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Abstract: An analysis is carried out to study the unsteady magnetohydrodynamic
(MHD) two-dimensional boundary layer flow of a second grade viscoelastic fluid over an
oscillatory stretching surface. The flow is induced due to an infinite elastic sheet which is
stretched back and forth in its own plane. For the investigated problem, the governing equa-
tions are reduced to a non-linear partial differential equation by means of similarity trans-
formations. This equation is solved both by a newly developed analytic technique, namely
homotopy analysis method (HAM) and by a numerical method employing the finite differ-
ence scheme, in which a coordinate transformation is employed to transform the semi-infinite
physical space to a bounded computational domain. The results obtained by means of both
methods are then compared and show an excellent agreement. The effects of various parame-
ters like visco-elastic parameter, the Hartman number and the relative frequency amplitude
of the oscillatory sheet to the stretching rate on the velocity field are graphically illustrated
and analyzed. The values of wall shear stress for these parameters are also tabulated and
discussed.

Keywords: Visco-elastic fluid, electrically conducting fluid, oscillatory stretching sheet,
HAM solution, numerical solution.

1 Introduction

Many fluids such as blood, dyes, yoghurt, ketchup, shampoo, paint, mud, clay coatings,
polymer melts, certain oils and greases etc. have complicated relations between stresses and
strains. Such fluids do not obey the Newton’s law of viscosity and are usually called non-
Newtonian fluids. The flows of such fluids occur in a wide range of practical applications and
have key importance in polymer devolatisation, bubble columns, fermentation, composite
processing, boiling, plastic foam processing, bubble absorption and many others. Therefore,
non-Newtonian fluids have attracted the attention of a large variety of researchers includ-
ing the interests of experimentalists and theoreticians like engineers, modelers, physicists,
computer scientists and mathematicians. However, as these fluids are in themselves varied
in nature, the constitutive equations which govern them are many taking account of the
variations of rheological properties. The model and hence, the arising equations, are much
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more complicated and of higher order than the well known Navier-Stokes equations. The
adherence boundary conditions are insufficient for the determinacy of unique solution. This
issue has been discussed in the excellent and fundamental studies [1 — 5]. Now the litera-
ture on the non-Newtonian fluids is extensive. Some recent contributions in this direction
are made in the investigations [6 — 16 and several refs. therein]. Furthermore, the boundary
layer flow caused by a moving continuous solid surface occurs in several engineering processes.
Specifically such flows encounter in aerodynamic extrusion of plastic sheets, wire drawing,
glass fiber and paper production, cooling of an infinite metallic plate and polymer processing
[17] . Sakiadis [18] attempted the first problem regarding boundary layer viscous flow over
a moving surface having constant velocity. Later this problem has been studied extensively
through various aspects. Very recent investigations relevant to this problem have been made
in the [19 — 23].

To the best of our information only Wang [24] discussed the viscous flow due to an
oscillatory stretching surface. Although oscillatory stretching sheet induces the present flow
but we also have a free stream velocity oscillating in time about a constant mean oscillatory
flow [25, 26]. Despite recent advances in non-Newtonian fluids, it is still of interest to develop
stretching flows involving non-Newtonian fluids. For example, no investigation is available
in the literature which deals with the oscillatory stretching flow of non-Newtonian fluids.
Therefore, in the present study we provide first such attempt for a second grade fluid (a
subclass of viscoelastic fluids). The contribution is divided into six sections. In section two,
mathematical formulation is developed. Section three contains the analytic solution of the
non-linear problem employing the homotopy analysis method [27, 28] . The homotopy analysis
method is a powerful technique that has been successfully applied to various non-linear
problems [29 — 44] . Numerical solution is presented in section four. Results and discussion
are given in section five. Section six synthesises the concluding remarks.

2 Flow analysis

We consider the unsteady two-dimensional magnetohydrodynamic (MHD) laminar flow of an
incompressible viscoelastic fluid (obeying second grade model) over an oscillatory stretching
sheet coinciding with the plane § = 0, the flow being confined to the semi-infinite space > 0.
The elastic sheet is stretched back and forth periodically with velocity u,, = bz sinwt (b is
the maximum stretching rate, T is the coordinate along the sheet and w is the frequency)
parallel to the Z-axis, as shown in Fig. 1. A constant magnetic field of strength By is
applied perpendicular to the stretching surface and the effect of the induced magnetic field is
neglected, which is a valid assumption on a laboratory scale under the assumption of small
magnetic Reynolds number. Under the usual boundary layer assumptions and in the absence
of pressure gradient, the unsteady basic boundary layer equations governing the MHD flow
of viscoelastic fluid are:
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Fig. 1. Geometry of the problem
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In the above equations (u,v) are the velocity components in (z, ) directions respectively, v
is the kinematic viscosity of fluid, p is the fluid density, ¢ is the electrical conductivity of the
fluid and kg is the visco-elastic parameter of the fluid

The appropriate boundary conditions of the problem are

U=1u, =bTsinwt, v=0 at =0, t>0, (3)
5}
u =0, a—;zo as  y— 00, (4)

in which both b and w have the dimension (time) . The second condition in (4) is the

augmented condition since the flow is in an unbounded domain, which has been discussed by
Garg and Rajagopal [45].

We assume w

= 7 (5)

which denotes the ratio of the oscillation frequency of the sheet to its stretching rate.
Any particle path on the sheet is

o 1
Z = Toexp |  cos wt | . (6)

The boundary conditions (3) and (4) suggest the following similarity transformations

Y= \/g?; T:tw; u:bjfy (va)a v = _\/V_bf (va)' (7)

Using the transformations (7), the continuity equation (1) is satisfied automatically and the
governing equation (2) becomes

SfyT + fy2 - ffyy + M2fy = fyyy + K (Sfyny + nyfyyy - fy2y - ffyyyy) ) (8)
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and the boundary conditions (3) and (4) are reduced to
fy(0,7)=sinT, f(0,7)=0, f,(00,7)=0 and f, (co,7)=0, (9)

in which M? = 0 B2 /bp is the Hartmann number or the magnetic parameter and K = bky/vp
is the non-dimensional visco-elastic parameter. Here K = 0 corresponds to the case of a
Newtonian fluid.
A physical quantity of interest is the skin-friction coefficient C, which is defined as
Tw

Cy = (10)

27
P,

where 7,, is wall skin friction, which is given by

(0 g (L T P j0udy (11)
TNy ) L, T \atag T “ozay T "o T T0g0y)
Using the variables (7), we get
Reim Cr=fyy + K Bfyfyy + Sfyyr — ffyyy)]y:o ; (12)

where Re, = u,,@/v is the local Reynolds number.

3 Homotopy analysis method

Liao [27] proposed a new approximate analytical solution technique, called the Homotopy
Analysis Method (HAM), for non-linear problems, which can overcome the foregoing restric-
tions of perturbation techniques. Different from perturbation methods, the validity of the
HAM is independent on whether there exist small/large parameters in considered non-linear
problems.

3.1 Homotopy analytic solution

In this part, we solve Egs. (8) and (9) by means of homotopy analysis method (HAM).
According to the boundary conditions (9) the velocity distribution f (y,7) can be expressed
by the set of base functions

{y*sin (j7)exp (—ny)|k >0, > 0,n >0}

in the following form

[ o lENe SN S

Flm) =aje+Y > Y al yFsin(j7) exp (—ny) | (13)

n=0 k=0 j=0

in which afl’k are the coefficients. These provide us with the so-called Rule of solution ex-
pressions (see Liao [27]). With the help of these solution expressions and Eq. (9), it is
straightforward to choose the initial approximations fy (y, ) for f (y,7) as

fo(y,7) =sin7 (1 — exp(—y)), (14)



and the linear operator

*f of
L = —= - = 15
=555 (15)
which satisfies the following properties
Ly [C1+ Crexp(—y) + Cyexp(y)] =0, (16)

where C; (i = 1,2, 3) are arbitrary constants.
Then, let p € [0,1] denotes an embedding parameter and h; is a non-zero auxiliary
parameter. We construct the zeroth-order deformation equation as

(=) Ls [Fwm50) = fo (0, 7)] = pheN7 [T (0. 73m)] (17)
subject to the boundary conditions
F0,7p) = 0, o %}f . sin 7,
y_
f (y,7;p) 0°f (y, 75p)
= = 1
9 0, 0 0, (18)
Yy=0o0 Yy=00

and the non-linear operator Ny is defined as:

~ ~ ~ —~ 2
= _ Pfly,mp) O (y,Tip) 82f (y,75p)  (0f (y,7;p)
n *f(y,73p) af(y,mip) 93 F(y,73p)
_M2 8f (y77-7p) _'_ K S ?3;/67'1) ;_2 gy - Bz - (19)
oy (B ffgz;,;;p)) f (y,7;p) o f(yTp)

When p = 0 and p = 1, the above zeroth-order deformation problem has the following
solutions, respectively

F,m0)=foly.r) and  fly.7m1l)=f(y.7). (20)

Thus, as p increases from 0 to 1, f(y, 7;p) varies from fo (y,7) to the solution f (y, ) of the
original equation (8). By Taylor’s theorem and the relations (20), one can write

Fly.mp) =foly.T +me Y, 7)p", (21)

where N
10"f(y,7;p)

fm (va) - m| apm

(22)
p=0
Substituting the expansion (21) into the differential equation (17) and the corresponding
boundary conditions (18), and equating coefficient of equal powers of p lead to the boundary-
value problems for f,, (y,7) (m = 0,1,2.....). Note that Eq. (17) contains the auxiliary

parameter hy. The convergence of the series given in Eq. (21) strongly depends upon
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this parameter iy. Therefore Ay should be properly chosen so that the above series (21) is
convergent at p = 1. Hence, using Eq. (20), we have the solution series

f,7)=foly,T +me Y. 7). (23)

We differentiate the zeroth-order equation m times with respect to embedding parameter p,
then setting p = 0, and finally dividing by m!, we have the following mth-order deformation
equation (m > 1)

Lilfm Y, T) = Xonfino1 (4, 7)] = BRL, (y,7), (24)
with boundary equations
O fm (y,7;0) Ofm (y,7;0) O fm (y,730)
m 07 T; - 07 - 5 - = = - O, 25
fm (0,75 p) o s o |, 0 \ ™ (25)
where
Bl 0 fna af L = DYy Ofmori 0
f _ m N m i m— J m YJj 2
a4fm 1 8fm 1— kanj 62fm 1— kan] a4fj
+KSay3aT+KZ{ G o — fn-1-kg }
and
0, m<1,
Xm:{l m> 1. (27)

Note that, we obtain a linear non-homogeneous system equation in the form of high-order
deformation equation, which is easy to solve using MATHEMATICA or other softwares. The
general solution of Eq. (24) with f* (y,7) denoting the special solution can be written as

fm (U, = f1 (y,&) + C1 + Carexp (—y) + Csexp (y) (28)

where the integral constants C7, Cy and Cj3 are determined by the boundary conditions (18)
and given by

Afm (y:€)
oy ’

y=0

Cy = Cy=—Cy— f2(0,6), C3=0. (29)

3.2 Convergence of the HAM solution

Liao [27] proved that, as long as a solution series given by the homotopy analysis method con-
verges, it must be one of the solutions. Therefore, it is important to ensure that the solution
series are convergent. The solution series (23) contains the non-zero auxiliary parameter Ay,
which can be chosen properly by plotting the so-called A-curves to ensure the convergence of
the solution series and rate of approximation of the HAM solution, as proposed by Liao [27].
To find the admissible values of iy, hi-curves of f”(0,0) are shown in Fig. 2 for 15th-order
of approximation for two groups of different parameters values: S =02, M =1, K = 0.3
and S = 0.5, M = 2, K = 0.5, respectively. From this figure, it can be seen that h-curve
has a parallel line segment that corresponds to a region —1.2 < hy < —0.2 for S = 0.2,
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M =1, K =03 and —045 < hy < —0.1 for S = 0.5, M = 2, K = 0.5, respectively. To
assure the convergence of the HAM solution, the values of the iy should be chosen from these
regions. The region for the values of his is dependent on the values of involving parameters.
We can see that for the different values of the parameters, we get different A-curves (for the
admissible values of hf). It is evident from our calculations that the solution series (23)
converges in the whole region of y if it is convergent at y = 0 when the proper values of hs
is chosen. Table 1 shows the convergence of the HAM solutions f”(0,7) for several different
times (7 = 0,0.5m,0.757, 1.57) at different orders of approximation when S = 0.3, M = 1.2
and K = 0.2. For different times 7 different h-values are chosen from the admissible ranges of
the corresponding h-curves. It is shown that with the increase of the order of approximation
a convergent solution can be reached.

4

(0,0n
o

1
-

1
I
1

1

l
075 05 -025 0
fig

-15 -125 -1 0.25

Fig. 2. The h-curve of f”(0,0) at the 15th-order of approximation: Solid line with S = 0.2,
M =1 and K = 0.3 and Dashed line with S = 0.5, M =2 and K = 0.5.

Order of approximations Y T=0om 7= 0.7om T=1Lom
hy = —0.7 hy =—0.5 hy =—0.4 hy = —0.45
1 —0.08400 —1.31005 —0.82134 0.91913
3 —0.09735 —1.41491 —0.91400 0.83429
5 —0.10051 —1.42701 —0.93798 0.80239
10 —0.10197 —1.42876 —0.94599 0.78789
12 —0.10205 —1.42878 —0.94620 0.78716
15 —0.10209 —1.42878 —0.94627 0.78683
18 —0.10209 —1.42878 —0.94628 0.78679
20 —0.10209 —1.42878 —0.94628 0.78679
30 —0.10209 —1.42878 —0.94628 0.78679

Table 1. The convergence of the HAM solution of f”(0,7) for different order of
approximations with S = 0.3, K =0.2, M = 1.2 and 7 = 0,0.57,0.757 and 1.57,

respectively.

4 Numerical method

The non-linear boundary-value problem (8) and (9) is also solved by means of the finite
difference method. For this purpose, the coordinate transformation n = 1/(y + 1) is applied
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for transforming the semi-infinite physical domain y € [0, 0] to a finite calculation domain
n€[0,1], ie

B 9,0 >, a2+2 9 *
V=07 ayT Moy 8y ”an ”an dyor ! anor’
PE . O 52 ) o o 3 52
F i e B e Bl /e 555r = " grar O ey~ O grae
) 77 77 n Yy T % n-oT 777

o o 3 52 .0

= 120" — + 3515 — + 24
gt = i T2 g 30 s 2

With these transformations, the differential equation (8) in terms of 1 can be rewritten in
the forms

D’ f , O'f g Of
gron OB ey — 09K amaf

S(1—-6Kn?

a 2
= (n* —8Kn*) (8—9 + (6n> — M* + 36K fn* — 2fn) af+ a—f

0 0f 0°f
+(6773—fn2+36Kf774)7f_8K77 a_fﬂJr ( f) |
f

ofr’f o'f

—2Kn° 12K7° :

T oo TR G a
The boundary conditions (9) in terms of 77 can be rewritten as
fn:()v fnn:O at 77:07 (31)
f=0, f,=—sinT, at n=1. (32)
Because the equation (30) is a differential equation, we can discretise it for L uniformly
distributed discrete points in = (771, Moy Mgeeennene 1y L}) € (0,1) with a space grid size of An =
1/(L + 1) and the time levels t. = (¢},¢%, ......... ). Hence the discrete values (f7', fas .o....... )
at these grid points for the time step t" = nAt (At is the time step size) can be numerically

solved together with the boundary conditions at 7 = 1, = 0 and n = 9,4y = 1, (31) and

(32), as the initial conditions are given. We start our simulations from a motionless velocity
field as

°f =5 (30)

f(n,m=0)=0.
We will see that a periodic motion will be immediately reached within the first period. We
construct a semi-implicit time difference for f and assure that only linear equations for the
new time step (n + 1) need to be solved

(n+1) (n) 3 £(n+1) 3 £(n)
5(1_6K772)i(‘9f _of ) SEtL (af P )

At \  9n an INAE anp
~65Kr’ <32g ;2“) - 8;]:7(2”)>
= (n* —8Kn") (8;(7 ) + (62 — M?) J”;“ T (36K — 2n) £ f") 6 332227:“
o ()
_2K7768(J;(n) 8;{] (3”) + 12K fﬂm% K ‘948{] (4 (33)



It should be noted that other different time differences are also possible. By means of the
finite-difference method we can obtain a linear equation system for each time step, which can
be solved e.g. by Gaussian elimination.

5 Results and discussion

We compute the velocity field by solving Eq. (8) with the boundary conditions (9) both
analytically and numerically. To obtain the analytic series solutions we have used the new
analytic technique, namely, the homotopy analysis method (HAM). For the numerical solu-
tion, first we solve the initial boundary-value problem in the computational space n € [0, 1]
and then the numerical solutions are transformed to the physical space with y-coordinate
y € [0,00). The velocity field f' (= f,) is plotted to observe the influence of the vari-
ous involving parameters, for example, the viscoelastic parameter K, the Hartman number
or magnetic parameter M and the non-dimensional relative amplitude of frequency to the
stretching rate S for the time series of the first five periods 7 € [0, 107] and the transverse pro-
files. Furthermore, we calculate and show the values of the skin-friction coefficient Re/ C
both graphically and in tabular form.

1

0,(.b? 55000 C ¢ 0 0

0.8F

0.6

. . 1 15 2
y y
Fig. 3. Comparison of f’(y, 7) obtained from the HAM solution at the 5th-order of approxi-

mation (solid lines) and the numerical solution (open circles) with S =1, M =5 and K = 0.1
for two different times (a) 7 = 0.57 and (b) 7 = 1.57, respectively.

(b)

0 0.5 1 15 2 0 0.5 1 15 2
Y Y

Fig. 4. Comparison of f’(y,7) obtained from the HAM solution at the 25th-order of ap-
proximation (solid lines) and the numerical solution (open circles) with S = 1, M = 5 and
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K = 0.1 for two different times (a) 7 = 0.57 and (b) 7 = 1.5, respectively.

0 05 1 15 2 0 05 1 15 2
Y y
Fig. 5. Approximation of f'(y,7) with S =1, M =5 and K = 0.1. Solid line: 5th-order ap-

proximation; Dashed line: 15th-order approximation; Filled circle: 25th-order approximation
for two different times (a) 7 = 0.57 and (b) 7 = 1.57.
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Fig. 6. Time series of the flow of the velocity field f’ at the four different distances from the
surface for the time period 7 € [0, 107] with S =2, M = 10: (a) K =0.1, (b) K = 0.4.
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Fig. 7. Time series of the velocity field f’ in the first five periods 7 € [0,107] at a fixed
distance to the sheet, y = 0.25: (a) effects of S with K = 0.2, M = 10, (b) effects of
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viscoelastic parameter K with S = 2, M = 10 and (c) effects of the magnetic parameter M

with S =1, K = 0.2.
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Fig. 9. Transverse profiles of the velocity field f’ at the four different values of M for the
fifth period 7 € [87, 107] for which a periodic velocity field has been reached: (a) 7 = 8.5,
(b) 7 =97, (¢) 7 =9.57 and (d) 7 = 107 with S =1 and K = 0.2.
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K| S M T=151 T=>5.57 T=09.57
0.0|1.0]12.0| 11.678656 11.678707 11.678656

0.2 5.523296 5.523371 5.523257
0.5 —3.899067 | —3.899268 | —3.899162
0.8 —11.674383 | —11.676506 | —11.676116
1.0 —15.617454 | —15.624607 | —15.624963

0.210.5 5.322161 5.322193 5.322173

1.0 5.523296 5.523371 5.523257

2.0 6.087060 6.087031 6.087156

3.0 6.769261 6.768992 6.769294

4.0 7.497932 7.496924 7.496870

5.0 8.232954 8.229085 8.228996

1.0 ] 5.0 2.323502 2.323551 2.323548

7.0 3.278018 3.278005 3.278123

9.0 4.197624 4.197771 4.197733

12.0 | 5.523296 5.523371 5.523257

15.0 | 6.791323 6.791301 6.791278

Table 2. Values of the skin-friction coefficient Re!/? C; for different values of K, S and M
for three different time points 7 = 1.57, 5.5 and 9.57.

For the HAM solution, the higher the order of approximation is, the more accurate is the
HAM solution. If the HAM solution does nearly not change any longer with the increase
of the order of approximation, the HAM analytical solution can be considered as the exact
solution. For the problem investigated it is the case with the 20th-order of approximation
(see Table 1). We can also obtain the accuracy/error of the HAM solution by comparing the
HAM solution with the convergent numerical solution as displayed in Figs. 3 and 4

Figs. 3-5 are depicted just to compare the homotopy analysis solution and the numerical
solution with fixed S =1, M =5, K = 0.1 and two different times 7 = 0.57 and 7 = 1.57.
Figs. 3 and 4 show the comparison between the HAM solutions with the 5th and 25th-
order of approximation and the numerical solution, respectively. The results show that the
HAM solution with the 5th-order of approximation is obviously deviated from the numerical
solution, as displayed in Fig. 3. As the order of approximation of the HAM solution is
increased, the excellent agreement of HAM solution to the numerical solution for both at 7 =
0.5m and 7 = 1.57 is demonstrated, as we can see from Fig. 4 by comparing the HAM solution
with the 25th-order approximation with the numerical solution. Fig. 5 gives the comparison
of the velocity field f’ of the HAM solutions with three different orders of approximation
at 7 = 0.5m and 7 = 1.5m. It is also observed that the analytic solution obtained by
the homotopy analysis method has good agreement for higher order of approximation, for
example, with 15th and 25th-orders of approximation, whilst the HAM solution with the 5th-
order of approximation has a visible deviation from the higher-order solutions. Obviously,
the higher order of approximation the HAM solution has, the closer to the exact solution is
the analytic solution.

In the following discussions we will present only numerical solutions. Fig. 6 shows the
time series of the velocity field f’ at the four different distances from the oscillatory sheet
for the first five periods 7 € [0, 107] with fixed values of S = 2, M = 10 and K = 0.1, 0.4,
respectively. It can be seen from Fig. 6(a) (K = 0.1) that the amplitude of the flow near the

16



oscillatory surface is larger as compared to that far away from the surface. As the distance
increases from the surface, the amplitude of the flow motion is decreased and almost vanishes
(approached to zero) for larger distance from the sheet. From Fig. 6(b), we observe the
similar phenomenon for the value of K = 0.4. However, for K = 0.4 the amplitude of the
flow motion is larger as compared with the analysis at K = 0.1. That indicates as increased
effective viscosity with the increase of the non-Newtonian parameter K.

Fig. 7 illustrates the effects of the non-dimensional relative amplitude of frequency to
the stretching rate S, the viscoelastic parameter K and the magnetic parameter M on the
time series of the velocity field f” at a fixed distance y = 0.25 from the surface, respectively.
Fig. 7(a) shows that with the increase of S the amplitude of the flow increases slightly and
a phase shift occurs which increases with the increase of S. The influence of the viscoelastic
parameter K on the time series of the velocity f’ can be seen from Fig. 7(b) with fixed
values of S = 2 and M = 10. We see that the amplitude of the flow motion is increased by
increasing the viscoelastic parameter K due to the increased effective viscosity. Similarly to
the effects of S, a phase difference occurs for different values of K. Fig. 7(c) shows the time
series of the velocity profile f’ for the different values of the magnetic parameter M with
fixed values of S = 1 and K = 0.2. As expected, the amplitude of the flow decreases with
the increase of the magnetic parameter M. This is because for the investigated problem the
magnetic force acts as a resistance to the flow. Only slight phase difference occurs among
the time series for different values of M in comparison with those for different values of .S
and K.

Fig. 8 gives the effects of the viscoelastic parameter K on the transverse profiles of the
velocity f’ for the different times of 7 = 8.57, 97, 9.57 and 107 in the fifth period 7 € [8, 107]
for which a periodic motion has been reached. Fig. 8(a) shows that at 7 = 8.57, f' =1 at
the surface y = 0 equating the sheet velocity and f' — 0 far away from the sheet. It can
also be seen that at this point of time, there is no oscillation in the velocity profile and the
velocity field f’ is increased as the values of K increases, i.e. the boundary layer becomes
thickener with the increase of K. Fig. 8(b) gives the velocity profile f* at time point 7 = 97.
At this time point the velocity field f’ is zero at the surface y = 0 and far away from the wall
it again approaches to zero. It is also evident that near the wall, there exist some oscillation
in the velocity profile and the amplitude of the flow increases as K increases. This oscillation
in the transverse profile is an evidence of a phase shift in the viscoelastic fluid (K # 0)
against the viscous Newtonian fluid (K = 0). The velocity profiles for others two time points
within the fifth period are displayed in Figs. 8c-d. For the Newtonian fluid, the flow in the
whole flow domain is almost in phase with the sheet oscillation, as shown from the solid lines
displayed in Figs. 8a-d (for K = 0). The boundary layer thickness increases by increasing
the viscoelastic parameter K, as we can see from Fig. 8.

Fig. 9 illustrates the influence of the magnetic parameter M on the transverse profiles
of the velocity field f’ for the different times of 7 = 8.57,97,9.57 and 107. It can be seen
that the influence of the magnetic field causes to reduce the boundary layer thickness. As
expected, the magnetic force is a resistance to the flow, hence reduces the velocity magnitude.
Similar effects have also been shown in previous papers of MHD flows, e.g. [46, 47, 48, 49].
Although for 7 = 97 (Fig. 9b) and 7 = 107 (Fig. 9d), there exist still velocity oscillations in
the transverse profiles, their amplitudes are fairly small (in comparison with those in Fig. 8
(b,d)). It means that for different values of M, the phase difference is almost invisible, which
is in the agreement to the results shown in Fig. 7(c).

Fig. 10 shows the effects of the non-dimensional relative amplitude of frequency to the
stretching rate S on the velocity f’ for the different times of 7 € [8.5m,97,9.57, 107] in the

17



fifth period. Fig. 10(a) is plotted for the variations of S on the velocity f" at time 7 = 8.57
at the surface. It is noted that the velocity is equal to the sheet velocity f' = 1 at the surface
y = 0 and far away from the wall it is zero. The velocity f’ increases only slightly with the
increase of S. Fig. 10(b) shows the influence of S on the velocity f’ at time 7 = 97. It can
be seen that for very small values of S = 0.1 at this time point, the velocity in the whole
transverse section takes its value at the plate almost to zero (f' — 0), i.e., for small values
of S no phase difference occurs with the increase of the distance from the plate and the flow
in the whole flow domain is in phase with the sheet motion. However, with the increase of
S, a phase difference occurs and increases, as shown also in Fig. 7(a). The velocity profiles
for others two time points within the fifth period are plotted in Figs. 10c-d and the similar
observations are found as in Figs. 10a-b, respectively.

Fig. 11 gives the variations of the viscoelastic parameter K, the relative amplitude of
frequency to the stretching rate and the magnetic parameter M on the skin friction coefficient
Rel/? C} for the time series in the first five periods 7 € [0,107]. Fig. 11(a) illustrates the
influence of the viscoelastic parameter K on the skin friction coefficient Rel/? C; with fixed
S =5and M = 12. It is noted that the skin friction coefficient varies also periodically due to
the oscillatory surface motion. The oscillation amplitude of skin friction coefficient ReX/? C
increases as the values of K are increased. Fig. 11(b) shows the effects of S on the skin
friction coefficient Re’/? C¢. It can be seen that the oscillation amplitude of the skin friction
coefficient increases as S increases. Fig. 11(c) displays the results of the magnetic number
M on the skin friction coefficient Re!/? Oy with fixed S'= 1'and K = 0.1. It is observed that
the oscillation amplitude of the skin friction coefficient Re!/? Cy is increased by increasing
the values of M.

Table 2 shows the numerical values of the skin friction coefficient Re!/? C for different
values of K, S and M at the different periods of time series. The results show that the values
of the skin friction coefficient for the three different time points 7 = 1.57, 5.5 and 9.57 are
almost identical. It means that the periodic motion may be reached within the first period
when the initial conditions are set up. The change of the skin friction coefficient from positive
to negative with the increase of K indicates the large phase difference with the increase of
K, as shown in Fig. 11(a) (but for slightly different parameters). It can also be seen that
the values of the skin friction coefficient Rei/ 2C ¢ are increased as the relative frequency to
the stretching rate S or/and the magnetic field M are increased. A change in the sign of
skin-friction dees not appear for different values of S and M cause mainly the change on the
values of the skin-friction, less on the phase difference.

6 Concluding remarks

In the present investigation, the boundary layer flow of the MHD viscoelastic fluid over an
oscillatory stretching sheet has been discussed. The obtained flow equation is solved both an-
alytically using homotopy analysis method and numerically by means of the finite difference
method. The comparison between both solutions is given and found in excellent agreement
for the HAM solution with higher-order approximation. It demonstrates the convergence of
the presented HAM solution for the investigated problem. The influence of the different pa-
rameters on the transverse profiles and the time series of velocity is illustrated and discussed.
The numerical results give a view towards understanding the response characteristics of the
second grade viscoelastic fluid.
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