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Abstract

We show how to determine the midsurface of a deformed thin shell from known
geometry of the undeformed midsurface as well as the surface strains and bendings.
The latter two fields are assumed to have been found independently and beforehand
by solving the so-called intrinsic field equations of the non-linear theory of thin
shells. By the polar decomposition theorem the midsurface deformation gradient
is represented as composition of the surface stretch and 3D finite rotation fields.
Right and left polar decomposition theorems are discussed. For each decomposition
the problem is solved in three steps: a) the stretch field is found by pure algebra,
b) the rotation field is obtained by solving a system of first-order PDEs, and c)
position of the deformed midsurface follows then by quadratures. The integrability
conditions for the rotation field are proved to be equivalent to the compatibility
conditions of the non-linear theory of thin shells. Along any path on the undeformed
shell midsurface the system of PDEs for the rotation field reduces to the system of
linear tensor ODEs identical to the one that describes spherical motion of a rigid
body about a fixed point. This allows one to use analytical and numerical methods
developed in analytical mechanics that in special cases may lead to closed-form
solutions.
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1 Introduction

Pietraszkiewicz and Szwabowicz [1] worked out two ways of determining the
midsurface of a deformed shell from prescribed fields of surface strains γαβ and
bendings καβ. The two latter fields were assumed to be known from solving a
problem posed for the so-called intrinsic field equations of the geometrically
non-linear theory of thin elastic shells. Such intrinsic shell equations, originally
proposed by Chien [2], were refined by Danielson [3] and Koiter and Simmonds
[4] and worked out in detail by Opoka and Pietraszkiewicz [5].

In this paper we develop an alternative novel approach to the same problem.
Our present approach is based on the polar decomposition of the midsurface
deformation gradient F = RU = VR , where U and V are the surface right
and left stretch tensors, respectively, whereas R is a 3D finite rotation tensor.
Detailed transformations are provided for the right polar decomposition in
which the problem of finding the deformed midsurface is solved in three steps:

(1) From known surface strains γαβ the stretch field U is found by purely
algebraic operations leading to the explicit formula (36).

(2) From known U and καβ the rotation field R is calculated by solving the
linear system of two PDEs (24) whose integrability conditions are proved
to be equivalent to the compatibility conditions of the non-linear theory
of thin shells.

(3) With known R and U the deformed shell midsurface is found by the
quadrature (46).

The main steps of the analogous solution using the left polar decomposition
are also concisely presented in Section 6. In both cases we note, in particular,
that along any path on the undeformed shell midsurface the linear system
(24) or (52) reduces to a system of ODEs for unknown R that turns out to be
identical to a system describing spherical motion of a rigid body about a fixed
point. Many closed-form solutions of this system of ODEs are already known
in analytical mechanics of rigid-body motion (see Gorr et al. [6] and [7]). This
allows one to expect closed-form solutions also for the position of the deformed
shell midsurface for a variety of shell initial geometries and deformation states.

∗ Corresponding author.
Email addresses: pietrasz@imp.gda.pl (W. Pietraszkiewicz),

mls@am.gdynia.pl (M. L. Szwabowicz), claude.vallee@lms.univ-poitiers.fr
(C. Vallée).
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2 Shell geometry and deformation

A shell is a 3D solid body identified in a reference (undeformed) configuration
with a region B of the physical space E that has E for its 3D translation
vector space. In the region B we introduce the normal system of curvilinear
coordinates {θ1, θ2, ζ} such that −h

2
≤ ζ ≤ h

2
is the distance from the shell

midsurface M to the points in B, and h is the thickness of the undeformed
shell, see Fig. 1. In the theory of thin shells discussed here h is assumed to be
constant and small in comparison with the other two dimensions of the shell.

The midsurface M is usually defined (locally) by the position vector x =
xk(θα) ik, α = 1, 2, k = 1, 2, 3, relative to some fixed origin o ∈ E and an
orthonormal Cartesian frame {ik}. With each point x ∈ M we can associate
two linearly independent covariant surface base vectors aα = ∂x

∂θα ≡ x,α, the
dual (contravariant) surface base vectors aα satisfying aβ·aα = δβ

α, where δβ
α

denotes the Kronecker symbol, the covariant aαβ = aα·aβ and contravari-
ant aαβ = aα·aβ = (aαβ)−1 components of the surface metric tensor a with
det(aαβ) = a > 0, and the unit normal vector n = 1√

a
a1 × a2 locally

orienting M , see Fig. 2. We can also introduce the covariant components
bαβ = −aα·n,β = aα,β ·n of the surface curvature tensor b, and the covari-
ant components εαβ = (aα × aβ)·n of the surface permutation tensor ε with
εαβ =

√
a eαβ, e12 = −e21 = 1 , e11 = e22 = 0 .

The surface base vector fields aα(θλ) and n(θλ) satisfy the Gauss-Weingarten

3
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equations

aα,β = Γλ
αβaλ + bαβn , n,β = −bλ

β aλ , (1)

where the Christofell symbols Γλ
αβ of the second kind appearing as coefficients

in (1) are related to the surface metric components by the formulas

Γλ
αβ = 1

2
aλµ(aµα,β +aµβ,α−aαβ,µ ) = −aα · aλ,β . (2)

The second covariant derivatives of aβ satisfy the relations

aβ|λµ − aβ|µλ =
(
bκ
λbβµ − bκ

µbβλ

)
aκ +

(
bβλ|µ − bβµ|λ

)
n = Rκ

.βλµaκ , (3)

where

Rκ
.βλµ = Γκ

βλµ,λ−Γκ
βλ,µ +Γρ

βµΓκ
ρλ − Γρ

βλΓ
κ
ρµ (4)

are components of the surface Riemann - Christoffel tensor and (.)|α denotes
the surface covariant differentiation in the metric of M defined, for example,
in [8, 9, 10, 11]. From (3) we obtain the Gauss - Mainardi - Codazzi (GMC)
equations

bκ
λbβµ − bκ

µbβλ = Rκ
.βλµ , bβλ|µ − bβµ|λ = 0 . (5)

4
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For comprehensive exposition of other definitions and concepts we refer the
reader to classical books on differential geometry and tensor calculus, but the
references such as [9, 10, 12, 13] explain these questions directly in the context
of the theory of thin shells.

Consider a deformation χ of the shell, i.e. a map χ: B → B. The theory of thin
shells is based on an assumption that the 3D deformation of a shell can be
approximated with a sufficient accuracy by deformation of its reference (usu-
ally middle) surface. As a result, during deformation the shell is represented
by a material surface capable of resisting stretching and bending.

In the deformed configuration the shell is represented by a midsurface M . We
assume that θα are the material (convected) coordinates and that the image
of the midsurface M under χ coincides with M , i.e. M = χ(M ). Then the
position vector y = yk(θα)ik of M relative to the same fixed frame {o, ik} is

y(θα) = χ[x(θα)] , (6)

and the field of displacements can be obtained from

u(θα) = y(θα)− x(θα) . (7)

In convected coordinates all quantities defined and the relations written earlier
for M hold true on M as well. To indicate which of the two configurations
is meant, we shall provide all symbols pertaining to the deformed one with a
bar above the symbol, e.g. aα, aαβ, ā, bαβ, ε̄αβ, n̄, Γ̄λ

αβ, R̄κ
.βλµ, etc., and leave

those pertaining to the undeformed configuration unmarked, see Fig. 2.

The deformation state of the shell midsurface is usually described by two
Green type surface strain and bending tensors with covariant components

γαβ = 1
2
(aαβ − aαβ) , καβ = −(bαβ − bαβ) . (8)

In this paper we want to find the position vector y = y(θα) of M and/or the
displacement field u =u(θα) defined in (7) from the position vector x = x(θα)
and two fields γαβ = γαβ(θλ) and καβ = καβ(θλ). The latter fields are as-
sumed to have been found beforehand by solving the so-called intrinsic field
equations of the non-linear theory of thin shells worked-out by Opoka and
Pietraszkiewicz [5]. Two different ways leading to this goal have recently been
proposed by Pietraszkiewicz and Szwabowicz [1]. Below we develop an alter-
native novel approach leading to the solution of this problem.

5
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3 Polar decomposition of the midsurface deformation gradient

Let ∇s be the surface gradient operator at x ∈ M . Differentiating the defor-
mation y = χ(x) (in the Fréchet sense) we obtain the midsurface deformation
gradient field defined by

F = ∇sχ(x) = y,α⊗aα . (9)

Due to the identity y,α = āα the deformation gradient can also be regarded as
the two-point tensor field F = āα ⊗ aα ∈ TyM ⊗ TxM which maps material
elements dx ∈ TxM into dy ∈ TyM , so that dy = Fdx . For the coordinate-
free notation Gurtin and Murdoch [14] as well as Man and Cohen [15] proposed
to distinguish the gradients y,α⊗aα and āα⊗aα by relating them through the
canonical inclusion Iy ∈ E⊗TyM and perpendicular projection Py ∈ TyM⊗E
operators. In the present paper there is no need to use such a formal approach,
for here we use convected coordinates and tensor analysis in mixed notation.
Thus, formal differences between codomains of y,α and āα (as well as x,α and
aα) are apparent from the context.

Since both tangent planes, TxM and TyM , lie in the same 3D Euclidean
space, there is a rotation R that takes one to the other. This in conjunction
with the theorem of Tissot (see [16]) justifies the following two representations
for F:

F = RU = VR , (10)

where U ∈ TxM ⊗ TxM and V ∈ TyM ⊗ TyM are the right and left stretch
tensors, respectively, both symmetric and positive definite, and R ∈ E ⊗ E
is a proper orthogonal tensor, so that the relations RTR = RRT = I hold
and I is the unit tensor in E. In analogy to continuum mechanics, but with
some abuse of this calling, we shall refer to (10) as the right and left polar
decompositions of the tensor F, respectively. A comprehensive justification of
(10) is given below.

According to the theorem of Tissot an arbitrary map acting between two
surfaces immersed in E preserves orthogonality of either exactly one orthogonal
pair of families of curves drawn on these surfaces or preserves orthogonality
of all such orthogonal pairs (when the map is a conformal map). Denote the
directions tangent to the pair of orthogonal families of curves by eα (α = 1, 2)
on M and eα on M . Consider the linear map defined by (9) between the planes
tangent to M and M at the point x and its image y = χ(x), respectively.
Therefore the following equations hold true:

λ1ē1 = Fe1 , λ2ē2 = Fe2 , e1·e2 = 0 , e1·e2 = 0 , (11)

6
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where λα, α = 1, 2, are some real numbers. Together with the fields of unit
normals n = e1 × e2 and n = ē1 × ē2, the fields of directions on both sur-
faces provide us with two fields of orthonormal 3D frames related by the map
χ. Therefore there must exist a proper orthogonal tensor R that transforms
(strictly speaking: rotates) the unbarred frame into the barred one

ē1 = Re1 , ē2 = Re2 , n̄ = Rn , (12)

and this tensor has the representation

R = ē1 ⊗ e1 + ē2 ⊗ e2 + n̄⊗ n . (13)

Substituting the right-hand sides of the first two equations (12) for eα into
the first two equations (11) we obtain

λ1Re1 = Fe1 , λ2Re2 = Fe2 ,

which may be further transformed to

λ1e1 = RTFe1 , λ2e2 = RTFe2 . (14)

By the above and the equations Fn = FTn = 0 the tensor U = RTF is a
surface tensor whose principal directions are eα and the numbers λα are the
corresponding eigenvalues. We still need to prove that U is symmetric.

Note that the directions eα constitute a Cartesian basis in the plane tangent
to M . Therefore there must exist four numbers Uαβ such that

U = U11e1 ⊗ e1 + U12e1 ⊗ e2 + U21e2 ⊗ e1 + U22e2 ⊗ e2 .

Yet, by the orthogonality of the directions eα and by (14), we must have
U12 = U21 = 0 and it follows that U11 = λ1 and U22 = λ2. Hence U is
symmetric and has the spectral representation

U = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 . (15)

Thus, the decomposition F = RU exists.

Furthermore, the following transformation confirms validity of the decompo-
sition (10)2:

F = RU = RURTR = VR

7
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and, by (12) and (15), the surface tensor V = RURT has the spectral repre-
sentation

V = λ1ē1 ⊗ ē1 + λ2ē2 ⊗ ē2 . (16)

For future use it is convenient to introduce the non-holonomic base vectors sα

and sβ in TxM , called the stretched base vectors and defined by

sα = Uaα , sα = āαβsα , sα · sβ = δβ
α ,

sα · sβ = āαβ , sα · sβ = āαβ .
(17)

Using (17) we can write

U = sα ⊗ aα = Uα
β aα ⊗ aβ , U−1 = aα ⊗ sα = (U−1)α

βaα ⊗ aβ ,

R = āα ⊗ sα + n⊗ n , R−1 = sα ⊗ āα + n⊗ n .
(18)

Note that U is non-singular by definition and, as such, invertible. Its inverse
can be computed with the use of the formula

U−1 = − 1

det(U)
εUε , (U−1)α

β =

√
a

a
εαλεβµU

µ
λ , (19)

which follows from application of the Cayley-Hamilton theorem to the tensor
Uε.

Let us introduce two further surface tensor fields on M : the so-called relative
surface strain and bending measures η and µ, respectively, defined as

η = U− a , µ = RT (n,β ⊗aβ) + b . (20)

η = ηβ ⊗ aβ , ηβ = sβ − aβ = ηαβa
α , ηαβ = ηβα , (21)

µ = µβ ⊗ aβ , µβ = RTn,β −n,β = µαβa
α , µαβ 6= µβα . (22)

These relative measures, introduced already by Alumäe [17] in a descriptive
manner, are related to the measures γ and κ via the following formulas (see
[18])

γαβ = ηαβ + 1
2
ηλ

αηλβ ,

καβ = 1
2

[(
δλ
α + ηλ

α

)
µλβ +

(
δλ
β + ηλ

β

)
µλα

]
− 1

2

(
bλ
αηλβ + bλ

βηλα

)
.

(23)

8



Acc
ep

te
d m

an
usc

rip
t 

4 Field of rotations

The relation between the field of rotations R = R(θλ) on M and partial
derivatives of R is governed by two linear PDEs

R,α = R× kα , (24)

where the two vectors kα were introduced by Shamina [19] in the context of
deformation of 3D continuum and called the vectors of change of curvature of
the coordinate lines.

Let us derive the equations (24) for completeness. In view of the orthogonality
of R we have RTR = I , which differentiated along the surface coordinates
leads to

R,TαR + RTR,α = 0 ,

or in an equivalent form

RTR,α = −(RTR,α )T .

Hence, the two tensors RTR,α are skew-symmetric and, therefore, each of
them has an axial vector kα such that

RTR,α = kα × I = I× kα . (25)

Multiplying (25) by R from the left-hand side we obtain exactly (24). Solving
(25) for kα we can express kα in terms of rotations

kα = 1
2
(I× I) · (RTR,α ) . (26)

We shall now consider solvability of the following problem: given two vector
fields kα = kα(θλ) find the corresponding field of rotations R = R(θλ).

Given the fields kα = kα(θλ) we obtain the system of two linear PDEs (24) for
the unknown field of rotations R = R(θλ). This is a total differential system
whose local solutions exist if and only if the integrability conditions εαβR,αβ =
0 are satisfied. To express these conditions in terms of the axial vectors kα we
need to derive the formula for second derivatives of the rotation

R,αβ =R,β ×kα + R× kα,β

9
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= (R× kβ)× kα + R× kα,β
=R[(I× kβ)(I× kα) + I× kα,β ] .

Hence εαβR,αβ = 0 are satisfied when

εαβ[(I× kβ)(I× kα) + I× kα,β ] = 0 . (27)

It is straightforward to show with the use of vector algebra that the first
component in (27) may be transformed as follows:

(I× kβ)(I× kα) = [(aλ⊗aλ + n⊗ n)× kβ]×kα

= aλ⊗[kβ(aλ · kα)− aλ(kβ · kα)]

+n⊗[kβ(n · kα)− n(kβ · kα)]

=kα ⊗ kβ − (kα·kβ) I ,

so that (27) becomes

εαβI× kα,β +εαβkα ⊗ kβ − εαβ(kα·kβ) I = 0 .

Here the term εαβ(kα·kβ)I vanishes identically, and the last term is a skew-
symmetric tensor whose axial vector is −1

2
εαβkα×kβ. Hence, the system (24)

may have solutions if and only if

εαβ
(
kα,β −1

2
kα × kβ

)
= 0 . (28)

In the context of the theory of thin shells the integrability condition (28) was
derived independently by Chernykh and Shamina [8] and Pietraszkiewicz [20].

Let us reveal the geometric meaning of the integrability conditions (28). Dif-
ferentiating (10)1 twice, and remembering that the left-hand side represents
the integrability conditions for F, which was proved in [1], we obtain

F,αβ −F,βα = 0 = (R,αβ −R,βα )U + R (U,αβ −U,βα ) . (29)

The left-hand side of (29) was explicitly calculated in [1]. Differentiating twice
F = āλ⊗ aλ term by term to obtain F,αβ, then exchanging the indices α � β

10
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and calculating the difference F,αβ −F,βα, we obtained

F,αβ −F,βα =
(
R̄κ

.λβα − b̄κ
β b̄λα + b̄κ

αb̄λβ

−Rκ
.λβα + bκ

βbλα − bκ
αbλβ

)
āκ ⊗ aλ

+
(
bκ
α|β − bκ

β|α

)
āκ ⊗ n

+
(
b̄λα||β − b̄λβ||α

)
n̄⊗ aλ = 0 ,

(30)

where (.)||α denotes the surface covariant derivative in the metric of M .

It is apparent that vanishing components in the conditions (30) represent
exactly the differences between the GMC equations of the deformed and un-
deformed shell midsurfaces. If we introduce here the relations (8) and perform
transformations given in detail by Koiter [21], the conditions (30) become
identical to the compatibility conditions of the nonlinear theory of thin shells.

One immediately notices that the second term U,αβ −U,βα in the right-hand
side of (29) vanishes due to interchangeability of the second partial derivatives
of U ∈ TxM ⊗ TxM . The only term left, the first one in the right-hand side
of (29), can equivalently be written as

R×
[(

kα,β −1
2
kα × kβ

)
−

(
kβ,α−1

2
kβ × kα

)]
U = 0 . (31)

Since both R and U are non-singular it immediately follows from (31), (30)
and (29) that the integrability conditions (28) are equivalent to the compati-
bility conditions of the non-linear theory of thin shells.

Given the fields of stretches U (or η) and rotations R, from (9), (10) and (17)
we obtain the system of two linear, vector first-order PDEs for the deformed
position vector y

y,α = Rsα = RUaα . (32)

The local solutions of (32) exist provided that the integrability conditions
εαβy,αβ = 0 hold true. These conditions can be transformed as follows:

εαβy,αβ = εαβ (R,β sα + Rsα,β)

= εαβ [(R× kβ)sα + R(aα,β +ηα,β )]

= εαβR (kβ × sα + ηα,β) = 0 .

11
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Multiplying the above from the left-hand side by RT we obtain the integra-
bility conditions coinciding with those derived in [18]

εαβ
(
ηα,β + kβ × sα

)
= 0 . (33)

We can also calculate the second partial derivatives of y in an equivalent way
as follows:

εαβy,αβ = εαβāα,β = εαβ
(
Γ̄λ

αβāλ + b̄αβn̄
)

= 0 . (34)

Therefore, the integrability condition (33) is equivalent to the identities fol-
lowing from the symmetry of Γ̄λ

αβ and b̄αβ in lower indices. These identities
will be used in Section 5.2 to modify the components of kα.

Summarising, the position vector y of the deformed midsurface M can be
found in three consecutive steps:

(1) Find U from known γ by pure algebra in TxM ⊗ TxM .
(2) Calculate R from known U and καβ by solving the system of two linear

PDEs (24) whose integrability conditions are (28).
(3) Find y from known R and U by integrating the system of two linear

PDEs (32) whose integrability conditions are (33).

In Chapter 5 we perform in detail all transformations necessary to complete
these three steps.

5 Determination of deformed position of the shell midsurface

5.1 Determination of the surface stretch

From (10)1, (20) and (8) it follows that

FTF = U2 = a + 2γ ,

and the invariants of U2 in terms of those of γ are

tr (U2) = 2 + 2 tr(γ) ,

det(U2) = 1 + 2 tr(γ) + 4 det(γ) .

12
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The Cayley-Hamilton theorem for U reads

U2 − tr(U)U+ det(U) a = 0 ,

from which we obtain

U =
1

tr(U)

[
U2 + det(U)a

]
. (35)

Taking the trace of (35) we can express it through the invariants of U2 by

tr(U) =

√
tr(U2) + 2

√
det(U2) > 0 , detU =

√
detU2 > 0 .

Therefore, introducing all the above results into (35) we obtain U expressed
explicitly in terms of γ

U =

{
1 +

√
1 + 2 tr(γ) + 4 det(γ)

}
a + 2 γ√

2
{
1 + tr(γ) +

√
1 + 2 tr(γ) + 4 det(γ)

} . (36)

5.2 Determination of the rotation

The vectors kα can be represented through the components in the base aκ, n
according to [18] by

kα = ελκµλαaκ + kαn . (37)

In (37) there are six components µλα, kα which should be expressed through
our data: three Uλ

α (or ηλ
α) and three καβ.

By the definition (20), by (18)2 and (1) we can express the four tangential
components µαβ of kα through Uλ

α (or ηλ
α) and καβ

µαβ = aα ·
(
sλ ⊗ āλ + n⊗ n̄

)
(−b̄ρβā

ρ) + bαβ

= bαβ − (U−1)λ
α (bλβ − κλβ) .

(38)

Two normal components kα of kα can be expressed through Uλ
α (or ηλ

α) with
the help of integrability conditions (33) which in components in the base aα, n
read

εαβηλα|β + εαβ(δκ
α + ηκ

α)εκλkβ = 0 , εαβηλ
α(bλµ − µλµ)− εαβµαβ = 0 .(39)
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Multiplying the first of (39) by ελσ(U−1)ρ
σερµ, using (19) and performing some

transformations we can solve it for kα and obtain

kα = −
√

a

ā
εκρ(δλ

α + ηλ
α)ηλκ|ρ . (40)

It is easy to show by direct analysis that when µαβ and kα are expressed by (38)
and (40), respectively, the third integrability condition of (39) is identically
satisfied.

The system of two linear PDEs (24) can now be integrated provided that
the integrability conditions (28) are satisfied. In the intrinsic formulation of
non-linear shell equations by Opoka and Pietraszkiewicz [5] three compatibil-
ity conditions were used as the principal part of six intrinsic shell equations
for Nαβ and καβ. The fields Uλ

α (or ηλ
α) as linear functions of Nαβ, together

with καβ through which we formulate the problem, satisfy the compatibility
conditions within the accuracy of the first approximation to the elastic strain
energy density of the shell. Therefore, the integrability conditions (28) are
satisfied with the same accuracy in any geometrically non-linear problem of
thin elastic shells. As a result, the system (24) is completely integrable.

The first step in solving the system (24) consists in showing that the problem
can be converted to an equivalent infinite set of systems of ODEs along curves
covering densely the entire domain M . If the integrability condition (28) is
satisfied then by the theorem of Frobenius-Dieudonné (see [22]) for every initial
value R(θα

0 ) = R0 prescribed at some point x0 ∈ M with coordinates θα
0

there exists a unique solution R(θα) satisfying this initial value, and all such
solutions depend continuously on R0.

Consider a particular solution R of the system (24) and a curve C : [a, b] 3
s → θα(s) leaving from some point x0 ∈ M , labeled by s0, to another point
x ∈ M , labeled by s. Suppose the value of R at s0 be R0. Note that the
restriction R|C of this solution to the curve C satisfies the following system
of ODEs:

dR|C
ds

= R|C × kC , (41)

where the vector kC is given by

kC = kα
dθα

ds
. (42)
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Let us reverse the argumentation. Now consider the initial value problem for
the system of ODEs

dR∗

ds
= R∗ × kC

along the same curve C with the same initial condition R∗(s0) = R0. By the
standard results from the theory of ODEs this problem has a unique solution
R∗(s). Therefore, it must be identical with the restriction of R to C on the
interval where it exists, i.e. we must have R|C = R∗(s).

This way, instead of solving the system (24) directly, we may compute a par-
ticular solution R(θα) corresponding to some initial condition R(θα

0 ) = R0 by
covering the domain M with a dense set of paths leaving radially from the
initial point x0 and solving the initial value problem for the system of ODEs

dR

ds
= RK , K = I× k , k = kα

dθα

ds
, (43)

kα = εκρ
[
bκα − (U−1)λ

κ(bλα − κλα)
]
aρ −

√
a

ā
εκρUλ

αηλκ|ρn .

Solution to the initial value problem (43) may be obtained with the use of
any of the well-known techniques, numerical techniques inclusive. In particu-
lar, applying the method of successive approximations (see [22]) the general
solution of (43) can be presented in the form

R = R0Rs , Rs =
∞∑
i=0

Oi , (44)

O0(s) = I , Oi(s) =

s∫
s0

Oi−1(t)K(t)dt , i ≥ 1 ,

where R0 = R(s0) is the rotation tensor at s = s0.

Introducing (44) into (43) we can directly show that the infinite series Rs

solves the equation (43) with the initial value R(s0) = R0 . The series is
convergent and it can be proved (see [22]) that in our case it converges to a
rotation field Rs along C , and that the solution is unique for any prescribed
initial value.

One may point out a number of special cases when the equation (43) has
the solution in closed form. In particular, when k = k(s)i, i.e. when k has a
constant direction along C , then di/ds = 0 and the tensors Oi satisfy the
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conditions OiOj = OjOi for any i, j . Then the solution (44) can be presented
in the exponential form

R(s) = exp

I× i

s∫
s0

k(t)dt

 . (45)

A still simpler solution may be obtained if k itself is constant along C , i.e.
when dk/ds = 0. Then from (45) it follows that

R(s) = exp (sI× k) .

Note that the tensor equation (43) is identical with the one describing the
spherical motion of a rigid body about a fixed point, where s is time and k
is the angular velocity vector in the spatial representation (see for example
Goldstein et al. [23], Lurie [24], and Heard [25]). In analytical mechanics many
ingenious analytical and numerical methods of integration of the equation
(43) have been devised for various special classes of the function k = k(s). A
number of such closed-form solutions were summarized, for example, by Gorr
et al. [6]. Thus, the results already known in analytical mechanics of rigid-
body motion may be of great help when analyzing problems discussed here
for thin elastic shells.

5.3 Determination of deformed position of the midsurface

With R and U already known, the system of two vector PDEs (32) for the
deformed position y is well defined. Since the integrability conditions (34) are
identically satisfied, we can solve the system by quadratures and obtain

y = y0 +

x∫
x0

Rsαdθα , (46)

where y0 = y(x0) .

6 Determining the deformed midsurface via the left polar decom-
position

Transformations analogous to the ones presented above can also be applied to
the left polar decomposition of F

F = VR , (47)
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where now

R = rα ⊗ aα + n̄⊗ n , RT = R−1 , det(R) = +1 ,

V = āα ⊗ rα = Uα
β rα ⊗ rβ = VT ,

V−1 = rα ⊗ āα = (U−1)α
βrα ⊗ rβ = V−T ,

(48)

and the non-holonomic rotated base vectors rα and rβ of TyM are defined by

rα = Raα = V−1āα , rα · rβ = aαβ ,

rα = aαβrβ , rα · rβ = aαβ , rβ · rα = δβ
α .

(49)

Given the fields of rotation R = R(θλ) and stretch V = V(θλ), we obtain
from (9) and (47) the system of two linear, vector first-order PDEs for the
position vector of the deformed midsurface

y,α = Vrα = VRaα . (50)

Therefore, the vector y can be found from (50) in three consecutive steps
analogous to those discussed in Section 5.

Differentiating the identity RRT = I = rλ ⊗ rλ + n̄ ⊗ n̄ along the surface
coordinate lines we find that R,αR

T = −(R,α RT )T . Therefore, R,αR
T are

also the skew-symmetric tensors expressible through their axial vectors lα
according to

R,α RT = lα × I = I× lα ,

lα = Rkα = ελκµλαrκ + kαn̄ .
(51)

Given the fields lα = lα(θλ) from (51)1 we obtain the system of two linear
PDEs

R,α = lα ×R (52)

for the field R = R(θλ). This is again the total differential system and its
local solutions exist iff the integrability conditions εαβR,αβ = 0 are satisfied,
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that is when

εαβR,αβ = εαβ [lα,β ×R + lα × (lβ ×R)]

= εαβ [lα,β ×I + (lα × I)(lβ × I)]R

= εαβ(lα,β ×I + lβ ⊗ lα)R = 0 .

(53)

But εαβlβ ⊗ lα is a skew-symmetric tensor whose axial vector is −1
2
εαβl

β
× lα.

Since R is non-singular, the integrability conditions of (52) are equivalent to

εαβ
(
lα,β +

1

2
lα × lβ

)
= 0 . (54)

Note the opposite sign of the second term of (54) as compared with (28).

Performing transformations analogous to (3)-(31) one can show that (54) are
also equivalent to the compatibility conditions of the non-linear theory of thin
shells.

The solution to (52) can be found analogously to the one presented in Section
5.2. We again cover the domain M with a dense set of paths leaving radially
from any initial point x0 ∈ M and then solve the initial value problem for the
system of ODEs

dR

ds
= LR , L = l× I , l = lα

dθα

ds
, (55)

lα = εκρ
[
bκα − (U−1)λ

κ (bλα − κλα)
]
rρ −

√
a

ā
εκρ(δλ

α + ηλ
α)ηλκ|ρn̄ .

The general solution to (55)1 can be given in the form

R = R0Rs , R =
∞∑
i=0

Pi , (56)

P0(s) = I , Pi(s) =

s∫
s0

L(t)Pi−1(t)dt , i ≥ 1 .

The tensor ODE (55)1 is also equivalent to the one describing spherical motion
of a rigid body about a fixed point, but now written in the material represen-
tation. From mathematical point of view, both representations (55)1 and (43)1

are equivalent and can be transformed to each other by the rotation tensor R.
Therefore, their solutions are also equivalent.

18



Acc
ep

te
d m

an
usc

rip
t 

Because V = RURT , the left stretch tensor V can be calculated through γ
and R by the relation

V =

{
1 +

√
1 + 2 tr(γ) + 4 det(γ)

}
rα ⊗ rα + 2γαβr

α ⊗ rβ√
2

{
1 + tr(γ) +

√
1 + 2 tr(γ) + 4 det(γ)

} . (57)

When R and V are known the position vector y can be found by integrat-
ing directly the system of two PDEs (50). Since the integrability conditions
(34) of (50) are identically satisfied, the position vector of the deformed shell
midsurface follows from the quadratures

y = y0 +

x∫
x0

VRaαdθα . (58)

7 Conclusions

We have worked out two novel, alternative, three-step methods of determining
the deformed shell midsurface from known geometry of the undeformed mid-
surface as well as the prescribed surface strains and bendings. The methods
have been based on the right and/or left polar decompositions of the deforma-
tion gradient of the shell midsurface. In both cases the corresponding surface
stretch fields are obtained by pure algebra, the 3D rotation fields are calcu-
lated by solving the linear systems of first-order PDEs, and positions of the
deformed shell midsurface are then found by quadratures.

Along any path on the undeformed shell midsurface the system of PDEs for
the rotation field has been reduced to the dense set of linear ODEs which
are identical with the ones describing motion of a rigid body about a fixed
point. It is expected that the two methods proposed here will be more efficient
in applications than those developed in [1], for it should be possible here
to use ingenious theoretical and numerical methods developed in analytical
mechanics, which in special cases may lead to the analytical solution in closed
form.

We also note that this approach has recently been successfully used in a similar
problem of classical differential geometry: determination of the surface from
components of its two fundamental forms, see Pietraszkiewicz and Vallée [26].
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