt =
√

ω + αy2
t−1ηt,

(7)

the LSE has not the usual DF asymptotic distribution. Thus the standard unit-root tests are not

valid (even asymptotically) to test φ = 0 in this model, which has however an ergodic and stationary

solution (under appropriate assumptions).

We start by presenting the conditions given by Phillips (1987) for the validity of the standard

unit-root test, before verifying them on our model.

4.1 Phillips-Perron tests

In his seminal paper, Phillips (1987) studied the random walk

xt = axt−1 + vt, a = 1, t = 1, 2, . . . ,

where the initial value x0 may be any random variable whose distribution is fixed. He showed that

the standard least squares estimator ân :=
∑n

t=2 xtxt−1/
∑n

t=2 x
2
t−1 consistently estimates a = 1,

under very general assumptions on the error terms vt. More precisely, denoting by αv(k) the strong

mixing coefficients of the process (vt), Phillips found that under the assumptions

i) Evt = 0 for all t,

ii)
∑∞

k=1 {αv(k)}
ν

2+ν <∞, for some ν > 0,

iii) suptE |vt|2+ν <∞,

iv) ϑ2
v := limn→∞ Var

{

n−1/2
∑n

t=1 vt
}

exists and ϑ2
v > 0,

the standardized least squares estimator satisfies

Zφ := n (ân − 1) −
n2σ̂2

ân

2ŝ2v

(

ϑ̂2
v − ŝ2v

)

⇒ (1/2)
{

W 2(1) − 1
}

∫ 1
0 W

2(t)dt
, (8)

8
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where {W (t), t ∈ [0, 1]} denotes a standard Brownian motion, ϑ̂2
v is a weakly consistent estimator

of ϑ2
v defined in iv) above, σ̂2

ân
= ŝ2v/

∑n
t=2 x

2
t−1, and

ŝ2v =
1

n− 1

n
∑

t=1

(xt − ânxt−1)
2 (9)

is a weakly consistent estimator of s2v := Ev2
t . Note that ân, σ̂

2
ân

and ŝ2v are available in any standard

regression software. For the estimation of ϑ2
v, a HAC-type estimator can be used, as proposed

by Phillips (1987). Phillips also found the asymptotic distribution of the associated regression t

statistics:

Zt :=
ŝv

nϑ̂vσ̂ân

Zφ ⇒ (1/2)
{

W 2(1) − 1
}

{

∫ 1
0 W

2(t)dt
}1/2

. (10)

Note that the momemt condition (iii) is not satisfied for the double autoregressive model (7). As

Ling (2004) showed, the convergences (8) and (10) do not hold for this model.

4.2 Validity of the Phillips-Perron test for the bilinear process

We are interested in testing the unit-root assumption

H0 : φ = 0

in Model (1). We keep the notation of the previous section, with xt replaced by yt (and thus

vt = yt − yt−1). The next theorem states that (8) and (10) hold under H0. A drift term and/or a

deterministic time trend could be added to our model, leading to the limiting distributions obtained

by Phillips and Perron (1988). The stochastic unit-root hypothesis can then be tested by the

standard Phillips-Perron tests, in exactly the same way as when the unit root is not stochastic.

Theorem 4.1 Let the assumptions of Theorem 3.1 be satisfied. Assume that the zeroes of the

polynomial ψ(z) := 1 −∑p
i=1 ψiz

i are outside the unit disk, and the stationary solution of the

second equation in (1) satisfies E|ut|2+ν <∞ for some ν > 0. Under H0 the weak convergences (8)

and (10) hold.

The proof is given in the appendix. The estimator ŝ2v can be replaced by the simpler estimator

n−1
∑n

t=1(xt − xt−1)
2. Phillips (1987, Theorem 4.2) shows that there exists a consistent HAC

estimator ϑ̂2
v under the addition moment assumption E|ut|4+ν < ∞. As stated in Theorem 4.1,

other estimators than the HAC may be employed. The choice of the estimators of s2v and ϑ2
v may

however be important for the behavior of the statistics Zφ and Zt in finite samples and/or under

the alternative φ 6= 0.

9
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For α ∈ (0, 1), let dfφ(α) and dft(α) be the α-quantiles of the distributions defined in the

right-hand sides of (8) and (10). These quantiles are given in Fuller (1976, p. 371). In particular

dfφ(5%) = −8.1 and dft(5%) = −1.95. The alternative we consider is

H1 : (1 − z)ψ(z) − φz 6= 0 when |z| ≤ 1.

Under H1 we assume that (yt) is the nonanticipative stationary solution of (1). The following result

shows, as an immediate consequence of Theorem 4.1, that the asymptotic level of the standard

Phillips-Perron test remains valid in our framework. The consistency is less trivial, and is shown in

the appendix.

Corollary 4.1 We suppose that the assumptions of Theorem 4.1 are satisfied. Under the unit-root

assumption H0,

lim
n→∞

P
{

Zφ ≤ dfφ(α)
}

= α and lim
n→∞

P {Zt ≤ dft(α)} = α

and under the stationarity assumption H1,

lim
n→∞

P
{

Zφ ≤ dfφ(α)
}

= 1 and lim
n→∞

P {Zt ≤ dft(α)} = 1.

The last limit is obtained with the restrictions lim supn→∞ ϑ̂2
v < ∞ a.s and ϑ̂2

v > 0 a.s for all n.

The consistency of the Zφ-based test is obtained whatever the nonnegative estimator ϑ̂2
v.

4.3 Augmented DF tests

The approach followed by Dickey and Fuller (1979) is based on the pth-order autoregression defined

by the first equation of (1):

∆yt = (φ,ψ′)Xt + ut, where Xt = (yt−1, V
′
t )

′,

Vt = (∆yt−1, . . .∆yt−p)
′ and ψ = (ψ1, . . . , ψp)

′. The least-squares estimator of (φ,ψ′)′ is defined by

(φ̂, ψ̂
′
)′ =

(

n
∑

t=1

XtX
′
t

)−1 n
∑

t=1

∆ytXt, ψ̂ = (ψ̂1, . . . , ψ̂p)
′.

The following theorem is similar to Theorem 4.1-Corollary 4.1. For the sake of conciseness we only

consider the test based on φ̂, and we omit the studentized version.

Theorem 4.2 Assume Model (1) satisfies the assumptions of Theorem 4.1. Under H0

DFφ := n
φ̂

1 − ψ̂1 − · · · − ψ̂p
⇒ (1/2)

{

W 2(1) − 1
}

∫ 1
0 W

2(t)dt
(11)
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and, under the additional moment assumption Eu4
t <∞,

√
n
(

ψ̂ −ψ
)

⇒ N
{

0,Σψ :=
(

EVtV
′
t

)−1 (
Eu2

tVtV
′
t

) (

EVtV
′
t

)−1
}

. (12)

We have limn→∞ P
{

DFφ ≤ dfφ(α)
}

= α under the unit-root assumption H0, and

limn→∞ P
{

DFφ ≤ dfφ(α)
}

= 1 under the stationarity assumption H1.

As in the case of an independent noise, the asymptotic null-distribution of
√
n
(

ψ̂ −ψ
)

is the

same whether the variable yt−1 is included or not in the regression (of course only in the case

φ = 0). However, the asymptotic variance Σψ depends on the noise distribution through the bi

coefficients and the moments of ǫ (see the example below). This is not surprising because the

asymptotic variance of the LS estimator in stationary ARMA models is modified when, in the

noise assumptions, independence is replaced by uncorrelatedness (see Francq and Zakoïan, 1998).

Interestingly, this is not the case for the distribution of φ̂ which turns out to be the same as for an

independent noise.

In the simple case p = 1 with φ = ψ1 = 0, b41 < 1/3 and ǫt ∼ N (0, 1), straightforward

computations show that

Σψ =
(1 − b21)(1 + 3b21 + 12b41)

1 − 3b41
.

It is seen that this asymptotic variance can be arbitrarily bigger (for b1 close to 1/3) than for an

iid noise.

5 Small sample properties of the standard unit-root tests

This section investigates the finite-sample properties of the tests. Partial results of Monte-Carlo

experiments are presented in Tables 1-2 below. Complementary results are available from the

authors. In the two tables, the relative frequencies of rejection, denoted α̂, are computed over

N = 10, 000 independent replications. Table 1 displays the behavior of the tests under the unit-root

hypothesis H0. To estimate the long-run variance ϑ2
v, HAC-type estimators with different kernels

have been used. QS stands for the Quadratic-Spectral kernel, TH for the Turkey-Hanning kernel

and Tr for the Triangular kernel (see Newey and West (1987) and Andrews (1991) for definitions).

To gauge if the difference between α̂ and the nominal level α is significant or not, the statistic

z = (α̂ − α)(α(1 − α)/N)−1/2 is computed. Since N is large, this statistic roughly follows a

standard gaussian distribution when α is the actual size of the test. A small size distortion is

observed, but for very large values of b only. The difference between α̂ and α is less important with

11
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Table 1: Empirical size: rejection relative frequencies of

H0 : φ = 0 when the DGP is the URB ∆yt = φyt−1 + ut

with φ = 0 and ut = ǫt + bǫtut−1. The values of the z

statistic are given into brackets (z ∼ N (0, 1) if the nominal

level α = 0.05 is correct)

Statistic b n = 100 n = 1000
QS-Zφ 0.25 0.054 (1.652) 0.050 (-0.184)

0.99 0.075 (11.333) 0.062 (5.644)
TH-Zφ 0.25 0.052 (1.055) 0.049 (-0.275)

0.99 0.065 (6.791) 0.053 (1.193)
Tr-Zt 0.25 0.053 (1.514) 0.051 (0.367)

0.99 0.072 (10.048) 0.053 (1.606)
DFt 0.25 0.053 (1.193) 0.051 (0.275)

0.99 0.086 (16.656) 0.077 (12.388)

Table 2: Empirical power: rejection

relative frequencies of H0 : φ = 0 when

α = 0.05, n = 100 and the DGP is

the AR(1)-BL(1) model yt = ayt−1 +ut

with ut = ǫt + bǫtut−1.

b a = 0.90 a = 0.99
Tr-Zt DFt Tr-Zt DFt

0.00 0.756 0.766 0.083 0.081
0.25 0.744 0.772 0.082 0.081
0.50 0.771 0.774 0.085 0.086
0.75 0.775 0.775 0.090 0.103
0.99 0.773 0.752 0.107 0.129

the TH-Zφ and Tr-Zt tests than for the other versions. Table 2 compares the empirical powers of

two tests. The powers are very close and do not vary much with b. The output of Tables 1-2, and

all the other Monte Carlo experiments we performed, can be summarized as follows. The presence

of bilinear terms is sensible in finite samples, however the size distortion is tiny for moderate and

large sample sizes. Another teaching from our experiments is that the Phillips-Perron test performs

slightly better than the augmented DF test.

6 Conclusion

In this paper we considered a class of AR models with bilinear innovations, in the spirit of Charemza
et al (2005) but suitable for I(1) series. This specification can be seen as a stochastic unit-root
model. From another viewpoint this model is also of the GARCH type and displays asymmetries.
We established necessary and sufficient strict and second-order stationarity conditions. We showed
that the strict stationary solution is geometrically ergodic. Testing for unit roots in the presence of
conditional heteroscedasticity is clearly important in financial applications, in particular to know if
the economic shocks are persistent or not. The ergodicity results were used to demonstrate that the
standard Phillips-Perron and augmented DF tests are asymptotically valid in this framework, which
is not the case for other stochastic unit-roots models recently considered in the literature. Indeed,
Gonzalo and Lee (1998) and Yoon (2004) showed that the standard unit-root tests do not work for
detecting the stochastic unit-root hypothesis H0 : φ = 0 in the model yt = (1 + φ + αt)yt−1 + ǫt
with αt = ραt−1 + ηt, and Ling (2004) formally showed that standard unit-root tests are not
asymptotically valid for the DAR model which, like the model considered in the present paper, is
an AR model with GARCH-type innovations. Monte Carlo experiments have also shown that the
standard Phillips-Perron and augmented DF tests have good finite sample properties for testing the
stochastic unit-root hypothesis in Model (1). From these numerical experiments and the asymptotic
study, we draw the conclusion that the range of application of the conventional unit-root tests is
broader than the sole detection of deterministic unit-roots.

12
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APPENDIX

We first establish a lemma, which allows to apply Theorem 2.5 in Bougerol and Picard (1992). An
affine subspace H of R

q is said to be invariant under (2) if it satisfies

∀x ∈ H, A1x+ c1 ∈ H a.s. (13)

Model (2) is said to be irreducible if R
q is the unique invariant affine subspace. Note that this

notion of irreducibility is different from the one used in Section 3.

Lemma 2 Model (2) is irreducible.

Proof. For simplicity, we only give the proof for q = 2. The arguments are the same for q > 2,
but the proof requires tedious notations in the general case. Let H be an affine subspace of R

2

satisfying (13). By stationarity, we have, ∀x = (x1, x2)
′ ∈ H,

A2(A1x+ c1) + c2 =

(

ǫ2(b
2
1x1ǫ1 + b1b2x2ǫ1 + b2x1 + b1ǫ1 + 1)

ǫ1(b1x1 + b2x2 + 1)

)

∈ H a.s. (14)

Taking the expectation of the vector defined in (14), we obtain 0 ∈ H. Taking x = 0 in (13) and
(14), we obtain

(

0
0

)

∈ H,

(

ǫ1
0

)

∈ H a.s.,

(

ǫ2(ǫ1b1 + 1)
ǫ1

)

∈ H a.s. (15)

Since σǫ > 0, ǫ1 is not almost surely equal to 0. Thus (15) entails that the linear subspace H = R
2.

2

Proof that (6) is sufficient for the existence of a second-order stationary solution. Let
the vector norm ‖X‖2 = {EX ′X}1/2, where X ′ denotes the transpose of a vector X belonging to
the space L2 of the square-integrable random variables. We will show that ut defined in (4) is the
mean-square limit of the sequence (utN )N defined by

utN = ct +
N
∑

k=1

AtAt−1 . . . At−k+1ct−k.

It suffices to show that (utN )N is a Cauchy sequence in L2, i.e. that for N ′ > N , ‖utN ′ − utN‖2

tends to zero when N goes to infinity. Denote by ⊗ the Kronecker product of matrices and by
vec the operator stacking the columns of a matrix (see e.g. Harville (1997) for details about these
matrix operators). We have vec(ABC) = (C ′ ⊗A)vec(B) and thus

vec(A1 . . . AnBCn . . . C1) = (C ′
1 ⊗A1) . . . (C

′
n ⊗An)vec(B) (16)

for any conformable matrices Ai, Ci and B. It follows that, for N ′ > N ,

‖utN ′ − utN‖2 ≤
N ′
∑

k=N+1

∥

∥At . . . At−k+1ct−k
∥

∥

2

=

N ′
∑

k=N+1

{E(At . . . At−k+1ct−k)
′(At . . . At−k+1ct−k)}1/2

=

N ′
∑

k=N+1

[E{vec(c′t−kA′
t−k+1 . . . A

′
tAt . . . At−k+1ct−k)}]1/2

=
N ′
∑

k=N+1

√

Ec′t ⊗ c′t (EA
′
t ⊗A′

t)
k vecIq2 , (17)

13
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where the inequality follows from the Minkowski inequality, and the last equality follows from (16)
and the independence of the matrices At−i and ct−k. Denote by ρ(A) the spectral radius of a square
matrix A. Using ρ(A) = limk→∞ ‖Ak‖1/k, it can be shown that the right-hand side of (17) tends to
0 as N → ∞ if ρ {E (At ⊗At)} < 1. We have

E (At ⊗At) = σ2
ǫB ⊗B + J ⊗ J,

where

B =

(

b1:q−1 bq
0q−1×q−1 0q−1

)

, J =

(

0′q−1 0

Iq−1 0q−1

)

.

By induction, it can be shown that

det
(

σ2
ǫB ⊗B + J ⊗ J − λIq2

)

= (−λ)q
2B
(

1

λ

)

,

where B(z) = 1 −∑q
i=1 b

2
i σ

2
ǫ z
i. It is well-known that the roots of the polynomial B(z) are outside

the unit disk if and only if (6) holds (see e.g. Francq and Zakoïan (2004), Proposition 1). Thus (6)
entails that the spectral radius of EAt ⊗ At is strictly less than 1, which allows to conclude that
(utN )N is a Cauchy sequence in L2. Therefore ut is in L2.
Proof of Theorem 3.1. To establish the geometric ergodicity of (ut) defined by (4) we verify the
three conditions of Lemma 1. Let for x = (x1, . . . , xq)

′ ∈ R
q, ψ(x) = 1 +

∑q
i=1 bixi. We have

ut = ψ(ut−1)ǫt.

Let λ denote the Lebesgue measure on R. For any bounded continuous function h,

E(h(ut)|ut−1 = x) =

∫

h(ψ(x)ǫ, x1, . . . , xq−1)f(ǫ)λ(dǫ)

is a continuous function of x = (x1, . . . , xq), by continuity of ψ and h and by application of the
Lebesgue theorem. It follows that (ut) is a Feller chain.

Now we will check that (ut) is λq-irreducible, where λq is the Lebesgue measure on (Rq,B(Rq)).
To avoid cumbersome notations we will only establish this result when q = 2, the extension to
higher dimensions being straightforward. For B ∈ B(R2) and x = (x1, x2) ∈ R

2 we have

P 2(x,B) = P {(u2, u1) ∈ B} , where u1 = ǫ1ψ(x), u2 = ǫ2ψ(u1, x1). (18)

First consider x such that ψ(x) 6= 0. Let Tx : (ǫ1, ǫ2) 7→ (u1, u2). Let ǫ01 be the point such
that ψ(u0

1, x1) = 0 where u0
1 = ψ(x)ǫ01. The mapping Tx is one-to-one from

(

R \
{

ǫ01
})

× R to
(

R \
{

u0
1

})

× R, and admits continuous derivatives. Since (ǫ1, ǫ2) admits a density, the change-
of-variables theorem shows that (u1, u2) also admits a density. In view of (18), it follows that
P 2(x,B) > 0 whenever λ2(B) > 0.

Now consider x such that ψ(x) = 0. The previous argument fails because the distribution of
(u1, u2) = (0, u2) has no density with respect to λ2. The problem is easily solved by considering
three-steps transition probabilities, and by showing that (u2, u3) has a density whenever ψ(0, x1) 6=
0. When ψ(x) = ψ(0, x1) = 0, four-steps transition probabilities allow to conclude that (u3, u4) has
a density. Hence for all x, if λ2(B) > 0 then P t(x,B) > 0 for some t ∈ {2, 3, 4}. This completes
the proof of (i). To prove (ii) we will still limit ourselves to the case q = 2. Let C be a compact
subset of R

2 such that λ2(C) > 0 and ψ(x) 6= 0 for any x ∈ C. We have just seen that, for any
x ∈ C, P 2(x,B) > 0 whenever λ2(B) > 0. Moreover, by continuity of the function x → P 2(x,B),
the compactness of C entails that infx∈C P

2(x,B) = P 2(x∗, B) > 0, for some x∗ ∈ C. Setting

14
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ν2(B) = P 2(x∗, B), we define a non-trivial measure on B(R2). It follows that C is a ν2-small set.
Now, consider the five-step transitions. We have

P 5(x,B) ≥
∫

C
P 3(x, dy)P 2(y,B) ≥ P 2(x∗, B) inf

x∈C
P 3(x,C) = P 2(x∗, B)P 3(x∗∗, C),

for some x∗∗ ∈ C. By arguments similar to those used in the proof of step (i), we show that
P 3(x,C) > 0 for all x ∈ C, and thus we have P 3(x∗∗, C) > 0. Hence C is also ν5-small, with
ν5 = P 3(x∗∗, C)ν2. In view of Meyn and Tweedie (1993, p. 116-118), we can conclude that (ut) is
aperiodic.

Finally, we will verify condition (iii). We will use the following result which, under a slightly
different form, is contained in the proof of Lemma 2.3 by Berkes, Horváth and Kokoszka (2003).

Lemma 3 Let X be an almost surely positive random variable. If EXr < ∞ for some r > 0 and
if E logX < 0, then there exists s > 0 such that EXs < 1.

Since γ(A) < 0, there exists an integer k > 0 such that E(log ‖AtAt−1 . . . At−k‖) < 0 (see the first
definition of γ(A) given in (3) and use the strict stationarity of the sequence (At)). On the other
hand, we have

E(‖AtAt−1 . . . At−k‖) ≤ E‖At‖E‖At−1‖ . . . E‖At−k‖ ≤ (E‖At‖)k+1 <∞ (19)

using the facts that the norm is multiplicative and that the matrices At are iid. Lemma 3 entails
the existence of some s ∈]0, 1[ such that

ρ := E(‖AtAt−1 . . . At−k‖s) < 1. (20)

By a recursive expansion of the first equality in (2) we get

ut = ct +Atct−1 + · · · +At . . . At−k+1ct−k +At . . . At−kut−k−1

and thus, the norm being multiplicative,

‖ut‖ ≤
k
∑

i=0

‖At . . . At−i+1‖‖ct−i‖ + ‖At . . . At−k‖‖ut−k−1‖,

the first term in the sum, for i = 0, being equal to ‖ct‖ by convention. Because s ∈ [0, 1), it follows
from the elementary inequality (a+ b)s ≤ as + bs, for a ≥ 0 and b ≥ 0, that

‖ut‖s ≤
k
∑

i=0

‖At . . . At−i+1‖s‖ct−i‖s + ‖At . . . At−k‖s‖ut−k−1‖s.

Taking the expectations in both sides, conditionally on ut−k−1 = x, yields

E(‖ut‖s | ut−k−1 = x) ≤
k
∑

i=0

E‖At . . . At−i+1‖sE‖ct−i‖s + ρ‖x‖s

≤ K + ρ‖x‖s. (21)

The first inequality uses the independence between the At−j and ct−i for i > j, and the independence
between these matrices and ut−k−1 for k ≥ i. The latter independence is a consequence of the fact
that the stationary solution is nonanticipative. The second inequality in (21) follows from arguments
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similar to those used to show (19). Let β > 0 such that 1− β > ρ and let C the subset of [0,+∞)q

defined by
C = {x | (1 − β − ρ)‖x‖s ≤ K + β}.

Clearly C 6= ∅ since K + β > 0. Moreover C is compact because 1 − β − ρ > 0. Thus the right-
hand side of (21) is bounded by a constant over C, and it is bounded by (1 − β)‖x‖s − β over the
complement of C. It follows that condition (iii) in Lemma 1 is verified, with g(x) = ‖x‖s, m = k+1,
and β and C chosen as indicated above.

2

Proof of Theorem 4.1. Note that the existence of E|ut|2+ν entails (6). First consider the case
p = 0. Then vt = ut, and i)–iv) are straightforwardly satisfied with ϑ2

v = s2v = σ2
ǫ /(1 −∑q

i=1 b
2
iσ

2
ǫ ).

Thus, when the DGP does not contain augmented variables, the result directly follows from Phillips
(1987). In the case p > 0, it is not obvious to know whether vt = ψ−1(B)ut :=

∑∞
i=0 ciut−i inherits

the mixing property of (ut) or not. Fortunately, conditions i)-iv) are not necessary for (8) and
(10). Conditions i)-iv) are those given by Herrndorf (1984) to establish the functional central limit
theorem (FCLT) for (vt). Other conditions ensuring the FCLT rely on the concept of near-epoch
dependence (NED), see Davidson (1994). The process (vt) is geometrically L2-NED on the process
(ut) because the sequence

‖vt − E (vt|ut−m, . . . , ut+m)‖2 =

∞
∑

i=m+1

|ci| ‖ut−i − E (ut−i|ut−m, . . . , ut+m)‖2

≤ 2‖ut‖2

∞
∑

i=m+1

|ci|

tends to zero at an exponential rate as m → ∞. In view of this property, the exponential decrease
of the α-mixing coefficients of (ut), and the fact that iv) holds with

ϑ2
v =

σ2
ǫ

(1 −∑p
i=1 b

2
i σ

2
ǫ )ψ

2(1)
> 0,

we can conclude from Corollary 29.7 in Davidson (1994), that
(

1√
nϑv

S[nt]

)

t∈[0,1]

⇒ (W (t))t∈[0,1] , (22)

where Sk = v1 + . . . + vk and [·] denotes the integer part. As shown by Phillips (1987), (8) and (10)
are direct consequences of the FCLT (22) and of the continuous mapping theorem, which completes
the proof.

2

Proof of Corollary 4.1. Under H1 we have

yt = yt−1 + φyt−1 +

p
∑

i=1

ψi∆yt−i + ut = ψ∗−1(B)ut =
∑

i≥0

πiut−i,

where ψ∗(z) = (1 − z)ψ(z) − φz. The process (yt) is then stationary, ergodic and centered. Thus
with probability one, we have

ân → a∗ :=
Eytyt−1

Ey2
t

< 1,
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where the inequality follows from the Cauchy-Schwarz inequality and the fact that the innovations
of (yt) are non degenerated. Let v̂∗t = yt − ânyt−1 and v∗t = yt − a∗yt−1. The ergodic theorem also
shows that

ŝ2v =
1

n− 1

n
∑

t=1

v∗2t =
1

n− 1

n
∑

t=1

y2
t −

2ân
n− 1

n
∑

t=1

ytyt−1 +
â2
n

n− 1

n
∑

t=1

y2
t−1

→ s2v∗ = Ev∗2t = (1 − a∗2)Ey2
t .

Therefore we have almost surely

lim sup
n→∞

Zφ/n = lim sup
n→∞

{

ân − 1 − 1
2
n

∑n
t=1 y

2
t

(ϑ̂2
v − ŝ2v)

}

≤ a∗ − 1 +
s2v∗

2Ey2
t

= −(1 − a∗)

(

1 − 1 + a∗

2

)

< 0,

which shows the consistency of the Zφ-based test. The consistency of the Zt-based test comes from

lim sup
n→∞

Zt/
√
n ≤

√

Ey2
t

lim supn→∞ ϑ̂v
(a∗ − 1)

(

1 − 1 + a∗

2

)

< 0.

2

Proof of Theorem 4.2. We have

Λ

(

φ̂

ψ̂ −ψ

)

=

(

Λ−1
n
∑

t=1

XtX
′
tΛ

−1

)−1

Λ−1
n
∑

t=1

utXt (23)

where Λ = Diag(n,
√
n, . . . ,

√
n). We have seen that the functional CLT (22) applies to vt := ∆yt =

ψ−1(B)ut. Therefore the analogue of the results (a) and (b) of Theorem 3.1 in Phillips (1987) holds.
Using also the ergodic theorem, we deduce

Λ−1
n
∑

t=1

XtX
′
tΛ

−1 ⇒
(

Eu2
t

ψ2(1)

∫ 1
0 W

2(t)dt 0′p
0p EVtV

′
t

)

.

Using Proposition 17.2 in Hamilton (1994) and the functional CLT applied to (ut),

1

n

n
∑

t=1

utyt−1 =
1

n

n
∑

t=1

ut(y0 + v1 + · · · + vt−1)

=
1

nψ(1)

n
∑

t=1

ut(u1 + · · · + ut−1) + oP (1)

⇒ Eu2
t

2ψ(1)

{

W 2(1) − 1
}

.

Moreover it is easy to show that ψ̂(1) = 1 − ψ̂1 − · · · − ψ̂p → ψ(1) almost surely. The convergence
(11) follows. The convergence (12) comes from the CLT applied to square integrable stationary
martingale difference (utVt):

1√
n

n
∑

t=1

utVt ⇒ N
(

0, Eu2
tVtV

′
t

)

.
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