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Mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder
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The steady mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder in a stream flowing vertically upwards is numerically studied for both cases of heated and cooled cylinders. The governing partial differential equations are transformed into dimensionless forms using an appropriate transformation and then solved numerically using the Keller-box method. The comparison between the solutions obtained and those for a Newtonian fluid is found to be very good.

Effects of the mixed convection and elasticity parameters on the skin friction and heat transfer coefficients for a fluid having the Prandtl number equal to one are also discussed. It is found that for some values of the viscoelastic parameter and some negative values of the mixed convection parameter (opposing flow) the boundary layer separates from the cylinder. Heating the cylinder delays separation and can, if the cylinder is warm enough, suppress the separation completely. Similar to the case of a Newtonian fluid, cooling the cylinder brings the separation point nearer to the lower stagnation point.

However, for a sufficiently cold cylinder there will not be a boundary layer.

Introduction

There are many fluids whose behaviour cannot be described by the classical Navier-Stokes and boundary layer equations. The homogeneous and incompressible second grade fluid is one of the many models that have been proposed to describe the non-Newtonian behaviour of such fluids (see Kumari et al. [START_REF] Kumari | Nonsimilar mixed convection flow of a non-Newtonian fluid past a vertical wedge[END_REF]). Mechanics of non-linear fluids present a special challenge to researchers due to its many A c c e p t e d m a n u s c r i p t 2 practical applications, for example, in the design of thrust bearings and radial diffusers, drag reduction, transpiration cooling and thermal oil recovery, to mention just a few. One of the simplest ways in which the viscoelastic fluids have been classified is the methodology proposed by Rivlin and Ericksen [START_REF] Rivlin | Stress deformation relations for isotropic materials[END_REF] and Truesdell and Noll [START_REF] Truesdell | The Non-Linear Field Theories of Mechanics[END_REF], who presented constitutive relations for the stress tensor T as a function of the symmetric part of the velocity gradient D , and its higher (total) derivatives (see Massoudi [START_REF] Massoudi | Local non-similarity solutions for the flow of a non-Newtonian fluid over a wedge[END_REF]). The boundary layer theory for second-grade fluids has been developed by Oldroyd [START_REF] Oldroyd | On the formulation of rheological equations of state[END_REF], Beard and Walters [START_REF] Beard | Elastico-viscous boundary layer flows[END_REF] and Rajagopal et al. [START_REF] Rajagopal | Flow of a viscoelastic fluid over a stretching sheet[END_REF]. However, the boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Therefore, we need a boundary condition in addition to the usual adherence boundary conditions. Rajagopal [START_REF]On boundary conditions for fluids of the differential type[END_REF][START_REF] Sequeira | On the creeping flow of the second grade fluid[END_REF] and Rajagopal and Kaloni [START_REF] Rajagopal | Some remarks on boundary conditions for fluids of the differential type[END_REF] have discussed this question in detail. Garg and Rajagopal [START_REF] Garg | Stagnation point flow of a non-Newtonian fluid[END_REF][START_REF] Garg | Flow of a non-Newtonian fluid past a wedge[END_REF] studied the flow of a fluid of second grade near the stagnation point of a semi-infinite wall by augmenting the boundary condition at infinity. It has been shown that their results agree well with the results of Rajeswari and Rathna [START_REF] Rajeswari | Flow of a particular class of non-Newtonian visco-elastic and viscoinelastic fluids near a stagnation point[END_REF] based on the series expansion for small values of the viscoelastic parameter  , which multiplies the highest-order spatial derivative in their equation. The advantage of augmenting the boundary conditions over the perturbation approach is that the analysis is valid even for large values of the parameter  and, as shown by Garg

and Rajagopal [START_REF] Garg | Stagnation point flow of a non-Newtonian fluid[END_REF], significant deviations from the Newtonian behaviour are possible for even moderately large values of  . The augmenting of the boundary condition at infinity has also been used by Kumari et al. [START_REF] Kumari | Nonsimilar mixed convection flow of a non-Newtonian fluid past a vertical wedge[END_REF] for the steady non-similar mixed convection boundary layer flow of a viscoelastic fluid over a permeable vertical wedge, by Ariel [START_REF] Ariel | On extra boundary condition in the stagnation point flow of a second grade fluid[END_REF] for the two-dimensional stagnation point flow of a second grade fluid, by Garg [START_REF] Garg | Non-Newtonian flow over a wedge with suction[END_REF] for the flow of an incompressible fluid of second grade past a wedge with suction at the surface and by Cortell [START_REF] Cortell | A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet[END_REF] for the flow and heat transfer of a second grade fluid past a stretching sheet. Very recently, Hayat and Sajid [START_REF] Hayat | Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet[END_REF] presented an analytic solution using the homotopy analysis method (HAM) for the flow and heat transfer of a second grade fluid over a radially stretching sheet. Also, Mushtaq et al. [START_REF] Mushtaq | Mixed convection flow of second grade fluid along a vertical stretching flat surface with variable surface temperature[END_REF] studied the effects of thermal buoyancy on flow of a second grade fluid along a vertical, continuous stretching sheet of which the velocity and temperature distributions are assumed to vary according to a power-law form. The governing partial differential equations are non-similar and they were solved using (1) the series expansion method together with the Shanks transformation, (2) the local non-similarity method with second level of truncation and (3) the Keller-box method for some values of the mixed convection parameter. However, the authors have not mentioned whether they have used the extra boundary condition at infinity or not.

In this paper, the steady non-similar mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder is considered. The coupled nonlinear partial differential equations have been compared with those of Merkin [START_REF] Merkin | Mixed convection from a horizontal circular cylinder[END_REF] and Nazar et al. [START_REF] Nazar | Mixed convection boundary-layer flow from a horizontal circular cylinder in micropolar fluids: case of constant wall temperature[END_REF]. The results have also been compared with those of Hiemenz [START_REF] Hiemenz | Die Grenzschicht an einem in den gleichfrmigen Flssigkeitsstrom eingetauchten geraden Kreiszylinder[END_REF] and Eckert [START_REF] Eckert | Die Berechnung des Wrmeberganges in der laminaren Grenzschicht umstrmter Krper[END_REF] for a viscous fluid and with those of Ariel [START_REF] Ariel | On extra boundary condition in the stagnation point flow of a second grade fluid[END_REF] for a viscoelastic fluid when the buoyancy forces are absent. It is shown that the agreement between all these results is very good. We wish also to mention to this end that to our best knowledge this classical very important problem has not been studied before for a viscoelastic fluid so that the results are new for these fluids.

Basic equations

The problem that we will study in this paper is the steady mixed convection boundary layer flow past an isothermal horizontal circular cylinder of radius a placed in a viscoelastic fluid. . Under these assumptions along with the Boussinesq approximation, the boundary layer equations can be written as follows, see Garg and

Rajagopal [START_REF] Garg | Flow of a non-Newtonian fluid past a wedge[END_REF] and Mushtaq et al. [START_REF] Mushtaq | Mixed convection flow of second grade fluid along a vertical stretching flat surface with variable surface temperature[END_REF],
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where x and y are the Cartesian coordinates measured along the surface of the cylinder starting from the lower stagnation point of the cylinder and y is the coordinate measured normal to the surface of the cylinder, u and v are the velocity components along the 

x and  y axes, ) (x u e is the velocity outside the boundary layer, T is the fluid temperature, g is the acceleration due to gravity 0 k is the viscoelasticity and    , , and  are the thermal diffusivity, thermal expansion coefficient, dynamic viscosity and density of the viscoelastic fluid.

We introduce now the following non-dimensional variables [START_REF] Oldroyd | On the formulation of rheological equations of state[END_REF] where Re = U ∞ a/v is the Reynolds number. Substituting (5) into Eqs. 
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where Pr is the Prandtl number, K is the viscoelastic parameter and  is the mixed convection parameter, which are defined as
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being the Grashof number. It should be mentioned that 0   corresponds to assisting flow (heated cylinder), 0   corresponds to opposing flow (cooled cylinder) and 0   corresponds to the forced convection flow, respectively.

Solution

To solve Eqs. ( 6)-( 8) with the boundary conditions ( 9), we follow Merkin [START_REF] Merkin | Mixed convection from a horizontal circular cylinder[END_REF] and assume that x x u e sin ) (  . Thus, we look for a solution of these equations of the following form
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where  is the stream function defined as
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. Substituting [START_REF] Garg | Stagnation point flow of a non-Newtonian fluid[END_REF] into Eqs. ( 7) and ( 8), we obtain 
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It is worth mentioning that when 0  K , Eqs. ( 12) and ( 13) reduce to the equations governing the mixed convection boundary layer flow of a viscous and incompressible (Newtonian)) fluid studied by Merkin [START_REF] Merkin | Mixed convection from a horizontal circular cylinder[END_REF].

At the lower stagnation point of the cylinder, 0  x , Eqs. ( 12) and ( 13) reduce to the following ordinary differential equations
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where primes denote the differentiation with respect to y .

The physical quantities of principal interest in this problem are the skin friction coefficient f C and heat transfer coefficient w Q . We define these coefficients in non-dimensional form as
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where w  and w q are the skin friction and heat flux from the surface of the cylinder, which are given by
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k being the thermal conductivity of the viscoelastic fluid. Using ( 5) and [START_REF] Garg | Stagnation point flow of a non-Newtonian fluid[END_REF], we obtain A c c e p t e d m a n u s c r i p t
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For small values of the viscoelastic parameter ) 1 ( K , we look for a solution of Eqs. ( 15) and ( 16)

subject to the boundary conditions [START_REF] Hayat | Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet[END_REF] in series of the form
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where the functions
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Thus, the reduced skin friction and heat transfer from the surface of the cylinder are given by .
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Results and discussion

The systems of equations [START_REF] Garg | Flow of a non-Newtonian fluid past a wedge[END_REF][START_REF] Rajeswari | Flow of a particular class of non-Newtonian visco-elastic and viscoinelastic fluids near a stagnation point[END_REF][START_REF] Ariel | On extra boundary condition in the stagnation point flow of a second grade fluid[END_REF] and [START_REF] Hiemenz | Die Grenzschicht an einem in den gleichfrmigen Flssigkeitsstrom eingetauchten geraden Kreiszylinder[END_REF][START_REF] Eckert | Die Berechnung des Wrmeberganges in der laminaren Grenzschicht umstrmter Krper[END_REF](24) were solved numerically for some values of the mixed convection parameter  and viscoelastic parameter K using the Keller-box method, which is described in the book by Cebeci and Bradshaw [START_REF] Cebeci | Physical and Computational Aspects of Convective Heat Transfer[END_REF]. All three cases of the assisting ( 0   ) flow, opposing C and w Q are also given in Tables 1 to 4. It is found that both skin friction f C and heat transfer w Q coefficients decrease as K is increased. A similar trend has been observed by Gard and Rajagopal [START_REF] Garg | Flow of a non-Newtonian fluid past a wedge[END_REF] for the problem of forced convection flow of a viscoelastic fluid past a wedge and by Kumari et al. [START_REF] Kumari | Nonsimilar mixed convection flow of a non-Newtonian fluid past a vertical wedge[END_REF] for the problem of mixed convection flow of a viscoelastic fluid past a vertical wedge. This can be attributed to the thickening of momentum and thermal boundary layers as K increases. Kumari et al. [START_REF] Kumari | Nonsimilar mixed convection flow of a non-Newtonian fluid past a vertical wedge[END_REF] have explained that the increase in the boundary layer thickness with K can be attributed to tensile stress in the boundary layer, which cause an axial contraction and hence the thickening of the boundary layer in the transverse direction. We can also see from Figs. 4 to 7 and tables 1 to 4 that, as it is expected, the boundary-layer separates from the cylinder for some negative values of  (cooling cylinder) and also for some positive values of  (heated cylinder). On the other hand, the results show that, as for the case of a Newtonian fluid, increasing  delays separation of the 12), see Merkin [START_REF] Merkin | Mixed convection from a horizontal circular cylinder[END_REF], . The values obtained by direct numerical integration of Eqs. ( 15) and ( 16) using the boundary conditions [START_REF] Hayat | Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet[END_REF] with the extra boundary condition
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are also included in Table 5. The classical results reported by Hiemenz [START_REF] Hiemenz | Die Grenzschicht an einem in den gleichfrmigen Flssigkeitsstrom eingetauchten geraden Kreiszylinder[END_REF] and Eckert [START_REF] Eckert | Die Berechnung des Wrmeberganges in der laminaren Grenzschicht umstrmter Krper[END_REF] A . In addition, the results reported by Ariel [START_REF] Ariel | On extra boundary condition in the stagnation point flow of a second grade fluid[END_REF] for a viscoelastic fluid ( 0  K

) obtained using the direct numerical solution of Eqs. ( 15) and ( 16) with the boundary conditions ( 17) when 0   (forced convection flow) and the series solutions for small values of K ( ) 1  are included in Table 5. In all cases he results are found to be in very good agreement. Further, it is noticed that the results based on the series expansion agree well with the exact numerical solution of Eqs. ( 15) and [START_REF] Cortell | A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet[END_REF]. Therefore, the advantage of using the extra boundary condition

0 ) ( ' '   f
over the series expansion is that the analysis is valid even for large values of the parameter K . Garg and Rajagopal [START_REF] Garg | Stagnation point flow of a non-Newtonian fluid[END_REF] have shown that significant deviations from the Newtonian behaviour are possible for even moderately large values of K .

Finally, Figs. 9 and 10 illustrate the velocity and temperature profiles at the lower stagnation point of the cylinder against y for several values of the parameter K when 1   (assisting flow) and 1    (opposing flow), respectively, and 1 Pr  . These figures show how the viscoelastic parameter K affects the fluid velocity and temperature profiles. Thus, Figs. 9 show that the velocity profiles decrease when K is increased and that the values of these profiles are lower for a viscoelastic fluid than for a Newtonian fluid ( 0  K

). Therefore, the thickness of the velocity boundary layer for a viscoelastic fluid is higher than for a Newtonian fluid. Further, it is seen from Figs. 7 that the velocity profiles are lower for the case of the assisting flow ( 1  

) than those for an opposing flow (

1   
), respectively. The reverse trend is observed for the temperature profiles, which are shown in Fig. 10.

Conclusion

The 12) and ( 13) subject to the boundary conditions ( 14) is not possible. The results of Merkin [START_REF] Merkin | Mixed convection from a horizontal circular cylinder[END_REF] for viscous fluids can be recovered easily when the viscoelastic parameter 0  K .
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 3 the flow have been solved numerically using a very efficient finite-difference scheme, known as the Keller-box method, which is described in the book by Cebeci and Bradshaw[START_REF] Cebeci | Physical and Computational Aspects of Convective Heat Transfer[END_REF] after augmenting the boundary condition at infinity. The effects of the mixed convection and viscoelastic parameters on the skin friction and heat transfer around the cylinder are studied. The effects of these parameters on the velocity and temperature profiles near the lower stagnation point of the cylinder are presented here only for the Prandtl number equal to one, although they can be obtained for other values of the Prandtl number, as well. The particular cases of the present results for a viscous (Newtonian) fluid
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 1 Fig. 1. Physical model and coordinate system.

  (1) -(3), we get the following non-

  . In order to save space we present here results only the case when the Prandtl number Pr is one. The value of 10 for the computation. The iterations were continued until an accuracy of 10 -6 was achieved.The comparison of the present results for the skin friction coefficient f C and the heat transfer from the cylinder w Q with those of Merkin[START_REF] Merkin | Mixed convection from a horizontal circular cylinder[END_REF] and Nazar et al.[START_REF] Nazar | Mixed convection boundary-layer flow from a horizontal circular cylinder in micropolar fluids: case of constant wall temperature[END_REF] for a Newtonian fluid ( 0  K) is shown in Figs.2 and 3. The comparison shows that the numerical solutions obtained by the present authors are in very good agreement with those of Merkin[START_REF] Merkin | Mixed convection from a horizontal circular cylinder[END_REF] and Nazar et al.[START_REF] Nazar | Mixed convection boundary-layer flow from a horizontal circular cylinder in micropolar fluids: case of constant wall temperature[END_REF]. We are, therefore, confident that the present results are very accurate. The trend exhibited by the curves is consistent with the expected effect of favourable pressure gradient. A positive mixed convection or buoyancy forceparameter ( 0  ) induces a favourable pressure gradient that enhances the fluid motion, which in turn increases the skin friction coefficient f C and hence the local heat transfer coefficient w Q also increases and the heat transfer from the cylinder is increased with  (see Fig.3).The variation off C and w Q with x for a viscoelastic fluid ( 0  K ) is shown in Figs. 4 to 7 at different positions x at the surface of the cylinder and some values of  when 1  . Numerical values of f
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 9 layer from the cylinder and that separation can be suppressed completely in the range on K , below which a boundary layer solution is not possible. As it was explained by Merkin[START_REF] Merkin | Mixed convection from a horizontal circular cylinder[END_REF] for the case of a Newtonian fluid ( cooled and the natural convection boundary layer would start at the top stagnation point of the cylinder (   x) and for sufficiently small  there comes a point where the flow of the stream upwards cannot overcome the tendency of the fluid next to the cylinder to move downwards under the action of the buoyancy forces.Using the boundary conditions (14) and the fact that 0
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  steady mixed convection boundary layer flow of an incompressible viscoelastif fluid past an isothermal horizontal circular cylinder has been investigated numerically. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations is solved numerically using the Keller-box method. Both the cases when the mixed increases with the increase of the viscoelastic parameter K . On the other hand, for a cooler cylinder ( 0  ), the buoyancy forces also retard the fluid and therefore the separation point is brought nearer to the lower stagnation point. A value of ) found for which the boundary layer separates at this point. It is found that this value of ) (K s  decreases as the parameter K increases.

A c c e p t e d m a n u s c r i p t 11 For

 11 solution of Eqs. (

Fig. 2 .

 2 Fig. 2. Comparison of the local skin friction f C for K = 0 (Newtonian fluid), Pr = 1 and various values of λ.

Fig. 3 .

 3 Fig. 3. Comparison of the heat transfer coefficient w Q for K = 0 (Newtonian fluid), Pr = 1 and various values of λ.

A c c e p t e d m a n u s c r i p t 14 Fig. 4 .Fig. 5 .

 1445 Fig. 4. Variation of the local skin friction coefficient C f for K = 0.2, Pr = 1 and various values of λ.

Fig. 6 .

 6 Fig. 6. Variation of the local skin friction coefficient C f for K = 1, Pr = 1 and various values of λ.

Fig. 7 .

 7 Fig. 7. Variation of the local heat transfer coefficient w Q for 1  K , Pr = 1 and various values of λ.

A c c e p t e d m a n u s c r i p t 16

 16 

A c c e p t e d m a n u s c r i p t 17 Fig. 8 .Fig. 9 .

 1789 Fig. 8. Variation of the boundary layer separation point x s with  for

A c c e p t e d m a n u s c r i p t 19 Fig. 10 .
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 3 Values of the local skin friction coefficient C f for K = 1, Pr = 1 and various values of λ.
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 4 Values of the local heat transfer coefficient C f for K = 1, Pr = 1 and various values of λ.

	λ