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Abstract: The paper presents an analytical investigation of the dynamics of digital force
control. A one degree-of-freedom (DoF) mechanical system with low viscous damping is
subjected to proportional-derivative (PD) force control. Analytical results are presented
in the form of stability charts in the parameter space of sampling time, control gains and
mechanical parameters. Simple closed form results include the largest stable proportional
gain and the least steady state force error that provide synthesis of mechanical and control
system parameter influences for the design of digital force control. Also, a novel analytical

explanation is given why even the properly filtered force derivative signal is rarely used in
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practice, and why the occurring vibrations have frequencies one range smaller than that of

the sampling frequency of the digital control.

Key Words: Differential gain, dynamic stability, force control, sampling time

1 Introduction

Force control in robotic systems has been the subject of intensive investigations in recent
years since most robotic operations involve interactions with other objects. Robotic systems
are usually equipped with digital controllers, while the dynamic analysis of robotic systems is
often treated using continuous-time (analog) approaches and models. The first, and probably
the most referenced papers in the field are [1 3]. These papers present the basics of the force
control approaches. The stability of a simple digital force control system was analyzed in [1]
for the first time.

Simultaneously, comprehensive texthooks [4-7] were published on digital control theory.
These works are used as standards in digital realizations of control algorithms, which are
usually based on continuous-time arguments. For example, using the frequency response
bandwidth or the crossover frequency of the continuous-time system, references |7, 8| sug-
gest to determine an appropriate (sufficiently small) sampling period for the discrete time
realization. Certainly, these rules of thumb work properly with most of the systems. How-
ever, in case of a rigid mechanical system (e.g., an industrial robot touching a turbine blade)
with a small effective damping in the force controlled direction, these rules do not provide
always conservative estimates for stability. Also, they cannot reveal the complex structure
of the stability domains in the parameter space.

Recent books published on force control of robot manipulators [9-11] present investiga-
tions mainly for the case of continuous-time (analog) force control. A simple model is con-
sidered in [9] to investigate some effects caused by the digital force feedback. Experiments

validating the proposed control algorithms have usually been carried out using digitally
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controlled experimental testbeds without further discussing the dynamics of the digitally

controlled system [12].

Several researchers had to model deadtime and also the potentially destabilizing sampling
effects in order to explain certain stability and low frequency vibration phenomena in digital
force control [9, 13 15|. These robotic applications were followed by the experiences of
the haptics community [16 18]. Recently, intensive research on haptic devices has called
the attention to the differences in the dynamic behavior of digital and analog force control

systems [19].

Turbine blade polishing is a typical example for the case where digital effects and the
variable effective stiffness along the blade caused unexpected vibrations in the system under
digital force control [20]. As other reports [21 23] show, more thorough stability analyses
are needed when oscillatory systems are to be controlled, which is often the case in force

control.

Nowadays, a lot of robotic applications utilize the enormous evolution of digital technol-
ogy. In comparison with the early 80’s, the speed of the processors and the communication
rate between the sensors and the computer seem to be very fast. The sampling rate of the 2
DoF hybrid position /force controller in [3] was set only at 60-120 Hz, while a recently devel-
oped force controlled 6 DoF manipulator with an open controller [11] is sampled at 1 kHz.
From the engineering point of view, this kind of sampling looks almost continuous. Indeed, a
digital force control algorithm with a high sampling frequency can be considered “continuous”
if the end effector of the robot comes to contact with a relatively soft environment where the
effective stiffness of the system is low and the effective mass is high. However, examples for
the opposite situation are reported in [16, 18, 20, 24]. Note also that the sampling frequency
of industrial robots has not increased as much as the speed of available processors. This
is due to the increased complexity of the applied control algorithms and the higher level of
programming. In case of either force control with inner position loop or model-based force

control, the sampling frequencies are often in the range of 10-50 Hz, only [9, 22, 25| .
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When feedback is used in practice, the first attempt is almost always the application of
PID controllers. Of course, depending on the given control task, it has nonlinear alternatives
with superior performance characteristics, but it can be viewed as a simple building block
that is often integrated into complex control architectures. For example, as an adaptive
extension, a model based controller can be used in supervisory mode over a stable PID
controller. Still, there are difficulties in applying simple PID controllers. According to
[26|, “adding derivative action to a PI controller increases the complexity of the design
considerably“ and also “there is much folklore concerning derivative action” with especial
regard to the appropriate tuning of the control gains. The synthesis of sensors, digital
controllers and mechanical devices, i.e. the mechatronic approach to extend the applicability
and performance of robotic manipulators, leads to complex system dynamics even in case of
simple mechanical structures.

The goal of this paper is to present a detailed stability analysis of a PD digital force
control loop considering that the force derivative signal is ideally filtered for high frequency
noise. The closed form analysis offers insight into the dynamics of digital force control.
This work presents analytical investigations and results in understanding the relations and
interactions between the dynamic behavior of the system, the control algorithm and the
mechanical parameters. The effects of the control gains and mechanical parameters are
presented by means of stability charts. These charts can effectively support the engineering
work by showing the range of system parameters for which stable and reliable digital force
control could be realized and can help to understand better the possible unexpected behavior

of digitally controlled multi-DoF systems.

2 Basic Model of Force Controlled System
2.1 Continuous-time model

The mechanical model shown in Fig. 1 has 1 DoF approximating the behavior of a robotic

arm with force control in one direction. The equivalent mass m and the stiffness k£ can



EFFECTS OF DIFFERENTIAL GAIN IN DIGITAL FORCE CONTROL 5

either be identified experimentally or calculated using the constraint Jacobian representing
the force controlled direction, and the mass and stiffness matrices of the robot [27]. The
generalized force () represents the effects of the joint drives, while C denotes the magnitude
of the effective Coulomb friction force. Similar models are frequently used to analyze force
control |6, 9]. Differential feedback is widely applied in position control. One of the main
objectives of our investigation is to provide a detailed analysis on the effects of the differential
gain in the force control loop (see Fig. 1).

In the model of Fig. 1, ¢4 refers to the position that corresponds to the desired constant
force Fy = kqg, while x = ¢ — g4 measures the deformation of the spring relative to this

desired position. The equation of motion of the above mechanical model can be written as

mq(t) = —kq(t) — Csgng(t) + Q(t)

Q(t) = Fu(t) — P(F(t) = Fa) = DE(1)

(1)

where P and D are the proportional and the differential gains, respectively. The contact
force F,,(t) = kq(t) is measured through the deformation ¢(¢) of the spring. In stiff systems,
this signal can be noisy, therefore its derivative F},,(t) = k¢(t) is assumed to be filtered that
may cause some delay. If there is no dry friction in the model, the only trivial solution of
equation (1) is q(t) = g4« If considerable dry friction can be detected (e.g., at the joints),

then there are several equilibriums ¢* leading to the steady state force error
. C
IAF| = max k(s — 4) = - @
q

Clearly, the higher the proportional gain is, the less the force error is [6]. The accuracy of the

Gripper with FT sensor Workpiece
1 PD | ey
8 LI
0
=N qa
o C-2 . bt
,,,,, —> m C
Robot
Tool 7

Fig. 1: Mechanical model of unidirectional PD force control



6 L.L. KOVACS, J. KOVECSES and G. STEPAN

control is determined by the maximum proportional gain of the applied PD controller within
the limits of stability (for short it is called the maximal stable proportional gain hereafter).

Since dry friction decreases the total mechanical energy during motion, the stability
properties of a stable frictionless system do not change in the presence of friction. Thus,
the stability analysis in (1) will be carried out with C' = 0. Introducing the perturbation x

around the desired position as q(t) = g4+ x(t), the equation of motion (1) assumes the form
i(t) + Dwli(t) + Pwlz(t) =0 (3)

where w, = \/% is the natural angular frequency of the uncontrolled mechanical system.
According to the Routh-Hurwitz criterion, the solution x(¢) = 0, and the corresponding
contact force F(t) = F,, is asymptotically stable for any control gains P > 0,D > 0.
Although the power constraint at the input provides a limit for the control forces, the steady
state force error could still be eliminated in principle with large proportional gains.

It is easy to see that the force error expression (2) is preserved also in case of digital
control, but the force error cannot be simply eliminated by increasing the proportional gain
without the risk of losing stability.. This will be explained by analyzing the discrete-time

dynamics of the system.

2.2 Discrete-time model

The discrete-time nature of computer controlled systems is considered with a zero-order-
hold (ZOH). The digital processor sets the control output at the time instants ¢, = nAt,
n = 0,1,2,..., where At is the sampling time. In practice, the time derivative of the
measured force can be estimated by finite differences sampled at a much higher sampling
rate than that of the closed digital control loop. To avoid noisy Fm(t) signals, a cascade
of low-pass filters can be used [28]. For this reason, we use F,(t) = k¢(t) = k(t) in our
mathematical model as a derivative term. Thus, the control force defined in (1) becomes

piecewise constant, and the equation of motion (3) of the controlled system can be rewritten
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as follows

Qt) = (1 — P)kx((n — 1)At) — Dki((n — 1)At) + kqq , (4)

#(t) + w2 (t) = (1 — P)w?z((n — 1)AL) — Duli((n — D)AL), t€ [nAt, (n+1)AL). (5)

Let us introduce the dimensionless time as T' = w,t, and the notation T,, = nAT for the nth
dimensionless sampling instant, where AT = w,At is the dimensionless sampling time. The

equation of motion (5) simplifies to

2"(T)+ z(T) = (1 — P)x,_1 — Dw,! T e [Th,Thsr) (6)

n—1

with prime standing for the dimensionless time derivative. Using the state vector

x = col(x 2’) and x,,_1 = x(T},—1) we can arrange (6) into the matrix form
x(T)=Ax(T)+Bx,1, Te€[l;,Tuw1), n=01,2... (7)

where the corresponding coefficient matrices have the form

0 1 0 0
A= , B= . (8)

-1 0 1—P —Duwy

The stability of this state space model is analyzed in closed form in the subsequent

section.

3 Stability Analysis

3.1 Discrete map

First, we construct a discrete mapping possessing the same stability properties as that of (7)

[4]. The general solution of the non-homogeneous system (7) is

x(T) = eAT=Te — A'Bx,_1, T € (T, Thii (9)
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where the substitution of the initial conditions x(7;,) = x,, yields the coefficient vector
c=x,+A'Bx, ;. (10)
Thus, the state variables at the end of the nth sampling interval can be calculated as
Xp1 = 2%, + (22T —T)A " 'Bx,,_; . (11)

Its scalar form

Tpt1 = Tp coS AT + 2! sin AT + (1 — cos AT)((1 — P)zyp—1 — Dwyz), )

n—1
(12)
z, 1 = —x, sin AT + x;, cos AT + sin AT((1 — P)x,—1 — Dwyay, ).

leads naturally to the following choice of a three-dimensional discrete state vector

X, = col ( (1 =Pz — Dwyz!l, |z ) : (13)
Based on this, equation (11) can be rewritten as
0 1-P —Duw,

Xn41 = Hx,, H=1 1-cos AT cosAT sin AT (14)

sin AT —sin AT cos AT

which represents a generalized three-dimensional geometric series. The convergence of (14)
is equivalent to the asymptotic stability of the force control described by (7). The stability
of the system is determined by the eigenvalues z of the transition matrix H. However, the
study of the possible bifurcations and vibration frequencies along the stability limits also
require the use of the characteristic exponents s. Their relations are represented in Fig. 2
in accordance with the following standard calculation.

The substitution of the exponential trial solution x(7) = Ke*T | (s € C, K € R?) into
(14) yields the characteristic equation det (e**”T—H) = 0. This has an infinite number
of roots s, kK = 1,2,... called characteristic exponents, which are situated along a finite
number of vertical lines in the complex plane as shown in Fig. 2 [4]. Clearly, there is only

a finite number of characteristic multipliers defined by z = e*AT. These are, actually, the
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x @ Im @

)

«
o+ 27
(o + 4m

1sin AT
1 — cosaAT

Re
—isin AT

1 — cosaAT

Fig. 2: Transformations used in this paper

3 eigenvalues of the transition matrix H. The criterion for the exponential stability of the
force control can be written as

det(2I-H) =0, |#123/ <1 ¢ Resy<0, k=12,.... (15)

The same stability condition is derived in-books like [4, 7, 29] using the Laplace transforma-
tion £ and the Z-transformation, which are also illustrated in Fig. 2, but the form of H is

given in (14) only.

3.2 Stability Charts

As shown in Fig. 2, the bilinear transformation z = (¢ + 1)/(c — 1) [4, 29] maps the open
unit disk back into the left half of the complex plane. Thus, the stability condition (15) is

formulated for the polynomial

pa(0) = (0 — 1)3det(g+1I—H) - Zbiai, (16)

O' JR—
where the Routh-Hurwitz criterion can be applied directly for the coefficients

by = P(1 —cosAT), by = Dw,sin AT + (3 —2P)(1 —cosAT), 17
17
by = —2Dw, sin AT + (2 — P)cos AT + P and by = Dw,sin AT + cos AT + 1.
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The stability charts are constructed in the space of three, dimensionless variables

fo  wn/2m AT
» d=waD an fs 1/At 2r

(18)

where P and d are the dimensionless proportional and differential gains, respectively, while
fu/fs is the ratio of the natural frequency of the uncontrolled mechanical system and the
sampling frequency of the control.

For the coefficients in (17) and Hy = biby — b3by, the Routh-Hurwitz criterion yields the

following necessary and sufficient exponential stability conditions

by >0 < P>0 and f,/fs#k, k=0,1,2... (19)
(2P —3)(1 — cos AT)
2
by >0 & d> YN (20)
(2—P)cosAT + P
b d 21
120 & d< 25 AT (21)
cos AT + 1
b0>0<:>d>—w and fn/fs?é2k+17 k—0,1,2 (22)

Hy > 00 < —2(1 —cos AT)?*P? 4+ 2(1 — cos AT)(2dsin AT — 4cos AT +1)P  (23)

+2(cos AT — dsin AT)(dsin AT + 3(1 — cos AT)) .

Based on these equations, we can perform the detailed stability analyses of the model.
In the plane of the control parameters P and d, the resulting stable domain is bounded by
the straight lines b; = 0 and b3 = 0 together with the implicitly defined parabola Hy; = 0.
Depending on the value of the frequency ratio chosen in (0, 1/2), three possible shapes

can be determined for the stable domains shown shaded in Fig. 3. The coordinates of the

Jlfs € (0, 1/6) Jlfs € (176, 1/3) Jlfs € (173, 172)

~ A ~ ~

[ — b 1 1
£ 1 g R

B C & B

= Hy = =

k= S S

O B b 5] O

g / ’ g D E bo g

Q b3 Q b3 bz Q

Proportional gain - P Proportional gain - P Proportional gain - P

Fig. 3: Possible shapes of the P — d stability charts
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Table 1: Characteristic points of the P — d stability charts

11

Proportional gain Differential gain
1
A 0 tan AT
0 ~3(1 —cos AT)
sin AT
(2cos AT — 3)? (2cos AT + 3)(2cos AT — 1)
8(1 — cos AT) 8sin AT
1+ cos AT
b 0 ~ SinAT
B 1 —2cos AT 1+ cosAT
1 —cos AT sin AT
2+ 4cos AT 1+ cos AT
C1—cosAT © sinAT
a (2cos AT — 1) (2cos AT — 5) (2 cos AT+ 1)
8 (1 —cos AT) 8sin AT

characteristic points A...G of the charts are given in closed form in Table 1. Among these
points, we can find the maximum proportional gain at C or E. These formulas and stability
charts have importance at the design stage of force control to synchronize basic mechanical

and control parameters.

In order to see the structure of the stable domains for frequency ratios in the range of
(1/2,1) and further, we also construct f,/fs — P charts shown in Fig. 4 for 3 different values
of dimensionless differential gains. These charts are periodic in the frequency ratio with

periodicity 1 (see later at Fig. 5)

We note, that this periodicity may not have great significance for several practical ap-
plications. This is because, according to Shannon’s sampling theorem [7], frequency ratios
greater than 1/2 should be avoided. However, regardless of this, the periodicity of the
stability charts can still be seen as an important physical phenomenon observed in mechan-
ical systems with digital force feedback. For example, it can have practical importance in

applications where the sampling frequency is limited by the hardware.

The first chart in Fig. 4 shows a simple proportional controller, i.e., d = 0, where the
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?1/2 d=0 ?1/2 ( \ d=0.2 ?1/2 ( \\ "d=0.4
= 1/3 = 1/3 = 1/3
[<P] <) (9]
= = =
5 & L \
= = =
-~ 0 -~ 0 -~ 0
2 2 2
.8 d=0 | A, d=0.2 | & d=0.4
=15 £ 15 £15
= = =
- A - - (]
S E E
S 2 S
= = =
2,05 2,05 205
S S S
—~ —~ ~
= 0 = 0 = 0
0 1/41/3 1/2 2/3 3/4 1 0 1/41/3 1/2 2/3 3/4 1 0 1/41/3 1/2 2/3 3/4 1
Frequency ratio - f,,/ fs Frequency ratio - f,,/ fs Frequency ratio - f,/fs

Fig. 4: The f,/fs — P stability charts
maximal stable proportional gain is 1.5. According to (2), this means that the steady state
force error cannot be guaranteed to be below 66% of the magnitude of the generalized friction
force in the system.

In contrast, when d has a relatively high positive value, the upper limit of the stable
domain tends to infinity in a narrow range of low frequency ratios. In principle, this gives
the possibility to eliminate the steady state error of a digital force controller. In practice,
this can be difficult to achieve because, apart of the power constraint at the input, the stable
domain becomes narrow with respect to the frequency ratio. This narrow stable domain also
shows up at f,,/fs = 14,2+,... (see Fig. 5).

Another important property of the charts presented in Fig. 4 is that the stable domains
become disjoint and some of them disappear by increasing the differential gain. For high
differential gains, only narrow stable domains exist at certain frequency ratios. This can
offer an explanation for why the differential gain is avoided in practice even when the noisy

force derivative signal is properly filtered.

4 Dynamic Behavior

In the case of discrete-time systems, three different kinds of bifurcation may occur along the

stability limits [30]. The characteristic multiplier z may cross the unit circle at —1, at +1,
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or at a complex conjugate pair z; 5 = exp(£iaAT). As an illustration, the f,,/fs — P chart
corresponding to d = 0.2 is presented in Fig. 5 showing the periodic nature of the stable

regions and also the three kinds of bifurcations mentioned above.

If we substitute z = 1 into the characteristic polynomial in (15), the resulting expression
is b3 = 0. Using equation (17), b3 = 0 is satisfied when f,/fs =k, k=1,2,..., or P = 0.
Along these stability limits, saddle-node bifurcation may occur [30|. In the case of P = 0,
the physical meaning of this bifurcation is obvious: the control works in the opposite way,

of course, for negative gains.

The substitution of z = —1 into the characteristic polynomial in (15) yields by = 0. This
equation can be solved using (17). These boundaries refer to period-doubling bifurcations
[30]. In this case, the system starts to oscillate with the period of 2At¢, which is just the
double of the sampling time. Among the corresponding stability boundaries, we can find the
straight lines characterized by f./fs = 0.5+ k, k =1,2,..., which are independent of the

value of the differential gain.

In the third case, when 25 = exp(+iaAT), the secondary Hopf (or Neimark-Sacker)
bifurcation [30] may occur along the stability limit Hy = 0 (see formula (23)). This kind of
bifurcation is the most typical in practical cases (see Fig. 5), when self-excited vibrations are

experienced. Figure 2 shows, that the frequencies of these vibrations can be obtained by the

2

Q. +iaAT +OoAT d=0.2

Zp,=¢ Zp,=¢ :

! ' : z=-1 ’ : z=-1
2 15F >~ Rl T R
= 5 saddle-node: z=1
=) z=1 —|
Tg 1 RN Yl Rl U period doubling: z=-1
o ; 1 )
= AT AT secondary Hopf: z, 2=e:il(mT
8‘ 05 - Z1,2=€ """"" 1Z2,,=¢ S N .
= z=1 z=1
A 0 ‘ ‘
0 1/2 1 3/2 2

Frequency ratio - f,/fs

Fig. 5: The three different kinds of possible bifurcations
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inverse of the definition of characteristic multipliers s = In z/AT. This transformation maps
the unit circle of the complex plane into the imaginary axis, where a + km, k= 1,2,... give
the different vibration frequencies of the developing oscillatory motion in the dimensionless
time domain. It is easy to see that there are infinitely many of these vibration frequency
components. Physically, the lowest one is the most important, since it has the strongest
peak in the spectrum.

The relative vibration frequencies v = (awy,/(27))/(1/At) = afn/fs corresponding to
these relevant lowest frequencies a are shown above the stability charts in Fig. 4. The
highest values of v are at f;/2 (the half of the sampling frequency), where the stability
bounds associated with the secondary Hopf bifurcations intersect the stability bounds related
to the period doubling bifurcations.

An important consequence of these results is that the system will oscillate at a relatively
low frequency when it loses its stability along the limit Hs = 0. This could be the case in
practice when the proportional gain is increased to achieve a better accuracy at low frequency
ratios. As was already mentioned in the introduction, these unexpected low frequency vi-
brations are reported in several papers [14, 15, 31]. For small frequency ratios, the frequency
of the possible vibrations are far smaller than the sampling frequency of the controller no
matter if a differential gain is applied or not. In the case, when a PD controller is applied
and the sampling frequency and the proportional gain are both set to be high in order to
improve the accuracy of the control, the frequency of the possible vibrations is only 10-15%

of the sampling frequency.

5 Conclusions

The dynamics of mechanical systems with digital force control was investigated in this paper.
Many undesired events in force controlled systems (e.g. instability, oscillations) are often
explained by referring to “unmodelled high frequency dynamics”, but some of these events are

caused directly by the discrete-time nature of the controller. The underlying physical cause
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for the stability problems having unexpected parameter dependences in force control is the
peculiar behavior of the so-called delayed oscillator [32]. Tt is well known that the discrete-
time controller introduces time delay, which can have destabilizing effects depending on the
system parameters. In case of second order systems, like an oscillator with low viscous
damping, the parameter dependence is intricate. Since robotic force control is often applied
to systems of large stiffness and low damping, vibration problems are typical in practice.
In this paper, particular attention has been paid to the effects of the differential gain.
The differential gain is commonly used in position control, but it has usually been avoided
in force control without much analytical explanation. In this work, detailed stability and
performance analyses were carried out to characterize the derivative feedback term under
the condition that the force derivative signal is ideally filtered. The main effects of the

differential gain are summarized in the following:

o As illustrated in Figure 4, introducing a differential gain will reduce significantly the
area of the stable domains in the f,/fs — P (natural frequency and sampling frequency

ratio - proportional gain) stability charts.

e By adding a differential gain, the stability domains become disjoint and narrow (see
Fig. 4). There are certain frequency ratios where no stable control is possible with a
fixed differential gain in the control. The narrow stable domains become very elongated
along the P axis. The proportional gain can be further increased within the limits of
stability to minimize the steady state force error, but the system becomes very sensitive

even to slight frequency parameter variations.

e The dynamic behavior of the system in the neighborhood of the stability boundaries
can lead to three different kinds of bifurcations. The two relevant ones are the period-
doubling and the secondary Hopf bifurcations. Typically, these lead to self-excited
low frequency oscillations with frequencies of 10-15% of the sampling frequency, but

they will always be less then the 50% of the sampling frequency. The differential gain
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does not have a dominant influence on these low vibration frequencies, but it makes
the self-excited vibration frequencies even less likely to be in the 30-50% region of the

sampling frequency (see Fig. 4).

The stability charts are periodic as the frequency ratio is increased, the stable domains
are repeated in every (k,k+ 1), k € NT intervals of the frequency ratio. At properly tuned
low sampling frequencies, it is still possible to select gains under which the system becomes
stable, while the periodic nature also implies that at high sampling frequencies, the system
can loose its stability if the gains are not selected properly. The proper tuning and selection of
the control gains are equally important for both low and high sampling frequencies, especially
when the force controlled mechanical system has many natural frequencies with low modal
damping ratios. The periodicity of the stability charts is an-interesting physical phenomenon
in mechanical systems with digital force feedback. ‘However, we have to note, that for
practical systems the frequency ratio should be kept below 1/2 according to Shannon’s
sampling theorem.

Most of the investigations were based on the assumption of the availability of the time
derivative of the measured force. In practice, however, this derivative can be approximated
using finite differences of measured force values, which also provide some kind of filtering.
The more detailed analysis of this finite difference approximation shows that the above

conclusions still hold if the force sensor’s internal sampling frequency is high enough.
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