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Abstract

In this paper the nonlinear analysis of a composite Timoshenko beam with
arbitrary variable cross section undergoing moderate large deflections under general
boundary conditions is presented employing the analog equation method (AEM), a
BEM-based method. The composite beam consists of materials in contact, each of
which can surround a finite number of inclusions. The materials have different
elasticity and shear moduli with same Poisson’s ratio and are firmly bonded together.
The beam is subjected in an arbitrarily concentrated or distributed variable axial
loading, while the shear loading is applied at the shear center of the cross section,
avoiding in this way the induction of a twisting moment. To account for shear
deformations, the concept of shear deformation coefficients is used. Five boundary

value problems are formulated with respect to the transverse displacements, the axial

! Associate Professor, School of Civil Engineering, National Technica University, Zografou Campus,
GR-157 80 Athens, Greece.

2 Doctoral Student, School of Civil Engineering, National Technical University, Zografou Campus,
GR-157 80 Athens, Greece.

1



displacement and to two stress functions and solved using the Analog Equation
Method. Application of the boundary element technique yields a system of nonlinear
equations from which the transverse and axial displacements are computed by an
iterative process. The evaluation of the shear deformation coefficients is accomplished
from the aforementioned stress functions using only boundary integration. Numerical
examples are worked out to illustrate the efficiency, the accuracy, the range of
applications of the developed method and the influence of the shear deformation

effect.

1. Introduction

One of the problems often encountered in engineering practice is the analysis of
members of structures of variable cross section which except for the transverse
loading are also subjected to intense axial loading. Also, composite structural
elements consisting of a relatively weak matrix material reinforced by stronger
inclusions or of materials in contact are of increasing technological importance. Steel
beams or columns totally encased in concrete, fiber-reinforced materials or concrete
plates stiffened by steel beams are most common examples. The analysis of these
members becomes much more accurate and complex taking into account that the axial
force is nonlinearly coupled with the transverse deflections, avoiding in this way the
inaccuracies arising from a linearized second — order analysis. Moreover, unless the
beam is very “thin” the error incurred from the ignorance of the effect of shear
deformation may be substantial, particularly in the case of heavy lateral loading.

Over the past twenty years, many researchers have developed and validated
various methods of performing a linearized second-order analysis on members of

constant or variable homogeneous or composite cross section [1-5]. Consequently,



due to the demand of more accurate results nonlinear analyses have also been
performed for beams of variable cross section either deriving the variations of the
total potential and using them as the basis for a FE analysis [6-7] or presenting a
BEM-based method [8]. In al these studies shear deformation effect isignored.

This effect has been taken into account in constant cross section beams. More
specifically, Kim et al. presented a practical second-order inelastic static [9] and
dynamic [10] analysis for 3-D steel frames, Machado and Cortinez [11] a
geometrically non-linear beam theory for the lateral buckling problem of bisymmetric
thin-walled composite simply supported or cantilever beams, while the boundary
element method has also been employed for first-order [12-14] and nonlinear [15]
analyses. To the authors' knowledge Timoshenko beams of variable cross section
have been studied employing only first-order analysis [16].

In this paper a BEM-based method is employed for the nonlinear analysis of a
composite Timoshenko beam with variable cross section undergoing moderate large
deflections under general boundary conditions. The composite beam consists of
materials in contact, each of which can surround a finite number of inclusions. The
materials have different elasticity and shear moduli with same Poisson’s ratio and are
firmly bonded together. The beam is subjected in an arbitrarily concentrated or
distributed variable axia loading, while the shear loading is applied at the shear center
of the cross section, avoiding in this way the induction of a twisting moment. To
account for shear deformations, the concept of shear deformation coefficients is used.
Five boundary value problems are formulated with respect to the transverse
displacements, the axia displacement and to two stress functions and solved using the
Analog Equation Method [17], a BEM-based method. Application of the boundary

element technique yields a system of nonlinear equations from which the transverse



and axial displacements are computed by an iterative process. The evaluation of the

shear deformation coefficients is accomplished from the aforementioned stress

functions using only boundary integration. The essential features and novel aspects of

the present formulation compared with previous ones are summarized as follows.

Vi.

For the first time in the literature shear deformation effect is taken into
account in the nonlinear analysis of variable cross section beams.

The beam is subjected in an arbitrarily concentrated or distributed variable
axial loading.

The beam is supported by the most general boundary conditions including
elastic support or restrain.

The analysis is not restricted to a linearized second — order one but is a
nonlinear one arising from the fact that the axial force is nonlinearly coupled
with the transverse deflections (additional terms are taken into account).
Previous formulations concerning composite beams of thin walled cross
sections or laminated cross-sections are anayzing these beams using the
‘refined models'. However, these models do not satisfy the continuity
conditions of transverse shear stress at layer interfaces and assume that the
transverse shear stress along the thickness coordinate remains constant,
leading to the fact that kinematic or static assumptions cannot be always
valid [18-20].

The shear deformation coefficients are evaluated using an energy approach,
instead of Timoshenko's [21] and Cowper's [22] definitions, for which
several authors [23] have pointed out that one obtains unsatisfactory results
or definitions given by other researchers [24, 25], for which these factors

take negative values.



vii. The effect of the material’s Poisson ratio v is taken into account.

viii. The proposed method employs a pure BEM approach (requiring only
boundary discretization) resulting in line or parabolic elements instead of
area elements of the FEM solutions (requiring the whole cross section to be
discretized into triangular or quadrilateral area elements), while a small
number of line elements are required to achieve high accuracy.

Numerical examples are worked out to illustrate the efficiency, the accuracy, the
range of applications of the developed method and the influence of the shear

deformation effect.

2. Statement of the problem
Consider a prismatic beam of length / with a doubly symmetric composite
variable cross section of arbitrary shape, consisting of materials in contact, each of

which can surround a finite number of inclusions, with modulus of elasticity £,
shear modulus G; and common Poisson's ratio v, occupying the regions (2,

(G=1,2,...,.K) of the y,z plane (Fig.1b). The materials of these regions are firmly
bonded together and are assumed homogeneous, isotropic and linearly elastic. Let aso

the boundaries of the nonintersecting regions (2, be denoted by 7°; (j=1.2,...K.).

These boundary curves are piecewise smooth, i.e. they may have a finite number of
corners. Without loss of generality, it may be assumed that the x — axis of the beam
principal coordinate system is the line joining the centroids of the cross sections. The

beam is subjected to an arbitrarily distributed axia loading p, and to torsionless

bending arising from arbitrarily distributed transverse loading p,,, p, and bending

moments m,,, m, along y and z axes, respectively (Fig.1a).

!



Under the action of the aforementioned loading the displacement field of the

beamisgiven as

u(x,y,z)zu(x)+zt9y (x)—sz (x) (1a)
w(x,y,z) = w(x) (1b)
v(x,y,z)=v(x) (1¢)

where u, w, v arethe axia and transverse beam displacements with respect to x ,z ,y

axes, respectively and 6,,, 0, are the angles of rotation of the cross-section due to

bending. Employing the strain-displacement relations of the three - dimensiona

elasticity for moderate displacements [26, 27], the following strain components can be

easily obtained
2 2
Epy = a—u + L [@j + (a_wj (2a)
ox 2|\ ox Ox
Viz = Z_;V + Z_Z (2b)
ov Oou
yxy = a + 5 (ZC)

Substituting egn.(1a) in egns (2b,c) we obtain the angles of rotation of the cross-

section due to bending taking into account shear deformation effect as

0, (x)= -Z—LH ’. (33)
5
0.(x)=="~7y (30)



Assuming small rotations, the total angles of rotation w,,, . (Fig.2) of the cross-

section in the x-z and x-y planes of the beam, respectively, satisfy the following

relations

cos @, ~ 1 cosw, = 1 (4a,b)
. dw . dv

sinw, o, =—E=9y—7/xz sinom, = @, =—E=—6’Z—yxy (5a,b)

while the corresponding curvatures are given as

k :dey :_d2W+d7/xz

6a
Yo dx d? dx (62

do, d’v dyy
dx  dx?  dx

(6b)

z

where y.., 7,, aethe additional angles of rotation of the cross-section due to shear

deformation (Fig.2a).
Noting that the direction of the axia force N is the tangentia to the deformed
centroidal axis and its normal in the x-y and x-z planes of the beam gives the direction

of the shear forces O, , Q., respectively (Fig.2), employing egns. (4a,b), (5a,b) and
referring to Fig. 2b, the stressresultants R, , R,, R, actinginthe x, y, z directions

(undeformed beam directions), respectively, are related to the axial N and shear O,

Q. forcesas
dw dv dv dw
R.=N-0,—-0,— R, =0, +N— R.=0.+N— 7ab,c



The second and the third term in the right hand side of egn. (7a), express the influence

of the shear forces O, and O, on the horizontal stress resultant R,. However, these
terms can be neglected since O, w' and Q,v' are much smaller than N and thus

egn. (7a) can be written as

R.=~N (8)

Moreover, the axial force N , the shear forces O, O, and the bending moments A/,

M are given from the well-known relations [26]

N=E,As,, (99)
Qy = GIAyyxy Qz = G]Azyxz (gb,C)
My = E][yyky MZ :E]IZZkZ (9d,6)

where the first materia is considered as reference material; G,;4,, G;4, are the

cross-section’ s shear rigidities of the Timoshenko’ s beam theory, with

A =x,A=—A4 A =x.A=—A1 (10a,b)

the shear areas with respect to y, z axes, respectively; x,, x, are the shear

correction factors; «,,, «, the shear deformation coefficientsand 4, /

wo 1., aethe

y!
area, and the moments of inertia with respect to y, z axes, respectively of the

composite cross section given as

>

A=A4(x)= G

— | dQ. 114
2, [o, 49 (112)



L, =1, (x)= ZFJ.[Q.ZZd'Qj (11b)
j=rt1
K E.

Izz :Izz (x): ZE_jJ.Q,yZde (11C)
j=1£p =

It is worth here noting that the reduction of eqns.(9d,e) and (11b,c) using the modulus
of elasticity E; and of egns.(9b,c) and (11a) using the shear modulus G; of the first
material, could be achieved using any other material, considering it as reference
material.

The governing equation for the beam transverse displacement w = w(x) will be

derived by considering the equilibrium of the deformed element in the x-z plane.

Thus, referring to Fig. 2b we obtain

dR dM
Xip. =0 Z4p.=0 J
dx Px dx Pz dx

-0, +my, =0 (12a,b,c)

Employing equations (9c) and (10b), equation (6a) can be written as

d’w  a a a
ko =—— 4+ z p z A+ z,X 13
y dx2 GIA Z,X G]A2 Qz X G]A Qz ( )

Substituting egns. (8), (7c) into egns. (12ab), using egn. (12c) to eliminate Q.,
employing the relation (9d) and utilizing egn. (13) we obtain the expressions of the

angle of rotation due to bending ¢, and the stress resultants M, R,, as these are

given in Appendix A and the governing differential equation as

4 3 2
v _0 4V 0, @W 0 ¢ inddethebeam (14)
dx* dx’ dx’ dx

O



where the functions B; (i=1,2) aregiven as

(15)

3 2 2
+G]A _E]A [yy,xaz,x_EJIyyA azxx

the subscript ,x denotes differentiation with respect to x axis, and the coefficients C;

(i=0,1,2,3,4) are given in Appendix B. Moreover, the pertinent boundary conditions

of the problem are given as
ajw(x)+a5R.(x)=a3 (17a)

B0, (x)+BiM (x)=f5 at the beam ends x =0,/ (17b)

where o, 7 (i=1,2,3) are given congtants, while the angle of rotation ¢, and the

stressresultants M, R, a thebeamends x =0,/ aregiven as

3
g, =Lk (1,64’ +a.1,,4N)- dw
dx dx (184q)
2
_M%EJ(G A1, +a AL, N=2a,1,4.N+21, Aa, N)
dx’ B,
3., EXT°
My=M 17y (aZGIAAx+aZZAxN—G]A2azx—azAasz)
a’ B ’ ’ ’ ’
2
d’wE

AN =20 EI; A 4N-1,,B,

1 2
+ B—z(azElG]AIyylyyxAx+a Efdy

-1
~a,1,,(G,A)" NBy-2E,I}, Aal N +4a.E I} a. ,

~a.El, 4a; 1, .N)

AN-El,G A%, I,

zxtyyx

(18b)

10



3
—d—;‘/iA(InyIAZ +azlyyAN)+@N
dx B] dx
d’w E, A

~EREE (G A, v a ALy, N =2a, 1, AN+ 21, da, N
i’ B, | ’ ’ ’

R =

z

(18c)

Eqgns. (17) describe the most general boundary conditions associated with the problem
at hand and can include elastic support or restrain. It is apparent that all types of the

conventional boundary conditions (clamped, ssimply supported, free or guided edge)
can be derived form these equations by specifying appropriately the functions «; and
B7 (eg.foraclamped edgeitis af =87 =1, a5 =a5 =5 =55 =0).

Similarly, considering the beam in the x-y plane we obtain the boundary value

problem of the beam transverse displacement v=v(x) as

d*v v d’v dv

C =C +C. +Cs—+C inside the beam 19
9dx4 8dx3 7d)€2 6dx 5 ( )
ayv(x)+a3R (x)=a3 (20a)
Y0, (x)+BIM . (x)= B} at the beam ends x =0,/ (20b)

where o, ¥ (i=1,2,3) are given constants and the expressions of the angle of

rotation ¢, and the stressresultants M, R, at thebeam ends x =0,/ aregivenas

3y a E
0, = —d—:y—I(IZZG]AZ + ayIZZAN)+ﬂ
dx B4 dx
(21d)
d?v a,E

G,A°I.. . +a,Al.. N-2a,1._ A N+2I_Aa, N
1 2z,X yHzzx zz VX

yrzz9x

11



3 242
QE]IZZ

2 2
M= a,G A4, +a 4N -G 4’a,  ~a,da, .N)
2
+%%(ayE,G,AIZ”AX+a2E,IZ”AxN 2,1 4d’ N+a,(G,4) " NB,
4
—2aEI A AN +4a,El .a, A N+B,—E,GAa, I.. .—a,E da, I . N
(21b)
3
Ry—d :Ef (1..G47 +a, 14N )+ sy
dx Bj X
5 (21c)
+ﬂ%(GJA21m+ayAI N=2a,0_4.N+2I_4a, N)
dx’ B '
the functions B; (i=3,4) aregiven as
By=2a,E|l A% —a,E Al A, —a E[l AA  +G A’ 229
a
—2E)l_ Aa, A +E AL a, +El _Aa,,
B, =G;B; (22b)

and the coefficients C; (i=5,6,7,8,9) are given in Appendix B.

In both of the aforementioned boundary value problems the axial force N inside

the beam or at its boundary is obtained after substituting eqn.(2a) in egn.(9a) as
2 2
N=Ea 2L (ﬂj + (ﬂj (23)
dx 2\ Uax dx

where u =u(x) is the beam axial displacement, which can be evaluated from the

solution of the boundary value problem arising after substituting egns (8), (23) in
eqgn.(12a) as

12
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2, 4 2 2 2,
E]Ad E]A @:_px_El Ay (d_w} (dv} Ll dw d w+dvd
dx? dx 2 dx dx dx dx?  dx dy?

inside the beam (24)

cju(x)+e,N(x)=c; at the beam ends x =0,/ (25)

where ¢; (i=1,2,3) aregiven constants.
The solution of the boundary value problems prescribed from egns (14), (17a,b)

and (19), (20a,b) presumes the evaluation of the shear deformation coefficients a. ,

a,, corresponding to the principal centroidal system of axes Syz. These coefficients

are established equating the approximate formula of the shear strain energy per unit

length [23]

2 2

a,Q a.Q
U — y=y + Z=Z 26
WP 024G, 24G, (20)

with the exact one given from

Uexaer = i Q.[_Q - 'Qj (27)
j=1 E] J ZGI
and are obtained as [28]
1
L E,A2 Zjﬂ./ i((ve e)'((V@)f_e)de (259
1 4 K
= 2o B (2), ) (v 9),-d)aey @3

13



where (7..), (rxy) are the transverse (direct) shear stress components,
(V)=i,(0/dy)+i.(0/oz) is asymbolic vector with i, i, the unit vectors along y

and z axes, respectively, 4 isgiven from

A=2(1+v)I 1, (29)

v isthe Poisson ratio of the cross section material, e and d are vectors defined as

2 2

. . v —z° |, .
e—eyty+eztz—{vlyy 3 jzy+(vlyyyz)1z (30a)

22
d=di,+d i, =(vIyz)i, —[vlzz Y > z Jiz (30b)

and O( y,z)j , @ y,z)j are stress functions, which are evaluated from the solution of

the following Neumann type boundary value problems [28]

2 i ;

v’0,=-21,y inQ (j=12..K) (313
o0® 154G .

v%pj. =2z ing (j=12.,K) (329
oD oD .

Ei(ajj—E{Elz(Ej—Ei)n-d onr; (j=12..K) (32b)

where E; is the modulus of elasticity of the (2, region at the common part of the

boundaries of (2, and (2 regions, or E; =0 at the free part of the boundary of ©;

region, while (a/an)j zny(a/ay)jJrnZ (a/az)i denotes the directional derivative

14



normal to the boundary 77;. The vector n normal to the boundary 7°; is positive if it
points to the exterior of the (2, region. It is worth here noting that the normal

derivatives across the interior boundaries vary discontinuously. In the case of
negligible shear deformations a, = a, = 0. The boundary conditions (31b), (32b) have
been derived from the physical consideration that the traction vector in the direction
of the normal vector n on the interfaces separating the ; and i different materials are

equal in magnitude and opposite in direction, while it vanishes on the free surface of

the beam.

3. Integral Representations— Numerical Solution
According to the precedent statement of the problem, the nonlinear analysis of a

beam of variable composite cross section including shear deformation reduces in
establishing the transverse displacements w=w(x), v=v(x) having continuous
derivatives up to the fourth order with respect to x, the axial displacement u = u (x)

having continuous derivatives up to the second order with respect to x and the stress

functions @ ( y,z)j, o( y,z)j having continuous partial derivatives up to the second

order with respect to y, z .

3.1. For thetransverse displacementsw, v.

The numerical solution of the boundary value problems described by egns (14),
(17ab) and (19), (20a,b) is similar. For this reason, in the following we will analyze
the solution of the problem of egns (14), (17a,b) noting any alteration or addition for

the problem of egns (19), (20ab). Egn (14) is solved using the Analog Equation

15



Method [17], as it has been employed for the beam equation including axial forcesin
Sapountzakis and Tsiatas [5].

Thus, if w is the sought solution of the boundary value problem described by
egns (14) and (17a,b), differentiating this function four timesyields
d*w

a’x_4:qz (x) (33)

Egn (33) indicates that the solution of the original problem can be obtained as the

deflection of a constant cross section beam with unit flexural rigidity and infinite
shear rigidity subjected to a flexural fictitious load ¢, (x) under the same boundary

conditions. The fictitious load is unknown and is established using BEM as follows.

The integral representation of the deflection w can be written as

/
d’ d? d
; ;V+A3(r)d—zv+/12(r)d—;v+/11(r)w (34)
X X

0

w(x):fOIqZA4(r)dx— Ay(r)

wherethekernels A;(r ), (i=1,2,3,4) aregiven as

A(r)=~~sgnp (359)

Ao(r)==S1(1-|p] (35b)

Ax(r) ==L |plllpl=2)5gnp (350)
_ 13 3 a2

My(r)=—1 (2+|p| 3)p| ) (35d)

16



where p=r/1, r=x-&,x, & points of the beam. Differentiating egn (34) resultsin

the integral representations of the derivatives of the deflection w as

/
aw(x) d>w d’w dw
o =f0qz/13(r)dx{/13(r) " +A2(F)F+A](V)EL (36a)
d’w(x) B PENN
5 = (| A1) = Ay ()= 0 (36b)
BPwix) BPwl
— 5=l A ()= 0 (360)

The integral representations (34), (36a) written for the beam ends 0, [ together with
the boundary conditions (17a,b) can be employed to express the unknown boundary

quantities w, w', w" and w" intermsof ¢_. Elimination of these quantities from the

discretized counterpart of egn (34) applied to al noda points in the interior of the

beam yields

i =[8:]{a:) (37)

where [B.] isan LxL matrix, with L the number of the nodal points along the beam

axis and {qz} isavector including the L unknown nodal values of the fictitious load.

Moreover, the discretized counterpart of egns (36ab,c) when applied to all nodal

points in the interior of the beam, after elimination of the boundary quantitiesyields

'y =[B.1{4:} oy =[8:]{4:} =821 (38ab,c)

17



where [B.], [B!], [BY] areknown LxL coefficient matrices. Note that egns (37) and

(38ab,c) are valid for homogeneous boundary conditions (a3 = 3 =0). For non-

homogeneous boundary conditions, an additive constant vector will appear in the right
hand side of these equations.
Finaly, applying egn (14) to the L noda points in the interior of the beam we

obtain the following linear system of equations with respect to ¢.

[ 1= (GBI [C B -l BE ] Ha- ) ={Co} (39)

while following the same procedure for the boundary value problem (19), (20a,b) we

obtain the corresponding linear system of equations with respectto ¢, as

[e)-[e1B -G B ]-[e 1 B ] g, <) (40

where [C;], (i=1,2,3,4,6,7,8,9) arediagonal LxL matrices whose elements are given
from the coefficients C; (i=1,2,3,4,6,7,8,9) given in Appendix B, a the
corresponding nodal point in the interior of the beam; {C,}, {C;} are vectorswith L

elements including the values of the coefficients C,, C; given in Appendix B, at the

L nodal points. It is worth here noting that the values of the derivatives of the cross
section area, of the moments of inertia, of the shear deformation coefficients etc. in
the aforementioned coefficients result after approximating the corresponding

derivatives with appropriate central, forward or backward finite differences.

3.2 For the axial displacement u.

18



Let u be the sought solution of the boundary value problem described by egns

(24) and (25). Differentiating this function two times yields

d’u

=4 (x) (41)

Eqgn (41) indicates that the solution of the original problem can be obtained as

the axia displacement of a beam with unit axia rigidity subjected to a flexura
fictitious load ¢, (x) under the same boundary conditions. The fictitious load is

unknown.

The solution of egn (41) isgiven in integral form as

« Tl
] x «du du
u(x):-jou qxdsw{u E—Eu} (42
where u" isthe fundamental solution, which is given as
« 1
=_ 43
u 2|r| (43)

Following the same procedure as in 3.1, the discretized counterpart of egn (42)

and itsfirst derivative with respect to x, when applied to al nodal pointsin the interior

of the beam yields
{U}=[8.]{4.} (44a)
U} =[B; {4} (44b)

19



where [B,], [B;] are known matrices with dimensions LxL, similar with those

mentioned before for the deflection w and the following system of eguations with

respect to ¢,., g, , g, isobtained

[Di{ax} +[D][B: {ax ) =—{px)
—[D;]([[B;]{qz}]dg (B35 ], [ ]{qy}j (45)

RGa(IC RN EA AR EA TR I EA P8

where the symbol [ | indicates a diagonal matrix with the elements of theincluded

dg.
column matrix, {q,}, {qy}, {p,} are vectors with L elements, similar with those

mentioned before for the deflection w, while the axial force at the neutral axis of the

beam can be expressed as follows

1

(v =00+ 2100 (320t ], (200 + [ ey )], (35

(46)

In eqns. (45), (46) [Dy], [D;] are diagonal LxL matrices whose elements are given

from

(D}).,, =4 (478)
 _E /(a4

(02), -2 4) (7o)

at the L noda points in the interior of the beam. Egns. (39), (40), (45) and (46)

constitute a nonlinear coupled system of equations with respect to ¢, 9y, 4: and N
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guantities. The solution of this system is accomplished iteratively by employing the

two term acceleration method [29, 30].

3.3 For thestressfunctions (cD(y,z))j and (@(y,z))j.

The evaluation of the stress functions (@(y,z))j and (@(y,z))j is

accomplished using BEM as thisis presented in Mokos and Sapountzakis [28].
Moreover, since the torsionless bending problem of beams is solved by the
BEM, the domain integrals for the evaluation of the area, the bending moments of
inertia and the shear deformation coefficients (egns 1lab,c, 28ab) have to be
converted to boundary line integrals, in order to maintain the pure boundary character
of the method. This can be achieved using integration by parts, the Gauss theorem and

the Green identity. Thus, the moments of inertia and the cross section area can be

written as
1 & 2
I, :EZI (& —El-)(yz cosﬂ)d.v (482)
1j=1"""
1 K 2.
I, = ZIF(E]. —El.)(zy sinfB |ds (48b)
1 j=1""
] K
= ZL_ (G] —Gi)(ycosﬂ+zsinﬂ)d9 (48c)
2G] _]:1 J

while the shear deformation coefficients a,, and a, are obtained from the relations

I 5.2
a ((4v+2)1yy10y+zv Iyl —1&) (493)

y_EIAZ
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A 1 55
a, :E1A2 ((4V+2)IZZ]@Z+ZV Izzled_chdJ

where

K
Io, Z]'[Fj(Ej_Ei)(@) (” e)ds

=

K
lpg = ij.r (Ej_Ei)(‘D) (n-d)ds

=

K )
Ig=> .[r.(EJ' —Ei)(y4zsinﬂ+z4yc0sﬂ+§y z3 sinﬂjds

=1

1X i 4 . 2
]@y:gz I(Ej —El) =21,y zsmﬂ+(3(@)jcosﬂ—y(me))y }ds

AT, -

[(DZ:ééj_[i(Ej—Ei):—ZIZZZ4ycosﬂ+(3(@)jsinﬂ—z(n-d))zz}ds

4. Numerical examples

(49D)

(50a)

(50b)

(50c)

(50d)

(50e)

On the basis of the anaytical and numerical procedures presented in the

previous sections, a computer program has been written and representative examples

have been studied to demonstrate the efficiency, the accuracy and the range of

applications of the developed method.

Example 1

A cantilever beam of a hollow rectangular composite cross section bx A of constant

width 5=0.12m, consisting of two columns (Eref=E1=2.1><]08kN/m2) of

t; =4mm thickness and two plates (E, = 2.1x 10" kN /m?) of t, = 20mm thickness,

having linearly varying height of maximum value at x=0: h, =0.20m loaded both
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axially by adistributed and a concentrated load and transversely by a distributed |oad,
as shown in Fig. 3 has been studied. In Fig. 4 the transverse deflection v and in Fig. 5

the axial displacement « along the axis of the beam with #, =0.12m (29 boundary

elements, 58 nodal points) are presented as compared with those obtained from a
linear analysis and from a FEM solution using 60-beam elements [31] taking into
account or ignoring shear deformation effect, while in Table 1 the convergence of the
results for various numbers of boundary elements for both the transverse deflection v
and the axial displacement « at the mid and end points of the beam are presented.
From both figures the coincidence of the results between BEM and FEM when shear
deformation effect is ignored is observed, while the small deviation of the results of
these methods when shear deformation effect is included is attributed to the employed
cubic shape functions in the FEM solution for the approximation of the deformation
of the beam [32]. From Table 1 the convergence of the proposed method for few
boundary elements is observed, while from Fig.5 it comes up that even for tensile
axial loading the results of the nonlinear analysis show a remarkable beam shortening
coming from the intense transverse load. Moreover, the increment of both the
deflection and the axia displacement due to the influence of the shear deformation
effect are observed. In Table 2 the influence of the shear deformation effect is
demonstrated by presenting the discrepancy of the transverse deflection v and the

axia displacement u at the //6 of the beam for various beam heights #, a x=1.
Finally, in Table 3 the same displacement components of the beam with 4, = 0.08m

are presented as compared with those obtained from alinear analysis and from a FEM
solution using 60-beam elements [31] taking into account or ignoring shear

deformation effect. The conclusions already drawn are verified.

23



Example 2

A clamped beam of a composite cross section consisting of an I-type section

(E.p =E;=2.0x10"kN /m’) of constant thickness ¢=4mm in contact with two

rectangular stiffeners (£, =3.0x1 0" kN / m?) of thickness d = 4cm , having constant
width »=0.14m and linearly varying total height of maximum value at x=0,x=1:
hy =h =0.18m loaded by a concentrated load P, at its midspan, as shown in Fig. 6

has been studied (79 boundary elements, 158 nodal points). In Fig. 7 the transverse

deflection w at x=1//2 of the beam with total height at midspan #,,,; =0.12m, for

various values of the concentrated load are presented as compared with those obtained
from alinear analysis and from a FEM solution using 160-beam elements [31] taking
into account or ignoring shear deformation effect. Moreover, in Table 4 the influence
of the shear deformation effect is demonstrated by presenting the discrepancy of the

transverse deflection w at x=17/2 .of the beam for various beam heights 4,,,, at the

midspan. Finally, in Table 5 the same displacement component of the beam with

midspan height 4,,,;, =0.14m is presented as compared with those obtained from a

linear analysis and from a FEM solution using 160-beam elements [31] taking into
account or ignoring shear deformation effect, while in Table 6 the convergence of the
results for various numbers of boundary elements for the transverse deflection w at

x=1/2 of the beam with total height at midspan 4,,;; =0.12m and for P, = 1500kN

are presented. From the aforementioned figure and tables the conclusions drawn from
example 1 concerning the comparison of the results between BE and FE methods, the
influence of the shear deformation effect, the discrepancy of the results arising from
the linear or nonlinear analysis and the convergence of the method for few boundary

elements are once more verified.
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Example 3

A beam clamped at x =0 and simply supported a x =/ of a composite cross section

consisting of an I-type section (£, = 2.1x10%kN / m? ) of constant thickness ¢ = 4mm
totally encased in a rectangular matrix (E,,; = E,=3.0x10"kN /m’) of constant

width b =0.10m and linearly varying height of maximum valueat x=0: A, =0.20m

loaded both axially by adistributed and aconcentrated load and transversely by a
concentrated load, as shown in Fig. 8 has been studied (49 boundary elements, 98
noda points). In Fig. 9 the transverse deflection w and in Fig. 10 the axial

displacement » along the axis of the beam with 4, = 0.10m are presented as compared

with those obtained from a linear anaysis and from a FEM solution using 100-beam
elements [31] taking into account or ignoring shear deformation effect. In Table 7 the
influence of the shear deformation effect is demonstrated by presenting the
discrepancy of the transverse deflection w and the axial displacement u at the //10 of

the beam for various beam heights #, a x=/. Finally, in Table 8 the same
displacement components of the beam with 4, =0.15m are presented as compared

with those obtained from a linear analysis and from a FEM solution using 100-beam
elements [31] taking into account or ignoring shear deformation effect. As it was also
notified in example 1 even for tensile axia loading the results of the nonlinear
analysis show a remarkable beam shortening coming from the intense transverse load,
which is increased with the cross section’s slope. Moreover, the conclusions aready
drawn from the previous examples concerning the comparison of the results between
BE and FE methods, the influence of the shear deformation effect and the discrepancy

of the results arising from the linear or nonlinear analysis are once more verified.
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5. Concluding remarks

In this paper a BEM-based method, is employed for the nonlinear analysis of a
composite Timoshenko beam with variable cross section undergoing moderate large
deflections under general boundary conditions. Five boundary value problems are
formulated with respect to the transverse displacements, the axial displacement and to
two stress functions and solved using the Analog Equation Method. The evaluation of
the shear deformation coefficients is accomplished from the aforementioned stress
functions using only boundary integration. The main conclusions that can be drawn
from thisinvestigation are
a. The numerical technique presented in this investigation is well suited for computer

aided analysis for beams of arbitrary doubly symmetric composite variable cross
section.

b. The significant influence of geometrical nonlinear analysis in beam elements
subjected in intense transverse loading is verified.

c. The discrepancy between the results of the linear and the nonlinear anaysis
demonstrates the significant influence of the axial loading.

d. The convergence of the results is achieved employing few boundary elements.
Moreover, coincidence of the results arising from BE and FE methods is observed
when shear deformation effect is ignored, while the small deviation of the results
of these methods when shear deformation effect is included is attributed to the
employed cubic shape functions in the FEM solution for the approximation of the
deformation of the beam.

e. The increment of al the deflections and the axia displacements due to the

influence of the shear deformation effect is observed.
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f. The developed procedure retains the advantages of a BEM solution over a pure

domain discretization method since it requires only boundary discretization.
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APPENDIX A

Angle of rotation due to bending ¢, and stress resultants A, R, in the interior of
the beam.

d*w a E, 2
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APPENDIX B
Coefficients C; (i=0,1,2,3,4,5,6,7,8,9) of the governing differential equations
concerning the nonlinear analysis of a Composite Beam of Variable Cross Section

Subjected in Variable Axial Loading including Shear Deformation Effect (egns. 15,

19)
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Fig. 5. Axial displacement u of the composite beam of Example 1.
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Table 1. Transverse deflection v and axial displacement u at l/2, | of the beam of
Example 1, for various numbers of boundary elements.

Transverse deflection v (cm)

Nonlinear Analysis Nonlinear Analysis
with shear deformation without shear deformation
No. of B.E. x=1/2 x=1 x=1/2 x=1
13 8.476 23.183 7.705 21.793
17 8.480 23.196 7.708 21.805
21 8.483 23.206 7.709 21.811
25 8.485 23.214 7.710 21.814
29 8.486 23.218 7.711 21.816

Axia displacement u (cm)

Nonlinear Analysis Nonlinear Analysis

with shear deformation without shear deformation

No. of B.E. x=12 x=1 x=12 x=1
13 -0.372 -1.401 -0.315 -1.261

17 -0.372 -1.405 -0.314 -1.262

21 -0.373 -1.409 -0.314 -1.263

25 -0.373 -1.412 -0.314 -1.263

29 -0.374 -1.414 -0.314 -1.264
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Table 2. Transverse deflection v and axial displacement u at the l/6 of the beam of

Example 1.
Transverse deflection v (cm)

Iy=0.08m hy=0.12m hy=0.16m hy=0.20m

ala x(cm . . . ] . . . )
(cm) Ignoring With Ignoring  With Ignoring With Ignoring = With
Shear Shear Shear Shear Shear Shear Shear Shear
Deform. Deform. | Deform. Deform. | Deform. Deform. | Deform. Deform.
1 31.034 | 0.936 1.204 0.932 1.203 0.927 1.203 0.922 1.196
2 65.517 3.774 4,299 3.715 4.251 3.657 4,208 3.601 4,148
3 100.000| 7.913 8.668 7.711 8.486 7.522 8.326 7.347 8.145
4 134.483| 12.819 13.782 12.383 13.381 | 11.994 13.036 | 11.644 12.680
5 168.966| 18.052 19.212 17.328 18.541 | 16.702 17975 | 16.149 17.416
6 200.000| 22.804 24.138 | 21.816 23.218 | 20.971 22.450 | 20.233 21.705

Axia displacement u (cm)
1y=0.08m Iy=0.12m hy=0.16m Iy=0.20m
ala x(cm

( ) Ignoring With Ignoring With Ignoring With Ignoring With
Shear Shear Shear Shear Shear Shear Shear Shear
Deform. Deform. | Deform. Deform. | Deform. Deform. | Deform. Deform.
1 31.034 | -0.002 -0.011 -0.002 -0.011 -0.002 -0.011 -0.002 -0.011
2 65.517 | -0.103 -0.134 -0.099 -0.130 -0.095 -0.127 -0.092 -0.123
3 100.000| -0.334 -0.393 -0.314 -0.374 -0.297 -0.358 -0.281 -0.341
4 134.483| -0.663 -0.753 -0.614 -0.705 -0.572 -0.665 -0.536 -0.626
5 168.966| -1.041 -1.161 -0.953 -1.075 -0.880 -1.005 -0.818 -0.939
6 200.000| -1.386 -1.533 -1.264 -1.414 -1.163 -1.317 -1.078 -1.227




Fable 3. Transverse deflection v and axial displacement w at the I'6 of the beam of
Example | for By =0.08m .

Linear Analysis by BEM Monlingar Analysis
Al xiC
v xom) Without Shear With Shear | Without Shear Deform.  With Shear Deform.
Defarm. Deform.
by BEM by FEM [31] by BEM by FEM [31]
I'ransverse deflection v (cm)
1 31.034 1.085 1.377 0.936 0.933 1.204 1.188
2 65.817 4. 461 5.062 3774 3.754 4299 4213
3 100.000 9.503 10.411 7913 7.862 8.668 B.454
4 134 483 15628 16.840 12819 12.723 13.782 13.388
5 168.966 2231 23.834 18.052 17.905 19.212 18.555
] 200,000 28.502 30286 22 804 22611 24138 23.283
Asaal displacement w (cm)
1 31.034 0.017 0.017 -0.002 -0.001 -0.011 -0.009
2 65817 0.036 0.035 -0.103 -0.08% -0.134 -0.124
3 100.000 0.055 0.055 -0.334 -0.324 -0.383 -0.366
4 134 483 0.074 0.074 -0.663 -0.648 0.7583 -0.689
5 168.966 0.094 0.094 -1.041 -1.018 -1.161 -1.073
] 200,000 0112 0112 -1.386 -1.358 -1.633 -1.411
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Table 4. Transverse deflection w(cm) at x=1/2 of the beam of Example 2 for
various values of the concentrated load and of the total midspan height.

By =0.12m hyiq=0.14m hyiqg=0.16m By =0.18m
ala F, (kN) Ignoring With Ignoring  With Ignoring With Ignoring  With
Shear Shear Shear Shear Shear Shear Shear Shear

Deform. Deform. | Deform. Deform. | Deform. Deform. | Deform. Deform.
1 200 1.652 1.788 1.500 1.628 1.369 1.473 1.254 1.337
2 400 3.232 3.479 2.949 3.186 2.700 2.897 2.480 2.639
3 600 4,694 5.020 4,311 4.631 3.966 4,236 3.657 3.878
4 800 6.024 6.402 5.568 5.946 5.152 5.475 4772 5.040
5 1000 7.228 7.639 6.722 7.139 6.253 6.613 5.818 6.119
6 1200 8.320 8.751 7.780 8.222 7.271 7.656 6.796 7.120
7 1400 9.315 9.758 8.751 9.210 8.215 8.616 7.709 8.047

Table 5. Transverse deflection w(cm) at x=1/2 of the beam of Example 2 with total
midspan height h,,;; = 0.14m for various values of the concentrated load.

Linear Analysis by BEM Nonlinear Analysis

aa B, (kN) _ . _ ,
Without Shear With Shear |Ignoring Shear Deform. With Shear Deform.
Deform. Deform.
by BEM by FEM [31] by BEM by FEM [31]

1 100 0.755 0.820 0.754 0.751 0.819 0.844
2 300 2.264 2.461 2.234 2.227 2.419 2.494
3 500 3.774 4.102 3.642 3.632 3.924 4.044
4 700 5.284 5.743 4.953 4.941 5.305 5.464
5 900 6.793 7.383 6.158 6.146 6.557 6.752
6 1100 8.303 9.024 7.262 7.252 7.693 7.921
7 1300 9.812 10.665 8.275 8.267 8.727 8.984
8 1500 11.322 12.305 9.208 9.202 9.672 9.959
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Table 6. Transverse deflection w(cm) at x=1/2 of the beam of Example 2 with total
midspan height h,,;; =0.12m, for P, =1500kN and for various numbers of

boundary elements.

No of Nonlinear Analysis Nonlinear Analysis
B.E. with shear deformation without shear deformation

9 10.607 10.248

19 10.451 9.924

29 10.396 9.856

39 10.332 9.826

49 10.284 9.808

59 10.259 9.796

69 10.230 9.787

79 10.228 9.781
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Table 7. Transverse deflection w and axial displacement u at the /10 of the beam of

Example 3.
Transverse deflection w (cm)
h,=0.10m hl=0.15m h1=0.20m
aa x(cm , , . . . .
(cm) Ignoring With Ignoring  With Ignoring With
Shear Shear Shear Shear Shear Shear
Deform. Deform. | Deform. Deform. | Deform. Deform.
1 22.959 0.516 0.579 0.438 0.497 0.378 0.433
2 48.469 2.120 2.233 1.734 1.837 1.442 1.537
3 73.980 4.450 4593 3.496 3.624 2.805 2.920
4 99.490 6.990 7.146 5.265 5.402 4.077 4,198
5 125.000 8.994 9.147 6.499 6.631 4.868 4.982
6 150.510 9.622 9.762 6.697 6.815 4.877 4.978
7 176.020 8.778 8.895 5.903 5.999 4,198 4.278
8 201.531 6.629 6.713 4.321 4.388 3.014 3.069
9 227.041 3.430 3.474 2.180 2.214 1.500 1.527
10 250.000 0.000 0.000 0.000 0.000 0.000 0.000
Axia displacement u (mm)
h,=().10m hl=0.15m h,=0.20m
aa x(cm _ _ . . . .
(cm) Ignoring With Ignoring  With Ignoring With

Shear Shear Shear Shear Shear Shear
Deform.  Deform. | Deform. Deform. | Deform. Deform.
1 22.959 0.177 0.163 0.196 0.184 0.207 0.198
2 48.469 -0.058 -0.104 0.132 0.098 0.245 0.219
3 73.980 -0.841 -0.914 -0.211 -0.261 0.132 0.096
4 99.490 -1.818 -1.903 -0.564 -0.621 0.053 0.013
5 125.000 -2.333 -2.417 -0.621 -0.676 0.149 0.112
6 150.510 -2.160 -2.241 -0.402 -0.456 0.353 0.315
7 176.020 -2.041 -2.130 -0.300 -0.362 0.459 0.416
8 201.531 -2.675 -2.792 -0.568 -0.647 0.371 0.316
9 227.041 -4.395 -4.564 -1.246 -1.354 0.099 0.027
10 250.000 -6.686 -6.920 -2.089 -2.229 -0.242 -0.331
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fable 8 Transverse deflection w and avial displacement w ai the '3 of the beam of

fxample 3 for by =0.15m.

Linear Analysis by BEM Monlinear Analysis
al x(cm) '
v xiom) vé'l:gﬂ;l Sh::;‘;r Without Shear Deform.  With Shear Deform.
Defarm. Deform. by BEM by FEM [31] by BEM by FEM [31]
Transverse deflection w {cm )
1 48 469 1.588 2.003 1.734 1.732 1.837 1.860
2 8% 480 5.768 5935 h.2865 h.257 5.402 5.458
3 150510 7.554 7.549 5.697 5.685 6.815 6.922
4 201 531 4814 4 905 4.321 4.310 4388 4 425
5 250.000 0.000 0.000 0.000 0.000 0.000 0.000
Asaal displacement » (mim)
1 48 469 0.523 0.523 0.132 0.148 0.088 0.104
2 8% 480 1.049 1.049 -0.564 -0.513 0621 0,637
3 150510 1.548 1.548 -0.402 -0.339 0458 -[.486
4 201 531 2016 2.016 -0.568 -(.494 0647 . BGE
] 250.000 2.430 2.430 -2 089 -1.980 -2 229 -2 258
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LIST OF FIGURE LEGENDS

Fig.1. Beam of variable cross section (@) occupying the two dimensional region 2
(b).

Fig.2. Displacements (a) and forces (b) acting on the deformed element in the xz
plane.

Fig.3. Cantilever beam of a composite hollow variable cross section of Example 1.

Fig. 4. Deflections v of the composite beam of Example 1.

Fig. 5. Axial displacement u of the composite beam of Example 1.

Fig.6. Clamped beam of an I-type variable cross section of Example 2.

Fig. 7. Deflections w(cm) a midspan of the clamped beam of example 2

(A0 =0.12m).
Fig.8. Beam of alinearly varying composite cross section of Example 3
Fig. 9. Deflections w of the composite beam of Example 3.

Fig. 10. Axia displacement u of the composite beam of Example 3.
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