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Numerical approximation for
a nonlinear membrane problem

Nabil Kerdid∗ Hervé Le Dret† ‡ Abdelkader Saïdi§

Abstract

We present a numerical study of large deformations of nonlinearly elas-
tic membranes. We consider the nonlinear membrane model obtained by
H. Le Dret and A. Raoult using Γ-convergence, in the case of a Saint Venant-
Kirchhoff bulk material. We consider conforming P1 and Q1 finite element
approximations of the membrane problem and use a nonlinear conjugate
gradient algorithm to minimize the discrete energy. We present numerical
tests including membranes subjected to live pressure loads.

Keywords: Nonlinear elasticity, Membranes/thin films, Finite element
approximation

1 INTRODUCTION
The purpose of this article is to devise numerical approximations of large defor-
mations of a nonlinearly elastic membrane. The nonlinear membrane model used
here was obtained in [13], with refinements in [16]. The relevance of this model
stems from the fact that it was derived from three-dimensional nonlinear elasticity
by means of a rigorous convergence method. Similar nonlinear membrane models
had already been obtained previously by Pipkin, directly in the context of standard
two-dimensional membrane theory and using relaxation, see [19].

Our numerical study of the nonlinear membrane model is made possible due
to the explicit formula for the nonlinear membrane energy given in [13] in the
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case of the Saint Venant-Kirchhoff bulk material. For a general bulk material, an
explicit computation of the corresponding nonlinear membrane energy entails the
determination of the quasiconvex envelope of a function defined on the space of
3×2 matrices, a hopeless task as a general rule.

The work of [13] was motivated by [1], the first article to deal with a genuine
dimension reduction in nonlinear elasticity via a mathematical convergence result
in the case of nonlinearly elastic strings. It was followed in recent years by many,
sometimes highly technical developments, including derivations of inextensional
bending models and Von Kármán type models, see [7, 8, 9], among others. We
are not however aware of the energies found in [13, 16] ever being used in a nu-
merical context, even though there are many numerical works on membranes and
thin films, see [2, 10] for numerical studies of Pipkin’s model using a differen-
tial equation approach, including the case of a pressurized membrane [22], see
also more or less ad hoc models designed for simplicity or efficiency, for instance
in [6, 17, 18]. The modeling and numerical simulation of nonlinear membranes
is also attracting increasing interest for materials with more sophisticated mate-
rial response than just nonlinear elasticity, see [23] for finite strain, viscoelastic
membranes.

One purpose of the present article is to advocate the use of a rigorously derived
membrane energy to perform computations that are grounded on an indisputable
three-dimensional model and are still efficient. Naturally, we then have to work
with what is given by the asymptotic dimensional reduction procedure, and not
with an ad hoc energy. This involves a little bit of mathematics, which needs to be
carefully done, see section 3 below.

This article is organized as follows: We first briefly present the results of [13]
and [16]. We consider a three-dimensional hyperelastic homogeneous cylinder
of thickness 2ε > 0 made of a given Saint Venant-Kirchhoff material. The body
is subjected to a dead loading body force density and a constant pressure differ-
ential on its upper and lower surfaces, and a boundary condition of place on its
lateral surface. The three-dimensional nonlinear elasticity equilibrium problem is
formulated as a minimization problem for the total energy of the body.

Using Γ-convergence arguments, H. Le Dret and A. Raoult showed that defor-
mations that almost minimize the three-dimensional total energy converge when
the thickness ε of the body goes to zero towards deformations that minimize a
nonlinear membrane energy, see [13]. The convergence takes place in a rescaled
weak W 1,p sense. The limit problem is two-dimensional, with values in R3.

The limit two-dimensional nonlinear membrane energy is computed in two
steps: First minimize the bulk stored energy function with respect to the third
column vector of the deformation gradient—this step produces a function W0 on
the space of 3× 2 matrices—then take the quasiconvex envelope of W0. In the
special case of a Saint Venant-Kirchhoff material, an explicit formula for this
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quasiconvex envelope QW0 is available. This formula is expressed in terms of the
right singular values of the membrane deformation. In [16], in addition to the case
of curved membranes, the zero-thickness limit of a constant live pressure loading
term is also computed.

In section 3, we present a conforming finite element approximation of the
membrane problem. We consider P1 and Q1 discretizations of the three Cartesian
components of the deformation. In the P1 case, deformations are approximated by
piecewise affine, globally continuous functions on a triangulation of the domain.
In the Q1 case, which is appropriate for rectangular membranes, a rectangular
mesh is used with globally continuous approximations that are piecewise of partial
degree less or equal to one on the rectangular elements. We prove the weak-W 1,4

convergence of the approximate solutions toward a solution of the continuous
minimization problem.

The choice of available numerical methods to solve our FE problem is rather
limited since the problem under study is highly nonlinear and the membrane stored
energy function is only of class C1. Consequently, a method relying on second
derivatives of the total energy such as the Newton-Raphson method cannot be
appropriate. On the contrary, the nonlinear conjugate gradient method with the
Polak and Ribière variant seems to be well adapted to our problem. The conver-
gence of the algorithm is guaranteed for a convex functional, which is only the
case here when the pressure differential is zero. There is however a slight diffi-
culty in computing the gradient of the stored energy function. We adapted Ball’s
results concerning the differentiability of frame-indifferent, isotropic functions on
the space of n×n square matrices, see [4].

In section 4, we present various numerical tests. Both P1 and Q1 elements are
alternatively used. The first test is a circular membrane subjected to an upward
pressure differential and clamped on its boundary. It should be noted that in our
formulation, there as absolutely no need to track the deformed normal vector in
order to take into account the live loading pressure differential. This is exem-
plified by the bubble-like deformation computed in this test which bulges out of
the supporting circle. Note again that we have not seen our formulation of the
pressure term used in a numerical context.

Next, we perform a few tests taken from [21]: a rectangular airbag inflated
by an inner pressure and a square membrane attached by its four corners and
subjected to a vertical point force applied at its center. As opposed to [21], our
model cannot capture wrinkles in detail, because wrinkles are filtered out in the
Γ-limit process, which in turn leads to a well-posed limit minimization problem.
Such is the nature of weak convergence. However, wrinkled regions are captured.
They are the membrane areas where the deformation gradient lies a region of
3× 2 space where relaxation occurs, i.e., the quasiconvex envelope is such that
QW0 < W0. This occurs in compression when at least one of the singular values is
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less than 1 and the other one is not too large, see [13] for details.
The last two tests are in the context of the modeling of fabrics. The first test is a

square piece of fabric attached at its center and subjected to a vertical dead loading
body force and the second is a tablecloth with no displacement allowed on the
table surface. The obtained deformations develop folds and conical points where
the normal vector is ill-defined, but this is of no consequence for our handling of
the live pressure term.

Part of the results of this article concerning P1 elements and without pressure
differential were announced in [12].

2 THE CONTINUOUS PROBLEM
Let us briefly outline the results of [13] and [16], to which we refer the reader for
more details. Let ω be an open, bounded subset of R2 with Lipschitz boundary.
For all ε > 0, we consider a hyperelastic homogeneous body occupying the refer-
ence configuration Ωε = ω× ]−ε,ε[. We assume that the stored energy function
of this body is a function W : M3 → R which is continuous, coercive and satis-
fies growth conditions for an exponent p ∈ ]3,+∞[, where M3 is the space of real
3×3 matrices. We furthermore assume that the body is subjected to a dead load-
ing body force density f and to a constant pressure differential ε∆p on its upper
and lower surfaces, which is a live load, that is to say a spatially constant pressure
p+

ε on the upper surface and another spatially constant pressure p−ε on the lower
surface such that p+

ε − p−ε = ε∆p. The equilibrium problem for this body may be
formulated as a minimization problem for the energy

Jε(φ) =
∫

Ωε

W (∇φ)dx−
∫

Ωε

fε ·φ dx−Pε(φ), (1)

where
Pε(φ) =

∫
Ωε

[
πε det∇φ +

1
3

∇πε · (cof∇φ
T

φ)
]
dx, (2)

over a set of admissible deformations φ belonging to an appropriate Sobolev space
and satisfying given boundary conditions of place on part of the lateral boundary.
Here, πε is a C1-function on Ω̄ε that takes the values p±ε on the upper and lower
surfaces. The term Pε appearing in the energy accounts for the pressure load, see
[3]. Note that this term incorporates the fact that a pressure load is a live load that
follows the normal vector to the deformed body, without having to keep track of
this normal vector. Dead loading tractions on the upper, lower and lateral surfaces
can also easily be added as well as boundary conditions of place on part of the
boundary.
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In [13] and [16], see the latter for the pressure term, Le Dret and Raoult proved
that a rescaled version of the above three-dimensional energy Γ-converges when
the thickness 2ε of the membrane goes to zero in the sense of the weak topology
of W 1,p(Ω;R3), thereby showing that minimizing deformations converge, in an
appropriate sense, toward solutions of a two-dimensional minimization problem.
The limit, two-dimensional nonlinear membrane problem is described as follows.

Let M3,2 be the space of real 3×2 matrices. If zα ,α = 1,2, are two vectors in
R3, we note (z1|z2) the matrix of M3,2 whose columns are the vectors zα . For all
F = (z1|z2) ∈M3,2 and z ∈ R3, we note (F |z) the matrix whose first two columns
are zα , and third column is z and write (z|F) with a similar convention. We now
define a function W0 : M3,2→ R by

W0(F) = inf
z∈R3

W ((F |z)). (3)

The function W0 is continuous and coercive. Let QW0 be its quasiconvex envelope,
see [5]. We introduce the space of admissible membrane displacements

ΦM =
{

ψ ∈W 1,p(ω;R3);ψ(x1,x2) = (x1,x2,0)T on ∂ω
}
, (4)

(this is for the case of a boundary condition of place on the whole lateral surface
∂ω× ]−ε,ε[ in the 3D problem, other conditions are enforced accordingly).

The limit nonlinear membrane energy is then defined by

J(ψ)= 2
∫

ω

QW0(∇ψ)dx1dx2−
∫

ω

f ·ψ dx1dx2−
∆p
3

∫
ω

det(∂1ψ|∂2ψ|ψ)dx1dx2,

(5)
for all ψ ∈ΦM, where f is a 2D-body force resultant density obtained from fε .

The limit minimization problem now reads: Find ϕ ∈ΦM such that

J(ϕ) = inf
ψ∈ΦM

J(ψ). (6)

The energy functional J is obtained via a Γ-limit process and existence of a
solution to problem (6) is guaranteed under reasonable technical assumptions, see
[13] and [16].

In general, it is not possible to compute explicitly the quasiconvex envelope
of a given function W0. Hence, generically with respect to the bulk material, it
is not possible to perform numerical computations using this model. However, in
the special case of a Saint Venant-Kirchhoff material, the quasiconvex envelope
QW0 was computed in [13]. Let us recall that the stored energy function of a Saint
Venant-Kirchhoff material assumes the form

W (F) =
µ

4
tr((FT F− I3)2)+

λ

8
(tr(FT F− I3))2,

5
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where µ > 0 and λ ≥ 0 are the Lamé constants of the material (here F is a 3×3
matrix and In is the n×n identity matrix). The Saint Venant-Kirchhoff energy is
the simplest possible frame-indifferent and isotropic nonlinearly elastic stored en-
ergy function with a natural state at the identity. It is well suited to the description
of the large deflections that are observed in thin membranes.

The intermediate function W0 is given by

W0(F)=
µ

4
tr((FT F−I2)2)+

λ µ

4(λ +2µ)
h(F)2+

1
8(λ +2µ)

(
[λh(F)−(λ +2µ)]+

)2
,

with h(F) = tr(FT F − I2) (here F is a 3× 2 matrix, thus FT F is 2× 2) and t+
denotes the positive part of t. Finally, the quasiconvex envelope QW0 is expressed
in terms of the right singular values 0≤ v1(F)≤ v2(F) of F (i.e. the eigenvalues
of
√

FT F) as

QW0(F) = Φ(v1(F),v2(F))
= E

8

(
[v2(F)2−1]+

)2

+ E
8(1−ν2)

(
[v1(F)2 +νv2(F)2− (1+ν)]+

)2

+ E
8(1−ν2)(1−2ν)

(
[ν(v1(F)2 + v2(F)2)− (1+ν)]+

)2
,

(7)

where E = µ(3λ+2µ)
λ+µ

is the Young modulus and ν = λ

2(µ+λ ) the Poisson ratio of the
Saint Venant-Kirchhoff material under consideration, see [13] and [15]. It turns
out that the function QW0 is convex on M3,2, therefore the quasiconvex envelope
of W0 is also its convex envelope in this case.

In the case of the Saint Venant-Kirchhoff material, we thus have a completely
explicit expression of the membrane energy that is rigorously derived from three-
dimensional nonlinear elasticity by means of a convergence result. The pressure
term

P(ψ) =
∆p
3

∫
ω

det(∂1ψ|∂2ψ|ψ)dx1dx2

also incorporates the fact that we are dealing with a live load that follows the
normal to the deformed surface, see [16]. This feature is be very advantageous for
numerical simulations since the deformed normal vector does not explicitly enter
this formula. There thus is no need to recalculate this vector at each step of the
approximation procedure, as opposed to [21] for example.

3 THE DISCRETE PROBLEM

3.1 Finite element discretization
We use P1 and Q1 discretizations. Let us describe the P1 case since the Q1 case is
entirely similar at this stage. Let τh be a regular affine family of triangulations

6
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covering the domain ω . We discretize the three Cartesian components of the
deformation using continuous P1 finite elements. The discrete space of admissible
displacements is given by

Φ
h
M =

{
ψh ∈C0(ω̄;R3),ψh(x1,x2) = (x1,x2,0)T on ∂ω,ψh|K ∈ (P1)3;∀K ∈ τh

}
.

(8)
We clearly have Φh

M ⊂ΦM and the approximation is conforming.
We approximate the continuous problem as follows: Find φh ∈Φh

M such that

J(φh) = inf
ψh∈Φh

M

J(ψh). (9)

This is a convergent approximation scheme in the following sense.

Proposition 3.1 The weak limit points of the sequence φh in W 1,4 are minimizers
of problem (6).

Proof. We first show that the functional J is sequentially weakly lower semicon-
tinuous on W 1,4(ω;R3). The first two terms

J(ψ)−P(ψ) = 2
∫

ω

QW0(∇ψ)dx1dx2−
∫

ω

f ·ψ dx1dx2

combine to form a convex, strongly continuous functional, hence weakly lower
semicontinuous functional on the space W 1,4(ω;R3). For the pressure term, we
observe that the components of the vector ∂1ψ ∧∂2ψ are null Lagrangians. Since
we are in dimension 2, it is well-known that the mapping ψ 7→ ∂1ψ ∧ ∂2ψ is se-
quentially weakly continuous from
W 1,4(ω;R3) into L2(ω;R3)), see e.g. [3]. Let us consider a weakly convergent
sequence ψk ⇀ ψ in W 1,4(ω;R3). By Rellich’s theorem, we have that ψk→ ψ in
L2(ω;R3) and since det((u|v|w)) = (u∧ v) ·w, it clearly follows that

P(ψk) =
∆p
3

∫
ω

(∂1ψk∧∂2ψk) ·ψk dx1dx2→ P(ψ),

when k→+∞.
Since the functional J is coercive over ΦM, it follows that the sequence φh is

bounded. Let h′ be a subsequence such that φh′ converges weakly in W 1,4(ω;R3)
to a limit point φ .

Let us now take ψ ∈ΦM. Since the triangulation family is regular, there exists
a sequence ψh′ ∈Φh′

M such that ψh′ → ψ strongly in W 1,4(ω;R3). Therefore

J(φ)≤ liminf
h′→0

J(φh′)≤ lim
h′→0

J(ψh′) = J(ψ),

hence the result. �
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Remark 1 By the Rellich-Sobolev embeddings, we also have strong convergence
in C0,α(ω̄;R3) for all α < 1/2. However, even if ∆p = 0 and the functional J
is convex, it is not strictly convex. Therefore, we cannot deduce strong W 1,4

convergence in general, nor any convergence rate.
Note also that the above weak convergence holds true in W 1,p, not only for

the Saint Venant-Kirchhoff material, but for a general material satisfying the hy-
potheses of [13] with p > 3, since quasiconvexity is sufficient to ensure the weak
lower semicontinuity of the elastic term in the energy. Besides, the weak lower
semicontinuity result can also essentially be viewed as a consequence of the Γ-
convergence result. �

3.2 The Polak-Ribière nonlinear conjugate gradient algorithm
The boundary value problem underlying problem (6) is highly nonlinear and so
is its finite element counterpart. In order to perform numerical computations, we
thus need a nonlinear method. The Newton-Raphson method requires the Hessian
of J on Φh

M, but the function QW0 is not of class C2. Therefore, this method, or
any method relying on second derivatives of J, is not appropriate. Furthermore,
the problem is naturally set as an energy minimization problem. We thus use the
nonlinear conjugate gradient method with the Polak and Ribière variant, see [20],
which gives the best results. Let us recall that the conjugate gradient algorithm at
the kth iteration is given by:

ψ
k+1
h = ψk

h −ρkdk,
dk = ∇J(ψk

h)−β k−1dk−1,

β k = − [∇J(ψk+1
h )−∇J(ψk

h)]·∇J(ψk+1
h )

‖∇J(ψk
h)‖ ,

ρk = dk·∇J(ψk
h)

‖dk‖2 .

(10)

Note that the limit membrane energy J is convex for ∆p = 0 in which case the
conjugate gradient iterations converge to a global minimum. It is not necessarily
convex for ∆p 6= 0, and the nonlinear conjugate gradient may conceivably get
trapped at a local minimum.

Even though the method itself is easy to use, the computation of ∇J(ψh) en-
tails some difficulties. Indeed, since QW0 is a frame-indifferent, isotropic function
defined on M3,2 via the right singular values of its argument, viz. formula (7), the
computation of ∂ (QW0)

∂F , which is a 3×2 matrix, requires an adaptation of known
results on the differentiation of frame-indifferent, isotropic functions on the space
of square matrices Mn, see [4].

8
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3.3 Computation of the gradient of J

Let (λ j) j=1,...,Nh be the components of ψh in the shape function basis (Θ j) j=1,...,Nh

of our P1 or Q1 finite element space. We clearly have

∂J
∂λ j

(ψh) =
∫

ω

∂ (QW0)
∂F

(∇ψh) : ∇Θ j dx1dx2−
∫

ω

f ·Θ j dx1dx2

− ∆p
3

∫
ω

[
λkλl det((∂1Θ j|∂2Θk|Θl))

+λiλl det((∂1Θi|∂2Θ j|Θl))

+λiλk det((∂1Θi|∂2Θk|Θ j))
]
dx1dx2, (11)

for j = 1, . . . ,Nh, where A : B = tr(AT B) denotes the standard dot product on M3,2.
We compute the 3×2 matrix ∂ (QW0)

∂F (∇ψh) via the following lemma.

Lemma 3.2 The matrix ∂ (QW0)
∂F (F) has the following explicit form:

∂ (QW0)
∂F

(F) = R

 0 0
∂1Φ(v1(F),v2(F)) 0

0 ∂2Φ(v1(F),v2(F))

S, (12)

where (v1(F),v2(F)) are the right singular values of the matrix F, R ∈ O(3) and
S ∈ O(2) are orthogonal matrices such that RT diagonalizes FFT ∈M3 and S
diagonalizes FT F ∈M2 both with eigenvalues in increasing order, and Φ is given
by formula (7).

Proof. Let us first recall the differentiation result of [4]. Let Z : Mn → R be a
function such that Z(RFS) = Z(F) for all R,S ∈ O(n). It is known that there
exists a symmetric function Ψ : Rn

+ → R such that Z(F) = Ψ(v1(F), . . . ,vn(F))
where (vi(F))i=1,...,n are the singular values of F . In [4], Ball showed that Z is of
class C1 if and only if Ψ is of class C1. It is an easy consequence of Ball’s results
that in this case,

∂Z
∂F

(F) = Rdiag
(
∂1Ψ(v1(F), . . . ,vn(F)), . . . ,∂nΨ(v1(F), . . . ,vn(F))

)
S,

where R,S ∈O(n) are orthogonal matrices occurring in the singular value decom-
position of F = Rdiag(v1(F), . . . ,vn(F))S with 0≤ v1(F)≤ ·· · ≤ vn(F). Indeed,
for any couple of orthogonal matrices R and S, if we let ZR,S(F) = Z(RFS) and
differentiate, we obtain that

∂ZR,S

∂F
(F) = R

∂Z
∂F

(RFS)S =
∂Z
∂F

(F),

9
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hence the result by choosing the right orthogonal matrices.
We now recall a few simple facts about the singular value decomposition. By

the polar factorization lemma, any F ∈Mn can be written as F = QU =V Q, where
U =

√
FT F and V =

√
FFT are symmetric, positive and Q ∈O(n). The symmet-

ric matrices U and V are unique, the orthogonal matrix Q is unique if detF 6= 0, it
is nonunique otherwise. Let S ∈O(n) be such that U = ST diag(vi(F))S. Then we
have F = (QST )diag(vi(F))S, hence a characterization of the orthogonal matrix
S to the right of the singular value decomposition of F as a matrix that diago-
nalizes FT F . Similarly, the orthogonal matrix R to the left of the singular value
decomposition of F is a matrix whose transpose diagonalizes FFT , and we have
the relation R = QST . Furthermore, we can always choose these matrices in such
a way that the singular values are arranged in increasing order.

Let us go back to the case at hand. Let F be a 3×2 matrix. It was established
in [14] that QW0(F) = QW ((F |0)), where QW is the quasiconvex envelope of the
Saint Venant-Kirchhoff energy density itself. Since this energy is left and right
invariant by O(3), we also have

QW0(F) = QW ((0|F)), (13)

Therefore, it follows that the column vectors satisfy[
∂ (QW0)

∂F
(F)
]

α
=
[

∂ (QW )
∂G

((0|F))
]
(1+α)

, (14)

for α = 1,2.
By [14], we have an explicit representation of the quasiconvex envelope of the

Saint Venant-Kirchhoff density of the form QW (z|F) = Ψ(v(z|F)) with Ψ : R3
+→

R. Now, by the general result of [4], it follows that

∂ (QW )
∂G

((0|F)) = Rdiag
(
∂1Ψ(0,v1(F),v2(F)), . . . ,∂3Ψ(0,v1(F),v2(F))

)
S̄,

(15)
where RT , S̄ ∈ O(3) respectively diagonalize (0|F)(0|F)T and (0|F)T (0|F), with
the requisite order for the singular values. Now we clearly have

(0|F)(0|F)T = FFT and (0|F)T (0|F) =
(

0 0
0 FT F

)
.

Therefore, if S ∈O(2) diagonalizes FT F with the eigenvalues in increasing order,
it follows that

S̄ =
(

1 0
0 S

)
,

since 0 is an eigenvalue of the 3×3 matrix (0|F)T (0|F).
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Now, we just have to identify the last two column vectors in formula (15).
This is easy since

∂ (QW )
∂G

= R

 ∂1Ψ 0 0
0 ∂2Ψ 0
0 0 ∂3Ψ

( 1 0
0 S

)

= R

 ∂1Ψ 0

0
(

∂2Ψ 0
0 ∂3Ψ

)
S


= R

 ∂1Ψ

0
0

 0 0
∂2Ψ 0

0 ∂3Ψ

S

 .

The conclusion follows from the fact that Ψ(0,v1,v2) = Φ(v1,v2) for all 0≤ v1 ≤
v2, see [14]. �

Remark 2 The expressions of ∂1Φ(v1,v2) and ∂2Φ(v1,v2) are given by

∂1Φ(v1,v2) =
E

2(1−ν2)
v1[v2

1 +νv2
2− (1+ν)]+

+
Eν

2(1−ν2)(1−2ν)
v1[ν(v2

1 + v2
2)− (1+ν)]+

and

∂2Φ(v1,v2) =
E
2

v2[v2
2−1]+ +

Eν

2(1−ν2)
v2[v2

1 +νv2
2− (1+ν)]+

+
Eν

2(1−ν2)(1−2ν)
v2[ν(v2

1 + v2
2)− (1+ν)]+

for all 0 ≤ v1 ≤ v2, in view of formula (7). Consequently, to compute the part of
the gradient pertaining to QW0, we only need to compute the two singular values,
which entails solving a second degree equation, and a couple of corresponding
orthogonal matrices. �

4 NUMERICAL TESTS
Note that in the P1 case, deformation gradients are constant element-wise. Hence
the contributions of QW0 to the energy and its gradient are computed exactly.
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However, both dead loading and pressure terms require numerical integration in
the P1 as well as Q1 cases. In particular, in the Q1 case, the singular values and
orthogonal matrices must be evaluated at Gauss points in each element.

In order to understand the limit model (5) in terms of actual membrane param-
eters, it should be emphasized that (5) is a rescaled, zero-thickness limit model.
In particular, it does not involve the actual nonzero thickness of a given mem-
brane of interest. For instance, the pressure differential ∆p stands for the limit of
ε−1∆pε when ε goes to zero, where ∆pε is the actual pressure differential and ε

the half-thickness of the membrane. Likewise, body force resultants are rescaled
limits.

Now there are infinitely many different ways of embedding an actual nonzero
thickness membrane into a family of membranes with vanishing thickness. We can
however agree that such a sequence should be made of the same bulk material,
hence have material coefficients that are independent of ε , as we have done in
the asymptotic analysis. In this context, the computed results for a limit pressure
differential ∆p of 1.0e+9 as in the first test below, correspond to an actual pressure
differential of 50kPa for a 0.1mm thick membrane, and so forth. We will only
give the rescaled values below, unless otherwise specified.

Let us first present P1 tests. The first test (Figure 1) is a circular membrane
subjected to an upward pressure differential and clamped on its boundary. A
bubble-like deformation is thus created and it is apparent that the live loading
character of the pressure is well taken into account, without having to explicitly
track the deformed normal vectors.
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Figure 1. Circular membrane with Young modulus E = 2.7e+2 MPa and Poisson
ratio ν = 0.4, corresponding to an elastomer, (rescaled) pressure differential

∆p = 1.0 GPa, zero dead loading body force, 3,243 degrees of freedom.

The convergence of the algorithm is as follows
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Figure 2. Gradient norm/initial gradient norm ratio plotted against iteration
number.

Our second P1 test is an airbag: a pillow-like structure subjected to an outward
pressure differential that inflates it. To compute it, we use two equal square refer-
ence domains corresponding to the upper and lower parts of the airbag, with the
condition that horizontal displacements agree and vertical displacements vanish
on their common boundary.
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Figure 3. P1 airbag, same mechanical data except pressure differential
∆p = 1.0e+7, 5,046 degrees of freedom.
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Figure 4. Gradient norm/initial gradient norm ratio plotted against iteration
number.

It is instructive to compare this test with the corresponding one in [21]. Be-
cause of the relaxed nature of the membrane energy we use, there is no need for
a special treatment of the areas located near the middle of the airbag sides, where
wrinkling occurs. Such wrinkling is smoothed out by the Γ-limit process, as a
result of weak convergence. On the other hand, we do not capture wrinkle de-
tails. However, our model can predict wrinkled areas which correspond to areas
where the deformation gradient lies in the subset of M3,2 in which the energy is
relaxed. See [13] for a description of this subset in terms of the singular values of
the deformation gradient.

Let us now show the results of a few Q1 tests. First is the same airbag as
before.
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Figure 5. Q1 airbag.
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We next compute again the same airbag, with an added point force f1 = f2 = 0
and f3 =−1.0e+9, slightly off-center on the top surface.
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Figure 6. Q1 airbag with point force.

Back to P1-tests, a square membrane attached by its four corners and subjected
to a vertical point force applied at the center.
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0

Figure 7. Square membrane, with E = 2.1e+8, ν = 0.25 and central point force
f1 = f2 = 0 and f3 =−1.0e+10.

Our next tests are in the context of the modeling of fabrics. We take values for
the Young modulus E = 2,500 Pa and Poisson ratio ν = 0.01 that are characteristic
of cotton fabric, see [11]. These values are rescaled with respect to the thickness
since the bulk Young modulus of cotton is of the order of 8 GPa.
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In Figure 6, we consider a square piece of fabric attached at its center and sub-
jected to a vertical dead loading body force f3 =−1,000, slightly counterbalanced
by an upward pressure differential ∆p = 100. The lateral sides are hanging free.
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Figure 8. Q1 square piece of fabric.

Our last test is a tablecloth. The material constants and applied forces are
the same as above, and the displacement is set to zero on the center square that
represents the table, i.e., the fabric is not allowed to slide across the table like an
actual tablecloth.
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Figure 9. Q1 tablecloth.
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