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Automatic Two-Plane Balancing for Rigid Rotors

D.J. Rodriguesa,∗, A.R. Champneysa, M.I. Friswellb and R.E. Wilsona

aDepartment of Engineering Mathematics, bDepartment of Aerospace Engineering,

University of Bristol, Bristol, BS8 1TR, UK

Abstract

We present an analysis of a two-plane automatic balancing device for rigid rotors. Ball bearings,

which are free to travel around a race, are used to eliminate imbalance due to shaft eccentricity or

misalignment. The rotating frame is used to derive autonomous equations of motion and the sym-

metry breaking bifurcations of this system are investigated. Stability diagrams in various parameter

planes show the coexistence of a stable balanced state with other less desirable dynamics.

1 Introduction

The primary cause of vibration in rotating machinery is mass imbalance, which occurs when the principal
axis of the moment of inertia is not coincident with the axis of rotation. In the case of a rigid rotor
the usual balancing procedure involves adding or subtracting correction masses in two distinct planes
so that the principal axis is recentred and realigned. However, effects such as thermal deformation
and material erosion can cause the rotor’s mass distribution to change, and in such circumstances the
balancing procedure may have to be repeated. This limitation motivates the study of self-compensating
balancing devices, in which masses redistribute themselves so as to eliminate any imbalance.
One such device is the automatic ball balancer (ABB), which consists of a series of balls that are free to
travel around a race which is filled with a viscous fluid. The first study of an ABB was carried out by
Thearle in 1932 [1], and the existence of a stable steady state at rotation speeds above the first critical
frequency was demonstrated. More recently, the equations of motion for a planar Jeffcott rotor with an
ABB have been derived using Lagrange’s method [2, 3, 4]. In particular Green et al. [4] use rotating
coordinates to obtain an autonomous system of governing equations. The stability boundaries for the
fully nonlinear system are then computed using numerical continuation techniques.
In 1977, Hedaya and Sharp [5] extended the autobalancing concept by proposing a two-plane device that
would be able to compensate for both shaft eccentricity and shaft misalignment, see Fig. 1. However,
the ABB models which are based on a Jeffcott rotor are unable to explain phenomena that are related to
shaft misalignment as they do not include any tilting motions. These out-of-plane motions are considered
in the studies of Chung and Jang [6], Chao et al. [7] and Sperling et al. [8], but only linear stability
analyses are provided. Here we extend the planar analysis of [4] so that we may model the tilting motion
of the ABB and analyse the two-plane automatic balancer for rigid rotors.
The rest of this paper is organised as follows. In section 2 we use rotating coordinates to derive au-
tonomous equations of motion for the ABB. The steady states of the system are considered in section 3,
and we focus on using numerical bifurcation theory to investigate the effect that the physical parameters
have on the stability of the balanced state. In section 4 we supplement the findings of the bifurcation
analysis by providing numerical simulations of the dynamics, and investigating the effect of the initial
conditions. Finally, in section 5 we draw conclusions and discuss possible directions for future work.

∗Corresponding author. E-mail: david.rodrigues@bristol.ac.uk

1

* Manuscript



Acc
ep

te
d m

an
usc

rip
t 

2 Derivation of the Equations of Motion

In this section, we derive an autonomous system of governing equations for the automatic balancer by
describing the position of the rotor centre with respect to rotating coordinates and applying Lagrange’s
method [3, 4, 6]. For a background to the rotordynamics theory see for example [9].

2.1 Mechanical Setup

The mechanical device that we wish to model is illustrated in Fig. 1, and is based on a rigid rotor which
has been fitted with a two-plane automatic balancer [5, 8]. The rotor has mass M , moment of inertia
tensor J, and is mounted on two compliant linear bearings which are located at S1 and S2. The automatic
balancer consists of a pair of races that are set normal to the shaft in two separate planes. Each race
contains two balancing balls of mass m, which move through a viscous fluid and are free to travel, at a
fixed distance R from the shaft axis. The position of the ith ball is specified by the axial and angular
displacements zi and αi, which are written with respect to the Cξηz rotor axes.

l2

l1

z1,2

−z3,4

α1

α2

α3

α4

R

R

C
ξ

η

z

k1

k2

c1

c2

S1

S2

Fig. 1: Schematic diagram of a two-plane automatic balancer.

2.2 Co-ordinate frames

In order to describe the position and orientation of the rotor, it is helpful to consider the following frames
of reference, as shown in Fig. 2. We begin with an inertial space frame OXY Z with origin at O and
Z-axis oriented along the undeflected bearing centreline. A rotation about the Z axis by the spin angle
θ results in the rotating frame OxyZ. This transformation can be written as

x = R1X,

where x and X are the column vectors of coordinates in the rotating and inertial frames respectively,
and

R1 =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 .

The torsional behaviour of the rotor lies outside the scope of the present study, and so we shall only
consider the special case of constant-speed operation, in which θ = Ωt.
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Fig. 2: Definition of the co-ordinate system.

The rotor’s lateral motion can be described by introducing a frame Cx′y′z′ with origin at the geometric
shaft centre C, and axes parallel to those of the rotating frame OxyZ. We neglect any motion in the
axial direction, and so, the position vector of the geometric centre rC lies in the x-y plane. The rotor
may also perform an out-of-plane tilting motion that can be described as follows: firstly we define an
intermediate axes Cx′′y′′z′′ related to Cx′y′z′ by a rotation of an angle φy about the y′ axis, then we
rotate Cx′′y′′z′′ about x′′ by an angle φx, which results in a body frame Cξηz that is fixed with respect
to the rotor. These transformations can be combined to give

ξ = R3R2x
′, (1)

where ξ and x′ are the co-ordinates in the body and primed axes respectively and

R2 =





cosφy 0 − sinφy

0 1 0
sin φy 0 cosφy



 , R3 =





1 0 0
0 cosφx sin φx

0 − sinφx cosφx



 .

We are now able to transform between body coordinates and the space reference frame, however as shown
in Fig. 3, small errors in the rotor’s mass distribution will cause the body axes Cξηz to differ from the
principal axes of the moment of inertia. The eccentricity ǫ, which gives rise to the static imbalance, is
defined as the distance between the shaft centre C and the rotor’s centre of mass G. Also the symmetry
axis p3 corresponding to the polar moment of inertia may be misaligned to the shaft axis by an angle χ,
and this results in a couple imbalance. The symmetry of the rotor enables us to take the misalignment
to be about the η axis without detracting from the generality of the model. The matrix expressing this
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rotation is thus

R4 =





cosχ 0 − sinχ
0 1 0

sin χ 0 cosχ



 ,

and we also include the angle β, to denote the phase between the static and couple imbalances.

ξ

η

z

ǫ

β

G
χ

χ

p1

p2

p3

C

Fig. 3: Definition of the imbalance.

Before moving on to the derivation of the Lagrangian, it is worth noting that we have chosen the order
of rotations so that the spin Ω is taken about the space Z axis as opposed to the body z axis. In
the standard formulation for a linear four degree of freedom rotor, both approaches lead to equivalent
equations of motion [9]. However, for our case where we must include the geometric nonlinearities due
to the balancing balls, we find that autonomous equations can only be derived when Ω is taken about
the space Z axis [10].

2.3 Lagrangian formulation

The nonlinear equations of motion for the system are derived from Lagrange’s equations

d

dt

(

∂T

∂q̇k

−
∂V

∂q̇k

)

−

(

∂T

∂qk

−
∂V

∂qk

)

+
∂F

∂q̇k

= 0, (2)

where T , and V , are the kinetic and potential energies respectively, F is Rayleigh’s dissipation function
and the qk are the generalised co-ordinates. In our case the generalised coordinates are given by

q = (x, y, φx, φy , α1, α2, α3, α4) ,

and so the motion is governed by a total of eight independent equations of motion. We proceed by
deriving in turn the kinetic energy, the potential energy and Rayleigh’s dissipation function.

2.3.1 Kinetic Energy

The kinetic energy of any rigid body can be decomposed as the sum of the translational energy of the
centre of mass and the rotational energy of the body about its centre of mass. By treating the balls as
points, the kinetic energy of the system can be written as

T =
1

2
M ṙ2

G +
1

2
ΩT

JΩ +
1

2

4
∑

i=1

mṙ2
Bi

. (3)
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where ṙG and ṙBi
are the velocities of the rotor’s centre of mass and the ith ball respectively, and Ω

is the angular velocity of the rotor. By using the inverse of the transformation defined in (1), we may
write the position vector of the centre of mass, in the rotating frame as

rG =





x
y
0



 + R
T

2
R

T

3





ǫ cosβ
ǫ sinβ

0



 ,

=





x + ǫ (cosβ cosφy + sin β sin φx sin φy)
y + ǫ sinβ cosφx

ǫ (− cosβ sin φy + sin β sinφx cosφy)



 .

The rotating coordinates x and y have been chosen to describe the lateral motion because their use
enables an autonomous formulation in which the the spin angle Ωt does not explicitly enter into the
governing equations.
The position vector of the i-th ball can be similarly given by

rBi
=





x
y
0



 + R
T

2
R

T

3





R cosαi

R sin αi

zi



 ,

=





x + R (cosφy cosαi + sin φx sin φy sin αi) + cosφx sinφyzi

y + R cosφx sin αi − sin φxzi

R (− sinφy cosαi + sin φx cosφy sin αi) + cosφx cosφyzi



 .

In contrast to the eccentricity ǫ, the race radius R cannot be assumed to be a small quantity. As a
consequence, we must take extra care in terms relating to the ball positions when making any small
angle assumptions on φx and φy. Thus, we prefer to compute the kinetic energy using the complete
expressions for the displacements and make any approximations only after the equations of motion have
been derived.
When calculating the translational kinetic energies, it is also necessary to express the velocities as they
are seen by an observer in a space-fixed frame. Since we have written the position vectors with respect
to rotating coordinates, we must use the following operator relation between derivatives to account for
the change in frames

(

d

dt

)

s

=

(

d

dt

)

r

+ Ωr× .

Here the subscripts s and r denote the time derivatives as seen by an observer in the space and rotating
frames respectively, and Ωr = [0, 0, Ω]

T
is the angular velocity of the rotating frame with respect to an

observer fixed in space. Hence, the velocity of the centre of mass in the space frame is given by

ṙG =

(

drG

dt

)

s

=

(

drG

dt

)

r

+ Ωr×rG,

=





ṙG,1

ṙG,2

ṙG,3



 , (4)

where

ṙG,1 = ẋ + ǫ
(

− cosβ sin φyφ̇y + sin β
(

cosφxφ̇x sin φy + sinφx cosφyφ̇y

))

− Ω (y + ǫ sinβ cosφx) ,

ṙG,2 = ẏ − ǫ sinβ sin φxφ̇x + Ω (x + ǫ (cosβ cosφy + sin β sinφx sinφy)) ,

ṙG,3 = ǫ
(

− cosβ cosφyφ̇y + sin β
(

cosφxφ̇x cosφy − sin φx sin φyφ̇y

))

.

The velocities of the balls are computed in the same manner, so that

ṙBi
=





ṙBi,1

ṙBi,2

ṙBi,3



 , (5)
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with

ṙBi,1 = ẋ + R
(

− sin φyφ̇y cosαi − cosφy sin αiα̇i + cosφxφ̇x sin φy sin αi

+ sinφx cosφyφ̇y sin αi + sin φx sin φy cosαiα̇i

)

+
(

− sin φxφ̇x sin φy + cosφx cosφyφ̇y

)

zi

−Ω (y + R cosφx sin αi − sin φxzi) ,

ṙBi,2 = ẏ + R
(

− sinφxφ̇x sin αi + cosφx cosαiα̇i

)

− cosφxφ̇xzi

+Ω (x + R (cosφy cosαi + sin φx sin φy sin αi) + cosφx sinφyzi) ,

ṙBi,3 = R
(

− cosφyφ̇y cosαi + sin φy sin αiα̇i + cosφxφ̇x cosφy sin αi − sin φx sin φyφ̇y sinαi

+ sinφx cosφy cosαiα̇i

)

+
(

− sinφxφ̇x cosφy − cosφx sinφyφ̇y

)

zi.

Next we turn to the expression for the rotational energy, which is most easily derived by using the
principal axes Gp1p2p3 of Fig. 3. It is in this frame that the inertia tensor J, takes the diagonal form

J =





Jt 0 0
0 Jt 0
0 0 Jp



 ,

in which Jt and Jp are the transverse and polar moments of inertia respectively. The angular velocity Ω

is composed from the following three angular velocity vectors: θ̇ directed along the Z-axis, φ̇y which is

directed along the y′ axis and φ̇x which lies along the x′′ axis. The rotation matrices of Section 2.2 can
now be used to transform these vectors so that they are written with respect to the principal axes, and
taking the sum we obtain the angular velocity vector Ω as

Ω = R4









φ̇x

0
0



 + R3





0

φ̇y

0



 + R3R2R1





0
0

θ̇







 ,

=









cosχ
(

φ̇x − θ̇ sin φy

)

− sin χ
(

−φ̇y sin φx + θ̇ cosφx cosφy

)

φ̇y cosφx + θ̇ sin φx cosφy

sin χ
(

φ̇x − θ̇ sin φy

)

+ cosχ
(

−φ̇y sin φx + θ̇ cosφx cosφy

)









.

Hence the rotational energy can now be easily computed as

1

2
ΩT

JΩ =
1

2
Jt

(

(

cosχ
(

φ̇x − Ω sin φy

)

− sin χ
(

−φ̇y sin φx + Ω cosφx cosφy

))2

+
(

φ̇y cosφx + Ω sin φx cosφy

)2
)

(6)

+
1

2
Jp

(

sinχ
(

φ̇x − Ω sinφy

)

+ cosχ
(

−φ̇y sinφx + Ω cosφx cosφy

))2

.

Finally substituting the equations (4-6) into equation (3) completes the derivation of the kinetic energy
for the system.

2.3.2 Potential Energy and Damping

The potential energy V , arises from the elastic deflection of the support bearings at S1 and S2, as
shown in Fig. 1. The coordinates of these supports are given in the rotor-fixed frame by [0, 0, l1]

T and
[0, 0,−l2]

T, and we assume that each bearing is linear and isotropic with stiffness k1, k2 and damping c1,
c2 respectively. By transforming coordinates to the space frame, the deflection dSi

of each support may
be written as

6
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dSi
= R

T

1









x
y
0



 + R
T

2
R

T

3





0
0

l̃i







 −





0
0

l̃i



 ,

=









cos θ
(

x + cosφx sinφy l̃i

)

− sin θ
(

y − sin φx l̃i

)

sin θ
(

x + cosφx sin φy l̃i

)

+ cos θ
(

y − sin φx l̃i

)

cosφx cosφy l̃i − l̃i









,

where

l̃1 = l1 and l̃2 = −l2.

Hence the potential energy can be computed as

V =
1

2

2
∑

i=1

kid
2
Si

,

=
1

2
k1

(

(x + cosφx sin φyl1)
2
+ (y − sin φxl1)

2
+ (cosφx cosφyl1 − l1)

2
)

(7)

+
1

2
k2

(

(x − cosφx sin φyl2)
2

+ (y + sin φxl2)
2
+ (− cosφx cosφyl2 + l2)

2
)

.

It is usual to assume that the vibrational coordinates (φx, φy) together with the imbalance errors ǫ and
χ are small and O(δ), with δ a small quantity. If we are to neglect terms of O(δ2) in the equations of
motion, then all terms of order O(δ3) which enter into Lagrange’s equation will not contribute to the
system, and can be ignored. A routine calculation now gives the more familiar expression

V =
1

2
k11

(

x2 + y2
)

+ k12 (xφy − yφx) +
1

2
k22

(

φ2
y + φ2

x

)

+ O(δ3),

where

k11 = k1 + k2, k12 = k1l1 − k2l2, k22 = k1l
2
1 + k2l

2
2.

Next we turn to the dissipative effects, which arise from the damping at the supports, together with the
viscous drag on the balls cb, as they pass through the fluid in the race. These terms are most easily
calculated through the use of Rayleigh’s dissipation function

F =
1

2

2
∑

i=1

ciḋ
2

Si
+

1

2

4
∑

i=1

cbα̇i
2,

which after some manipulation we may write as

F =
1

2
c11

(

(ẋ − Ωy)2 + (ẏ + Ωx)2
)

+c12

(

(ẋ − Ωy)
(

φ̇y + Ωφx

)

+ (y + Ωx)
(

−φ̇x + Ωφy

))

(8)

+
1

2
c22

(

(

φ̇y + Ωφx

)2

+
(

−φ̇x + Ωφy

)2
)

+
1

2

4
∑

i=1

cbα̇i
2 + O

(

δ3
)

,

where

c11 = c1 + c2, c12 = c1l1 − c2l2, c22 = c1l
2
1 + c2l

2
2.

The fully geometric nonlinear equations of motion are generated by substituting (3), (7) and (8) into
Lagrange’s equations. Before displaying them here, we shall first continue with non-dimensionalisation.
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2.3.3 Non-dimensionalisation and the Equations of Motion

We now consider the following dimensionless state variables

x̄ =
x

R
, ȳ =

y

R
, φ̄x = φx, φ̄y = φy,

ᾱi = αi for i = 1 . . . 4,

and the dimensionless time

t̄ = Ω1t.

Here Ω1 is the critical frequency associated with cylindrical whirl, and is given by, Ω1 =
√

k11/M .
Furthermore, we introduce the dimensionless parameters

Ω̄ =
Ω

Ω1

, ǭ =
ǫ

R
, m̄ =

m

M
, z̄ =

z

R
,

J̄ =
J

MR2
, J̄p =

Jp

MR2
, χ̄ = χ, c̄b =

cb

mΩ1R2
,

k̄11 =
k11

MΩ2
1

≡ 1, k̄12 =
k12

MΩ2
1R

, k̄22 =
k22

MΩ2
1R

2
,

c̄11 =
c11

MΩ1

, c̄12 =
c12

MΩ1R
, c̄22 =

c22

MΩ1R2
.

The equations of motion with respect to these non-dimensional quantities are computed with the aid of
the computer algebra system Maple, and are given as follows up to order O(δ2). The overbars have been
omitted for clarity and we start with the equations for the rotor motion, which are

[

M 0

0 M

]

ẍ +

[

C −Ω (2M − G)
Ω (2M − G) C

]

ẋ +

[

K − Ω2 (M − G) −ΩC

ΩC K − Ω2 (M − G)

]

x

= Ω2









ǫ cosβ
χ (Jt − Jp)

ǫ sin β
0









+ m

4
∑

i=1









(Ω + α̇i)
2

0 α̈i 0

0 (Ω + α̇i)
2

0 α̈i

−α̈i 0 (Ω + α̇i)
2

0

0 −α̈i 0 (Ω + α̇i)
2

















cosαi

zi cosαi

sin αi

zi sin αi









+









0
nφy

0
n-φx









.

(9)

where

M =

[

1 + 4m
∑

i mzi
∑

i mzi Jt +
∑

i mz2
i

]

, G =

[

0 0
0 Jp

]

, C =

[

c11 c12

c12 c22

]

, K =

[

k11 k12

k12 k22

]

,

are the mass, gyroscopic, damping and stiffness matrices respectively and x = [x, φy, y,−φx]
T

is the
vector of the rotor degrees of freedom. We have used −φx instead of φx so that (9) assumes a more
regular pattern. Finally the nφy

and n-φx
terms are given by

nφy
= m

4
∑

i=1

[

(

ẍ − 2Ωẏ − Ω2x
)

(φy cosαi − φx sin αi) − cos2 αi

(

φ̈y − 2α̇iφ̇x +
(

Ω2 + 2Ωα̇i

)

φy

)

+ sin αi cosαi

(

φ̈x + 2α̇iφy +
(

Ω2 + 2Ωα̇i

)

φx

)

+ α̈iφx

]

,

n-φx
= m

4
∑

i=1

[

(

ẍ − 2Ωẏ − Ω2x
)

φy sin αi + sin2 αi

(

φ̈x + 2α̇iφ̇y +
(

Ω2 + 2Ωα̇i

)

φx

)

−
(

ÿ + 2Ωẋ − Ω2y
)

φx sin αi − sin αi cosαi

(

φ̈y − 2α̇iφ̇x +
(

Ω2 + 2Ωα̇i

)

φy

)

]

.

8
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Coupled with (9) are the equations of motion for the balancing balls which are

α̈i + cbα̇i =
((

ẍ + ziφ̈y

)

− 2Ω
(

ẏ − ziφ̇x

)

− Ω2 (x + ziφy)
)

sinαi

−
((

ÿ − ziφ̈x

)

+ 2Ω
(

ẋ + ziφ̇y

)

− Ω2 (y − ziφx)
)

cosαi, for i = 1, . . . 4.
(10)

We note that by taking m = 0 in (9), we recover the equations of motion for a four degree of freedom
rotor in the rotating frame [9]. Similarly, by setting the tilt angles φx = φy ≡ 0, the system reduces to
the equations of motion for the planar automatic balancer [4].
It is also worth remarking that there are certain asymmetries in the nφy

and n-φx
terms corresponding

to the O(δ) moments of the balancing balls. These arise because of the inherently asymmetrical nature
of an Euler angle formulation. With reference to Fig. 2, we recall that φx is a rotation about the body ξ
axis while φy is taken, not about the body η axis, but about an intermediate y′ axis. With the standard
rotordynamic assumptions of small tilt angles and small eccentricities these asymmetries do not survive
the linearisation process. Here however, where the lever arm of the race cannot be neglected, extra terms
including these asymmetries are present [11].

3 Steady state bifurcation analysis

In this section we consider the stability of the steady state solutions of the system given by equations
(9-10). In order to simplify the bifurcation analysis, we shall restrict attention to a symmetric subsystem
which displays all the primary features of the autobalancing process. A situation that is common in
practice occurs when the rotor’s centre of mass is located at the midspan and both supports are identical,
so that

k1 = k2 = k, c1 = c2 = c, l1 = l2 = l, which leads to k12 = c12 = 0.

With this set-up, the lateral and inclinational motions of the rotor remain coupled, but only through
the motion of the balancing balls. In addition, we assume z1,2 = −z3,4 = z, so that the autobalancing
planes are equidistant from the midspan.
The rest of this section is organised as follows: in Section 3.1 we obtain the steady state solutions, noting
various conditions governing their existence, and in Section 3.2 we use the continuation package AUTO [12]
to compute bifurcation diagrams showing the boundaries of stability in various parameter planes.

3.1 Steady state solutions

Steady state solutions are obtained by setting all time derivatives in the equations of motion (9-10) to
zero. Moreover, if we also set the vibrational coordinates (x, y, φx, φy) = 0, we arrive at the following
conditions for a balanced steady state

cosα1 + cosα2 + cosα3 + cosα4 = sx,

sin α1 + sin α2 + sin α3 + sinα4 = sy,

cosα1 + cosα2 − cosα3 − cosα4 = cx,

sin α1 + sin α2 − sin α3 − sinα4 = cy,

(11)

where

sx =
−ǫ cosβ

m
, sy =

−ǫ sinβ

m
, cx =

−χ (Jt − Jp)

mz
, cy = 0.

These are precisely the conditions for equilibrium between the centrifugal forces and moments acting on
the rotor due to the imbalance and balancing balls [8]. By rewriting the above equation with respect to
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the average and differential angular displacements within each race, we find that

cos α̂12 cos ᾱ12 =
sx + cx

4
,

cos α̂12 sin ᾱ12 =
sy + cy

4
,

cos α̂34 cos ᾱ34 =
sx − cx

4
,

cos α̂34 sin ᾱ34 =
sy − cy

4
,

(12)

where

ᾱ12 =
α1 + α2

2
, α̂12 =

α1 − α2

2
, ᾱ34 =

α3 + α4

2
, α̂34 =

α3 − α4

2
.

Because the balls are assumed to be identical, we may without loss of generality take 0 ≤ α̂12, α̂34 ≤ π
2

and equation (12) can now be solved to give the following physically unique balanced state

ᾱ12 = arctan

(

sy + cy

sx + cx

)

+

{

0 if sx + cx ≥ 0,

π if sx + cx < 0.
,

α̂12 = arccos

(

1

4

√

(sx + cx)2 + (sy + cy)2
)

,

ᾱ34 = arctan

(

sy − cy

sx − cx

)

+

{

0 if sx − cx ≥ 0,

π if sx − cx < 0.
,

α̂34 = arccos

(

1

4

√

(sx − cx)
2

+ (sy − cy)
2

)

.

(13)

This solution exists provided that the arguments for both the arccoses have modulus less that one, which
ensures that the balls have enough mass to counteract the imbalance of the system. In what follows we
refer to (13) as the balanced state B.

B C1 C2 C3

ǫ

Fig. 4: Schematic diagram of the steady states for the case of a static imbalance. White surrounds
denote that both balls in the race are coincident.

The steady state configurations for the special case of a rotor with a static imbalance are illustrated in
Fig. 4. The balanced state B is shown on the left, but there are also various other steady state solutions
for which the rotor remains out of balance. In these cases we consider the equation for the balls (10),
which yields

(x + ziφy) sin αi = (y − ziφx) cosαi, i = 1 . . . 4, (14)
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where x + ziφy and y − ziφx, are recognised as the x and y deflections of the race centres. If for both of
the races (x + ziφy, y − ziφx) 6= 0, then we may rewrite (14) as

tan αi =

(

y − ziφx

x + ziφy

)

, i = 1 . . . 4,

with solutions

α1 = α2 + pπ, α3 = α4 + qπ, p , q ∈ Z.

Therefore the balls in each race are either coincident, or in-line with the race centre and opposite each
other. For example, in state C1 all the balls have the same angle and this configuration results in the
excitation of a cylindrical whirl. For state C2, the balls in each race are again coincident but there are
now two distinct angular displacements. This arrangement generates a couple imbalance and leads to a
conical type whirl. The inline states will not be discussed further because they are found to be always
unstable and are never involved in bifurcations with the balanced state.
Next we consider the state C3, in which (x + ziφy, y − ziφx) = 0 is satisfied by one of the two races,
so that its centre stays fixed at the undeflected position. The balls within this fixed race are now not
constrained by equation (14), although the balls in the opposing race are again either coincident or inline.
As an example, the arrangement for C3 depicted in Fig. 4 shows coincident balls in the top race while
the bottom race balls are split. The corresponding state, where the roles of the races are swapped, is
physically equivalent, because the symmetry between the two races is preserved by a static imbalance.
However, this will not be the case for a general imbalance, as we shall discuss in section 3.2.2. Finally,
we note that if (x + ziφy, y − ziφx) = 0, for both of the races, then we are again led to the balanced
state B, which has been covered previously.

3.2 Numerical continuation

For the remainder of this study we shall consider a rotor with the following inertial and stiffness param-
eters

Jt = 3.25, Jp = 0.5, l = 3,

k11 ≡ 1, k12 = 0, k22 = 9.
(15)

These values are based on a solid cylindrically shaped rotor with a height of six times its radius. A ro-
tating machine on compliant bearings with this geometry would typically undergo a two-plane balancing
procedure before going into service. The approximate natural frequencies for the cylindrical and conical
modes occur respectively at

Ω1 =

√

k11

M
≡ 1, and Ω2 =

√

k22

Jt − Jp

≃ 1.81, (16)

and we shall now investigate the results for both the static and dynamic imbalance cases.

3.2.1 Static Imbalance

As mentioned above, a static imbalance occurs when the principal axis is displaced, but parallel to, the
rotation axis so that there is a shaft eccentricity ǫ 6= 0, but no shaft misalignment χ = 0. For this
special case, we are able to recover all the bifurcations and steady state solutions that have been found
previously in the studies of a planar automatic balancer [3, 4]. However, because our model includes the
extra inclinational degrees of freedom, the rotor is now able to destabilise via out of plane motions, and
so, the steady states will necessarily have smaller regions of stability.
In Fig. 5 we present results for the following parameters

ǫ = 0.01, χ = 0, (β = 0),

z = 2, cb = 0.01, and c = 0.01,

so that

c11 = 0.02, c12 = 0, c22 = 0.18.

(17)
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Fig. 5: Bifurcation diagrams in the (Ω, m)-plane showing curves of the (degenerate) pitchfork PF and
Hopf bifurcations H which involve the balanced state B, (a) and (d). We take ǫ = c = cb = 0.01, with
the other parameters given by (15-17). The shaded regions correspond to a stable balanced state, and
the subscripts for the Hopf bifurcations denote which mode is involved. Numerical simulations at the
points indicated by a • are presented in Fig. 11. One-parameter diagrams in m for Ω = 1.5 are shown in
(b) and (c), with norms given by α1 and L2 respectively, and labels for the steady states described as in
Fig. 4. Panel (e) shows the one-parameter bifurcation diagram for Ω = 3.
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For this value of the eccentricity, the balanced state B exists provided that

m ≥ mc :=
ǫ

4
= 0.0025, (18)

where mc is the critical value of the ball mass. We also note that the balancing planes are appropriately
spaced, and that the race and supports have low damping values, which match those in [3, 4]. Figure 5(a)
shows the results of a two-parameter bifurcation analysis upon variation of the dimensionless parameters
Ω and m, whilst we keep the other parameters fixed. The shaded regions correspond to the existence
of a stable balanced state B, although as we shall discuss in section 4, other less desirable stable states
may coexist in these regions. For masses of the balls which satisfy m ≥ mc the balanced state B always
exists, but it is not necessarily stable. The curves marked Hcyl and Hcon are Hopf bifurcations of B,
at which oscillations are induced by the cylindrical and conical modes respectively. In a planar analysis
only the Hcyl curves are present, and as such, they are always accompanied by a change in stability. Here
with the inclusion of the inclinational degrees of freedom, the stability of B is predominately determined
by the Hcon curves, at which the conical type oscillations, are either created or destroyed.
For large values of Ω, the balanced state B stabilises in a Hopf bifurcation Hcon and there is also a
secondary region of stability, for sufficiently large values of m, at rotation speeds just above the natural
frequency Ω2. We also draw attention to the similarities between the shape of the two Hopf curves Hcyl

and Hcon, suggesting that there is in some sense, a duality between the lateral and inclinational dynamics
of the automatic balancer.
The one-parameter bifurcation diagrams of Figs. 5(b) and (c) show the result of increasing m through
mc for Ω = 1.5, which is a value of the rotation speed that lies in between the natural frequencies of
the rotor. The angular displacement α1 is used as the solution measure in Fig. 5(b), and we see that an
unstable balanced state B is born at m = mc in a pitchfork bifurcation involving the unstable coincident
state C1. Note that the two copies of the balanced state B come from interchanging the ball positions,
for example α1 ↔ α2. In Fig. 5(c) we plot the same bifurcation diagram as shown in panel (b) but instead
we use the Euclidean norm L2. Here only one copy of each physically unique state is generated, and we
can see that the balanced state B is in fact produced at a degenerate pitchfork bifurcation involving the
states C1 and C3.
Next we consider the situation for the supercritical regime where Ω > Ω2. Figure 5(d) is an enlargement
of our region of interest and panel (e) shows a one parameter scan as we increase m through mc, for a
fixed rotation speed of Ω = 3. Again we find that the balanced state B is born at a degenerate pitchfork
bifurcation involving states C1 and C3, but in contrast with the situation for subcritical rotation speeds,
the coincident state C1 and the bifurcating balanced state B are now both stable. Note also, that the
balanced state changes stability through a series of three further Hopf bifurcations, which is in agreement
with the vertical slice taken through panel (d) at Ω = 3.
Now let us consider some stability diagrams similar to Fig. 5(a), in which we vary other dimensionless
parameters. We take m = 0.025 so that condition (18) needed for balance is satisfied, and the values for
the other parameters when fixed, are again given by (15) and (17).
In Fig. 6 we display some two-parameter stability charts upon variation of the eccentricity ǫ, the support
damping c, and the race damping cb, as the rotation speed Ω is increased. Here, we are again able to
recover the Hcyl curves which are present in the planar analyses, but as before the Hcon bifurcations have
more influence on the stability of the balanced state. We also highlight some of the same features which
were present in Fig. 5, namely: the stabilisation of the balanced state through a Hcon Hopf bifurcation
for high enough rotation speeds, the smaller secondary stable region at rotation speeds just above Ω2,
and most notably in panel (c) the similarity between the shapes of the Hcyl and Hcon curves.
Figure 7 shows the eccentricity ǫ, plotted against Ω, whilst we also vary the ball mass so that m =
4mc = ǫ. Thus, for any given value of the eccentricity, the balls have a mass which is four times the
minimum amount that is required to balance the system. A logarithmic scale is used for the vertical axis
so that a wide range of eccentricities can be considered. Here, the main area of interest occurs for small
eccentricities and supercritical rotation speeds where there is a large connected stable region. We also
note that the Hcon curve, which bounds this region, asymptotes towards Ω = Ω2 as ǫ → 0 so that there
is no stable region in the subcritical regime.
Finally, before moving on to a general dynamic imbalance, we shall briefly discuss the case of a couple
imbalance, for which there is a shaft misalignment χ 6= 0 but no shaft eccentricity ǫ = 0. The steady states
for this case are illustrated schematically in Fig. 8. The only difference between the static imbalance
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Fig. 6: Two-parameter bifurcation diagrams, upon variation of the parameters: ǫ against Ω (a), c
against Ω (b), and cb against Ω (c). The shaded regions correspond to a stable balanced state B, and
Hopf bifurcations H are shown with subscripts indicating the mode of oscillation. Parameters when fixed
are m = 0.025, ǫ = c = cb = 0.01, with the other values specified in the text.
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Fig. 7: Diagram showing stable regions of the balanced state B upon variation of the parameters ǫ
against Ω, whilst m is also varied so that m = ǫ. The vertical scale is logarithmic and c = cb = 0.01.

steady states of Fig. 4 is that here the bottom race has been rotated through an angle of π radians.
Again, the symmetry between the two races is preserved by this type of imbalance, and the balanced
state B is always born in a degenerate pitchfork bifurcation involving the coincident states C1 and C3.
Moreover if the misalignment parameter χ, is appropriately chosen so that we again have mc = 0.0025,
the results shown in Fig. 5(a) for a static imbalance can be recovered. Thus, there is an equivalence
between the properties of the automatic balancer for a pure eccentricity and for a pure misalignment,
and we shall not provide any explicit bifurcation diagrams for the couple imbalance case.

B C1 C2 C3

χ

Fig. 8: Schematic diagram of the steady states for the case of a couple imbalance. White surrounds
again indicate that both balls in the race are coincident.

3.2.2 Dynamic Imbalance

A dynamic imbalance arises when there is both a shaft eccentricity ǫ 6= 0, and a shaft misalignment
χ 6= 0. A phase angle β must also be included to describe the difference between the directions of the
two imbalances.
The parameter set which was given in (15) and (17) is used again, except that we change the imbalance
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characteristics to

ǫ = 0.005, χ = 0.005, β = 1.

The critical mass for the balls mc, is now given by

mc := max

{

1

4

√

(

ǫ cosβ ±
χ (Jt − Jp)

z

)2

+ (ǫ sin β)
2

}

≃ 0.00261, (19)

which is a similar value to that in the static imbalance case of the previous section.
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Ā

Fig. 9: Panel (a) is a bifurcation diagram in the (Ω, m)-plane showing curves of the pitchfork PF and
Hopf bifurcations H which involve the balanced state B. Parameters when fixed are, ǫ = χ = 0.005,
β = 1, and c = cb = 0.01 with the other values specified in the text. The shaded region corresponds
to a stable balanced state, and the subscripts for the Hopf bifurcations denote which mode is involved.
Numerical simulations at the point highlighted by a • are presented in Fig. 12. A one-parameter diagram
in m for Ω = 3 is shown in (b), with norm given by Ā.

In Fig. 9(a) we provide a two-parameter bifurcation diagram upon the variation of the ball mass m
and the rotation speed Ω. Qualitatively the graph is similar to the static case of Fig. 5(a), in that
the balanced state also stabilises in a Hopf bifurcation Hcon, for high enough rotation speeds in the
supercritical regime. However the secondary stable region has now almost disappeared, and we see a
sharp upward spike in the lower Hcyl curve which is indicative of mixing between the cylindrical and
conical modes. In panel (b) we scan vertically through Fig. 9(a) holding the rotation speed fixed at
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Ω = 3, while increasing the ball mass m through mc. In this diagram we use the norm Ā defined by

Ā =
1

2

(

√

(x + φy)
2

+ (y − φx)
2

+

√

(x − φy)
2
+ (y + φx)

2

)

. (20)

Physically this measure corresponds to the average vibration level at the points on the shaft that are a
unit length from the rotor centre. We see that the degenerate pitchfork bifurcation which was present
for the static imbalance case has been split into three separate non-degenerate pitchforks. For a generic
dynamic imbalance this unfolding occurs because the symmetry between the two races has been broken.
As a consequence, the unbalanced steady state C3 separates into two physically different cases. The
configuration with coincident balls in to top race is called Ct3, whereas the corresponding state with the
bottom race balls coincident is Cb3. We find that the symmetry and resulting degenerate bifurcation is
only preserved when there is a pure static or couple imbalance or if the phase is such that cosβ = 0. In all
these cases there is no component of the shaft eccentricity which lies in the direction of the misalignment.
Thus from (13) we can see that α̂12 ≡ α̂34 and so the balanced state B is born from a state where the
balls in both races are coincident.
Finally in Fig. 10 we provide a two-parameter bifurcation analysis as we vary the support damping c
versus Ω (a), and the race damping cb versus Ω (b). Again we choose m = 0.025 so that condition (19)
for the existence of the balanced state is satisfied. By comparison with Fig. 6 we note that in both cases
the secondary stable regions have been lost. Also the stable region for high rotation speeds and high
support damping c is dramatically reduced.
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Fig. 10: Two-parameter bifurcation diagrams, upon variation of the parameters, c versus Ω (a), and cb

versus Ω (b). The shaded regions correspond to a stable balanced state B. Parameters when fixed are
m = 0.025, ǫ = χ = 0.005, β = 1, and c = cb = 0.01 with the other values specified in the text.
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4 Numerical Simulation

We build on the bifurcation analysis of the previous section by presenting some results which illustrate
the important dynamics of the automatic ball balancer (ABB). Here we use the Matlab routine ode45 to
perform a direct numerical integration of the equations of motion (9-10), which were derived in section
2. As a check, we note that our simulations agree with those of [3, 4] for appropriate choices of the
parameters and initial conditions.
Figure 11 shows the effect of varying the system parameters for the static imbalance case that was
discussed in section 3.2.1. The positions in parameter space of these runs are highlighted in Figs. 5 and
7. We plot the vibration measure Ā against the dimensionless time t, here the black curve represents
the motion of the rotor with the ABB and the grey curve the motion of the rotor without the ABB. The
initial conditions for all four plots are the same and are given by

α1 = −α2 = α3 = −α4 = π/2, and

(x, y, φx, φy) = (ẋ, ẏ, φ̇x, φ̇y) = (α̇1, α̇2, α̇3, α̇4) = 0.
(21)
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Fig. 11: Numerical simulations showing vibration levels for the static imbalance case with low damping
c = cb = 0.01. Initial conditions are fixed so that the rotor begins at rest and the balls in each
race are on opposite sides with (α1,−α2) = (α3,−α4) = π/2. Values of Ω, ǫ and m are fixed at
(Ω, ǫ, m) = (2.0, 0.01, 0.025) (a), (2.5,0.01,0.005) (b), (4.0,0.01,0.005) (c), and (1.5,0.025,0.025) (d). These
points are specified in parameter space by a • in Figs. 5 and 7.

Therefore the rotor starts at rest in the undeflected position and the balls are initially stationary (with
respect to the rotating frame) and are placed on opposite sides to each other so that they do not add
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Fig. 12: Numerical simulations for the dynamic imbalance (ǫ, χ, β) = (0.005, 0.005, 1.0) showing vibration
levels Ā above the ball positions αi. The parameter set used is the same as that in section 3.2.2 with Ω and
m fixed at (Ω, m) = (3.5, 0.005). This position is also highlighted by a • in Fig. 9. Initial conditions are
(α1,−α2) = (α3,−α4) = π/2 (a), (α1,−α2) = π/3, (α3,−α4) = 2π/3 (b) and (α1, α2) = 0, (α3, α4) = π
(c).
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to the imbalance of the rotor. Panel (i) shows the simulation for (Ω, ǫ, m) = (2, 0.01, 0.025) which, with
reference to Fig. 5, lies in the secondary region of stable balanced operation, at a rotation speed just
above the natural frequency Ω2. We note that although the autobalancing state is eventually achieved,
the transients produce slightly higher levels of initial vibrations. Also, if we perturb the initial conditions
so that the shaft is slightly tilted, we find that the rotor can easily destabilise into a periodic type motion
with significantly worse levels of vibration (not shown but qualitatively similar to that of (ii)). This effect
may be understood by considering the results of Fig. 9, where we commented on the disappearance of
the secondary stable region upon the introduction of a shaft misalignment. The initial tilt of the rotor
leads to a motion of the balls that produces a small couple imbalance, which in turn destabilises the
operation of the ABB.
Figure 11 (ii) shows the time profile for (Ω, ǫ, m) = (2.5, 0.01, 0.005). This point lies outside the region of
stability for the balanced state B, however the transient response dies down to a very low vibration level
before eventually destabilising into periodic motion. This type of behaviour is typical of the dynamics
near a saddle type fixed point when there are symmetrical initial conditions. In panel (iii) our parameters
are (Ω, ǫ, m) = (4, 0.01, 0.005), which lies in the larger primary region of stable balanced operation. For
this case, balance is achieved after t ≈ 400 and the transient period for both curves are approximately
the same. Moreover the dynamics here are more robust than in (i) to perturbations in the initial tilt of
the rotor. Again, with particular reference to Figs. 5 (a) and 9 (a), we observe that the primary region
of stability is not greatly influenced by the inclusion of a couple imbalance. Thus initial motions of the
balls, which cause small inclinational motions, tend not to destabilise the device. Finally, in panel (iv)
we illustrate the behaviour for (Ω, ǫ, m) = (1.5, 0.025, 0.025) which, as shown in Fig. 7, lies well outside
any region of balanced operation. This is a very undesirable state as the rotor now appears to undergo
chaotic motion and reaches levels of vibration which are far higher than that for the rotor without an
ABB mechanism.
Now we turn to the effect that the initial conditions have on the operation of the ABB. It was found
that there was little sensitivity to typical variations in the initial values of the vibrational coordinates
(x, y, φx, φy) or their velocities (ẋ, ẏ, φ̇x, φ̇y), however the initial value of the ball positions αi can have
a dramatic impact on the outcome of the system. We consider the dynamic imbalance case of section
3.2.2 where (ǫ, χ, β) = (0.005, 0.005, 1.0). In particular we take (Ω, m) = (3.5, 0.005), which is indicated
in Fig. 9 and lies in the stable balanced region. We display in Fig. 12 the vibration level Ā for the rotor
with and without the ABB mechanism and the angular displacement of the balancing balls α1, α2 (black
curves) and α3, α4 (grey curves) are shown underneath. Panel (a) illustrates the results for the same
initial conditions that were used for Fig. 11; namely those given by (21). Here the balls get attracted to
the balanced state B with angular positions αi given by (13).
In panel (b) we take the initial conditions α1 = −α2 = π/3, α3 = −α4 = 2π/3, this has the effect of
increasing the initial couple imbalance of the rotor. Here the device settles down to a periodic motion
where the vibration level is about twice that of the rotor without the ABB. We find that one of the balls
in the top race lags behind the rotor with α̇ = −Ω. Thus this ball only performs one revolution for every
two of the rotor. Note that a model which included partitions of the race [13] or allowed for collisions
between balls would prevent such dynamics. Finally in Fig. 12 (c) we consider starting conditions where
the initial couple balance is maximised so that α1 = α2 = 0, and α3 = α4 = π. In this case the rotor
appears to undergo a chaotic motion and the vibration level of the rotor is an order of magnitude worse.

5 Conclusion

We have provided the first nonlinear bifurcation analysis of a two-plane automatic balancer for rigid
rotors. It has been demonstrated that the use of rotating coordinates enables an autonomous formulation
for the equations of motion. Two-parameter stability charts obtained by numerical continuation show
that the considered device can effectively eliminate imbalances arising from both shaft eccentricity and
shaft misalignment. However, the balancing process only works for sufficiently high rotation speeds above
the second critical frequency [8].
In our investigations, we have found all the bifurcations which appear in the planar analysis of the
ABB [3, 4], together with additional bifurcations that occur as a result of the out-of-plane motions.
Furthermore, we have highlighted how the symmetry properties of the imbalance affects the degeneracy
of the bifurcation at which the balanced state is born.
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In addition, we have presented numerical simulations which show the coexistence of the balanced state
with other less desirable dynamics. Here as expected, the probability of successful operation is maximised
by releasing the balls from directly opposite points on the race so that the initial imbalance is not
increased.
The model introduced in this paper has a number of assumptions that may not be valid for an autobal-
ancer operating on a real machine. We plan to continue the present work by investigating the performance
of the automatic balancer on rotors which have asymmetric support characteristics or where the balanc-
ing planes are not equidistant from the midspan. Also more research needs to be carried out in order to
determine the influence of ball-race interactions and rotor flexibility on the autobalancing process.
However it is clear that the ABB is a highly nonlinear device, and so the regions of its stability depend
in a non trivial way on the parameters of the system. As a result, we expect that the methods provided
here will influence the design requirements for the ABB, in order that it may successfully emulate the
two-plane balancing procedure.

6 Acknowledgements

DJR gratefully acknowledges the support from a CASE award provided by the EPSRC and Rolls-
Royce plc.

References

[1] E. Thearle, A new type of dynamic-balancing machine, Transactions of the ASME 54(APM-54-12)
(1932) 131-141.

[2] J. Lee and W. K. Van Moorhem, Analytical and experimental analysis of a self compensating
dynamic balancer in a rotating mechanism, ASME Journal of Dynamic Systems, Measurement and

Control 118 (1996) 468-475.

[3] J. Chung and D. S. Ro, Dynamic analysis of an automatic dynamic balancer for rotating mechanisms.
Journal of Sound and Vibration 228(5) (1999) 1035-1056.

[4] K. Green, A. R. Champneys, and N. J. Lieven, Bifurcation analysis of an automatic dynamic
balancer for eccentric rotors. Journal of Sound and Vibration 291 (2006) 861-881.

[5] M. Hedaya and R. Sharp, An analysis of a new type of automatic balancer, Journal of Mechanical

Engineering Science 19(5) (1977) 221-226.

[6] J. Chung and I. Jang, Dynamic response and stability analysis of an automatic ball balancer for a
flexible rotor. Journal of Sound and Vibration 259(1) (2003) 31-43.

[7] C.-P. Chao, Y.-D. Huang, and C.-K. Sung, Non-planar dynamic modeling for the optical disk drive
spindles equipped with an automatic balancer. Mechanism and Machine Theory 38 (2003) 1289-
1305.

[8] L. Sperling, B. Ryzhik, Ch. Linz and H. Duckstein, Simulation of two-plane automatic balancing of
a rigid rotor, Mathematics and Computers in Simulation 58 (2002) 351-365.

[9] G. Genta, Dynamics of Rotating Systems. Springer, New York (2005).

[10] D. J. Rodrigues, A. R. Champneys, M. I. Friswell and R. E. Wilson, Automatic balancing of a rigid
rotor with misaligned shaft, Journal of Applied Mechanics and Materials 5-6 (2006) 231-236.

[11] G. Genta, C. Delprete and E. Busa, Some considerations on the basic assumptions in rotordynamics,
Journal of Sound and Vibration 227(3) (1999) 611-645.

[12] E. Doedel, A. Champneys, T. Fairgrieve, Y. Kusnetsov, B. Sanstede,
and X. Wang, AUTO97: Continuation and bifurcation software for ordinary differential equations,
http://indy.cs.concordia.ca/auto/main.html, 1997.

21



Acc
ep

te
d m

an
usc

rip
t 

[13] K. Green, A. R. Champneys, M. I. Friswell, and A. M. Muñoz, Investigation of a multi-ball auto-
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