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Abstract

Earlier measurements in large synchronous generators indicate the existence of backward whirling

motion, and, also relatively large deviations of shape in both the rotor and the stator. These

non-symmetric geometries produce an attraction force between the rotor and the stator, called

Unbalanced Magnetic Pull (UMP). The target of this paper is to analyse the whirling frequencies

and amplitude of the response for large synchronous generators with a high number of poles, due

to deviations of shape in the rotor and stator. A mathematical model is developed to describe

the shapes of the rotor and stator, and the corresponding UMP is obtained by using the law of

energy conservation. The UMP is analysed due to different deviations of shape. The result gives

the average angular frequency and the magnitude of the UMP for certain deviations of shape.

From this result, the whirling frequency and the amplitude of the corresponding response can be

approximated. Simulations of the response of a Jeffcott rotor model show good agreement with

the theoretical results of the UMP for some generator geometries. The conclusion is that different

whirling frequencies, both backward and forward whirling, can occur in these machines due to

deviations in shape of the generator. Therefore, the shape of the generator can excite resonance

vibrations on several other frequencies than the rotation frequency. During maintenance of hy-

dropower generators the shapes of the rotor and stator are frequently measured. The results from

this paper can be used to evaluate such measurements and to explain the existence of complicated

whirling motion.

∗Electronic address: niklas.lundstrom@math.umu.se
†Electronic address: joa@ltu.se
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I. INTRODUCTION

Hydropower generators have small air-gaps between the rotor and the stator. Usually the

gap is about 0.2 % of the stator inner radius. Measurements on the shape of hydropower

generators are frequently carried out during maintenance. Measurements done indicate that

all hydropower generators are associated with some degree of asymmetry in the air-gap.

These asymmetries distort the air-gap flux density distribution and produce an attraction

force between the rotor and the stator which is called Unbalanced Magnetic Pull (UMP). The

effect of UMP can damage the machine. There are documented cases, e.g. Talas and Toom

[1], where the rotor has been in contact with the stator which has been caused by air-gap

asymmetries. Measurements also indicate the existence of complicated whirling motions,

including both backward and forward whirling, in these machines. A literature survey

indicates intensive studies of methods for calculating UMP caused by eccentricity, as well as

studies on the vibration characteristics of a rotor system due to UMP. To mention a few, Guo

et al. [2] studied the effects of UMP and the vibration level in three-phase generators with

any number of pole pairs, Wang et al. [3] studied the free and forced vibrations for rotors of

electric motors, Holopainen et al. [4] studied the rotor-dynamic effects of electromechanical

interaction on induction motors and Williamson and Abdel-Magied [5] calculated the UMP

in induction motors with asymmetrical rotor cages. The latter showed that with an even

distribution pattern of bar faults the UMP may be vanishingly small. Tereshonkov [6]

determined the angular frequencies of the UMP due to static and dynamic eccentricity,

and also due to rotor and stator core ovalities. An overview of the research in the area of

modeling and calculating UMP in electrical machines was presented by Frosini and Pennacchi

[7]. In [8], Lundström and Aidanpää derived the UMP for an arbitrary disturbed air-gap

through the principle of virtual work applied to a simple generator model. They studied

the generator shape and proved the existence of stable equilibrium for the rotor for certain

cases of deviations of shape. They evaluated the robustness of the generator by simulations

of the basin of attraction to attractors without rotor stator contact using a Jeffcott rotor
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model. This paper uses the same simple generator model, and the same derivation of the

UMP as in [8]. A power series expansion gives the possibility to mathematically prove a

theorem about the angular frequency and the amplitude of the UMP, for certain deviations

of shape. Simulations of trajectories using a Jeffcott rotor model extends the result by

verifying that attractors behave according to the Theorem even in a number of cases where

the mathematical proof does not apply. By comparing to the literature study above, it is

reasonable to claim that the results presented here, are new. Since the generator model used

is very simple, this paper gives the reader a general and clear guide for understanding the

relation between asymmetries in the rotor and complicated whirling motions.

II. GENERATOR GEOMETRY

Fig. 1 shows the geometry of the generator model. The generator is treated as a balanced

Jeffcott or Laval rotor having a rigid core with length l0, mass γ and stiffness k of the

generator shaft. The rotor rotates counter-clockwise, at a constant angular speed ω. Point

Cs gives the location of the bearings while point Cr is the geometrical center line of the rigid

rotor core. The coordinate system has its origin at Cs, r is the rotor radius and s is the

stator radius. Let r0 and s0 be the average radius of the rotor and the stator respectively. An

arbitrary non-circular shape of the rotor radius, r, and the stator radius, s, can be described

by the Fourier series

r = r0 (z) +

∞∑

n = 1

δr
n(z) cos{n (ϕ + αr

n(z))}, (1)

s = s0 (z) +
∞∑

m = 1

δs
m(z) cos{m (ϕ + αs

m(z))}, (2)

where

δr
n(z) ≥ 0, δs

m(z) ≥ 0,

∞∑

n = 1

δr
n(z) +

∞∑

m =1

δs
m(z) < g0(z). (3)

Here, g0 = s0 − r0 is the average air-gap, δr
n and δs

m are referred to as the rotor and

stator perturbation parameters, while αr
n and αs

m are the corresponding phase angles. To

simplify notations, it is hereinafter assumed that δr
n = δs

m = 0, ∀m, n ∈ N , if nothing

else is mentioned. N is here the set of all natural numbers. Fig. 2 shows the rotor shape
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for δr
n = r0/3, n = 1, 2, 3, 4, and phase angles αr

n = 0. Note that the stator has the

same shape for δs
m = δr

n and m = n. The cases δr
1 > 0 and δs

1 > 0 will correspond

to rotor eccentricity and stator eccentricity respectively. Note that, since rotor eccentricity

almost surely results in a dynamic eccentricity, it is often referred to as dynamic eccentricity.

Similarly, stator eccentricity is often referred to as static eccentricity.

Since dynamic eccentricity is normally small compared to the radius of the air-gap, it is

assumed that the perturbed air-gap (g) is

g = s (z, ϕ) − r (z, ϕ) − x cos ϕ − y sin ϕ, (4)

where (x, y) gives the position of Cr. Eqs. (1), (2) and (4) give, after adding the ω rotation,

g = g0 (z) +

∞∑

m = 1

δs
m(z) cos{m (ϕ + αs

m(z))} −
∞∑

n= 1

δr
n(z) cos{n (ϕ + αr

n(z) − ω t)}

− x cosϕ − y sinϕ. (5)

Note that when considering the rotor fixed at some (x, y), the case δs
1 > 0 is not necessary

to include. The geometric model is now completed.

III. UNBALANCED MAGNETIC PULL

To find an analytical expression for the UMP the two following simplifications are made; the

generator will be treated as a continuum and the B-Field (also called magnetic flux density)

in the air-gap will be assumed as in [3],

B =
B0 (z) g0 (z)

g (x, y, z, t, ϕ)
, (6)

where B0 is the uniformly distributed B-field for a perfect circular geometry, i.e. g = g0.

These assumptions means that the effect of the poles are not taken into account and are

justified since there is a large number of poles in a hydropower generator. Based on the

theory of magnetic fields [9], the potential energy stored in the air-gap can be expressed as

E =

∫

air−gap

B (x, y, z, t, ϕ)2

2µ0

dV, (7)

where µ0 is the permeability of air. Next, consider a volume element dV as shown in Fig.

3. According to Eqs. (7) and (6), the potential energy (δE) reserved in dV is given by

δE =
B0 (z)2 g0 (z)2

2µ0 g (x, y, z, t, ϕ)2
dV. (8)
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Eq. (8) shows that if the air-gap is disturbed from the current value g to a new value g+dg,

δE will increase if dg < 0 and decrease if dg > 0. Let dEmech be increments of mechanical

energy input to dV and dEelectric the electric energy output from dV . When considering the

energy conversion between the magnetic and mechanical fields over an infinitesimal period

of time, the law of energy conservation requires, after neglecting losses

dEmech = d (δE) + dEelectric. (9)

As in the case of eccentricity [3], it is assumed that the electric energy output from the

air-gap is independent of the air-gap variations, thus dEelectric = 0. If dg < 0, then

d(δE) = dEmech > 0. Since the mechanical energy input increases when g decreases, a

force acting in the radial direction has to be present. Denote this force by df . Then, the

virtual work done by this force is df dg = − d(δE), which gives

df = − d

dg
(δE) . (10)

In Eq. (8), note that, since dV = r dr dz dϕ, the potential energy δE will increase if r

increases when g is constant. This small change in df cannot be considered in Eq. (10).

But, since the change of g and r is of approximately the same size and g << r, the change

of δE due to r is negligible, and therefore, to simplify the calculations it is assumed that

dV = u0 dr dz dϕ, where u0 = (r0 + s0)/2, and dr = g. Eq. (8) then yields

δE =
B0 (z)2 g0 (z)2 u0 (z)

2µ0 g (x, y, z, t, ϕ)
dz dϕ. (11)

According to Eq. (10), the force df is given by

df = − d

dg
(δE) =

B0 (z)2 g0 (z)2 u0 (z)

2µ0 g (x, y, z, t, ϕ)2
dz dϕ. (12)

Hence, the total forces in the x− and y−direction can be expressed as

fx =
1

2µ0

∫ 2π

0

∫ l0

0

B0 (z)2 g0 (z)2 u0 (z)

g (x, y, z, t, ϕ)2
cos{ϕ} dz dϕ, (13)

fy =
1

2µ0

∫ 2π

0

∫ l0

0

B0 (z)2 g0 (z)2 u0 (z)

g (x, y, z, t, ϕ)2
sin{ϕ} dz dϕ. (14)

The generator geometry and the B-field are from now on assumed constant in z through

the generator length l0. This is the case through the rest of the paper. For ideal circular
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generator geometry and y = 0, the integral in Eq. (13) can be solved analytically to yield

fx =
l0 g

2
0 B

2
0 u0

2µ0

∫ 2π

0

cosϕ

(g0 − x cosϕ)2
dϕ = km

x
(
1 − x2

g2

0

) 3

2

. (15)

Here, the magnetic stiffness (km), is defined as

km =
π l0B

2
0 u0

µ0 g0
. (16)

Eq. (15) is similar to results obtained by Wang et al. [3] and Sadarangani [10].

IV. EQUATIONS OF MOTION

The equations of motion for the forced Jeffcott rotor is non-autonomous and nonlinear and

consists of two second order differential equations

γ ẍ + c ẋ + k x = fx (x, y, t) ,

γ ÿ + c ẏ + k y = fy (x, y, t) . (17)

Here, γ is the mass of the rotor, k is the stiffness of the rotor shaft and c being a linear

viscous damping.

In non-dimensional form, system (17) yields

X ′′ + 2 ζ X ′ + X = FX (X, Y, τ) ,

Y ′′ + 2 ζ Y ′ + Y = FY (X, Y, τ) . (18)

Here, the non-dimensional quantities

X =
x

g0
, Y =

y

g0
, ∆R

n =
δr
n

g0
, ∆S

m =
δs
m

g0
, (19)

ζ =
c

2
√
k γ

, G =
g (x, y, t, ϕ)

g0
, Ω = ω

√
γ

k
, τ = t

√
k

γ
, (20)

have been introduced and τ is a non-dimensional time. The air-gap G, and the forces FX

and FY yield

FX =
km

2 π k

∫ 2π

0

cosϕ

G (X, Y, τ, ϕ)2
dϕ, (21)
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FY =
km

2 π k

∫ 2π

0

sinϕ

G (X, Y, τ, ϕ)2 dϕ, (22)

G = 1 +

∞∑

m =1

∆S
m cos{m (ϕ + αs

m)} −
∞∑

n= 1

∆R
n cos{n (ϕ + αr

n − Ω τ)}

− X cosϕ − Y sinϕ. (23)

V. PROPERTIES OF THE UMP

To gain understanding of the responses from the UMP due to different deviations of shape,

properties of the UMP will be investigated in this section.

A. SIMULATIONS

The angular frequency of the UMP is given by

Θ =
F ′

Y FX − F ′
X FY

F 2
X + F 2

Y

. (24)

Here, the prime represents differentiation with respect to time τ , FX and FY are given by

Eqs. (21) and (22). The MATLAB function QUAD was used to evaluate the integrals. To

get an introduction to MATLAB, see for example Gilat [11]. The numerical values used are

from an 18 MW hydropower generator and are given in Table I.

To visualize the influence of shape perturbations on the amplitude, six different shape per-

turbations are shown in Fig. 4 for a concentric rotor (X = Y = 0). Fig. 5(a) shows the

result from a simulation of the largest value of the UMP during one revolution of the rotor

when X = Y = 0, i.e.

max
Ω τ ∈ [0, 2π]

{√
F 2

X + F 2
Y

}
. (25)

Fig. 5(b) shows the generator geometry for the case ∆S
10 > 0, ∆R

9 > 0. The Figure shows

that if m − n = ± 1, several minima of the air-gap will occur near the absolute minimum,

and therefore, larger amplitudes of the UMP will occur in these cases. This can be compared

with the result presented in Fig 5(a). The same argument can explain the larger amplitudes

on the lines 2m − n = ± 1 and m − 2n = ± 1, which also can be observed in Fig 5(a).

These phenomena will be analytically proved in the next section. By studying Fig. 5(b) the
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existence of mn-combinations giving no UMP can be realized, e.g. the cases m = n. All

such combinations were derived by Lundström and Aidanpää in [8].

B. ANALYSIS

In this section, a theorem describing how the average angular frequency and amplitude of

the UMP are depending on different deviations of shape in the generator will be proved.

Consider the air-gap given by Eq. (23) including the N first rotor perturbation parameters

∆R
n and the M first stator perturbation parameters ∆S

m, i.e.

G = 1 +

M∑

m =1

∆S
m cos{m (ϕ + αs

m)} −
N∑

n= 1

∆R
n cos{n (ϕ + αr

n − Ω τ)}

− X cosϕ − Y sinϕ. (26)

The forces FX and FY given by Eqs. (21) and (22) can be analysed using the Maclaurin

series

1

(1 − ǫ)2
= 1 + 2 ǫ + 3 ǫ2 + . . . + (q + 1) ǫq + . . . , (27)

with

ǫ = −
M∑

m = 1

∆S
m cos{m (ϕ + αs

m)} +
N∑

n = 1

∆R
n cos{n (ϕ + αr

n − Ω τ)}

+ X cosϕ + Y sinϕ. (28)

From Eqs. (22) and (27), FY can be expressed as

FY =
km

2 π k

∫ 2π

0

(1 + 2 ǫ + 3 ǫ2 + . . . + (q + 1) ǫq + . . . ) sin{ϕ} dϕ

= F 1
Y + F 2

Y + . . . + F q
Y + . . . (29)

The analysis is now continued by approximating F q
Y , q ∈ N . From Eqs. (28), (29) and the

multinomial theorem, F q
Y yields, with κ = km (q + 1)/(2 π k),

F q
Y = κ

∫ 2π

0

ǫq sin{ϕ} dϕ

= κ

∫ 2π

0

{
∑

j1+···+jA=q

q!

j1! . . . jA!
aj1

1 . . . ajA

A

}
sin{ϕ} dϕ, (30)
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where A = N + M + 2 are the total number of terms in ǫ and

an = ∆R
n cos{n (ϕ + αr

n − Ω τ)}, n = 1 . . .N,

aN+m = −∆S
m cos{m (ϕ + αs

m)}, m = 1 . . .M,

aA−1 = X cosϕ, (31)

aA = Y sinϕ.

To proceed with the analysis, it is assumed that

X = Y = ∆S
m = ∆R

n = 0, for all m ∈ N\m′, n ∈ N\n′. (32)

This means that all except one rotor perturbation parameter (∆R
n′), one stator perturbation

parameter (∆S
m′) together with the lateral displacement of the rotor, are set to zero. This

assumption is more relevant the better the inequality

∣∣X
∣∣ +

∣∣Y
∣∣ +

∑

m∈N\m′

∆S
m +

∑

n∈N\n′

∆R
n <<

(
∆R

n′

)q
, ( ∆S

m′ )q. (33)

is satisfied for the machine in question. Note that for every realistic machine (Not perfect

in the sense that the left hand side in inequality (33) is non-zero), inequality (33) also gives

an upper bound of q. (I.e. the order of terms in Eq. (27) to be included in the analysis.)

From now on the prime is dropped to simplify the notation. Thus m′ = m and n′ = n.

Moreover, let ∆R
n′ = ∆R and ∆S

m′ = ∆S. Since both the rotor and stator are perturbed by

only one perturbation parameter each, and the rotor rotates with a constant angular speed,

the phase angles can be chosen arbitrary. Therefore, to exclude an alternating sign, the

phase angles are set to αs
m = π/m and αr

n = 0. Then Eq. (30) can be simplified to

F q
Y = κ

∫ 2π

0






q∑

j=0

(
q

j
) (∆R cos{n(ϕ − Ω τ)})j (∆S cos{mϕ})q−j




 sin{ϕ} dϕ

= κ






q∑

j=0

(
q

j
) ∆j

R ∆q−j
S

∫ 2π

0

cosj{n(ϕ − Ω τ)} cosq−j{mϕ} sin{ϕ} dϕ




 . (34)

Consider the trigonometric identities

cos2i α = (
2i

i
)

1

22i
+

1

22i−1

i∑

p=1

(
2i

i− p
) cos{2pα}, (35)
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cos2i−1 α =
1

22i−2

i∑

p=1

(
2i− 1

i− p
) cos{(2p − 1)α}. (36)

By using Eqs.(35) and (36), the integrals in Eq. (34) can be simplified in the following way.

Assume that both j and q−j are even, then by Eq. (35) and symmetries of the trigonometric

functions,
∫ 2π

0

cosj{n (ϕ − Ω τ)} cosq−j{mϕ} sin{ϕ} dϕ

=
1

2 q−2

∫ 2π

0

j
2∑

p=1

(
j

j

2
− p

) cos{2 p n (ϕ − Ω τ)}
q−j
2∑

p=1

(
q − j

q−j

2
− p

) cos{2 pmϕ} sin{ϕ} dϕ

=
1

2 q−2

∫ 2π

0

∑

s1∈S1

(
j

j−s1

2

) cos{s1 n (ϕ − Ω τ)}
∑

s2∈S2

(
q − j

q−j−s2

2

) cos{s2mϕ} sin{ϕ} dϕ, (37)

where the substitution s1 = 2p is made in the first sum, s2 = 2p in the second sum and S1

is the set of even integers from 2 to j while S2 is the set of even integers from 2 to q− j. By

similar calculations it follows from Eq. (36) that Eq. (37) is true for all q and j ≤ q, with

odd integers from 1 to j in the set S1 if j is odd, and similarly odd integers in the set S2 if

q − j is odd. F q
Y can now be expressed as

F q
Y =

κ

2 q−2






q∑

j=0

(
q

j
) ∆j

R ∆q−j
S

∫ 2π

0

∑

s1∈S1

(
j

j−s1

2

) cos{s1 n (ϕ − Ω τ)}

∑

s2∈S2

(
q − j

q−j−s2

2

) cos{s2mϕ} sin{ϕ} dϕ
}

. (38)

From Eq. (38) it can be seen that the following is true;

(i) The terms in the integral corresponding to s1 and s2 can be found in F q−2
Y if s1 and s2

satisfies j − s1 + (q − j) − s2 = 2.

(ii) If ∆R and ∆S are small enough, the terms in F q−2
Y will dominate the corresponding

terms in F q
Y since then ∆i

R >> ∆î
R if î > i and the same is true for ∆S.

(iii) The reasoning in (i) holds with j−s1 + q− j−s2 = 2 replaced by j−s1 + q− j−s2 = p

and F q−2
Y replaced by F q−p

Y when p = 2, 4, 6, . . . and p < q.

11
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From (i) − (iii) above it is concluded that all terms in the integral in Eq. (38) except the

terms corresponding to s1 = j and s2 = q − j can be neglected. Hence,

F q
Y ≈ κ

2 q−2






q∑

j=0

(
q

j
) ∆j

R ∆q−j
S

∫ 2π

0

cos{jn(ϕ − Ω τ)} cos{(q − j)mϕ} sin{ϕ} dϕ.






(39)

The integral in (39) can be simplified further. Properties of the trigonometric functions give
∫ 2π

0

cos{j n(ϕ − Ω τ)} cos{(q − j)mϕ} sin{ϕ} dϕ

= sin{j nΩ τ}
∫ 2π

0

sin{j nϕ} cos{(q − j)mϕ} sin{ϕ} dϕ

= sin{j nΩ τ}
∫ 2π

0

1

4

(

cos{(j n − (q − j)m − 1)ϕ} − cos{(j n − (q − j)m + 1)ϕ}

+ cos{(j n + (q − j)m − 1)ϕ} − cos{(j n + (q − j)m + 1)ϕ}
)

dϕ

= sin{j nΩ τ} π Γ q,j

2
. (40)

In Eq. (40), Γq,j is defined for 1 ≤ q, 0 ≤ j ≤ q according to

Γ1,j =





2, if max(m, n) = 1

0, otherwise,
(41)

and for q ≥ 2,

Γ q,j =





∓ 1, if (q − j)m − j n = ± 1

0, otherwise.
(42)

Recall that κ = km (q + 1)/(2 π k). From Eqs. (39) and (40) F q
Y can be written as

F q
Y ≈ (q + 1) km

2 q k

q∑

j=0

(
q

j
) ∆j

R ∆q−j
S sin{j nΩ τ}Γq,j, (43)

where Γ q,j is given by Eqs. (41) and (42). Applying the same procedure for FX yields

F q
X ≈ (q + 1) km

2 q k

q∑

j=0

(
q

j
) ∆j

R ∆q−j
S cos{j nΩ τ} |Γq,j |. (44)

Let Θ̂ be the average value of the angular frequency of the UMP. Define

ψ =
Θ̂

Ω
, (45)

then Eqs. (43) and (44) prove the following theorem about the UMP.

12
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Theorem V.1 Consider a generator for which the perturbations of shape are small enough

and for which inequality (33) is satisfied for q = 1, 2, . . . , q′. Then assumption (32) is

reasonable and it follows that for deviations of shape with mn-combinations on the lines

(q − j)m − j n = ± 1,

where q = 1, 2, . . . , q′ and j = 0, 1, . . . , q, the UMP has the following properties;

(i) The average angular frequency satisfies ψ = ∓ j n.

(ii) The amplitude will be proportional to ∆j
R ∆q−j

S .

(iii) For mn-combinations outside the lines for all q, the UMP is zero.

The last statement was also shown by Lundström and Aidanpää in [8]. They showed

that mn-combinations outside the lines for all q are the points in the mn-plane where it is

possible to find integers pn and pm such that

p =
n

pn

=
m

pm

≥ 2, p integer. (46)

To clarify the results from Theorem V.1, the average angular frequency divided by the

spinning frequency (ψ) is illustrated in Table II for m, n ∈ [1, 10].

The amplitude is illustrated for m, n ∈ [1, 10] including up to fifth order terms (q ≤ 5)

in Fig. 6. This can be compared with the simulated results shown in Fig. 5(a). Note from

Theorem V.1 that the amplitude is largest for q = 1, and decreases for increasing q.

VI. SIMULATIONS OF THE RESPONSE

In this section simulations of trajectories to system (18) are carried out using a forth order

Runge-Kutta method. The force integrals given by Eqs. (21) and (22) are solved numerically

at each time step by Simpson’s rule using 200 intervals. To avoid transients, over 100

periods of the UMP (period according to Theorem V.1) are simulated before plotting. The

initial condition is X = Y = X ′ = Y ′ = 0 through all simulations.Fig. 7 shows the

periodic attractors for 60 cases of shape perturbations. Four different magnitudes of shape

perturbation are considered for each of the 15 mn-combinations. Since eccentricities (m = 1

13
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or n = 1) give a considerably larger UMP than other cases, smaller perturbations are chosen

for the eccentricities. By assuming

fx (x, y, t) = km x + hx, fy (x, y, t) = km y + hy, (47)

where hx and hy are arbitrary functions independent of x and y, system (17) becomes

linear. This assumption is relevant since Eq. (15) has an almost linear behaviour in x for

x < 0.1 g0. By using the linear UMP given by Eq. (47) the damped natural frequency is

calculated according to

ωd =

√
k − km

γ
−
(
c

2 γ

)2

≈ 44.6 rad/s. (48)

The numerical values of k, km and γ can be found in Table I. The damping c is chosen to

give the damping ratio ζ = 0.1.

Fig. 8 shows the largest amplitude of the response of the rotor (max{
√
X2 + Y 2}) as

a function of spin frequency ω for four different mn-combinations at the same amount of

perturbation.

VII. DISCUSSION

In Section III, the UMP is derived according to the principle of virtual work. The generator

is treated as a continuum and the B-field is assumed according to Eq. 6. These are strong

simplifications, but are justified since there is a large number of poles in a hydropower

generator (the generator considered in this paper has 44 poles). Even if this way of finding

the UMP is a strong simplification, it is justified since more detailed models including

arbitrary disturbed air-gaps and giving analytically the UMP are not available today. Due

to this simple generator model, this work gives a guide for understanding the relation

between asymmetries in the rotor and complicated whirling motions, rather than an

attempt to imitate the behaviour of a special machine. Fig 4 in Section VA shows that

the mn-combination [m, n] = [1, 1] gives an alternating angular velocity Θ of the UMP

for the case ∆S
1 = 0.1, ∆R

1 = 0.05. When [m, n] = [1, 1], this occurs if ∆S
1 > ∆R

1 . This

is shown in Theorem V.1 when considering F 1
X and F 1

Y . The response in this case will be

a forward whirling orbit, having a periodicity equal to the spinning frequency, independent

on whether Θ is alternating or not. Fig. 7 in Section VI illustrates periodic attractors

14
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for 60 cases of shape perturbations. In all cases, a comparison to Theorem V.1 gives a

satisfactory result. To mention a few;

(i) All whirling frequencies satisfy Table II.

(ii) Attractors corresponding to m = 1 and n = 1 have a large amplitude, see Figs. 7 (a),

(b), (c), (d), (g), (j), (m).

(iii) The amplitudes are larger for attractors to geometries having an mn-combination on

the lines m − n = ± 1, i.e. in Figs. 7 (e), (h), (i), (k), (l), than amplitudes to attractors

in Figs. 7 (f), (n), (o).

(iv) In Figs. 7 (e), (h), (i), (k), (l) the amplitudes are nearly independent of whether ∆S
n or

∆R
n are larger, but in Fig. 7 (f), the case of larger ∆S

2 gives the largest amplitude, and in

Figs. 7 (n), (o), the case of a larger ∆R
n gives the largest amplitudes.

These simulations show that attractors behave according to the properties of the UMP

proved in Theorem V.1, and also point out that the results from the theorem are valid for

some cases of deviations in shape even if inequality (33) is not satisfied.

From Fig. 8, Section VI, it is shown that resonance occurs at different spinning frequencies

due to the shape perturbation considered. The reason is that for a certain mn-combination

of perturbation, the UMP has a corresponding angular frequency according to Theorem V.1.

Compare the result from the theorem to Fig. 8 and note from Eq. (48) that the damped

natural frequency, ωd ≈ 44.6 rad/s. Observe that the curve corresponding to [m, n] = [3, 2]

has two peaks.

The larger peak is explained in Theorem V.1 by considering second order terms (q = 2),

while the smaller peak is explained by considering third order terms (q = 3). See Fig. 5(a).

Note that lines corresponding to q = 2 intersect with lines corresponding to q = 3 at the

points [m, n] = [3, 2] and [2, 3]. At [m, n] = [3, 2], q = 2 gives Ψ = −2, while q = 3

gives Ψ = 4, hence, two peaks can occur, approximately at ω = 44.6 / 2, and ω = 44.6 / 4.

At [m, n] = [2, 3], q = 2 gives Ψ = 3, while q = 3 gives Ψ = −3, thus, one peak occurs

at approximately ω = 44.6 / 3.In this paper, deviations of shape are analysed of which one

15
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rotor perturbation parameter and one stator perturbation parameter are dominating. Other

perturbation parameters together with X and Y are assumed to be sufficiently small in order

to be neglected. Otherwise the problem will be to complicated and a general approach is

difficult.

VIII. CONCLUSIONS

Earlier measurements on large synchronous generators have indicated the existence of non-

symmetric geometries, which produce an attraction force between the rotor and the stator,

called Unbalanced Magnetic Pull (UMP). These non-symmetric geometries consists of rela-

tively large deviations of shape in both rotor and stator. In this paper, the amplitude and

the average angular frequency of the UMP due to generator shape are found analytically for

certain cases of deviations of shape. The results are proved mathematically and are presented

in Theorem V.1. These results explain that different whirling frequencies, backward as well

as forward whirling, can occur in large synchronous generators due to deviations in the gen-

erator shape. Simulations of trajectories using a Jeffcott rotor model show good agreement

between the whirling, amplitude of the response and the properties of the UMP given in

Theorem V.1. The resulting periodic solutions can be complicated for some geometries. See

Fig. 7 (h). In addition the simulations extends the result by pointing out that attractors

behave according to Theorem V.1 in a number of cases although the mathematical proof

does not apply. The results in this paper clarifies which whirling motion and amplitude can

be expected in a machine with a given deviation of shape. Since the angular frequency of the

UMP is dependent of the deviations in shape, different spin frequencies can give resonance.

See Fig. 8. Since UMP can cause large vibrations in hydropower generators which in turn

can cause damage to the machine, the shape of the rotor and stator is frequently measured

during maintenance. The results from this paper can be used to evaluate such measurements

and also provide guidance on which tolerances that are of greater importance than others,

when constructing new machines.
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TABLE I: Numerical values from the 18 MW hydropower generator.

s0 Average stator inner radius 2.775 m

l0 Length of the rotor core 1.18 m

g0 Average radial air-gap length 0.0125 m

γ Mass of the rotor 98165 kg

k Shaft stiffness 3.456 · 108 N/m

ω Rotor rotation speed 14.2 rad/s

km Magnetic stiffness 1.4715 · 108 N/m

µ0 Permeability of air 4π · 10−7 Vs/Am

Number of poles 44

TABLE II: ψ for m, n ∈ [1, 10]. Locations where the UMP is zero are indicated with X.

m\n 1 2 3 4 5 6 7 8 9 10

1 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10

2 +1 X +3 X +5 X +7 X +9 X

3 +1 -2 X +4 -5 X +7 -8 X +10

4 +1 X -3 X +5 X -7 X +9 X

5 +1 -4 +6 -4 X +6 -14 +16 -9 X

6 +1 X X X -5 X +7 X X X

7 +1 -6 -6 +8 +15 -6 X +8 -27 -20

8 +1 X +9 X -15 X -7 X +9 X

9 +1 -8 X -8 +10 X +28 -8 X +10

10 +1 X -9 X X X +21 X -9 X
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FIG. 1: The generator model.

FIG. 2: The shape of the rotor for δr
n = r0/3, n = 1, 2, 3, 4.
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FIG. 3: The volume element dV .
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FIG. 4: The angular frequency ratio Θ /Ω for ∆S
m = 0.05, ∆R

n = 0.1 (dashed) and ∆S
m =

0.1, ∆R
n = 0.05 (solid). Three mn-combinations are considered, [m,n] = [2, 3] (positive), [3, 2]

(negative) and [1, 1] (alternating).
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n = 0.3.
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> 0,

∆R
9
> 0.

FIG. 5: The amplitude of the UMP.
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FIG. 6: Amplitude of the UMP in the mn-plane for m, n ∈ [0, 10]. The points with nonzero terms

from F q
X and F q

Y is marked according to; q = 1 (⋆), q = 2 (�), q = 3 (H), q = 4 (•) and

q = 5 (∗).
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FIG. 7: Periodic attractors for the shape perturbations (∆R
n [∆R

1 ], ∆S
m[∆S

1 ]) =

(0.05[0.025], 0.05[0.025]) (solid), (0.1[0.05], 0.1[0.05]) (dashed), (0.05[0.025], 0.25[0.1]) (dash-dot)

and (0.25[0.1], 0.05[0.025]) (dotted). In each subfigure, the mn-combination and the correspond-

ing whirling is given by the notation (m,n), ψ.
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