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Abstract

Large flexible structures could be one of the most challenging space technologies of

the future. For example, the well known space elevator may one day guide astronauts

along a 36,000 km long tether from the earth’s surface to a geostationary orbit. In

this paper, we imagine an arbitrary space structure in a stationary circular motion

around a celestial body.

Usually such systems require two problems to be solved: the strength of the

materials and an overall stability analysis. The latter task is a non-trivial one since

in orbiting systems not the angular rate, but the angular momentum must be kept

constant when applying, for example, Dirichlet’s criterion. In particular, this fact

becomes important if the system’s dimension is in the magnitude of the orbital

radius. Therefore, this paper will focus on a general applicable method to determine

the stability of flexible earth orbiting structures.

The analysis process is based on the reduced energy momentum method presented

by J. C. Simo, T. A. Posbergh and J. E. Marsden, which has been customized for

use in systems with cyclic coordinates by the author. In the presented approach the

second variation of an amended potential is derived from a standard finite element

analysis. An efficient stability test is introduced which limits the computational

effort to the evaluation of a few eigenvalues and eigenvectors of the system’s tangent

stiffness matrix. Finally, two examples are discussed to demonstrate the application

of the method.

Key words: Stability, Nonlinear Mechanical System, Relative Equilibrium, Finite

Elements, Amended Potential, Space Elevator, Reduced Energy Momentum

Method
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1 Introduction

Many technical systems operate in a so-called relative equilibrium configura-

tion, which is characterized by the fact that the only dynamic process is a
uniform motion in a symmetry group like a rotation about an axis at a con-
stant angular rate. For example, consider a rotating turbine or a spacecraft in
a stationary circular motion around a celestial body. To find a relative equili-
birium for such systems one usually introduces a properly rotating reference
frame in which the field of centrifugal forces acts as an external load. If the
system consists of flexible bodies finite element programs can then be used to
compute deformations and stresses by carrying out a standard static analysis.

However, for technical applications it is also necessary to analyze the stability
of a relative equilibrium. For example, it is known that large space struc-
tures may become unstable, if the system’s dimension is in the magnitude of
the orbital radius. Here one must always take care about the fact that for a
perturbation motion of a relative equilibrium not the velocity of the group pa-
rameter but the correspoding momentum is conserved. Therefore, in the case
of a rotating system the angular velocity must not be treated as a constant
quantity.

In this paper a general stability test for flexible orbiting structures is presented,
taking into accont the correct conservation of the angular momentum. The test
employs the method of the amended potential presented in [(5)] and [(4)] which
has also been derived in [(7)] from an engineer’s point of view. It can be applied
as a post-processing step at the end of a standard finite element analysis and is
also suitable for systems with many degrees of freedom since the computational
effort is minimized by a proper decomposition of the second derivatives of the
amended potential. Thus, only the eigenvalues and eigenvectors of the tangent
stiffness matrix and the load vector of the centrifugal forces for the relative
equilibrium are required as input for the test.

To demonstrate how the test works, the stability of a so-called space elevator

is analyzed. One day this structure could enable astronauts to climb up a
36,000 km long tether connecting the earth’s surface with a geostationary
orbit. However, it turns out that an orbiting tether becomes unstable beyond
a critical length [(7), (6)].

2 Stability of relative equilibria

We briefly recall the results of the stability analysis process described in [(7)].
A relative equilibrium is closely related to the existence of cyclic coordinates,
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i.e. generalized coordinates that do not appear explicitly in the Lagrangian. In
a relative equilibrium these coordinates vary uniformly like the rotation angle
of a rotating system. Conversely, the non-cyclic coordinates remain stationary
during the motion.

Let qc and qn be the vectors of the cyclic and the non-cyclic coordinates. The
kinetic energy of the system is then given by

T =
1

2
q̇TM(qn)q̇ =

1

2

(

q̇T

c , q̇T

n

)







Mcc Mcn

Mnc Mnn













q̇c

q̇n





 (1)

introducing M(qn) as the mass matrix. For the stability analysis only the
submatrix Mcc, known as locked inertia tensor, is needed. It is derived from
the mechanical model by setting the velocities of the non-cyclic coordinates
q̇n to zero and q̇c = ω = const. In this case the kinetic energy reads

Tc =
1

2
ωTMcc(qn)ω . (2)

Now, since q̇c is a cyclic coordinate, the corresponding generalized momentum

pc =
∂T

∂q̇c
= Mcc(qn)ω (3)

is a first integral of the system and will therefore be conserved. This must be
taken into account when disturbing a relative equilibrium in order to check its
stability.

In Steiner [(7)] it is shown that relative equilibria and the correct stability test
can be derived from the amendend potential

V ∗(qn) =
1

2
pT

c M−1
cc pc + V (qn) (4)

where V (qn) is the physical potential energy (depending on qn only). A set
of nonlinear equations for the equilibrium configuration of the non-cyclic co-
ordinates is obtained from

∂V ∗

∂qn

= 0 at qn = qn,0. (5)

Furthermore, the equilibrium is stable if the matrix of second derivatives of
V ∗

Aij =
∂2V ∗

∂qi
n∂qj

n

(6)

is positive definite at qn = qn,0. We point out, that for all derivatives in (5)
and (6) pc must be kept constant. Therefore, it is strictly forbidden to insert
(3) into (4) before carrying out these operations.
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3 Modelling an orbiting flexible structure with finite elements

Let us consider now an arbitrary flexible structure rotating around a celestial
body. Usually one introduces a rotating reference frame as depicted in fig. 1 to
describe (relative) equilibrium configurations of the structure, since no time-
depending coordinates will appear in this case. We can define the reference
frame by a selected point that is constrained to the y-z-plane (x = 0). In fig. 1
this point is labelled ”Node 1”. Additionally, the z-Axis is fixed in the inertial
frame.

Next we introduce a finite element discretization for the flexible structure.
Then the equilibrium configuration is described by a vector u ∈ R

N of nodal
degrees of freedom representing translations and rotations of the nodes with
respect to an unstressed reference configuration. If we only include the uncon-
strained degrees of freedom in u, then this vector represents the non-cyclic
coordinates of the system, i. e. qn = u. Note that the translation of node 1
along the x-axis is not an element of u since this degree of freedom is locked
in order to define the reference frame.

Now, to describe the configuration of the structure in an inertial frame we
have to consider the rotation angle ϕ of the reference frame as an additional
variable. In a relative equilibrium ϕ is a uniformly varying quantity, i. e.

ϕ̇ = ω = const. (7)

Therefore, ϕ is the cyclic variable of the system.

Moreover, since qc = ϕ is the only cyclic variable, the locked inertia tensor Mcc

is a scalar Mcc which depends on the non-cyclic coordinates u. As described
in (2) it can be derived from the kinetic energy for u̇ = 0. Since the system
rotates around the z-axis we obtain

Tc =
1

2

∫

m
v2 dm =

1

2

∫

m
(ωrz)

2 dm =
1

2
ω2
∫

m
(x2 + y2) dm (8)

where x and y denote the x- and y-coordinate of a mass element dm in the
deformed configuration. Comparing (8) with (2) we get

Mcc =
∫

m
(x2 + y2) dm (9)

where x and y can be expressed by u and the ansatz-functions introduced for
the discretization process. Physically speaking, Mcc = Mcc(u) is the moment
of inertia about the z-axis for a configuration u.

To describe the dynamic behaviour of our system the potential energy V (u)
must be known. It consists of two parts, the strain energy U and the potential
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of the external load VG. The strain energy is the key functional used in finite
element solvers for the derivation of ”internal nodal forces”. The external load
of space vehicles is usually dominated by gravitational forces. Let κ be the
gravitational parameter of the celestial body, then

VG = −
∫

m

κ

r
dm = −

∫

m

κ√
x2 + y2 + z2

dm . (10)

Again, for numerical solutions x, y and z must be discretized by proper ansatz-
functions. Since not all software products allow the implementation of gravi-
tational forces, it may become necessary to write user subroutines to take into
account this type of loading, see section 6.

From the discretized functionals Mcc and V = U + VG the amended potential
(4) can be derived:

V ∗(u) = V (u) +
1

2

p2
c

Mcc(u)
. (11)

Here, pc is the conserved angular momentum

pc = Mcc(u)ω (12)

which must be treated as a constant parameter in (11). Note, that all matrix
products in (3) and (4) are reduced to simple one-dimensional operations in
(11) and (12) since ϕ is the only cyclic variable.

Using the amended potential, the equations, which determine the relative
equilibria u = u0, read

∂V ∗

∂u
=

∂V

∂u
− 1

2

p2
c

M2
cc

∂Mcc

∂u
= 0 . (13)

In these equations the expression

fc =
1

2

p2
c

M2
cc

∂Mcc

∂u
=

1

2
ω2∂Mcc

∂u
(14)

is the load vector of centrifugal forces acting on the structure in the rotating
reference frame. Most finite element solvers allow this type of load to be ap-
plied for a given ω. It is also easy to extract this vector from the FE-solver.
For example, after computing the equilibrium in the first analysis step one
can switch off the centrifugal loading while suppressing further nodal dis-
placements in a subsequent step. The vector of nodal reaction forces (and
moments) will then contain the elements of fc.

Proceeding from the amended potential we are now ready to analyze the stabil-
ity of the relative equilibrium. To build up the matrix of second derivatives of
V ∗ the left side of (13) must be differentiated once more. Keeping pc constant
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we obtain

Aij =
∂2V ∗

∂ui∂uj

=
∂2V

∂ui∂uj

− 1

2

p2
c

M2
cc

∂2Mcc

∂ui∂uj

+
p2

c

M3
cc

∂Mcc

∂ui

∂Mcc

∂uj

. (15)

Note that the last term would disappear if ω instead of pc were kept constant.
However, we may substitute pc = Mccω in (15) to describe Aij in terms of ω:

Aij =
∂2V

∂ui∂uj

− 1

2
ω2 ∂2Mcc

∂ui∂uj

+
ω2

Mcc

∂Mcc

∂ui

∂Mcc

∂uj

. (16)

If the system is stable the matrix A = {Aij} must be positive definite for
u = u0.

4 Stability analysis

It is the main goal of this paper to derive a simple stability test for flexible
orbiting structures from (16), which uses only data available from a standard
finite element analysis. Therefore, we note that Aij seperates into two parts.

First, the matrix

Kij =
∂2V

∂ui∂uj
− 1

2
ω2 ∂2Mcc

∂ui∂uj
(17)

is the tangent stiffness matrix of the system for a constant rotation of the
reference frame. It includes all structural stiffness effects as well as load stiff-
ness contributions due to centrifugal and gravitational forces. The FE-software
also uses this matrix to solve for equilibrium configurations by means of the
Newton-Raphson method. It can be exported from most FE-programs. How-
ever, we shall see that this is not necessary.

The latter part of (16)

ω2

Mcc

∂Mcc

∂ui

∂Mcc

∂uj
=

(

ω√
Mcc

∂Mcc

∂ui

)(

ω√
Mcc

∂Mcc

∂uj

)

(18)

is the tensor product of the vector

a =
ω√
Mcc

∂Mcc

∂u
=

ω√
Mcc

2

ω2
fc =

√

4

Mccω2
fc =

√

2

Tc
fc (19)

where we have used (14) and (2), i. e. Tc = Mccω
2/2.

With (17), (18) and (19) we may now rewrite (16) in the following way:

Aij = Kij + aiaj ⇐⇒ A = K + a aT (20)

6



Acc
ep

te
d m

an
usc

rip
t 

Here, the matrix notation aaT = a⊗a was used to express the tensor product.
A is positive definite, if the quadratic form

xTAx = xT
(

K + a aT
)

x (21)

is positive for an arbitrary vector x ∈ R
N and zero only for x = 0. In this

case, the system is stable.

Now, to show that A is positive definite we could simply compute the lowest
eigenvalue of A and see if it is positive. However, A contains a tensor product
and is therefore a dense matrix. For large FE-models the eigenvalue extraction
of A may cause difficulty. On the other hand, the tangent stiffness matrix K

is a sparse matrix for which eigenvectors and eigenvalues can be extracted
efficiently.

Let λ1, . . . λN be the eigenvalues of K sorted by its magnitude, i. e. λ1 <
λ2 < · · · < λN , and let v1, . . .vN be the corresponding eigenvectors of K.
(For example, these objects can be obtained from FE-solvers by performing
a natural frequency extraction, if the mass matrix is set to the unity matrix.
Note that the base state of this extraction is the relative equilibrium.) Since K

is symmetric, see (17), the eigenvalues are real numbers and the eigenvectors
form an orthonormal basis of R

N . Thus,

vT

i vi = 1 and vT

i vj = 0 for i 6= j . (22)

In other words, the N × N matrix

V = (v1,v2, . . .vN ) (23)

is orthogonal, i. e. VT = V−1. Furthermore, the stiffness matrix diagonalizes
under the following operation:

VTKV = D = diag(λi) . (24)

The transformation x = Vy simply describes a change of basis for vectors in
R

N . We can use it to rewrite the quadratic form (21):

F (y) = yTVT
(

K + a aT
)

Vy = yT
(

VTKV + VTa aTV
)

y

Inserting (24) and introducing the vector b = VTa, which has the components

bi = vT

i a , (25)

this expression is reduced to

F (y) = yT
(

D + bbT
)

y . (26)
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D is a diagonal matrix containing the eigenvalues of K and the components
of b are the projections of the vector a onto the eigenvectors of K. So our
quadratic form is defined by the matrix:

B = D + bbT =





















λ1 + b2
1 b1b2 · · · b1bN

b2b1 λ2 + b2
2 · · · b2bN

...
...

. . .
...

bNb1 bNb2 · · · λN + b2
N





















(27)

Now, B (and therefore A) is positive definite, if and only if the determinants
of all k × k submatrices,

Bk =





























λ1 + b2
1 b1b2 b1b3 · · · b1bk

b2b1 λ2 + b2
2 b2b3 · · · b2bk

b3b1 b3b2 λ3 + b2
3 · · · b3bk

...
...

...
. . .

...

bkb1 bkb2 bkb3 · · · λk + b2
k





























are positive (leading principal minor criterion). In the appendix it is shown,
that

detBk = λ1λ2 . . . λk

(

1 +
b2
1

λ1

+
b2
2

λ2

+ · · ·+ b2
k

λk

)

. (28)

Hence, the relative equilibrium computed from (13) is stable, if detBk > 0 for
k = 1, . . . N .

5 Fast stability tests

A general stability test for a rotating flexible structure might still be time
consuming since all eigenvectors and eigenvalues of the tangent stiffness matrix
are needed to show that detBN > 0. In particular, this could cause difficulties
if the structure has many degrees of freedom. In such a case faster tests which
enable the stability to be checked without computing detBk from (28) for all
k = 1, . . . N need to be found.

Basically, the sign of detBk is determined by the signs of the eigenvalues
λ1 < λ2 < · · · < λN . Thus, we consider the following cases:

8
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Case 1: λ1 > 0

Stability is granted, if λ1 is positive because then all detBk are positive. For
this check, only the lowest eigenvalue of K must be computed.

Case 2: λ1 < 0, λ2 < 0

In this case at least two eigenvalues of K are negative. Suppose the system is
stable, then

detB1 = λ1

(

1 +
b2
1

λ1

)

> 0

and since λ1 < 0 the bracket must also be negative. Now look at

detB2 = λ1λ2

(

1 +
b2
1

λ1
+

b2
2

λ2

)

.

Since λ2 < 0 the product λ1λ2 is positive and the sign is determined by the
bracket. But as seen above 1 + b2

1/λ1 < 0. Because also b2
2/λ2 < 0 we obtain

detB2 < 0. Thus, the system is unstable. For this check, only the first two
eigenvalues of K must be computed.

Case 3: λ1 < 0, λ2 > 0

The most complex situation arises, if only one eigenvalue is negative. In this
case the factor λ1λ2 . . . λk in (28) is negative for all determinants. If detBk > 0,
also the brackets must be negative:

1 +
b2
1

λ1

+
b2
2

λ2

+ · · · + b2
k

λk

< 0 for k = 1, . . . N.

On the left side only the term b2
1/λ1 is negative by assumption. So the worst

case is obtained for k = N , where all terms b2
i /λi are added. We may conclude

that the system is stable only if

1 +
b2
1

λ1
+

b2
2

λ2
+ · · ·+ b2

N

λN
= 1 +

N
∑

i=1

b2
i

λi
< 0 . (29)

However, one would prefer an iterative stability test to avoid the computation
of all eigenvalues and eigenvectors. In fact, if for any k < N

1 +
k
∑

i=1

b2
i

λi

> 0 (30)

9
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the system is unstable and the stability test can be stopped at that point. On
the other hand, if the sum in (29) is truncated at i = k we can also find an
upper limit for the missing terms:

N
∑

i=k+1

b2
i

λi
≤ 1

λk+1

(

|b|2 −
k
∑

i=1

b2
i

)

since λk+1 < λk+2 < · · · < λN and b2
k+1 ≤ |b|2 −∑k

i=1 b2
i . Thus, the system is

stable if for any k < N

1 +
k
∑

i=1

b2
i

λi
+

1

λk+1

(

|b|2 −
k
∑

i=1

b2
i

)

< 0 (31)

For the tests (30) and (31) only the first k + 1 eigenvalues and the first k
eigenvectors must be computed. Note that

|b|2 = |a|2

since b is just the decompostion of a in the orthonormal basis vi.

The complete stability test including all cases is depicted in the structogram
of fig. 2.

6 Remarks to the finite element method

The complete stability analysis can be carried out with standard FE-software
packages. We describe an ABAQUS based approach in this section. In ABAQUS
gravitational and centrifugal forces should be included via additional user-
elements in order to introduce their correct contribution to the residuum and
to the stiffness matrix. Such a user-element is added for every structural finite
element.

Basically, the Potential VG from (10) and the locked inertia tensor Mcc from
(9) must be expressed by the vector u of nodal degrees of freedom. This is
usually done by subdividing the structure into finite elements. Let u(e) denote
the vector of nodal degrees of freedom for element (e). Then the position ~r of a
material point within the element, located at ~r0 in the reference configuration,
is given by

~r = Ψ(e)u(e) + ~r0 (32)

where Ψ(e) is a linear operator mapping u(e) ∈ R
N(e)

onto ~r − ~r0 ∈ R
3. It is

defined by the ansatz-functions used for the discretization process.

If a material point dm is described by a proper density ̺ and by an infinitesimal

10
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volumetric interval dΩ the gravity potential for a finite element reads

V
(e)
G =

∫

Ω(e)
γ(~r) dΩ, where γ(~r) = −̺κ

1

|~r| (33)

The element residuum is then given by

∂V
(e)

G

∂u(e)
=
∫

Ω(e)
Ψ(e)T~g(~r) dΩ, where ~g(~r) =

∂γ

∂~r
= −̺κ

~r

|~r|3 (34)

and the element load stiffness matrix

K
(e)
G,ij =

∂2V
(e)
G

∂u
(e)
i ∂u

(e)
j

is

K
(e)
G =

∫

Ω(e)
Ψ(e)TG(~r)Ψ(e) dΩ, where G(~r) =

∂~g

∂~r
= − ̺κ

|~r|3
(

3
~r ⊗ ~r

|~r|2 − I

)

(35)
After numerical integration, (34) and (35) can be coded in the FORTRAN
user-subroutine ”UEL” provided by ABAQUS. In a similar way the locked in-
ertia tensor may be considered. Altogether, the user elements yield the correct
equilibrium equations and the tangent stiffness matrix K which is needed for
the stability test.

7 Examples

7.1 The Space Elevator

To demonstrate an application of the stability test described above we first
consider the ”space elevator” depicted in fig. 3. For simplicity, the elevator is
modeled as homogenous string without bending and torsional stiffness. The
modelling space is three-dimensional. Thus, motions out of the orbital plane
are taken into account.

For an inextensible string the radial equilibrium configuration, see fig. 3, can
be derived directly from Newton’s law. Suppose that the system rotates at
a given angular rate ω around a celestial body exhibiting the gravitational
parameter κ. Furthermore, let L and µ be length and mass per unit length of
the string. Introducing R as the orbital radius of the string’s mass center we
obtain from Newton’s second law

µLRω2 =
∫ R+L/2

R−L/2

µκ

r2
dr = −µκ

(

1

R + L/2
− 1

R − L/2

)

11
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yielding

ω2 =
κ

R3

1

1 − 1
4

(

L
R

)2 (36)

For the subsequent analysis L is increased from 0.1R to 1.8R. Simultaneously,
ω is computed from (36), although the string is not completely inextensible
in the finite element model. Furthermore, the parameters R, µ and κ are set
to unity in order to normalize the problem. To find an appropriate value for
the axial stiffness of the string the dimensionless parameter EAR/(µκ) can
be computed for a realistic situation. For example, if the center of mass is
in a geostationary orbit around the earth, then R = 42, 000 km and κ =
3.986 1014m3/s2. For a steel string Young’s modulus is E = 2.1 1011N/m2 and
the density is given by ̺ = 7, 850 kg/m3. Thus, since µ = ̺A, the stiffness
parameter would be

EA
R

µκ
=

ER

̺κ
= 3.22 .

However, in our example the stiffness is increased to 1000.0 in order to ap-
proximate the inextensible case.

The result of the stability analysis is explained in fig. 4 and fig. 5. Fig. 4
shows the first two eigenvalues of the tangent stiffness matrix as a function of
the string length. Obviously λ1 is negative and λ2 is positive in the considered
interval. Therefore, case 3 of the stability test discussed in section 5 is relevant
here.

As pointed out in section 5 the proof that the system is stable or unstable
may require the computation of variable numbers k of eigenvalues. Fig. 5 shows
that this number increases along with the string length. At L ≈ 1.0 thirteen
eigenvalues of the tangent stiffness matrix must be evaluated. Beyond L ≈ 1.0
the system becomes unstable which is proven by the first eigenvalue λ1.

This result is in agreement with numerical simulations of the perturbation
motions and also with a simplified analytical model of the space elevator. First,
fig. 6 shows the perturbation motion of the lower endpoint of the string for
a stable and for an unstable configuration. For that purpose a fully dynamic
finite element simulation of the string was carried out. It can be observed,
that for L = 0.946R (solid line) the point rotates around the earth whereas
for L = 1.018R (dashed line) the system descends after a few revolutions.
Since both configurations were chosen close to the stability boundary, we may
conclude that the stability analysis yielded a reasonable result.

To verify the obtained result we may also derive an analytical stability con-
dition for an inextensible string. According to [(6)] it should be sufficient to
consider radial perturbation motions only. Thus, we only have to vary the
distance R of the string’s mass center in the amended potential.
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In the radial configuration shown in fig. 3 the locked inertia tensor according
to (9) is simply given by

Mcc = m

(

R2 +
L2

12

)

,

where m denotes the total mass of the string. The potential energy reads

V = −
∫ R+L/2

R−L/2

µκ

r
dr = −µκ ln

R + L/2

R − L/2

resulting in the amended potential

V ∗(R) =
p2

2Mcc(R)
+ V (R) (37)

where p is the angular momentum of the string. By setting the first derivative
of V ∗(R) to zero we obtain a relation between the angular momentum and the
value of R = R0 at the relative equilibrium:

p2 =
mκµ

36

L

R0

(L2 + 12R2
0)

2

4R2
0 − L2

. (38)

The stability condition for the inextensible string is then obtained from

d2V ∗

dR2

∣

∣

∣

∣

∣

R=R0

> 0 (39)

which may be expressed in terms of R0 by eliminating p using (38). Finally
this procedure results in

4κµ
L

R0

L4 − 48R2
0L

2 + 48R4
0

(L2 − 4R2
0)

2(L2 + 12R2
0)

> 0 .

This expression changes its sign if

L4 − 48R2
0L

2 + 48R4
0 = 0

which happens at L = 2
√

6 −
√

33R0 ≈ 1.01082R0. This is in good agreement
with the numerical stability test for the orbiting string shown in fig. 5.

7.2 The Orbiting Ring

The second example to be discussed here, is the flexible ring shown in fig. 7.
For this structure also bending and torsional stiffness are taken into account.
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Again, the problem is treated in three-dimensional space. The basic param-
eters are selected as follows: Let E be Young’s modulus, A the area and J
the moment of inertia for bending of the ring’s cross section. Assuming a thin
walled circular cross section with radius a and thickness h, then

A = 2πah and J = πa3h .

Furthermore, µ = ̺A denotes the mass per unit length and R the orbital radius
of the reference configuration. It is convenient to formulate the problem by
means of dimensionless quantities Ē, Ā, J̄ , µ̄, κ̄ and R̄. As for the orbiting
string we set µ̄ = 1, κ̄ = 1 and R̄ = 1. To find appropriate values for Ē, Ā
and J̄ we may consider dimensionless quantites such as

A

R2
=

Ā

R̄2
= Ā ,

J

R4
=

J̄

R̄4
= J̄

ER3

µκ
=

ĒR̄3

µ̄κ̄
= Ē

Therefore, the dimensionless axial and bending stiffness are given by

ĒĀ =
EAR

µκ
=

E

̺

R

κ
, ĒJ̄ =

EJ

µκR
=

E

̺

J

ARκ
.

Both expressions do not depend on the wall thickness h of the cross section.
However, materials with very high specific Young’s modulus E/̺ and a rel-
atively large radius a of the cross section are necessary to avoid complete
folding of the ring under the gravitational and centrifugal forces. We choose
R = 42, 000 km and κ = 3.986 1014m3/s2 representing a geostationary orbit
around the earth, and set E/̺ = 1.9× 1010Nm/kg, which is about 700 times
higher than the respective value for steel, yielding ĒĀ = 2000. For the cross
section radius we assume a = 0.01R = 420 km resulting in ĒJ̄ = 0.1. Although
these are quite futuristic assumptions compared with today’s techonology it
is interesting to observe the stability behaviour of such structures.

To carry out the stability analysis the angular rate must be defined for the
equilibrium. Since we are looking for a geostationary configuration we choose

ω2R3

κ
=

ω̄2R̄3

κ̄
= ω̄2 = 1 .

Despite the vast dimensions of the structure the ring deforms significantly
under the gravitational and the centrifugal load. Fig. 8 shows the ovalization
for varying ring radius r̄ = r/R. Note that the long axis is pointing towards the
center of gravity. The stability analysis shows that the equilibrium is stable up
to r̄ ≈ 0.4. As for the orbiting string, λ1 is negative and λ2 is positive, see fig. 9.
Thus, case 3 of the stability test has to be considered again. For small values
of r̄ only three eigenvalues are required to show that the system is stable.
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However, more eigenvalues must be computed in the vicinity of the stability
bound (e. g. 80 at r̄ ≈ 0.41). Beyond the stability bound the proof yields
the result from the first eigenvalue. Fig. 10 shows the system at the stability
boundary. For the undeformed reference configuration also the dimension of
the cross section can be observed. Like in the string-example one may expect
that loss of stability affects the overall orbital dynamics and that the system
will descend.

Both examples described in this section demonstrate that in many cases the
first few eigenvalues and eigenvectors of the tangent stiffness matrix K are
sufficient to obtain information about the stability of an orbiting structure.
Furthermore, the test can be integrated efficiently in a finite element analysis
with common software packages.
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APPENDIX: A formula for the determinant of Bk

By mathematical induction we show that

detBk = det





























λ1 + b2
1 b1b2 b1b3 · · · b1bk

b2b1 λ2 + b2
2 b2b3 · · · b2bk

b3b1 b3b2 λ3 + b2
3 · · · b3bk

...
...

...
. . .

...

bkb1 bkb2 bkb3 · · · λk + b2
k





























= λ1λ2 . . . λk

(

1 +
b2
1

λ1

+
b2
2

λ2

+ · · ·+ b2
k

λk

)

(40)

where Bk is the k × k-matrix introduced in section 4 for the formulation of
the stability test.

First, (40) is readily verified for k = 1 and k = 2. Then we have to show that
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(40) is true for any k if it is true for k − 1 and k − 2. This can be done by
simplifying the determinant in the following way.

Provided that bk−1 6= 0, multiplying the last row and the last column of Bk

with bk−1 yields

detBk =
1

b2
k−1

det



































λ1 + b2
1 b1b2 · · · b1bk−2 b1bk−1 b1bkbk−1

b2b1 λ2 + b2
2 · · · b2bk−2 b2bk−1 b2bkbk−1

...
...

. . .
...

...
...

bk−2b1 bk−2b2 · · · λk−2 + b2
k−2 bk−2bk−1 bk−2bkbk−1

bk−1b1 bk−1b2 · · · bk−1bk−2 λk−1 + b2
k−1 b2

k−1bk

bkb1bk−1 bkb2bk−1 · · · bkbk−2bk−1 bkb
2
k−1 λkb

2
k−1 + b2

kb
2
k−1



































Next we multiply row k − 1 with bk and subtract it from row k:

detBk =
1

b2
k−1

det



































λ1 + b2
1 b1b2 · · · b1bk−2 b1bk−1 b1bkbk−1

b2b1 λ2 + b2
2 · · · b2bk−2 b2bk−1 b2bkbk−1

...
...

. . .
...

...
...

bk−2b1 bk−2b2 · · · λk−2 + b2
k−2 bk−2bk−1 bk−2bkbk−1

bk−1b1 bk−1b2 · · · bk−1bk−2 λk−1 + b2
k−1 b2

k−1bk

0 0 · · · 0 −λk−1bk λkb
2
k−1



































Performing the same operation with columns k − 1 and k leads to

detBk =
1

b2
k−1

det



































λ1 + b2
1 b1b2 · · · b1bk−2 b1bk−1 0

b2b1 λ2 + b2
2 · · · b2bk−2 b2bk−1 0

...
...

. . .
...

...
...

bk−2b1 bk−2b2 · · · λk−2 + b2
k−2 bk−2bk−1 0

bk−1b1 bk−1b2 · · · bk−1bk−2 λk−1 + b2
k−1 −λk−1bk

0 0 · · · 0 −λk−1bk λkb
2
k−1 + λk−1b

2
k



































Involving the determinants of Bk−1 and Bk−2 we can expand detBk from the
last row:
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detBk =
1

b2
k−1

[

(

λkb
2
k−1 + λk−1b

2
k

)

detBk−1 + λk−1bk(−λk−1bk) detBk−2

]

=
b2
k

b2
k−1

λk−1

[

detBk−1 − λk−1 detBk−2

]

+ λk detBk−1

If we now substitute the induction hypothesis for detBk−1 and detBk−2

detBk−1 = λ1λ2 . . . λk−1

(

1 +
b2
1

λ1
+

b2
2

λ2
+ · · ·+ b2

k−1

λk−1

)

detBk−2 = λ1λ2 . . . λk−2

(

1 +
b2
1

λ1
+

b2
2

λ2
+ · · ·+ b2

k−2

λk−2

)

we conclude that

detBk =
b2
k

b2
k−1

λk−1

[

λ1λ2 . . . λk−1
b2
k−1

λk−1

]

+λ1λ2 . . . λk

(

1 +
b2
1

λ1

+
b2
2

λ2

+ · · ·+ b2
k−1

λk−1

)

= λ1λ2 . . . λk

(

1 +
b2
1

λ1
+

b2
2

λ2
+ · · ·+ b2

k

λk

)

.

This is exactly the hypothesis for detBk which is therefore proved. Since we
have supposed bk−1 6= 0 for our proof we finally must consider the situation
where some bi are zero. However, in this case the matrix Bk can be rearranged
by exchanging rows and columns so that all elements with non-zero bi are
collected in the upper left corner of the matrix. Now let b̄1, . . . b̄m denote the
sequence of all non-zero bi appearing in Bk and let λ̄1, . . . λ̄m be the corre-
sponding sequence of λi (m ≤ k). Then by exchanging rows and columns we
obtain

detBk = det











































λ̄1 + b̄2
1 b̄1b̄2 · · · b̄1b̄k 0 · · · 0

b̄2b̄1 λ̄2 + b̄2
2 · · · b̄2b̄k 0 · · · 0

...
...

. . .
...

...
...

...

b̄mb̄1 b̄mb̄2 · · · λ̄m + b̄2
m 0 · · · 0

0 0 · · · 0 λ̄m+1 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · λ̄k










































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Clearly, this determinant is given by

detBk = λ̄m+1 . . . λ̄k det





















λ̄1 + b̄2
1 b̄1b̄2 · · · b̄1b̄k

b̄2b̄1 λ̄2 + b̄2
2 · · · b̄2b̄k

...
...

. . .
...

b̄mb̄1 b̄mb̄2 · · · λ̄m + b̄2
m





















For the remaining determinant we may already use our hypothesis since per
definition b̄i 6= 0. Introducing the sequence of zero bi’s by b̄m+1, . . . b̄k = 0 we
obtain

detBk = λ̄m+1 . . . λ̄kλ̄1 . . . λ̄m

(

1 +
b̄2
1

λ̄1

+ · · · + b̄2
m

λ̄m

+
b̄2
m+1

λ̄m+1

+ · · ·+ b̄2
k

λ̄k

)

In this expression the sequence is irrelevant and we may omit the bars yielding
again the formula for detBk. Thus, our proof is complete.
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Fig. 1. A flexible orbiting structure in a rotating reference frame.
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∑
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(
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∑
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Fig. 2. Structogram of the stability testing process.
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Fig. 3. The orbiting string.
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Fig. 4. First eigenvalues of the orbiting string for varying length L.
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Fig. 5. Number of eigenvalues and eigenvectors of the orbiting string needed for the
stability test.
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Fig. 6. Two orbits of the lower end point of the string from fig. 3 after slight
perturbations of the radial equilibria. For L = 0.946R (solid line) the equilibrium
is stable whereas for L = 1.018R (dashed line) the the equilibrium has become
unstable.
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Fig. 7. The orbiting ring.
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Fig. 8. Ovalization of the orbiting ring for varying radius r̄. The system is stable up
to r̄ ≈ 0.4.
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Fig. 9. First eigenvalues of the orbiting ring for varying radius r̄.

27

Figure9



Acc
ep

te
d m

an
usc

rip
t 

Earth
undeformed ring

deformed ring

Fig. 10. Deformed and undeformed shape of the orbiting ring at the stability bound-
ary.
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