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Post-bifurcation analysis of a thin-walled hyperelastic

tube under inflation
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2Institute for Science and Technology in Medicine, Keele University, ST4 7QB, U.K.

Abstract

We consider the problem of bulging, or necking, of an infinite thin-walled hypere-

lastic tube that is inflated by an internal pressure, with the axial stretch at infinity

maintained at unity. We present a simple procedure that can be used to derive the

bifurcation condition and to determine the near-critical behaviour analytically. It is

shown that there is a bifurcation with zero mode number and that the associated axial

variation of near-critical bifurcated configurations is governed by a first-order differ-

ential equation that admits a locally bulging or necking solution. This result suggests

that the corresponding bifurcation pressure can be identified with the so-called ini-

tiation pressure which featured in recent experimental studies. This is supported by

good agreement between our theoretical predications and one set of experimental data.

It is also shown that the Gent material model can support both bulging and necking

solutions whereas the Varga and Ogden material models can only support bulging so-

lutions. Relevance of the present method to the study of nonlinear wave propagation

in a fluid-filled distensible tube is also discussed.

1 Introduction

Inflation of membrane tubes and the associated problem of bifurcation and instability is a

classical subject that has been studied in many books and papers. For a membrane tube

sealed by a rigid plug at each end and modeled by the Mooney-Rivlin material model, Ky-

doniefs and Spencer [1] showed that as the radius of the middle section increased, the pressure

passed through a maximum (the limiting pressure) and then decreased, a phenomenon that

had previously been observed for spherical membranes by Green and Shield [2], Adkins and

Rivlin [3], and Green and Adkins [4]. Kydoniefs and Spencer [1] also observed the tendency,

in the case of a neo-Hookean membrane tube, for a nearly spherical bulge to form at the

centre of the cylinder. Determination of the limiting pressure for other material models has

also received some attention; see, for instance, Benedict et al [5] and Alexander [6]. Yin
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[7] addressed the question whether a material could support a fully nonlinear bifurcation

mode consisting of two uniform sections joined by a non-uniform transitional section, a phe-

nomenon commonly observed in party balloons. He found the conditions that needed to be

imposed on the strain-energy function for the material. The mechanisms for the initiation

and propagation of bulges in an inflated membrane tube was made more transparent through

the analysis of Chater and Hutchinson [8], and the experimental and numerical studies of

Kyriakides and Chang [9, 10]. In particular, these authors observed that this problem shared

the same features as a family of other problems such as propagating buckles in long metal

tubes under external pressure [11, 12], propagating necks in some polymeric materials when

pulled in tension [13], and phase transition problems [14, 15, 16]. To this family, we may

also add the problem of kink band formation and propagation in layered structures [17] and

fibre-reinforced composites [18]. We observe, however, that whereas the determination of

the propagation pressure through the equal-area rule is now universally accepted, there is

still some uncertainty concerning the determination of the pressure, termed the initiation

pressure, at which bulging first occurs. Kyriakides and Chang [9] took this pressure to be

the limiting pressure corresponding to the first turning point in the pressure-volume dia-

gram for uniform inflation, but this value was found to be slightly higher than what had

been observed in the experiments (see their figure 9). Various other numerical schemes have

also been used to determine the pressure-volume curves beyond the initiation pressure; see,

for instance, Duffet and Reddy [19], Shi and Moita [20], Verron and Marckmann [21], and

the references therein. Additional experimental results are given recently by Pamplona et al

[22] and Goncalves et al [23].

The bifurcation and stability properties of the uniform inflation state are expected to be

relevant to the determination of the initiation pressure. A thorough bifurcation study of the

uniform inflation state was carried out by Haughton and Ogden [24], with some additional

results given more recently by Haughton [25]. Stability of the uniform inflation state was

studied by Corneliussen and Shield [26], Shield [27], and Chen [28] using the energy method.

However, although Shield’s stability results were discussed by Kyriakides and Chang [10],

the results were not found to be relevant to the determination of the initiation pressure.

This is probably because neither the bifurcation nor the stability analysis mentioned above

is able to describe correctly the bifurcation mode having zero wave number, and it is in fact

this mode that is relevant to the determination of the initiation pressure. This special mode

is not sinusoidal or constant — its correct variation can only be found from a near-critical

nonlinear analysis (see, for instance, Fu [29]). It will be shown that this mode is localized

so that it can also be supported by a finite tube. In fact, this localized mode is governed

by a first-order differential equation that is an integral of the classical Korteweg-de Vries

evolution equation.

The Gent material model [30] has recently emerged as a popular and possibly realistic

model for rubber and bio-materials. This is a so-called finite-chain model that imposes
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a maximum stretch that the material (or more precisely the polymeric molecular chains

composing the material) can experience. This model has been discussed in a number of

recent papers; see Horgan and Saccomandi [31, 32], and Ogden et al [33]. Gent [34] showed,

for the case of closed ends, that the pressure-volume curve for the Gent material has a

maximum followed by a minimum, which implies that for each pressure value in a certain

interval there are two corresponding stable volume values (a property which is not found

in the Varga or neo-Hookean material model). Gent [35, p.167] further stated that this is

consistent with the experimental result that “thin-walled rubber tubes undergo a strikingly

non-uniform deformation at a critical inflation pressure. One portion of the tube becomes

highly distended as a bubble or aneurysm while the rest remains lightly inflated”. This is

exactly what has already been observed by Kyriakides and Chang [10] for other material

models.

The initial motivation for the current study is to extend Gent’s [35] own study and

discover more about what the Gent model can predict with regard to the formation of an

aneurysm (a localized, blood-filled dilation of a blood vessel caused by disease or weakening

of the vessel wall). We focus on the simplest case when an infinite cylindrical membrane is

inflated by an internal pressure with the remote axial stretch maintained at unity all the time

(i.e. both before and after any bulging has taken place; this case differs from the closed-end

case in that the pressure-volume curve for the Gent material would now be monotonically

increasing). In the course of our study we find that analysis can be carried out much further

than previously known before having to resort to numerical calculations.

The rest of this paper proceeds as follows. After formulating the problem in the next

section, we show in Section 3 that the bifurcation condition can in fact be deduced from

two simple equations that determine the two principal stretches at a point where the radius

is a local maximum or minimum. In Section 4 we carry out a near-critical post-bifurcation

analysis and derive the leading-order amplitude equation for the bifurcation solution. The

amplitude equation is then used to determine under what conditions a localized solution is

possible and, if it is, whether it is of the bulging or necking type. In Section 5 we present

some numerical results for the fully nonlinear post-bifurcation states, performed with the

aid of Mathematica, and compare them with the analytical near-critical results obtained in

Section 4. In the final section, we discuss implications of our findings to the determination

of the initiation pressure, and the relevance of our methodology to the study of nonlinear

wave propagation in fluid-filled distensible tubes.

2 Governing equations

We consider the problem of inflation of an infinite cylindrical membrane tube that is incom-

pressible, isotropic, and hyperelastic. The tube is assumed to have uniform thickness H and

uniform inner radius R before inflation. To simplify analysis, we assume that the remote
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Figure 1: Axisymmetric deformation of a thin-walled rubber tube

axial stretch is maintained at unity all the time, but our results can easily be modified for

the case when the remote axial stretch takes any other value. We also assume that when

the tube is inflated by an internal pressure, the inflated configuration maintains axial sym-

metry, but its radius can be constant or varying along the axial direction. We shall refer to

the configuration with a constant radius the primary state and all other possible configura-

tions bifurcated states. Thus, in general, the axisymmetric deformed configuration may be

described by

r = r(Z), θ = Θ, z = z(Z), (2.1)

where Z and z are the axial coordinates of a representative material particle before and after

inflation, respectively, and r is the inner radius after inflation; see Fig. 1.

Since the deformation is axially symmetric, the principal directions of stretch coincide

with the lines of latitude, the meridian and the normal to the deformed surface. Thus, the

principal stretches are given by

λ1 =
r

R
, λ2 =

√
r′2 + z′2, λ3 =

h

H
, (2.2)

where the indices (1, 2, 3) are used for the latitudinal, meridional and normal directions

respectively and the primes indicate differentiation with respect to Z.

The principal Cauchy stresses σ1, σ2, σ3 in the deformed configuration for an incompress-

ible material are given by

σi = λiWi − p, i = 1, 2, 3 (no summation), (2.3)

where W = W (λ1, λ2, λ3) is the strain-energy function, Wi = ∂W/∂λi, and p is the pressure

associated with the constraint of incompressibility; see, for instance, Ogden [36]. Utilising

the incompressibility constraint λ1λ2λ3 = 1 and the membrane assumption σ3 = 0 we find

σi = λiŴi, i = 1, 2 (no summation), (2.4)
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where Ŵ (λ1, λ2) = W (λ1, λ2, λ
−1
1 λ−1

2 ) and Ŵ1 = ∂Ŵ/∂λ1 etc.

From the fact that the resultant in the Z-direction at any cross section (balancing the

tension in the membrane and the inflation pressure) must be a constant, we obtain

Ŵ2z
′

λ2

− 1

2
Pλ2

1R = C2, (2.5)

where P is the internal pressure scaled by H and C2 is a constant. By considering equilibrium

in the normal direction of an infinitesimal volume element, we obtain

σ2(r
′′z′ − r′z′′)

λ3
2

− z′σ1

rλ2
+

P

λ3
= 0. (2.6)

With the use of (2.4) and the differentiated form of (2.5), we may integrate (2.6) once to

obtain

Ŵ − λ2Ŵ2 = C1, (2.7)

where C1 is another constant of integration. This integral was first noted by Pipkin [37].

Equations (2.5) and (2.7) correspond to Haughton’s [25] equations (3.29) and (3.27) respec-

tively.

Without loss of generality, we take R = 1 (which is equivalent to scaling all the length

variables by R). To find the constants C1 and C2 we assume that the cylinder is uniform far

away from the origin with a constant radius r∞:

lim
Z→±∞

r(Z) = r∞, lim
Z→±∞

z(Z) = Z,

and hence

r′ → 0, z′ → 1, λ1 → r∞, λ2 → 1 as Z → ±∞.

Thus, from the outset we focus on localized bifurcation solutions by excluding sinusoidal-type

solutions. On taking the limit Z → ∞ in (2.5), (2.6) and (2.7), we obtain

C2 = Ŵ
(∞)
2 − 1

2
Pr2

∞
, P =

Ŵ
(∞)
1

r∞
, C1 = Ŵ (∞) − Ŵ

(∞)
2 , (2.8)

where the superscript (∞) signifies evaluation at λ1 = r∞, λ2 = 1.

We shall consider three types of materials: Varga, Ogden and Gent, for which the strain-

energy functions are given, respectively, by

W = 2µ(λ1 + λ2 + λ3 − 3), (2.9)

W =
3
∑

r=1

µr(λ
αr

1 + λαr

2 + λαr

3 − 3)/αr, (2.10)

W = −1

2
µJm ln(1 − J1

Jm

), J1 = λ2
1 + λ2

2 + λ2
3 − 3, (2.11)
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where µ is the shear modulus for infinitesimal deformations, Jm is a material constant and

α1 = 1.3, α2 = 5.0, α3 = −2.0, µ1 = 1.491, µ2 = 0.003, µ3 = −0.023

are material constants given by Ogden [38] (see also Ogden [36]). For rubbers, a typical

value for Jm is 97.2 which corresponds to a maximum stretch of 10 in uniaxial tension [34].

Horgan and Saccomandi [31] give, from experimental data, values of Jm between 0.422 and

3.93 for human arteries. In the limit Jm → ∞, (2.11) reduces to

W =
1

2
µ(λ2

1 + λ2
2 + λ2

3 − 3), (2.12)

the energy function for the neo-Hookean material.

For the problem under consideration, the volume of the tube is given by v = πλ2
1 per

unit length in the z-direction and so turning points of the (P, v)-curve coincide with those

of the (P, λ1)-curve. It is easy to show with the aid of (2.8)2 that the (P, λ1)-curve has a

maximum at λ1 = r∞ = 1.7321 and no minimum for the Varga material, has a maximum

at r∞ = 1.9582 and a minimum at r∞ = 2.8380 for the Ogden material and is monotone

increasing for the Gent material (for all Jm > 0).

3 Bifurcation condition

With C1 and C2 known, equations (2.5) and (2.7) are two first-order coupled nonlinear

differential equations for r(Z) and z(Z). For a bulging/necking solution that is symmetric

about the origin Z = 0, we impose the conditions

r′(0) = 0, z(0) = 0. (3.1)

In order to integrate (2.5) and (2.7) from Z = 0 towards Z → ∞ to obtain a bulging/necking

solution, we need to know r(0) as well as z(0). To find r(0), we evaluate (2.5) and (2.7) at

Z = 0 and obtain respectively

Ŵ2(r0, z
′

0) −
Ŵ

(∞)
1

2r∞
(r2

0 − r2
∞

) − Ŵ
(∞)
2 = 0, (3.2)

Ŵ (r0, z
′

0) − z′0 Ŵ2(r0, z
′

0) − Ŵ (∞) + Ŵ
(∞)
2 = 0, (3.3)

where r0 = r(0), z′0 = z′(0) ≥ 0. These two equations can be solved to find r0 (and z′0) as

a function of r∞. Obviously r0 = r∞ is always a solution which corresponds to the uniform

solution r ≡ r∞ of (2.5) and (2.7). A necessary condition for a non-uniform bifurcated

solution to exist is that (3.2) and (3.3) have a solution other than r0 = r∞, z′0 = 1. In

Figures 2(a), 3(a) and 4(a), we have shown such (non-trivial) solutions of (3.2) and (3.3) for

the Varga material, the Gent material with Jm = 97.2 and the Ogden material, respectively.

The ω(r∞) in these figures is defined by (4.8) and ω(r∞) = 0 determines the bifurcation values
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Figure 2: Amplitude r0 − r∞ and ω(r∞) as functions of r∞ for the Varga material. The

dotted lines in (a) indicate the fact that the corresponding solution is either periodic or

unbounded.

of r∞. As expected, such solutions only exist for certain values of r∞. Of course, existence of

such a non-trivial value of r0 does not guarantee that it corresponds to a localized solution

of r(Z). This will be discussed in more details in Sections 4 and 5.

Now suppose that after the trivial solution r0 = r∞ has been factorized out, (3.2) and

(3.3) have a solution given by

r0 = h(r∞). (3.4)

Then any bifurcation values are given by the roots of r∞ = h(r∞), i.e. the intersection of the

trivial solution with the nontrivial solution. This suggests a method to derive the bifurcation

condition as follows.

We assume that the solution of (3.2) for z′0 in terms of r0 is given by

z′0 = k(r0), with k(r∞) = 1. (3.5)

We may alternatively choose (3.3) for this purpose. Of course, in general an explicit expres-

sion for k(r0) does not exist, but we may differentiate (3.2) once and twice with respect to

r0 and then evaluating the resulting expressions at r0 = r∞ to obtain

Ŵ
(∞)
1 − Ŵ

(∞)
12 − Ŵ

(∞)
22 k′(r∞) = 0, (3.6)

Ŵ
(∞)
112 + 2k′(r∞)Ŵ

(∞)
122 + (k′(r∞))2Ŵ

(∞)
222 + k′′(r∞)Ŵ

(∞)
22 − Ŵ

(∞)
1

r∞
= 0. (3.7)

These two equations can be solved to obtain an explicit expression for k′(r∞) and k′′(r∞).

Next, with the use of (3.5), the left hand side of the second equation (3.3) is a function of

r0 only and we know that it having r∞ as a non-trivial root defines the bifurcation condition.

Differentiating the left hand side of (3.3) with respect to r0 and then evaluating at r0 = r∞

followed by the use of (3.6), we find that the left hand side becomes identically zero, indicating

7
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Figure 3: Amplitude r0 − r∞ and ω(r∞) as functions of r∞ for the Gent material with

Jm = 97.2. The dotted lines in (a) indicate the fact that the corresponding solution is either

periodic or unbounded.

that the trivial solution r0 = r∞ is in fact a double root. Thus, near r0 = r∞ the left hand

side of (3.3), as a function of r0, expands like (r0 − r∞)2S(r∞) + O((r0 − r∞)3), and the

bifurcation condition corresponds to S(r∞) = 0. Therefore, the bifurcation condition can be

derived by differentiating (3.3) twice with respect to r0 and then evaluating at r0 = r∞. We

then obtain for the bifurcation condition,

r∞(Ŵ
(∞)
1 − Ŵ

(∞)
12 )2 + Ŵ

(∞)
22 (Ŵ

(∞)
1 − r∞Ŵ

(∞)
11 ) = 0, (3.8)

which agrees with Haughton’s [25] equation (3.50) (note that the only plus sign in his equa-

tion (3.43) should be a minus). With the use of (2.8)2 we may rewrite the above bifurcation

condition as

r∞(Ŵ
(∞)
1 − Ŵ

(∞)
12 )2 − r2

∞
Ŵ

(∞)
22

dP

dr∞
= 0. (3.9)

Assuming that Ŵ
(∞)
22 > 0 (see discussion in Section 6), we see from (3.9) that a bifurcation

can never take place on the section of the (P, r∞)-curve where dP/dr∞ < 0 (Haughton and

Ogden [24]). A likely scenario is that as inflation proceeds, a bifurcation will take place

before the limiting pressure is reached.

To illustrate the above idea, we consider the Varga material defined by (2.9). Equation

(3.3) can be solved explicitly to express z′0 in terms of r0. Equation (3.2) then becomes

(r0 − r∞)2

{

r0 −
2(1 + r2

∞
)

r3
∞

}

= 0, (3.10)

and so the bifurcation condition is given by r∞ = 2(1+ r2
∞

)/r3
∞

, which has a unique positive

real root r∞ =
√

1 +
√

3 ≈ 1.6529, smaller than the value 1.7321 of r∞ corresponding to the

turning point of the (P, r∞)-curve.
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Figure 4: Amplitude r0 − r∞ and ω(r∞) as functions of r∞ for the Ogden material. The

dotted lines in (a) indicate the fact that the corresponding solution is either periodic or

unbounded.

4 Near-critical post-bifurcation analysis

In this section we show that the bifurcation condition (3.8) also emerges naturally in our

near-critical post-bifurcation analysis. The latter analysis also yields the conditions under

which a localized bifurcation solution is possible.

We first rewrite (2.7) and (2.5) as

f(λ1, λ2) ≡ Ŵ − λ2Ŵ2 − C1 = 0, (4.1)

g(λ1, λ2) ≡
λ2

Ŵ2

(C2 +
P

2
λ2

1) = z′, (4.2)

which define the two functions f and g. We write

λ1 = r∞ + y, (4.3)

where y is assumed to be small. Correspondingly, we expect λ2 to have the expansion

λ2 = 1 + d1y +
1

2
d2y

2 + O(y3), (4.4)

where the coefficients can be obtained by substituting (4.3) and (4.4) into (4.1), expanding

the latter as a power series in y, and then equating the coefficients of y and y2. This can

best be carried out with the aid of a symbolic manipulation package such as Mathematica.

Likewise, by substituting (4.3) and (4.4) into (4.2) and expanding in terms of y, we obtain

z′ = 1 + g1y +
1

2
g2y

2 + O(y3), (4.5)

where

g1 =
dg

dy

∣

∣

∣

∣

y=0

, g2 =
d2g

dy2

∣

∣

∣

∣

y=0

.
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On substituting (4.4) and (4.5) into λ2 =
√

r′2 + z′2, we obtain d1 = g1 to leading order, and

y′2 = ω(r∞)y2 + O(y3) (4.6)

to the next order, where

ω(r∞) = d2 − g2. (4.7)

In terms of the various derivatives of Ŵ , we have

ω(r∞) =
−1

r∞Ŵ
(∞)
2 Ŵ

(∞)
22

{

r∞(Ŵ
(∞)
1 − Ŵ

(∞)
12 )2 + Ŵ

(∞)
22 (Ŵ

(∞)
1 − r∞Ŵ

(∞)
11 )

}

. (4.8)

The behaviour of solution of the differential equation (4.6) changes when ω(r∞) = 0. This

gives the bifurcation condition consistent with the earlier expression (3.8).

For the Varga and Gent materials, ω(r∞) is given by

ω(r∞) =
2 + 2r2

∞
− r4

∞

2 (r∞ − 1) r2
∞

, (4.9)

and

ω(r∞) =
Jmr2

∞
(r8

∞
− 6r4

∞
− 4r2

∞
− 3) − (r2

∞
− 1)2(r8

∞
+ 6r6

∞
+ 8r4

∞
− 2r2

∞
− 1)

r2
∞

(r2
∞
− 1)(r6

∞
− (Jm + 1)r4

∞
− (3Jm + 1)r2

∞
+ 1)

, (4.10)

respectively. The corresponding expression for the Ogden material is too long and is not

written out here. In Figures 2(b), 3(b) and 4(b) we have shown ω(r∞) for the three materials.

We observe that the Varga and Ogden materials each predict one bifurcation value, given by

r∞ = 1.6529 and r∞ = 1.6955, respectively, but the Gent material predicts two bifurcation

values: 1.74261 and 5.0850 when Jm = 30, and 1.6907 and 9.6523 when Jm = 97.2. We also

find that as Jm decreases the two bifurcation values move towards each other and coalesce

at r∞ = 2.2545 when Jm = 11.0693. When Jm is decreased further no bifurcation values

exist. Thus, the type of bifurcation addressed in the present paper cannot occur in human

arteries for which Jm ranges between 0.422 and 3.93.

The above expansion (4.6) can in fact be extended to higher orders with the aid of

Mathematica. We have, in place of (4.6),

y′2 = ω(r∞) y2 + γ(r∞) y3 + O(y4), (4.11)

where the expression for the coefficient γ(r∞) is easily obtained using Mathematica but is

not written out here for brevity.

In the near-critical post-bifurcation analysis, we write

r∞ = rcr + ǫr1, (4.12)

where rcr is a root of the bifurcation condition ω(r∞) = 0, ǫ is a positive small parameter

and r1 is a constant. On substituting (4.12) into (4.11) and expanding ω around rcr, we

obtain

y′2 = ω′(rcr)ǫr1y
2 + γ(rcr)y

3, (4.13)
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where we have neglected the higher-order terms. We assume that y′ does not change sign for

0 ≤ Z < ∞. Then when r0 > r∞ (a bulging solution), we have y′ < 0 and y > 0; whereas

when r0 < r∞ (a necking solution), we have y′ > 0 and y < 0. Thus, for both cases we

obtain from (4.13)

y′ = −y
√

ω′(rcr)ǫr1 + γ(rcr)y. (4.14)

The amplitude equation (4.14) indicates that y is of order ǫ and that its variation takes place

on an O(1/
√

ǫ) lengthscale.

We now consider the solution of the following four prototypal equations:

y′

1 = −ay1

√

1 + by1, y′

2 = −ay2

√

1 − by2, (4.15)

y′

3 = −ay3

√

−1 + by3, y′

4 = −ay4

√

−1 − by4, (4.16)

where y1, y2, y3, y4 are functions of Z and a, b are positive constants given by

a =
√

|ω′(rcr)ǫr1|, b = |γ(rcr)|/a2.

The relevance of these equations to (4.14) is obvious and we have

y =



















y1 if ω′(rcr)(r∞ − rcr) > 0, γ(rcr) > 0,

y2 if ω′(rcr)(r∞ − rcr) > 0, γ(rcr) < 0,

y3 if ω′(rcr)(r∞ − rcr) < 0, γ(rcr) > 0,

y4 if ω′(rcr)(r∞ − rcr) < 0, γ(rcr) < 0.

(4.17)

It can be shown that

y1 =

{

1
b
[sinh(1

2
aZ + A)]−2, if y1 > 0

−1
b
[cosh(1

2
aZ + A)]−2, if y1 < 0

(4.18)

y2 =

{

−1
b
[sinh(1

2
aZ + A)]−2, if y2 < 0

1
b
[cosh(1

2
aZ + A)]−2, if y2 > 0

(4.19)

y3 =
1

b[cos(1
2
aZ + A)]2

, y4 = − 1

b[cos(1
2
aZ + A)]2

, (4.20)

where A is an integration constant which can be set to zero since the origin of Z can be

arbitrarily chosen.

By inspection, we may immediately dismiss y3, y4, y1 > 0 and y2 < 0 as we are only

looking for localized solutions and they all blow up at finite values of Z. We are then left

with

y =

{

−1
b
[cosh(1

2
aZ)]−2, if ω′(rcr)(r∞ − rcr) > 0, γ(rcr) > 0,

1
b
[cosh(1

2
aZ)]−2, if ω′(rcr)(r∞ − rcr) > 0, γ(rcr) < 0.

(4.21)

It follows that near-critical localized solutions exist only if

ω′(rcr)(r∞ − rcr) > 0, (4.22)
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and that when such a solution exists it is of the bulging type if γ(rcr) < 0 and of the necking

type if γ(rcr) > 0. Thus, only a super-critical localized solution is possible if

ω′(rcr) > 0, (4.23)

that is only if the curve of ω(r∞) at the bifurcation point has a positive slope. Similarly,

only a sub-critical localized solution is possible ω′(rcr) < 0.

When the condition (4.22) is not satisfied, our analysis above would predict a solution

that blows up at a finite value of Z, but we should bear in mind the fact that our analysis

has been conducted under the small-amplitude assumption so that terms of order y4 in

(4.11) could be neglected. Thus, when y grows and reaches a sufficient amplitude the higher

order terms may no longer be neglected and they may act to suppress further growth. Our

numerical integration to be explained in Section 5 does indeed show that whenever (4.22)

is not satisfied the corresponding solution is usually periodic and hence does not satisfy our

conditions at infinity.

We note that y and r0 − r∞ have the same sign and that a bulging/aneurysm solution

corresponds to y > 0 whereas a necking solution corresponds to y < 0. Thus, referring to

Figures 2(a), 3(a) and 4(a), we see that for the Gent material with Jm = 97.2, near the first

bifurcation point, r∞ = 1.6907, the post-critical solution must necessarily be of the bulging

type, whereas near the second bifurcation point, r∞ = 9.6523, the post-critical solution must

necessarily be of the necking type. For the other two materials, the post-critical solution

associated with the only bifurcation point must necessarily be of the bulging type.

We also observe that the maximum or minimum of y occurs when y′ = 0 and it occurs

at Z = 0. It then follows from (4.14) that the maximum/minimum is given by

ymax/min = −ω′(rcr)(r∞ − rcr)/γ(rcr).

The relation

r0 ≈ r∞ + ymax/min = r∞ − ω′(rcr)(r∞ − rcr)/γ(rcr)

then provides a consistency check on our numerical values of r0.

We conclude this section by remarking that the bifurcation problem addressed in this

section corresponds to a bifurcation with zero mode number. Such bifurcations are usually

associated with infinite domains but the corresponding spatially localized solutions are also

valid for a finite domain since the finite boundaries (such as the ends of the tube) are not felt

by the localized solutions. For such bifurcation problems, linear bifurcation analysis would

incorrectly predict the eigenfunction as a constant; the correct shape of the eigenfunction can

only be deduced from a weakly nonlinear, multiple-scale analysis. Such an analysis would

usually yield an amplitude equation of the form

AXX + c1A + c2A
2 = 0, (4.24)
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where X is a far-distance variable, A is the amplitude function and c1 and c2 are constants;

see Fu [29, p.362]. Multiplying (4.24) by AX and then integrating, we would obtain

(AX)2 + c1A
2 +

2

3
c2A

3 = const, (4.25)

which is seen to be of the same form as (4.13) derived earlier. It is due to the simplicity of the

current problem that we were able to derive (4.13) without having to conduct a multiple-scale

analysis in the standard manner.

5 Numerical solutions

Following Kyriakides and Chang [10], we may write down the following system of differential

equations for λ1, λ2, φ:

λ′

1 = λ2 sin φ,

λ′

2 =
Ŵ1 − λ2Ŵ12

Ŵ22

sin φ, (5.1)

φ′ =
Ŵ1

Ŵ2

cos φ − Ŵ∞

1

r∞Ŵ2

λ1λ2,

where φ is defined in Fig. 1. These equations are solved subject to the initial conditions

λ1(0) = r(0), λ2(0) = z′(0), φ(0) = 0. (5.2)

We could also use λ1, λ2, r
′ as dependent variables (Yang and Feng [39]), in which case we

solve

λ′

1 = r′,

λ′

2 =
Ŵ1 − λ2Ŵ12

Ŵ22

r′

λ2
, (5.3)

(r′)′ =
Ŵ1λ2

Ŵ2

+

(

Ŵ1 − λ2Ŵ12

Ŵ22

− Ŵ1λ2

Ŵ2

)

(

r′

λ2

)2

− Ŵ∞

1

r∞Ŵ2

λ1λ
2
2

√

1 −
(

r′

λ2

)2

subject to the conditions

λ1(0) = r(0), λ2(0) = z′(0), r′(0) = 0. (5.4)

For the Varga material, (2.7) and (2.5) reduce to

√
r′2 + z′2 =

2r∞
r(r2

∞
+ 2 − rr∞)

, (5.5)

and
z′√

r′2 + z′2

(

1 − 1

r(r′2 + z′2)

)

− Pr2

2H
= 1 − 1

r∞
− Pr2

∞

2H
, (5.6)
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Figure 5: Near-critical bulging/necking solutions corresponding to the Gent material with

Jm = 97.2. (a) r∞ = 1.6; (b) r∞ = 9.7. Solid lines: numerical solution; dotted lines:

asymptotic solution given by (4.21).

respectively. We then obtain from (5.5) a single first-order differential equation

r′ = ±
√

4r2
∞

r2(r2
∞

+ 2 − rr∞)2
− z′2, (5.7)

where z′ can be expressed explicitly in terms of r with the use of (5.5) and (5.6). We note

that this simplification is possible because r′ appears in (5.6) only through
√

r′2 + z′2 which

can be eliminated with the aid of (5.5).

We cannot solve (5.7) subject to the condition r(0) = r0 directly since the latter is a

fixed point of (5.7), but locking to the fixed point can be avoided by slightly perturbing the

initial condition. For instance, we may use r(0) = r0 +0.0001 as the initial condition and the

resulting solution provides a good enough approximation to the actual solitary wave type

solution. This provides a useful check on our numerical solutions.

In Fig. 5(a, b), we have shown two post-critical solutions for the Gent material corre-

sponding to r∞ = 1.6 and r∞ = 9.7, which are close to the two bifurcation values 1.6907

and 9.6523, respectively. We see good agreement between the numerical solutions and the

asymptotic solution given by (4.21).

Earlier in Section 3 we have already indicated that not every initial condition at Z = 0

will correspond to a localized solution. The criterion (4.22), together with the plots in

Figures 2(b), 3(b) and 4(b), enables us to deduce whether a solution will be localized when

r∞ is sufficiently close to a bifurcation value. For other values of r∞, we have to resort to

numerical integrations.

We first discuss the Varga material and refer to Fig. 2. The criterion (4.22) indicates

that the bifurcated solution is a localized bulge for r∞ close to and less than rcr. As r∞ is

reduced from rcr, numerical integration of (5.1) shows that the solution remains localized
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only for r∗ < r∞ < rcr, where, as pointed out by Haughton [25], the lower bound r∗ is the

value of r∞ at which r(0), calculated according to (3.10), makes the right hand side of (5.5)

blow up, that is r(0) = 2(1+ r2
∞

)/r3
∞

= r∞ +2/r∞ from which we obtain r∗ = 21/4 ≈ 1.1892

(Haughton’s value of r∗ ≈ 1.22 seems to be in error). For values of r∞ outside the interval

[r∗, rcr] the solution is either unbounded or periodic.

For the Gent material with Jm = 97.2, our numerical calculation yields the results shown

in Fig. 3, where again we have used solid lines to indicate association with localized solutions

and dashed lines with either unbounded or periodic solutions. We find that the solid line

segment originating from the first bifurcation point terminates at the nearest turning point.

However, contrary to our expectation, the other solid line segment originating from the

second bifurcation point terminates at r∞ = 9.8046, before the nearest turning point at

r∞ = 9.91015 is reached. We have also carried out calculations for Jm = 30 and have found

qualitatively similar results.

Finally, for the Ogden material the amplitude diagram of which is given by Fig. 4(a), it is

found that the end points that divide localized and unbounded/periodic solutions correspond

to the turning point and the bifurcation value of r∞ in Fig. 4(a). Thus, the bifurcated solution

is localized only for 1.1525 < r∞ < 1.6955. The upper and lower branches of the amplitude

curve in Fig. 4(a) have asymptotic representations given by r0 ∼ 1.23r1.48
∞

− 0.39r0.52
∞

and

r0 ∼ 0, respectively. These asymptotic expressions are plotted in Fig. 4(a) in dashed lines

in order to validate the numerical results.

6 Initiation pressure and further discussions

Stability analysis for the uniform inflation solution has been performed by Chen [28]. For

the case of pressure control and free ends, he found that for a stable solution the following

conditions must be satisfied:

(λ2
1Ŵ11 − λ1Ŵ1) ≥ 0, Ŵ22 ≥ 0, Ŵ2 ≥ 0,

λ2
2Ŵ22(λ

2
1Ŵ11 − λ1Ŵ1) − (λ1λ2Ŵ12 − λ1Ŵ1)

2 ≥ 0, (6.1)

whereas a strict inequality version of these conditions gives a sufficient condition for (local)

stability.

We note that Ŵ22 > 0 can be interpreted as one of the conditions required by strong

ellipticity for 2D deformations. The resultant axial force (in the membrane) required to

maintain a constant λ2 at infinity is F̂ = 2πrhσ2 = 2πHŴ2, which has the same sign as Ŵ2.

It is known [26, 24] that, independently of the form of the strain energy function, F̂ ≥ 0

if λ1λ
2
2 ≥ 1 and F̂ ≤ 0 if λ1λ

2
2 ≤ 1. In particular, for λ2 = 1 we must have F̂ > 0 during

inflation. Thus, we assume that the second and third inequalities in (6.1) are satisfied. The

first inequality in (6.1) is then implied by the last inequality, and the latter, when evaluated

at λ1 = r∞, λ2 = 1, is simply ω(r∞) ≥ 0. Thus, the bifurcation condition ω(r∞) = 0 marks
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Figure 6: Comparison of the bifurcation pressure (solid line) determined by the bifurcation

condition (6.2) and the initiation pressure (circles) determined experimentally by Kyriakides

and Chang [9] and given in their figure 9.

the boundary of stability, as has been shown for many other cases. The stability of the

uniform inflation state can then be read off straightaway from our Figures 2(b), 3(b) and

4(b).

We now argue that the first bifurcation pressure determined from ω(r∞) = 0 can be

used as the so-called initiation pressure that has featured in recent experimental studies.

This is supported by the following observations: (i) it is at this pressure that the uniform

inflation solution ceases to be stable; (ii) the near-critical bifurcated deformation is a bulge,

of precisely the same form as observed experimentally; (iii) Figures 2(a), 3(a) and 4(a)

show that the initial bulging is associated with a reduction in r∞ from rcr, again just as

observed experimentally. As further support, we have shown in Fig.6 this pressure against

the experimental data taken from figure 9 of Kyriakides and Chang [9]. In Kyriakides and

Chang’s experiments, the tube was modeled as an Ogden material and the membrane tube

was closed at one end at which an extra axial force F is also applied. For this case, our

bifurcation condition ω(r∞) = 0 would take the form

λ2
2Ŵ22(λ

2
1Ŵ11 − λ1Ŵ1) − (λ1λ2Ŵ12 − λ1Ŵ1)

2 = 0, (6.2)

and the scaled pressure and axial force would be given by

PR

µH
=

1

λ1λ2
· Ŵ1

µ
,

F

2πµRH
=

Ŵ2

µ
− λ1

2λ2
· Ŵ1

µ
, (6.3)

16



Acc
ep

te
d m

an
usc

rip
t 

where the shear modulus µ is calculated according to 2µ =
∑3

n=1 µnαn. For each specified

λ1, we solve (6.2) to find the corresponding λ2, and hence the scaled pressure and axial force.

We vary λ1 in the interval (1, 4) to generate the curve in Fig. 6. We see excellent agreement

between our theoretical predications and the first four experimental results. It is not yet

clear why the agreement becomes poorer for higher values of F , but we observe that the

eight experimental results correspond to an axial stretch approximately equal to 1.12, 1.28,

1.49, 1.80, 2.23, 2.68, 3.13 and 3.49, respectively. Thus, the poor agreement corresponds to

fairly high axial stretches.

Finally, we note that the methodology presented in the present paper can also be used to

study nonlinear wave propagation in fluid-filled distensible tubes. Our amplitude equation

(4.13) is in fact an integral of the well-known Kortewed-de Vries (KdV) equation

ut − 6uux + uxxx = 0 (6.4)

when u is assumed to take the form u = (γ/2)y(x − ct), c = ω′(rcr)ǫr1. The KdV equation

is the prototypal evolution equation for waves where weak nonlinearity and weak dispersion

operate simultaneously, and is known to have solitary-wave solutions. In a recent study

by Epstein and Johnston [40], the authors found that no solitary waves could propagate

if the fluid was initially stationary prior to wave propagation. This is in contrast with

previous studies by Demiray [41], Demiray and Dost [42], and Erbay et al [43] where (6.4) was

derived and the contrary was found in the context of a small-amplitude and long-wavelength

approximation. We note that Epstein and Johnston’s [40] equations (6.4) and (6.6) can be

cast in our form (4.1) and (4.2). Our bifurcation condition ω(r∞) = 0 would be replaced

by the leading-order dispersion relation ω(c) = 0 which determines the linear wave speed

c corresponding to infinite wavelength. Our near-critical post-bifurcation analysis would

then correspond to a small-amplitude and long-wavelength analysis, thus enabling a direct

comparison with previous studies. This will be carried out in a separate study.
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