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Abstract

A triaxial constitutive law for concrete within the framework of isotropic damage combined with

plasticity is proposed in this paper. It covers typical characteristics of concrete like nonlinear

uniaxial compression and tension, bi- and triaxial failure criteria and dilatancy with a unified

strain-based approach. Thus, this model is quite simple and especially suitable for strain-driven

methods like common finite elements. It is complemented with a regularization method based on

the crack band approach. A further issue is discussed with procedures for the model parameter

determination for a wide range of concrete grades. The application of the model is demonstrated

with typical benchmark tests for plain concrete.
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1 Introduction

A realistic three-dimensional description of concrete behavior is a basic requirement for a proper

calculation of concrete structures or parts thereof under complex loading conditions, which arise in

joints, edges, corners, generally bodies of arbitrary shape and under the action of concentrated loads.

The same requirement also applies to severe actions like impact, penetration and blast on concrete

structures. Such realistic models of material behavior have to agree with the results of experimental

investigations, which have been performed in a large number for concrete during the last decades.

Only a selection of them can be mentioned in the following. Uniaxial behavior is a major item and is

well described in a number of technical codes. Beyond uniaxial strength basic investigations about

biaxial strength were performed by [24]. Extended parameter domains and experimental techniques

have been investigated by [12,18,37] for the biaxial case. Triaxial experimental investigations have

to be classified as confined with cylindrical specimen and two equal loading directions and truly

triaxial with cubic specimen and three different loading directions. Confined triaxial states were

investigated with triaxial cells [19,22,28,33], whereas realization of truly triaxial states needs more

elaborate facilities [8, 14, 36, 37]. Major results of experimental investigations may be summarized

as follows:

– While the biaxial compressive strength shows a moderate increase compared to the uniaxial

compressive strength, the multiaxial compressive strength may become much higher depending

on stress ratios.

– Approaching the material limits, i.e. the maximum sustainable stresses, the stress-strain

behavior exhibits a pronounced nonlinearity.

– After achieving the material limits, a softening behavior arises, i.e. decreasing loading with

increasing displacements. This is connected with localization phenomena, i.e. formation of

crack bands or shear bands respectively.

– A pronounced dilatancy, i.e. a volume increase with increasing compression can be observed
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in the range near the material limits.

– While concrete in its initial state may be considered as isotropic, continuing loading leads to

a load-induced anisotropy. This becomes especially evident with the development of cracks.

– Regarding unloading following loading, a reduced damaged stiffness can be observed compared

to the initial stiffness. After a loading-unloading cycle with higher loads, plastic deformations

remain in a stress-free state.

– A quasi-brittle behavior is observable with the development of cracks, as stress transfers

may occur beyond emerging crack faces. As cracking is irreversible, this is connected with a

considerable energy dissipation where a characteristic material property is given by the crack

energy.

A wide range of model types has been used to describe concrete behavior, which may in a first ap-

proach be classified as microscopic, mesoscopic and macroscopic. While micro- and mesoscopic ap-

proaches distinguish the concrete constituents in different orders of resolution, macroscopic models

assume a homogeneous material. This allows the application of the methods of classical continuum

mechanics and makes macroscopic models suitable for calculations of whole structures.

Within continuum mechanics the constitutive theory provides plasticity and damage models

for nonlinear behavior of materials. As the nonlinear behavior of concrete and other quasi-brittle

materials is ruled only to a minor extent by slip of material lattices but more by nucleation and

growth of micro-defects, damage models seem to be adequate under many aspects. Foundations of

damage models have been laid by [3, 9, 21, 35] among others. Applications to concrete and other

quasi-brittle materials were described, e.g., by [29, 30]. Higher order damage tensors were intro-

duced, see e.g. [26], to describe a load-induced material anisotropy, as it is especially characteristic

for the tensile failure of concrete. An orthotropic approach was presented by [4], general anisotropic

approaches among others by [13]. Proposals to include plastic deformations into damage models

were given by, e.g., [16, 23, 25]. While many particular aspects are covered by these alternatives,

approaches combining altogether modeling quality, numerical costs, parameter determination pro-
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cedures and applicability in a well-balanced way seem to be rare.

In view of this target, isotropic damage in combination with plasticity is chosen as a foundation

for a three-dimensional constitutive law for concrete. This formulation has some new aspects. It

transforms a strength failure condition into a strain-based damage condition describing tension and

compression behavior in a unified approach. This is supplemented with a new strain-based approach

for plastic deformations. Both parts are combined in a new multiplicative form of a material tangent

stiffness. As its formulation is based on strain, it may be easily implemented into commonly used

strain-driven finite element procedures and it does not require iterations for fulfilling stress limit

conditions on the integration point level. This also facilitates equilibrium iterations on the system

level. Furthermore, a new kind of a crack band regularization procedure is described, with a simple

approach based on equivalent crack energies and scaling of damage parameters in the softening

range. The constitutive law is completed with procedures to determine its parameters for a wide

range of concrete grades from generally available data. Finally, it is demonstrated that typical

problems are accurately solved with these approaches. Thereby the following considerations will

restrict to quasi-static short time behavior. Thus, long-time effects like creep and shrinkage will

not be covered on the one hand, and on the other hand strength increase effects under dynamic

short-time conditions at high strain rates are not included. Furthermore, cyclic loading cases with

stiffness recovery and closing of microcracks will not be explicitly addressed.

The paper is organized as follows: To set the stage, the general form, the evolution of damage and

plastic strains are given in Section 2 together with thermomechanical considerations, the formulation

of a consistent tangent material stiffness and the discussion of computational aspects. This is

extended with multiaxial limit states for stress and strain in Section 3. Uniaxial compressive and

tensile behavior are derived as special cases in Section 4. These uniaxial cases in turn give the

base to formulate procedures for the determination of material parameters in Section 5. A crack

band approach for regularization is discussed in Section 6. Several numerical examples underline
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the applicability of the proposed constitutive law for concrete in Section 7, and finally Section 8

concludes the paper.

2 An Isotropic Damage Law with Plasticity

2.1 General Form and Damage Evolution

For isotropic damage with plasticity the following general constitutive form is assumed

σ = (1 − D)E : εed

εed = ε − εp

(1)

with the double contraction :, the Cauchy stress tensor σ, a scalar damage parameter D, the elastic

strain tensor εed subject to degradation, the total strain tensor ε, the plastic strain tensor εp and

the elastic tensor E with components

Eijkl = Λ δijδkl + G (δikδjl + δilδjk) , Λ =
νE

(1 + ν)(1 − 2ν)
, G =

E

2(1 + ν)
(2)

with the Lamé constants Λ, G or the Young’s modulus E and Poisson’s ratio ν respectively. The

values E, ν are constant, while the damage parameter D depends on the loading history and has a

range 0 ≤ D ≤ 1. A widely accepted approach for damage evolution of quasi-brittle materials like

concrete is based on a Weibull distribution of microscopic defects [27]. This leads to a form

D(κd) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 κd < ed0

1 − e
−
(

κd − ed0

ed

)gd

κd ≥ ed0

(3)

introducing a variable equivalent damage strain κd and three material constants ed, ed0, gd. A

typical damage evolution law is shown in Fig. 1 where ed0 marks a threshold value, ed rules how

fast D approaches 1 and gd is a shape parameter. It is assumed that the equivalent damage strain

κd amounts to the longitudinal elastic strain in uniaxial compression. Thus, in uniaxial compression

Eq. (1) reduces to

σ = −(1 − D)E κd. (4)

The damage approach has to be completed with a damage limit condition Fd(εed, κd), which gives

κd depending on arbitrary values of the elastic strain state εed. It will be described in the following
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Section 3 leading to Eq. (57). Occurrence of damage is ruled by Kuhn-Tucker conditions

Fd ≤ 0, λ̇d ≥ 0, λ̇dFd = 0 (5)

with a damage multiplier λd. According to a framework given by [4] the damage multiplier equals

the scalar damage parameter: λd = D. Hence, Eq. (5) leads to the consistency condition

nd : ε̇ed − λ̇d Hd hd = 0, λ̇d = Ḋ =
1

Hd hd
nd : ε̇ed (6)

with the gradient nd = ∂Fd/∂εed, see Eq. (58), and the hardening parameters Hd = −∂Fd/∂κd,

hd = ∂κd/∂λd. The parameter Hd can be derived from the damage limit condition Fd, see Eq. (57),

and hd results from Eq. (3) with λd = D.

2.2 Plastic Strains

Regarding uniaxial compression, plastic behavior arises with a volume expansion or dilatancy re-

spectively and results in remaining strains upon unloading. Here, a strain based formulation is

chosen with a yield condition Fp(εed, κe) connecting the elastic strain tensor εed with an equivalent

elastic strain κe. The yield condition separates elastic and plastic behavior and it is also used with

Kuhn-Tucker conditions

Fp ≤ 0, λ̇p ≥ 0, λ̇p Fp = 0 (7)

with a plastic multiplier λp. In a first approach, the yield condition should be simple. Thus, an

isotropic form

Fp(εed, κe) =
1
2
(
ε+

ed : ε+
ed + cc εed

− : εed
−)− 1

2
κ2

e (8)

similar to a von Mises condition is chosen here with the positive and negative projections of the

elastic strains ε+
ed, ε−ed. This approach distinguishes between tensile and compressive modes due

to micro-cracking mechanisms [30]. The relation between these modes is determined by a further

material parameter cc, which accounts for the so called cross-effect. The positive projection a+ of

a second order symmetric tensor a is based on its spectral decomposition and is defined by

a+
ij =

∑
(α)

H(λ(α)) λ(α) v
(α)
i v

(α)
j (9)

6



Acc
ep

te
d m

an
usc

rip
t 

with the Heaviside function H , the principal values λ(α) of a and the principal directions with

components v
(α)
i . A corresponding relation holds for the negative projection with −H(λ(α)) instead

of H(λ(α)). This results in a = a+ + a−.

As elastic strains should be accompanied with plastic strains under certain loading conditions,

the equivalent elastic strain κe has to be connected to a measure for plastic strains. Here, plastic

strains are derived with associated plasticity by a flow rule

ε̇p = λ̇p np (10)

with the plastic multiplier λ̇p and the gradient

np =
∂Fp

∂εed
= ε+

ed + cc ε−ed. (11)

An equivalent plastic strain κp is introduced as the length of the plastic strains

κ̇p =
√

ε̇p : ε̇p = λ̇p
√

np : np. (12)

It is assumed that the plastic equivalent strain is connected to the elastic equivalent strain by

κp =

⎧⎪⎪⎨
⎪⎪⎩

0 κe < ep0

cp (κe − ep0)
(

1 − e−
κe−ep0

ep

)
κe ≥ ep0

(13)

with three more material constants cp, ep, ep0 describing the material’s plastic behavior. The qual-

itative relation between κp and κe is shown in Fig. 2. After κe exceeds a threshold value ep0, the

equivalent plastic strain κp is proportional to κe with a factor cp where ep rules the smooth tran-

sition. Comparing Eq. (13) with Eq. (3) the analogy can be seen, that D and κp result from the

parameters κd and κe respectively. Furthermore, κd and κe both are related to the elastic strains

by Fd(εed, κd) = 0 and Fp(εed, κp) = 0, respectively.

Now, the standard arguments are applied based on Eqs. (8), (12) and (13). Thus, Eq. (7) leads

to a consistency condition

np : ε̇ed − λ̇p Hp hp = np : ε̇ − λ̇p np : np − λ̇p Hp hp = 0, λ̇p =
np : ε̇

np : np + Hp hp
(14)

with the hardening parameters Hp = −∂Fp/∂κe = −κe and hp = ∂κe/∂λp. The parameter hp can

be derived using Eq. (12)

hp =
dκe

dκp

dκp

dλp
=

dκe

dκp

√
np : np (15)
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where dκe/dκp can be determined with Eq. (13) and np is given by Eq. (11). In summary, plastic

strains are directly related to elastic and total strains by a system of first order ordinary differential

equations, which is evident by combining Eqs. (10), (11) and (14). There is an indirect influence of

the loading or the stress state respectively by relating elastic strains to stresses with Eq. (1).

2.3 Thermodynamic Considerations

Given a deformation history, a state is described here, beside ε, by the internal state variables D,

and εp, which comprise the whole loading history. The variables ε, εp, D completely describe the

state of a material point, i.e. different points with the same state variable values have the same pair

σ̇, ε̇ for arbitrary selections of the strain rate ε̇. The Helmholtz free energy Ψ for the isothermal

case is given by the energy, which is recovered with unloading from ε to the state free of stresses.

Thus, Ψ is given by

Ψ =
1 − D

2
(ε − εp) : E : (ε − εp) (16)

within this context, see, e.g., [6, Chapter 6.12]. This leads to σ = ∂Ψ/∂ε in agreement with

Eq. (1) and furthermore to generalized stresses Y = ∂Ψ/∂D = −(ε − εp) : E : (ε − εp)/2 and

σp = ∂Ψ/∂εp = −σ. The rate of the Helmholtz free energy is given by

Ψ̇ = − Ḋ

2
(ε − εp) : E : (ε − εp) + σ : (ε̇ − ε̇p). (17)

The dissipation rate follows from

ḋ = σ : ε̇ − Ψ̇ =
Ḋ

2
(ε − εp) : E : (ε − εp) + σ : ε̇p. (18)

Regarding the Clausius-Duhem postulate, the inequality

ḋ ≥ 0 (19)

has to be fulfilled. This inequality should hold for both parts of Eq. (18). This is obvious for the

first damage part with Ḋ ≥ 0 and a positive definite structure of E. Plastic strains have to be

inspected for the second plastic part. Using Eqs. (1), (10) and (11) one arrives at

σ : ε̇p = λ̇p(1 − D)
(
εed : E : ε+

ed + cc εed : E : ε−ed

)
. (20)
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With λ̇p ≥ 0, 0 ≤ D ≤ 1, cc ≥ 0 the tensor products remain to be inspected. Regarding Eq. (9)

and the orthogonality of eigenvectors it may be shown that

εed : E : ε+
ed = ε+

ed : E : ε+
ed ≥ 0. (21)

The same holds for the negative projection ε−ed. Finally, it follows σ : ε̇p ≥ 0 in accordance with

the Clausius-Duhem inequality.

2.4 Tangent Material Stiffness

A consistent formulation of the tangent material stiffness is useful to reach convergence in Newton-

Raphson iteration schemes. Such a formulation is based on Eq. (1) differentiated with respect to

time

σ̇ = −Ḋ E : εed + (1 − D)E : (ε̇ − ε̇p). (22)

A vector

md =
εed

1 − D
(23)

is introduced. Regarding a common framework, see [4], md describes damage strain directions in a

general anisotropic stress based damage approach. It simplifies with isotropic damage and also has

to be used for incremental stiffness relations in strain based damage. Thus, Eq. (22) leads to

σ̇ = (1 − D)E :
(
−Ḋ md + ε̇ − ε̇p

)
. (24)

Using Eqs. (6), (10) and (14) this may be written as

σ̇ = (1 − D)E :
[
ε̇ − md⊗nd

Hd hd
: ε̇ed − np⊗np

np:np+Hp hp
: ε̇
]

= (1 − D)E :
[
ε̇ − md⊗nd

Hd hd
:
(
ε̇ − np⊗np

np:np+Hp hp
: ε̇
)
− np⊗np

np:np+Hp hp
: ε̇
]

= (1 − D)E :
[(

I − md⊗nd

Hd hd

)
:
(
I − np⊗np

np:np+Hp hp

)]
: ε̇

(25)

with the dyadic product ⊗ and the symmetric fourth order unit tensor I with components Isym
ijrs =

1
2 (δirδjs + δisδjr). The multiplicative form of the tangent material stiffness Eq. (25) is a new

formulation, resulting from the dependence of damage limit Fd and plastic limit Fp on the elastic

strains. It gives the tangent material stiffness in cases λ̇d > 0, λ̇p > 0 according to the Kuhn-

Tucker conditions Eqs. (5), (7). This has to be modified in cases without ongoing damage, without
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ongoing plastic strains, or without both. The tangent material stiffness is symmetric if nd and

md are coaxial, but this is not considered as mandatory [20, Chapter 23]. The properties of the

tangent stiffness may be analyzed with respect to types of failure, as is demonstrated by [32] for

multi-dissipative materials by a spectral analysis. This has to be devoted to further investigations.

2.5 Computational Aspects

So far, constitutive equations have been given as systems of first order ordinary differential equations

depending on time. For a time tn+1 the constitutive equations are summarized as follows

ε̇n+1
ed = ε̇n+1 − λ̇n+1

p np(εn+1
ed , κn+1

p )

κ̇n+1
p = λ̇n+1

p hp(εn+1
ed , κn+1

p )

0 = np(εn+1
ed , κn+1

p ) : ε̇n+1
ed − Hp(εn+1

ed , κn+1
p ) κ̇n+1

p

κ̇n+1
d = Ḋn+1 hd(εn+1

ed , κn+1
d )

0 = nd(εn+1
ed , κn+1

d ) : ε̇n+1
ed − Hd(εn+1

ed , κn+1
d ) κ̇n+1

d

(26)

where ε̇(t) is given as a driving part, np, hp, Hp, nd, hd, Hd are given as functions, and

εed(t), λp(t), κp(t), D(t), κd(t) have to be determined. This may be numerically solved with an

implicit backward Euler scheme with a time step Δt

ε̇n+1
ed = 1

Δt

(
εn+1

ed − εn
ed

)
= Δεed

Δt → εn+1
ed = εn

ed + Δεed

λ̇n+1
p = 1

Δt

(
λn+1

p − λn
p

)
= Δλp

Δt → λn+1
p = λn

p + Δλp

κ̇n+1
p = 1

Δt

(
κn+1

p − κn
p

)
= Δκp

Δt → κn+1
p = κn

p + Δκp

Ḋn+1 = 1
Δt

(
Dn+1 − Dn

)
= ΔD

Δt → Dn+1 = Dn + ΔD

κ̇n+1
d = 1

Δt

(
κn+1

d − κn
d

)
= Δκd

Δt → κn+1
d = κn

d + Δκd

(27)

leading to a system of nonlinear algebraic equations

a = Δεed + Δλp nn+1
p − Δε = 0

b = Δλp hn+1
p − Δκp = 0

c = nn+1
p : Δεed − Hn+1

p Δκp = 0

d = ΔD hn+1
d − Δκd = 0

e = nn+1
d : Δεed − Hn+1

d Δκd = 0

(28)
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with nn+1
p = np(εn

ed+Δεed, κ
n
p +Δκp) and so on. For given values εn

ed, λn
p , κn

p , Dn, κn
d the Eqs. (28)

comprise scalar 10 equations for scalar 10 unknowns Δεed, Δλp, Δκp, ΔD, Δκd on the integration

point level. It can be seen that the set of the last two equations describing damage evolution and the

set of the first ones describing plasticity evolution are coupled by the elastic strains εed only. This

again results from Fd, Fp depending on elastic strains and facilitates the simultaneous computation

of damage and plasticity to a large extent.

Similar to the algorithms of stress-based plasticity [34, Chapter 3.6] the system

⎛
⎜⎜⎝ a

b

⎞
⎟⎟⎠

(ν)

+

⎡
⎢⎢⎣ 1 + Δλp ∂εed

nn+1
p Δλp ∂κpn

n+1
p

Δλp ∂εed
hn+1

p Δλp ∂κphn+1
p − 1

⎤
⎥⎥⎦

(ν)⎛
⎜⎜⎝ δεed

δκp

⎞
⎟⎟⎠+

⎛
⎜⎜⎝ nn+1

p

hn+1
p

⎞
⎟⎟⎠

(ν)

δλp = 0 (29)

with

c(ν) +
[

nn+1
p −Hn+1

p

](ν)

⎛
⎜⎜⎝ δεed

δκp

⎞
⎟⎟⎠ = 0 (30)

may be used to iterate for increments of the elastic strains and plastic variables with a Newton-

Raphson approach in the (ν)-th iteration cycle. Time step increments are then given by

Δε
(ν+1)
ed = Δε

(ν)
ed + δεed, Δκ(ν+1)

p = Δκ(ν)
p + δκp, Δλ(ν+1)

p = Δλ(ν)
p + δλp. (31)

As determination of the partial derivatives ∂εed
np, ∂κpnp, ∂εed

hp, ∂κphp is elaborate and not manda-

tory, they may be disregarded in Eq. (29). This scheme also leads to convergent results for

Δεed, Δκp, Δλp in all performed computations. With Δεed, εn+1
ed determined, the value of κn+1

d

can be directly computed from Fd(εn+1
ed , κn+1

d ) = 0 without iteration, as will later become obvious

with Eq. (57). Furthermore, Dn+1 can directly be computed with Eq. (3).

Finally, these values are used to update the stress with the implicit backward Euler scheme

σ̇n+1 =
1

Δt

(
σn+1 − σn

)
=

Δσ

Δt
→ σn+1 = σn + Δσ (32)

applied to Eq. (22) at time tn+1

σ̇n+1 = (1 − Dn+1)E : ε̇n+1
ed − Ḋn+1 E : εn+1

ed (33)

leading to

Δσ = (1 − Dn+1)E : Δεed − ΔD E : εn+1
ed . (34)
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The question of a tangent algorithmic stiffness, which generally is different to the tangent material

stiffness Eq. (25), remains to be discussed. The tangent algorithmic modulus is defined as

Calg =
∂Δσ

∂Δε
. (35)

To simplify the description, only the case with pure damage and εed = ε will be considered in this

discussion. For the implicit Euler backward scheme this leads to

Cn+1
alg = E :

[
(1 − Dn+1 − ΔD)I − 1

hn+1
d Hn+1

d

(εn+1 + Δε) ⊗ nn+1
d

]
. (36)

But the numerical calculations described in Section 7 show that this form does not improve the

convergence compared to the corresponding tangent material stiffness applied at time tn+1. This

behavior remains to be investigated.

3 Multiaxial Limit States

3.1 Principal Values

As an isotropic material behavior is assumed, the principal stresses σ1, σ2, σ3 and the principal

strains ε1, ε2, ε3 with their coinciding directions are sufficient to characterize the material’s state

irrespective of their orientation in the material. Thus, in the following a notation

σ1 ≥ σ2 ≥ σ3, ε1 ≥ ε2 ≥ ε3 (37)

is used with positive tensile values and negative compressive values. In the case of tensile stresses,

σ1 denotes the largest principal tensile stress. An alternative form of principal stresses is given by

the stress invariants

Iσ,1 = σ1 + σ2 + σ3

Jσ,2 = 1
6

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
,

Jσ,3 = (σ1 − σm)(σ2 − σm)(σ3 − σm)

(38)

with σm = (σ1 + σ2 + σ3)/3 where Jσ,2, Jσ,3 are the second and third invariant of the stress

deviator. The principal stress space has characteristic elements: the hydrostatic axis σ1 = σ2 = σ3,

the deviatoric planes σ1 + σ2 + σ3 = const. and the Rendulic plane spanned by the σ1-axis and
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the line with σ2 = σ3. A physical interpretation of a stress state σ1, σ2, σ3 is given by the Haigh-

Westergaard coordinates [5], which are defined by the length ξ of the projection of σ1, σ2, σ3 on

the hydrostatic axis

ξσ =
1√
3

Iσ,1 =
√

3 σm (39)

called hydrostatic length, the length ρ of the projection of σ1, σ2, σ3 on the deviatoric plane

ρσ =
√

2Jσ,2 (40)

called deviatoric length, and the so called deviatoric angle ϑ

cos 3ϑσ =
3
√

3
2

Jσ,3

J
3/2
σ,2

, ϑσ =
1
3

arccos

(
3
√

3
2

Jσ,3

J
3/2
σ,2

)
(41)

between the stress projection on the deviatoric plane and the intersection of deviatoric and Rendulic

plane. As stress states are constrained by Eq. (37), only a range 0° ≤ ϑσ ≤ 60° has to be considered.

Particular stress states are given by the compressive meridian σ3 < σ2 = σ1, ϑ = 60° and the tensile

meridian σ3 = σ2 < σ1, ϑ = 0°. Furthermore, uniaxial compression is described by

σ1 = σ2 = 0, σ3 < 0 → ξσ = σ3/
√

3, ρσ = |σ3|
√

2/3, ϑσ = 60° (42)

uniaxial tension by

σ2 = σ3 = 0, σ1 > 0 → ξσ = σ1/
√

3, ρσ = σ1

√
2/3, ϑσ = 0° (43)

and biaxial compression by

σ1 = 0, σ2 = σ3 < 0 → ξσ = 2σ3/
√

3, ρσ = |σ3|
√

2/3, ϑσ = 0°. (44)

All these formulations may be transferred to the principal strain space with strain components

εij = 1
2 (∂ui/∂xj + ∂uj/∂xi), in particular for i �= j.

3.2 A Limit State for Stresses

A limit state is defined as state with maximum stresses. In the case of uniaxial compression, this

leads to the uniaxial compressive strength fc (unsigned)

fc = (1 − Dlim)E κd,lim, Dlim = D(κd,lim) (45)
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with Eq. (4) where κd,lim amounts to the longitudinal elastic strain corresponding to the strength

fc. Generally, stress limits for isotropic materials may be described by surfaces in the principal

stress space. The concrete limit surface is given by a curved tetrahedral form, opening in the

negative octant. Such formulations have been proposed by [10, 17, 31, 38], a survey is given by [6].

In agreement with experimental data for concrete, all formulations share the same characteristics

such as increasing deviatoric length of limit stresses with increasing hydrostatic length, slightly

curved meridians and a ”lower” tensile meridian compared to the compressive meridian. For the

following, the proposal of [17] is chosen, which is formulated in the Haigh-Westergaards coordinates

of limit stresses in a form

Fσ = a1 ρ′2σ + (a2 cosϑσ + a3) ρ′σ + a4 ξ′σ − 1 = 0 (46)

with ρ′σ = ρσ/fc, ξ′σ = ξσ/fc related to the uniaxial compressive strength fc. Eq. (46) determines

the deviatoric length, depending on the hydrostatic length and the deviatoric angle with a range

0° ≤ ϑσ ≤ 60°. The remaining stress space is covered by symmetry operations based on the rule

σ1 ≥ σ2 ≥ σ3. Four parameters a1, . . . a4 are introduced, which rule the exact form of the limit

surface and may be used to reflect experimental data.

This approach has a drawback insofar as it is continuous but not smooth along the compressive

meridians, see Fig. 3. Thus, as will be later seen with Eq. (58), the gradient nd is not uniquely

defined along these edges, which is joined with a non-unique tangent stiffness Eq. (25) on the

compressive meridian. Problems of this type are addressed by [34, Chapter 5], where multiple

plastic mechanisms are combined into a common tangent stiffness. An analogous procedure might

be used here, by assuming the failure surface to be composed of three smooth parts intersecting in the

compressive meridians. Such an approach remains to be investigated. In the present investigation

the mean direction between the two gradients is used, if necessary. Regarding convergence of the

equilibrium iteration, no difficulties occur with this form in the numerical calculations described in

Section 7.
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In order to determine the material parameters a1, . . . a4, particular limit states are regarded.

First of all uniaxial compression with σ3 = −fc. Using Eq. (42) we have

ξ′σ = − 1√
3
, ρ′σ =

√
2
3
, ϑσ = 60°, cosϑσ =

1
2
. (47)

Furthermore, uniaxial tensile strength is given with σ1 = fct = α1 fc. Using Eq. (43) leads to

ξ′σ =
α1√

3
, ρ′σ = α1

√
2
3
, ϑσ = 0°, cosϑσ = 1. (48)

Then, biaxial compressive strength can be described with σ2 = σ3 = −α2 fc. With Eq. (44) we get

ξ′σ = −2α2√
3

, ρ′σ = α2

√
2
3
, ϑσ = 0°. (49)

Finally, a limit state appearing in triaxial compression loading as usually applied in a triaxial cell for

geomaterials and concrete is considered [33]. This is represented by σ1 = σ2 = −βfc, σ3 = −α3fc

with α3 > β. In a similar manner as before this leads to

ξ′σ = −(2β + α3)/
√

3, ρ′σ =
√

2/3 (α3 − β), ϑσ = 60°, cosϑσ =
1
2
. (50)

Several characteristics of the limit stress surface are thus described by the four parameters α1, α2, α3, β.

Their values can be derived from experiments. This will be discussed in Section 5. Applying the

general limit stress condition Eq. (46) to each particular case leads to a system of equations

2a1/3 + (a2/2 + a3)
√

2/3 − a4/
√

3 = 1

2a1 α2
1/3 + (a2 + a3) α1

√
2/3 + a4 α1/

√
3 = 1

2a1 α2
2/3 + (a2 + a3) α2

√
2/3 − 2a4 α2/

√
3 = 1

2a1 (α3 − β)2/3 + (a2/2 + a3) (α3 − β)
√

2/3 − a4 (2β + α3)/
√

3 = 1

(51)

which can be solved for the parameters a1, . . . a4 with given values α1, α2, α3, β.

3.3 A Limit State for Strains

As a prerequisite the constitutive law is reformulated. We use Eq. (1) for the first invariant of

stresses and get from Eq. (38)

Iσ,1 = (1 − D)
E

1 − 2ν
Iεed,1 , Jσ,2 = (1 − D)2 4G2 Jεed,2 , Jσ,3 = (1 − D)3 8G3 Jεed,3 (52)
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with the shear modulus G = E/(2(1 + ν)), the first invariant Iεed,1 of the elastic strain and the

second and third invariant Jεed,2 , Jεed,3 of the elastic strain deviator. This is used for the Haigh-

Westergaard coordinates of stress with Eqs. (39)-(41), leading to

ξσ =
(1 − D)E

1 − 2ν
ξεed

, ρσ = (1 − D) 2Gρεed
, cos 3ϑσ =

3
√

3
2

Jσ,3

J
3/2
σ,2

=
3
√

3
2

Jε,3

J
3/2
ε,2

= cos 3ϑεed

(53)

with the Haigh-Westergaard coordinates ξεed
, ρεed

, ϑεed
of the elastic strain. Thus, the stress limit

condition Eq. (46) can be expressed as

a1 [(1 − Dcr)2G ρεed
]2 + fc (a2 cosϑεed

+ a3)(1 − Dlim)2G ρεed
+ fc a4

(1 − Dlim)E
1 − 2ν

ξεed
− f2

c = 0

(54)

with the damage value Dlim for stress limit states. Considering a relation ρa cosϑa =
√

3/2 a1 −

Ia,1/
√

6 for every symmetric second order tensor a with a maximum principal value a1, replacing

the Haigh-Westergaard coordinates with the elastic strain invariants according to Eq. (38) and 2G

with E/(1 + ν) and using Eq. (45) gives

Fε = b1 Jεed,2 +
fc

(1 − Dlim)E

[
b2

√
Jεed,2 + b3 εed,1 + b4 Iεed,1

]
−
[

fc

(1 − Dlim)E

]2

= b1 Jεed,2 + κd,lim

[
b2

√
Jεed,2 + b3 εed,1 + b4 Iεed,1

]− κ2
d,lim = 0

(55)

with the largest principal strain εed,1 of εed and

b1 =
2a1

(1 + ν)2
,

b2 =
√

2
a3

(1 + ν)
,

b3 =

√
3
2

a2

(1 + ν)
,

b4 =
1√
3

a4

1 − 2ν
− 1√

6
a2

(1 + ν)
.

(56)

Eq. (55) is a reformulation of the stress limit condition Eq. (46) in the strain space where b1, . . . b4

are constant material parameters describing the shape of the strain surface with the damage value

Dlim or the equivalent critical damage strain κd,lim respectively. This is generalized for usage as

damage limit condition with

Fd(εed, κd) = b1 Jεed,2 + κd

[
b2

√
Jεed,2 + b3 εed,1 + b4 Iεed,1

]
− κ2

d = 0 (57)

where κd,lim has been replaced with κd. This particular form admits ”increasing” stresses for

κd < κd,lim and ”decreasing” stresses for κd > κd,lim, as κd rules damage D with Eq. (3) and
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damage rules stress with Eq. (1). Furthermore, this form should be isotropic with respect to

rotations of the reference system. Finally, from Eq. (57) the gradient used for the tangent material

stiffness Eq. (25) can be derived with

nd =
∂Fd

∂εed
=
(
b1 + b2

κd

2
√

Jεed,2

)
εdev

ed + κd (b3 d1 ⊗ d1 + b4 I) (58)

with the deviatoric part εdev
ed of the elastic strain εed, the eigenvector d1 of εed,1 and the second

order unit tensor I with components Iij = δij . The particular form chosen with Eq. (57) leads to

an asymmetric stiffness, as nd is not coaxial to md, see Eq. (23).

4 The Uniaxial Special Cases

In uniaxial cases, principal directions coincide with the coordinate directions. Regarding the con-

vention Eq. (37), uniaxial compression is characterized by σ1 = σ2 = 0, σ3 < 0 and εed,3 < 0 leading

to εed,1 = εed,2 = −ν εed,3 with Eq. (1) and the latter leading to κd = −εed,3 with Eq. (57). The

last result agrees with the assumptions concerning damage evolution Eq. (3). Thus, Eqs. (1), (3)

give

σ3 =

⎧⎪⎪⎨
⎪⎪⎩

E (ε3 − εp3) ε3 − εp3 > ed0

e
−
(

−(ε3−εp3)−ed0
ed

)gd

E (ε3 − εp3) ε3 − εp3 ≤ ed0

(59)

with the total and plastic longitudinal strains ε3, εp3. In this equation, ed0, ed, gd are material

parameters and ε3 may be prescribed as independent variable. The plastic strain εp3 remains to be

determined in order to determine the stress σ3. The case of ongoing plastic deformations is ruled

by the yield Eq. (8). Taking uniaxial compression into account with

ε+
e =

(
−ν0 εed,3 −ν0 εed,3 0

)T

, ε−e =
(

0 0 εed,3

)T

(60)

we get

Fp =
1
2
(
2ν2 + cc

)
ε2ed,3 −

1
2

κ2
e = 0, (61)

which is resolved for the elastic equivalent strain

κe = −c1 εed,3, c1 =
√

2ν2 + cc. (62)
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Combining this with Eq. (13) leads to the plastic equivalent strain depending on the longitudinal

strains

κp = cp (−c1 (ε3 − εp3) − ep0)
(

1 − e−
−c1 (ε3−εp3)−ep0

ep

)
, ε3 − εp3 <

ep0

c1
. (63)

Furthermore, the plastic flow rule Eq. (10) together with Eq. (11) has to be taken into account. In

the uniaxial compression case with a constant ratio of elastic strains, see Eq. (60), the plastic flow

rule can be integrated to give the plastic strain components

εp1 = εp2 = λ̄p ν, εp3 = −λ̄p cc (64)

with a scaled plastic multiplier λ̄p. The link between plastic strain components and equivalent

plastic strain is given by Eq. (12), which now takes the form

κp = c2 λ̄p, c2 =
√

2ν2 + c2
c . (65)

Eqs. (63)-(65) lead to an equation for the longitudinal plastic strain

εp3 = −cc cp

c2
(−c1 (ε3 − εp3) − ep0)

(
1 − e−

−c1 (ε3−εp3)−ep0
ep

)
, ε3 − εp3 <

ep0

c1
(66)

where c1, c2, cc, cp, ep0, ep are material constants and the total longitudinal strain ε3 is assumed

to be given. Eqs. (59), (66) may be used to calculate the stress-strain relation for the uniaxial

compression case. From Eq. (64) corresponding volumetric strains can be evaluated with

εvol = εed,1 + εed,2 + εed,3 + εp1 + εp2 + εp3 = (1 − 2ν) (ε3 − εp3) +
(

1 − 2ν

cc

)
εp3 (67)

The other way round, Eqs. (59), (66), (67) can be used for the calibration of material parameters,

which will be discussed in the following Section 5.

Uniaxial behavior has to be completed with the tension case. Here we have σ1 > 0, σ2 = σ3 = 0

and εed,3 > 0. Based on experience, plastic deformations can be neglected in the uniaxial tension

case, which corresponds to the case κe < ep0 in Eq. (13). Thus, εed = ε will be assumed for uniaxial

tension. Then Eqs. (1), (3) give

σ1 = (1 − D)E ε1 = e−
(

κd−ed0
ed

)gd

E ε1, ε2 = ε3 = −ν0 ε1. (68)

This leads to decreasing lateral strains with continuously growing longitudinal strains, which is

obviously not correct in case of tension cracking with cracks perpendicular to the tensile directions.
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This cannot be avoided with isotropic damage and has to be regarded as inherent drawback of this

type of damage.

Considering the uniaxial tension strains for the damage limit condition Eq. (57) leads to

Fd = b1
(1 + ν)2 ε21

3
+ κd

(
b2

1 + ν√
3

+ b3 + b4 (1 − 2ν)
)

ε1 − κ2
d. (69)

With Fd = 0 this may be solved for the positive value to give the equivalent damage strain for

uniaxial tension depending on the longitudinal tensile strain

κd = c3 ε1 (70)

with a constant value c3, which can be derived from the constant material parameters ν, b1 . . . b4.

This can be used with Eq. (68) to compute the stress-strain relation in the uniaxial tension case.

5 Determination of Material Parameters

As a basic requirement, a constitutive law for concrete should describe the nonlinear behavior under

uniaxial compression. Regardless of any nonlinearities, the initial behavior is characterized by given

values for the initial Young’s modulus E and Poisson’s ratio ν. Further characteristic values are

given by the largest compressive stress, i.e. the compressive strength fc as an absolute value, and

the corresponding strain εc as a negative value. A key role for uniaxial deformation behavior is

given by the ”cross-effect parameter” cc. A value cc = 0 suppresses any longitudinal plastic strains

under uniaxial compression, see Eqs. (10), (11). Increasing values cc > 0 lead to larger longitudinal

plastic strains. A reasonable choice has a magnitude of cc ≈ 0.1. For further considerations, it

proves to be appropriate to assume a value and to determine all remaining material parameters as

will be discussed in the following. Further values of cc should then be tried in next iteration cycles

if necessary. This approach first of all determines the values c1, see Eq. (62), and c2, see Eq. (65).

Another characteristic value of plastic behavior is given by a threshold value for the total lon-

gitudinal strain, when plasticity starts. This plastic threshold strain ε3 = εp,thr may be observed

from experiments as fraction of the longitudinal strain εc with the maximum stress. With εp3 = 0
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in Eq. (66) a relation

ep0 = −c1 εp,thr (71)

holds. In the following, it proves to be appropriate to choose a constant damage exponent gd = 2,

see Eq. (3), for all concrete grades. The remaining set of damage material parameters ed, ed0, see

Eq. (3), and the set of plastic material parameters cp, ep, see Eq. (13), reveal some dependencies,

which have to be resolved in a subiteration. This subiteration is marked by the upper index i with

εi
ed,c + εi

p,c = εc (72)

in which the longitudinal strain εc at compressive strength is given and its decomposition into an

elastic part εed,c and a plastic part εp,c has to be determined. The subiteration may start with

ε1p,c = 0. The parameters ed, ed0 of the uniaxial stress-strain relation Eq. (59) have to be chosen

such that

e
−
(

−(εc−εi
p,c)−ed0
ed

)gd

E (εc − εi
p,c) = −fc. (73)

Furthermore, stress should reach its maximum absolute value at εc, i.e. dσ3/dε3 = 0 for ε3 =

εc. A closed solution for ed, ed0 can be found from these conditions. The two plastic material

parameters cp, ep remain to be determined. Dilatancy, as it can be observed with concrete, may be

used therefore. Volume expansion under uniaxial compression can only be described with plastic

deformations, as this is by definition not possible with isotropic damage alone, see Eq. (1) with

εp = 0. Dilatancy under uniaxial compression is described by Eqs. (66), (67), which provide the

plastic longitudinal strain εp3 and the total volumetric strain εvol for a given longitudinal strain ε3

or εed,3 respectively. The course of εvol may to a large extent be controlled by the values of cp, ep.

As this curve is generally provided as a function of the longitudinal stress, the aforementioned

dependency between the sets of damage and plastic material parameters arises. Characteristic

points are given by the stress σmin with minimum volume compression and by the stress σturn

on the softening stress branch with zero volume stresses, i.e. with turnover from compaction to

dilatancy. These stresses may be solved for longitudinal elastic strains εed,3,min and εed,3,turn by

Eq. (59). Each of these values has corresponding plastic strains, which are given by Eq. (66) with
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open values cp, ep. Using the pair (εi
3,turn, εi

p,3,turn) with Eq. (67) and the pair (ε3,min, εp,3,min)

with the derivative of Eq. (67) provides a system of two equations, which can be solved for cp, ep.

As all material parameters have been determined in this subiteration loop, a new plastic part

εi+1
p,c of the total longitudinal strain εc can be calculated from Eq. (66). This may serve as a start

value for a new subiteration loop. Generally, this subiteration should converge within a few number

of loops. It may be embedded in an iteration for the ”cross-effect parameter” cc to reach a target

value for the remaining plastic longitudinal strains at unloading.

A number of results shall be demonstrated with concrete grades C 20, C 40 and C 60 according

to the CEB-modelcode 90 [7]. Some of the basic input parameters like the initial Young’s modulus

E, Poisson’s ratio ν, cubic uniaxial compressive strength fc, corresponding strain εc are given

by [7]. Other parameters like the two characteristic points of the dilatancy behavior have to be

derived from available experimental data, e.g. [24]. The longitudinal plastic strain is not explicitly

controlled, as this depends on the point of loading reversal. A value cc = 0.08 is assumed instead,

which leads to reasonable results. The assumed basic material parameters and the derived damage

and plastic parameters are given in Table 1. Cubic uniaxial compressive strength has been chosen

instead of cylinder uniaxial compressive strength, as this value better matches to experimental

data and to values of other codes. Strain values εc were also slightly increased for C 40 and C 60

for the same reasons. The computed stress-strain relations for uniaxial compression and the stress-

volumetric strain relations are shown in Fig. 4 where a homogeneous behavior has been assumed for

the hardening as well as for the softening branch. It can be seen, that typical results like dilatancy,

loss of stiffness and remaining strains upon unloading are accurately modeled.

So far, only uniaxial compression behavior has been discussed. Tensile and multiaxial behavior

is determined by the parameters b1 . . . b4, see Eq. (57). With Eqs. (51), (56) these formal parameters

can be related to the physical parameters α1, α2, α3, β, as they have been introduced in connection

with failure states for stresses. The parameter α1 refers to the uniaxial tensile strength, which
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can be taken from [7]. Computed stress-strain relations for uniaxial tension are given with Fig. 5

where the predefined tensile strengths are exactly met and their strains are good approximations to

corresponding values of [7]. This code also provides the data to derive the parameter α2 regarding

biaxial compressive strength. In contrast, triaxial strength data, as they are necessary for the

parameters α3, β, have to be derived from experimental results, e.g. [19,28,33]. Feasible choices for

the parameters α1, α2, α3, β are given in Table 2, but these values are not mandatory and may be

varied. Computed results for biaxial strength are shown in Fig. 6 for the selected concrete grades,

and include uniaxial tensile strengths and uniaxial compressive strengths as special cases. Basically,

the same approach for material parameter determination may be applied to other materials.

6 Crack Band Model

The application of the constitutive law to uniaxial tension leads to a limited tensile strength followed

by a softening branch in the stress-strain relation, see Fig. 5. As a well-known fact, this property

of the stress-strain behavior leads to localization phenomena and a fundamental mesh sensitivity

of numerical calculations. A number of advanced approaches like gradient or nonlocal formulations

have been proposed to resolve localization zones and to reach mesh-objective results [2]. These

approaches require extensive interventions in finite element implementations. It is furthermore well-

known that more simple approaches like the crack band model may lead to a correctly predicted

response on the structural level, while the size of the localization zone spreads over a width of one

or two finite elements irrespective of element size.

The crack band model is based on an energy-based rescaling of the softening part of the stress-

strain behavior. This will be used for the tension regime of the proposed constitutive law. Tensile

failure is characterized by the crack energy

G =
∫ bw

0

g(ε) db (74)
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with the localization zone thickness bw, its variable b and the specific crack energy

g(ε) =
∫ ε

εfct

σ1(ε′) dε′, ε ≥ εfct (75)

starting from concrete tensile strength with a corresponding strain εfct and with σ1(ε) according

to Eq. (68). The specific crack energy g results from integration of the decreasing branch of the

stress-strain relation, see Fig. 5, and hence depends on the other material parameters. Under the

assumption that the strain value εlim is reached across the whole localization zone, the total crack

energy may be approximated by

Gf ≈ bw gf , gf = g(εlim) (76)

with a strain εlim with σ1(εlim) 	 1. The total crack energy Gf is a material property. Its

value is, within a certain range, independent from the other material parameters. This leads to a

nominal localization zone width bw = Gf/gf as a further characteristic material value, which may

be regarded as an internal length scale. Values of Gf can again be taken from [7] and are given

in Table 3 for the chosen concrete grades where a small aggregate size is assumed with respect to

small size structural elements typical for experiments.

In the following, finite element calculations with multiaxial states of stress and strain have

to be considered. The basic assumption is that, with respect to crack energy, a multiaxial state

with predominant tension can be represented by a uniaxial tension state with the same equivalent

damage strain κd defined by Eq. (57). For progressing damage a given value κd also determines the

corresponding value ε1 of the longitudinal tensile strain for uniaxial loading, see Eq. (70), and the

specific crack energy gf for multiaxial states may again be computed from Eqs. (68), (75). Thus, in

the following a scaling of κd is used to modify the specific crack energy for arbitrary strain states.

Such a modification may become useful as numerical calculations with finite elements yield a

localization zone width corresponding to the width of one or two elements. This width is assumed

to be characterized by a value bfe, which results in a calculated crack energy

Gfe ≈ bfe gf . (77)
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To gain a prescribed crack energy Gf with a given element width measure bfe a specific crack energy

gfe ≈ Gf

bfe
=

bw

bfe
gf (78)

has to be gained on the element level. This ensures mesh objectivity on the structural level as has

been discussed before. A variable specific crack energy is reached with a scaled value κd,fe of κd.

The following three parameter approach is chosen

κd,fe = γ1 (κd − κd,lim) +
1 − γ1

γ2

(
1 − e−γ2(κd−κd,lim)

)
+ κd,lim, κd ≥ κd,lim (79)

with the equivalent strain κd,lim at the stress limit, see Eq. (45), and two further parameters γ1, γ2.

A value γ1 = 1 leads to κd,fe = κd. Values γ1 > 1 lead to an expansion of κd,fe compared to κd,

while values γ1 < 1 lead to a contraction, for a concrete grade C 40 see Fig. 7. The parameter γ2

rules the shape of the transition curve from κd = κd,lim into the area with constant slope of κd,fe.

A fixed value of γ2 = 350 has proved to be adequate. Such a value κd,fe, defined by Eq. (79), can

replace κd in Eqs. (70), (68) and (75) to compute the specific crack energy gγ(γ1) with a variable

parameter γ1. A closed-form solution of these equations is shown in Fig. 8 for a concrete grade

C 40 where the ratio gγ/gf is given depending on γ1. With a target value gfe of the specific crack

energy given by Eq. (78), a value of the scaling parameter γ1 is derived from Fig. 8. The effects of

damage scaling become especially evident for the homogeneous uniaxial tension case, see Eq. (68).

Inserting Eq. (70) into (79), while the latter replaces κd in Eq. (68), results in a stress-strain relation

parametrized by γ1. This is demonstrated in Fig. 9 for the concrete grade C 40. It can be seen that

values γ1 > 1 cause a shortening of the stress-strain relation in the softening range. In contrast,

values γ1 < 1 cause an extension, while the tensile strength remains unchanged. Summarizing, a

crack energy value Gf is ensured for softening elements of varying size, at least for Mode-I conditions

and element edges aligned to the tensile direction. This approach requires a minimum effort while

preserving a consistent tangent material stiffness.

Some margin of estimation remains with the selection of bfe for softening elements. Generally,

nearly quadratic elements are striven to improve the interpolation quality. Thus, a natural choice
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for bfe is given by an element’s edge length. On the other hand numerical calculations show that

softening may spread over two elements normal to the localization direction if the localization is not

aligned with mesh orientations. Therefore, in the following numerical calculation bfe is generally

chosen 1.5 times the mean of the element’s edge length in case of softening elements. Furthermore,

questions remain with Mixed-Mode conditions. The Finite Element Method allows to distinguish

Mode-I and Mode-II contributions to the fracture energy and to compute their values for a whole

system using the integration point values. Taking also crack band geometries into consideration

this leads to overall correct crack energy values, as it is also confirmed by the computed load-

displacement relations in the softening range, see the following section.

As an alternative to a crack band regularization a gradient damage approach has been investi-

gated with the proposed constitutive law where a nonlocal field of the equivalent damage strain κd

was introduced as further global independent variable [15]. This basically gives the same results

for the global system behavior, but proves to be more expensive and less robust from a computa-

tional point of view in the investigated cases. More detailed investigations regarding optimization

of regularization methods have to be done in future work.

7 Applications

Only uniaxial compression and tension have been discussed so far, which were assumed to be

homogeneous and so could be realized with one-element models. Practical applications show non-

homogeneous behavior and require a large number of elements of different size and varying shape.

Furthermore, reinforcement and bond between reinforcement and concrete play a role. This creates

its own issues, which will not be covered within this paper. Thus, the following application examples

are restricted to plain concrete structures without reinforcement. The behavior of such structures

is generally dominated by tension failure of concrete. The L-shaped panel is studied as an example

for Mode-I failure and the four-point shear beam as an example for Mixed-Mode failure. Plane
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stress conditions are assumed in all cases. The structure’s loading is controlled by prescribing

the displacement of particular nodes. The Newton-Raphson method combined with an arc-length

control of loading steps is used for the equilibrium iterations. A band of high damage can be seen

in Fig. 16 for the central area around the notch in a gray scale view on shrunken elements. The

L-shaped panel has become a popular benchmark test for the validation of computational models of

plain concrete under Mode-I conditions, i.e. with cracking caused by predominant tensile stresses.

It was experimentally investigated by [39]. The geometry and the boundary conditions are shown

in Fig. 10. The available parameters of the material used in the experiments are listed in Table 4.

Remarkable is the low Young’s modulus compared to the strength. As it is not intended to perform

a parameter fitting study, the concrete grades C 20 and C 40 according to Tables 1 – 3 are chosen

for a comparison without modifications, because they prove to be limiting cases. The finite element

discretization, which is indicated with a shrunken element view in Fig. 12, has 2161 nodes and 2079

four node quadrilaterals. The computed load-displacement relations together with the scatter of the

experimental data are given in Fig. 11. The initial stiffness of the experimental panels falls sightly

below the computational results due to the low experimental Young’s modulus. All cases have the

same characteristics with a limit load followed by descending branches. A descending branch is

connected with localizations in the numerical calculations, which can be seen in Fig. 12 with the

computed scalar damage for the case of concrete grade C 40 in the last computed step. The damage

value is indicated by a gray scale upon a shrunken element view. A concentration of damage with

values approaching 1 develops in a horizontally banded area. This indicates a horizontal crack

direction, which is typical for other isotropic numerical models [11]. The experimentally observed

macro-cracking area actually shows a slight inclination in the upper direction. Anisotropic damage

models are presumably required to describe this behavior. Computed principal stresses of a central

section are given in Fig. 13 with high concentrated compressive stresses in the narrow part left to

the crack tip area and tensile stresses right to the crack tip area, which decrease with increasing
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element strains or crack widths respectively.

Experiments with the four-point shear beam with a notch were performed by [1] to study the

behavior of plain concrete under Mixed-Mode conditions, which combine shear stresses and normal

stresses along the cracking planes. Geometry and boundary conditions are shown in Fig. 14. The

experimental material parameters are given in Table 4 as far as they are known. Again, a quite low

Young’s modulus can be seen in relation to the strength. Treating this system as a beam, it has

a high shear force combined with a nearly vanishing bending moment in a cross section coinciding

with the notch. In a strut-and-tie model, a line of high compression develops between the upper

and lower bearing points A and B, see Fig. 14. All three concrete grades, which have been discussed

in the foregoing Section 5, are used for a comparison. The finite element discretization has 4837

nodes and 4662 four node quadrilaterals. The central part of it is indicated in Fig. 16 in a shrunken

element view. The upper bar for load distribution is assumed with a linear elastic material of very

high stiffness, so it behaves rigid.

Deformations due to cracking are indicated by the crack mouth opening displacement (cmod),

which is the difference of the vertical displacements of points C and D, see Fig. 14. The load-

cmod curves for the different cases are shown in Fig. 15. Generally, no equilibrium is found shortly

after reaching the peak loads in the numerical computations. Hence, a distinct softening behavior

could not be computed. Regarding the peak, it can be seen that the corresponding displacements

are underestimated by the numerical calculations by about 15% while the peak load has the best

agreement with a concrete C 40, which also agrees best with the compressive strength. A band

of high damage can be seen in Fig. 16 for the central area around the notch in a gray scale view

on shrunken elements. It occurs for the concrete grade C 40 at the end of the computation and

has traversed the beam height to a large extent. Similar to the L-shaped panel, the concentrated

damage band shows more or less straight segments while the actually observed macro-cracks are

curved from the notch tip towards the point A. Again, an anisotropic damage model and a finer
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finite element resolution seems to be necessary to model this behavior. Analyzing principal stresses

at integration points in their peak load state, i.e. with κd = κd,lim, a Rankine-like state with

principal stresses σ1 ≈ fct, |σ2| 	 |σ1| is given at the beginning of crack propagation, while this

later changes to pure shear with σ1 ≈ −σ2 ≈ fct when progressing to the upper bearing point

A. Computed principal stresses for concrete grade C 40 in the central beam section are shown

in Fig. 17 for the peak load state. This shows a compressive arch adjacent to the high damage

zone, which transfers loads between the upper and lower bearing points A, B. Stresses are sharply

reduced below this compressive arch. Altogether, it can be seen that a sharp, load-induced change

in stresses and material state can be modeled with the proposed constitutive law in combination

with the crack band approach.

8 Conclusions and Outlook

A three-dimensional constitutive law for concrete has been proposed, based on isotropic damage

combined with plasticity. A key point is given with the transfer of strength failure criteria from stress

space into strain space and parametrizing the strain-based formulation with an equivalent strain.

This equivalent damage strain is coupled to a measure for isotropic damage. This is combined with

an approach for plastic strains to cover effects like remaining strains upon unloading and dilatancy.

With such a strain-based approach, relatively simple forms compared to stress-based approaches

are derived for the formulation of the constitutive law, the corresponding numerical algorithms and

its regularization. Nevertheless, typical characteristics of concrete behavior are reproduced for a

wide range of concrete grades and the behavior of major benchmark problems for plain concrete

are generally correctly modeled.

Extensions of this constitutive law may be discussed under two major aspects. First of all,

anisotropic damage may be regarded. Out of this, orthotropic damage may be realized using the

proposed isotropic law by transferring its formulation to each direction within the framework set
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by [4]. This is especially relevant for load-induced anisotropy and should lead to a more exact

prediction of paths of localization zones or macrocracks respectively. On the other hand, the effort

of anisotropic formulations strongly grows and for practical applications, it has to be assessed

whether the expense is worthwhile compared to the modeling benefit.

A further aspect concerns regularization. Enhanced methods like gradient continuum models

are necessary to resolve the bandwidth of localization zones and avoid modifications of the con-

stitutive law depending on measures of finite element size. In the present context, this may be

performed with the introduction of an averaged equivalent damage strain, which is ruled by an

additional differential equation or its weak formulation respectively. However, again the effort

grows and additional length scales have to be introduced as material parameters, which have to

be calibrated against observed material behavior. An alternative to circumvent mesh sensitivity

of continuous displacement approaches is given by using discontinuous approaches like XFEM or

element free Galerkin methods to model crack propagation in combination with traction-separation

laws. But this creates own issues like criteria for the transition from continuum to discontinuum

and appropriate traction-separation laws, e.g. laws for Mixed-Mode conditions.

A basic problem common to all methods and approaches concerns the availability of material

property data for concrete and the scatter of this data. Often the required data to determine the

parameters for advanced constitutive laws are not available under practical application conditions.

Thus, one has to deal with basic parameters like the initial Young’s modulus, initial Poisson’s ratio

and the uniaxial compressive and tensile strength and has to derive advanced parameters on base

of plausibility and general experience. This requires studies of the sensitivity of computational

results on variations of advanced parameters and remains to be investigated for the constitutive

law proposed here. Concerning the given scatter of all material properties, this problem may

be generalized with sensitivity studies regarding all material parameters and may be extended to

probabilistic numerical methods or other random approaches.
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Notation

The following symbols are used in this paper:

α1 = fct/fc coefficient for uniaxial tensile strength

α2 coefficient for biaxial compressive strength

α3 1st coefficient for triaxial compression cell strength

β 2nd coefficient for triaxial compression cell strength

γ1, γ2 scaling parameters for crack band model

εc longitudinal strain at uniaxial compressive strength

εct longitudinal strain at uniaxial tensile strength

εed elastic strain

εp plastic strain

κd equivalent damage strain

κd,lim equivalent damage strain at strength

κe equivalent elastic strain

κp equivalent plastic strain

ν initial Poisson’s ratio

D measure for isotropic damage

E initial Young’s modulus

Gf fracture energy

bw nominal localization zone width

bfe finite element localization zone width

fc uniaxial concrete compressive strength (unsigned)

fct uniaxial concrete tensile strength

gf specific fracture energy

gγ scaled specific fracture energy

md damage stress rate direction

nd gradient of damage limit condition

np gradient of plastic potential
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Tables

Table 1: Material parameters for uniaxial compression

concrete grade C20 C40 C60

Young’s modulus E MN/m2 30000 36000 41000

Poisson’s ratio ν - 0.20 0.20 0.20

cubic compressive strength fc MN/m2 25 50 70

strain εc at compressive strength - −2.2 · 10−3 −2.5 · 10−3 −2.7 · 10−3

plastic threshold - 0.55 · εc 0.6 · εc

stress σmin with minimum volume strain MN/m2 −0.92 · fc −0.92 · fc −0.92 · fc

stress σturn with volume strain turnover MN/m2 −0.96 · fc −0.96 · fc −0.96 · fc

cross-effect parameter cc - 0.08 0.08 0.08

damage exponent gd - 2.0 2.0 2.0

damage parameter ed0 - −1.54 · 10−3 −6.77 · 10−6 6.58 · 10−4

damage parameter ed - 3.79 · 10−3 3.25 · 10−3 2.98 · 10−3

plastic parameter cp - 3.32 3.69 3.56

plastic parameter ep0 - 4.84·10−4 6.00 · 10−4 7.02 · 10−4

plastic parameter ep - 3.15·10−4 3.02 · 10−4 1.41 · 10−4
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Table 2: Material parameters for uniaxial tension and multiaxial behavior

concrete grade C20 C40 C60

tensile strength fct MN/m2 2.2 3.5 4.6

uniaxial tension α1 - 0.088 0.070 0.066

biaxial compression α2 - 1.24 1.12 1.09

triaxial compression α3 - 2.0 2.0 2.0

confining pressure β - 0.2 0.2 0.2

limit condition parameter b1 - 2.2587 3.1819 3.4522

limit condition parameter b2 - 0.5334 -0.3419 -0.6140

limit condition parameter b3 - 8.7041 11.7710 12.6965

limit condition parameter b4 - 3.6576 4.4077 4.6183
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Table 3: Material parameters for fracture

concrete grade C20 C40 C60

fracture energy Gf Nm/m2 50 70 95

specific fracture energy gf MNm/m3 467.4 562.4 671.9

nominal localization zone width bw m 0.1069 0.1244 0.1413
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Table 4: Material parameters of selected experiments

experiment L-shaped panel notched beam

series B

Young’s modulus E MNm/m3 25850 24800

Poisson’s ratio ν - 0.18 0.18

compressive strength fc MNm/m3 31 45.5

tensile strength fct MNm/m3 2.7 -

fracture Energy Gf Nm/m2 90 -
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Figures

Figure 1: Damage D depending on damage equivalent strain κd

Figure 2: Plastic equivalent strain κp depending on elastic equivalent strain κe

Figure 3: Failure surface Eq. (46) with a view from the negative hydrostatic axis

Figure 4: Stress-strain behavior under uniaxial compression

Figure 5: Stress-strain behavior under uniaxial tension

Figure 6: Biaxial strength

Figure 7: Scaled equivalent damage strain κd,fe for C 40

Figure 8: Specific crack energy gain for C 40 depending on scaling factor γ1

Figure 9: Uniaxial tension for C 40 with scaled equivalent damage strain κd,fe

Figure 10: L-shaped panel: geometry and boundary conditions

Figure 11: L-shaped panel: load-displacement curves

Figure 12: L-shaped panel: damage D for C 40

Figure 13: Central part of L-shaped panel: principal stresses for C40

Figure 14: Four-point shear beam: geometry and boundary conditions

Figure 15: Four-point shear beam: load-cmod curves

Figure 16: Central part of Four-point shear beam: damage D for C 40

Figure 17: Central part of Four-point shear beam: principal stresses for C 40
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Figure 17


