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 3 and 4). The amplitudes of the wall shear stresses corresponding to the cosine and sine oscillations are almost identical, except for a small initial time interval. The time required to attain the steady-state for the cosine oscillations of the boundary is smaller than that for the sine oscillations of the boundary. This time decreases if the frequency of the velocity of the boundary increases.

Introduction

The study on the flow of a viscous fluid over an oscillating plate is not only of fundamental theoretical interest but it also occurs in many applied problems. In the literature this motion is termed as Stokes' second problem or Rayleigh problem [START_REF] Schlichting | Boundary Layer Theory[END_REF]. The first exact solutions corresponding to this problem for non-Newtonian fluids seem to be those of Rajagopal [START_REF]A note on unsteady unidirectional flows of a non-Newtonian fluid[END_REF]. Recently, Erdogan [START_REF] Erdogan | A note on an unsteady flow of a viscous fluid due to an oscillating plane wall[END_REF] established exact transient solutions for the motion of a Newtonian fluid due to the cosine and sine oscillations of the plate. For large times these solutions tend to the steady-state solutions. However, the Erdogan's solutions are complicated enough and they are not presented as sum of the steady-state and transient solutions. The purpose of this note is to present new exact solutions for the Stokes' second problem describing the flow for small and large times. In order to obtain these solutions the Laplace transform method is again used, but our solutions are directly presented as sum of the steady-state and transient solutions and are simpler than the previous ones.

Direct computations show that the steady-state solutions can be reduced to the classical forms [START_REF]A note on unsteady unidirectional flows of a non-Newtonian fluid[END_REF][START_REF] Erdogan | A note on an unsteady flow of a viscous fluid due to an oscillating plane wall[END_REF], while the diagrams of the transient solutions, as it was proved by graphical illustrations, are in close proximity of those obtained in [START_REF] Fetecau | Starting solutions for some unsteady unidirectional flows of a second grade fluid[END_REF] by a different technique. The required time to reach the steady-state for cosine oscillations of the wall is smaller than that for the sine oscillations of the wall. This time decreases if the frequency of the velocity of the boundary increases.

Statement of the problem

Consider a Newtonian fluid at rest over an infinitely extended plate which is situated in the (x, z) -plane. At time

+ = 0 t
the plate begins to oscillate in its plane and transmits the motion into the fluid. Its velocity is of the form
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where i denotes the unit vector in the x -direction.

The governing equation, in the absence of a pressure gradient along the x -axis and

neglecting body forces, is [2, 3] , 0 t , y ; y ) t , y ( u t ) t , y ( u 2 2 > ∂ ∂ ν = ∂ ∂ ( 2 
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where ν is the kinematic viscosity of the fluid. 

)
where ω is the frequency of the velocity of the wall.

Solution of the problem

In order to determine exact solutions to the previous problems, describing the motion of the fluid at small and large times after the start of the boundary, the Laplace transform method is used. Consequently, applying the Laplace transform to Eq. ( 2) and using the initial and boundary conditions ( 3) and ( 4), we find that . q y exp q
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Regarding the right parts of Eqs. (5) as a product of two functions ) q ( U 1 and ) q , y ( U 2 and using the known results [5]
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where * denotes the convolution product of two functions,
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, we find for the velocity field ) t , y ( u the simple expressions , ds s 4
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The solutions ( 8) and ( 9) can be also written into equivalent forms , ds s 4 
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As soon as the velocity fields have been determined, the corresponding shear stresses can be immediately obtained by means of the known relation . y
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Consequently, introducing (12) and ( 13 
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By letting now ∞ → t into these last four relations, we attain to the classical steadystate solutions (cf. with [START_REF]A note on unsteady unidirectional flows of a non-Newtonian fluid[END_REF] or [START_REF] Erdogan | A note on an unsteady flow of a viscous fluid due to an oscillating plane wall[END_REF], Eqs. ( 12) and ( 17)) 
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as it results from Figs. 1, 2, 3 and 4, they are identical to those obtained in [START_REF] Fetecau | Starting solutions for some unsteady unidirectional flows of a second grade fluid[END_REF] 15) and ( 16) we can immediately determine the shear stress at the wall
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for the cosine oscillations of the boundary, and
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for the sine oscillations of the boundary. The graphs of the wall shear stresses, corresponding to the cosine and sine oscillations of the boundary, are presented in Figs. 5 and6. For a better comparison their plots are presented together as well as separately.

The two oscillations have similar amplitudes and a phase shift that persists for all times.

Note that the improper integral in Eq. ( 27) is divergent at 0 t = . The some behavior is observed by analyzing Eq. (25) for 0 y = which strengthens the excellent agreement (as demonstrated by figure 3) between formulas (21) and (25). On the other hand formula (28), for the sine oscillations of the boundary, contains an improper integral which is convergent at 0 t = in agreement with the expression (26) obtained by the Fourier transform technique.

Finally, as it was to be expected, it is worthy pointing out that making 0 → ω into Eqs.

(12) and ( 15) we obtain the classical solutions , t 2
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corresponding to the first problem of Stokes [START_REF] Zierep | Similarity Laws and Modeling[END_REF]. In order to obtain these results, we have 
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In the above relations, ) ( erf ⋅ and ) ( erfc ⋅ are the error function and the complementary error function of Gauss.

Conclusions

In this note we have established new exact solutions corresponding to the second problem of Stokes for Newtonian fluids. These solutions, unlike those obtained by Erdogan [START_REF] Erdogan | A note on an unsteady flow of a viscous fluid due to an oscillating plane wall[END_REF], are simpler and directly presented as a sum of steady-state and transient solutions. The steady-state solutions can be brought to the classical forms, while the graphs of the transient solutions, as depicted in Figs.1, 2, 3 and 4, are in close proximity to those corresponding to the similar solutions obtained in [START_REF] Fetecau | Starting solutions for some unsteady unidirectional flows of a second grade fluid[END_REF] by a different technique.

For large values of t, when the transients disappear, the motion of the fluid is described by the steady-state solutions which are periodic in time and independent of the initial conditions. However, they satisfy the governing equation and the associated boundary conditions.

The variations of the wall shear stresses for the cosine and sine oscillations of the boundary are presented in Figs. 5 and6 for several time intervals. The two oscillations have similar amplitudes and a phase shift that persists for all times. The two sets of formulas (one obtained by Laplace transform, the other by Fourier sine transform) are in perfect agreement. 
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 6 Fetecau, D. Vieru and C. Fetecau which are periodic in time and independent of the initial conditions. As regards the

Finally, we would

  like to know the required time to attain the steady-state for the cosine and sine oscillations of the boundary. The variations with the distance from the wall of the corresponding starting and steady-state velocities for the oscillations of in Figs.7 and 8. It is clearly seen from these figures that the required time to reach the steady-state for sine oscillations of the wall is greater than that for the cosine oscillations of the boundary. Furthermore, this time decreases if the frequency ω of the velocity increases.
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