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Excitation Symmetry Analysis Method

(ESAM) for Calculation of Higher Order

Nonlinearities

Serge Dos Santos and Camille Plag
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l’Université François Rabelais FRE 2448 CNRS - GIP Ultrasons,

ENIVL, Rue de la Chocolaterie BP 3410, F-41034 BLOIS cedex, France

Abstract

A nonlinear system with third order nonlinearity is fully characterized using Sym-
metry Analysis applied to the excitation, as it is done in second order nonlinear
systems using the pulse inverted method. Symmetry Analysis is performed using ir-
reductible representations and the character table of C3 rotation point group, which
leads to the construction of three eigen-excitations allowing extraction of the third
order nonlinearity parameter without the perturbation of fundamental and second
order terms. Validation of this concept is based on Excitation Symmetry Analysis
Method (ESAM) which was tested on simulated noisy signals and compared with
classical spectral analysis.

Key words: elsart, document class, instructions for use
PACS: 43.25-x, 43.25Ts,43.60Wy Nonlinear Systems, Symmetry Analysis,
eigen-excitations

1 Introduction

The Pulse Inversion (PI) technique is one of the most successful signal pro-
cessing tools in second harmonic imaging due to its ability to separate second
order harmonic components regardless of the transmitted bandwidth[1]. The
PI success is not only restricted to Doppler imaging where multiple pulses are
transmitted whereby adjacent pulses are inverted relative to their neighboring
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pulses, but also to any characterization in the time domain, of second order
nonlinear systems. During the last two decades, higher order nonlinearities
seem to bring additional information in various applications such as biomedi-
cal engineering, where signal contrast improvement on tissue is achieved with
contrast agent[2], or non destructive testing[3], where nonclassical nonlinearity
seems to be present.

The success of these new imaging systems has lead to the natural investiga-
tion of the use of higher harmonics and associated new signal processing tools.
Nevertheless, most nonlinear systems, such as materials with cracks[4], exhibit
third order nonlinearities when they are analyzed with ultrasound imaging,
making it impossible to use the PI method. Various signal processing meth-
ods, including high order Fourier and wavelet analysis, which mix time and
frequency domains have shown their interest in such systems. All of them use
the concept of specific representations of signals in suitable spaces, which are
intrinsically linked to symmetries and where invariants have to be extracted.

Furthermore, there is an increase in the use of Symmetry Analysis (SA) for
nonlinear systems[5] due to its ability to simplify and sometimes completely
solve the nonlinear problem under investigation (see for example [6,7] where
practical applications of this method have been implemented). SA can be used
as a powerful tool for defining specific transformations of space called ”sim-
ilarity transformations” of signals coming from nonlinear systems, on which
classical signal processing can be performed.

In this paper, we define an extension of the PI method using the concept of
Symmetry Analysis (SA). Group properties are used to define specific exci-
tations called eigen-functions which allow characterization of the 3rd order
nonlinearity. The objective of this paper is to interpret PI with the group
theoretical point of view and use group analysis for the definition of its ex-
tension, called Excitation Symmetry Analysis Method (ESAM). We propose
a quantitative comparison between results using ESAM and classical system
analysis.

2 SA interpretation of Classical PI method

Let us consider a second order nonlinear system (S) excited with x(t), and
where the response y(t) is given by :

y(t) = NL[x(t)] = N1x(t) + N2x
2(t), (1)

where N1 and N2 are respectively linear and second order coefficients. If XE =
x(t) and XI = −x(t) are applied separately to (S), one can extract N1 and
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N2 using the respective nonlinear response YE(t) and YI(t) with :

N1 =
YE(t) − YI(t)

2x(t)
, (2)

N2 =
YE(t) + YI(t)

2x2(t)
. (3)

In classical PI, the use of Eq.(3) leads to the measurement of second order
nonlinearity signature N2 with high amplitude pulses, where adjacent pulsed
excitations are applied to the nonlinear medium and imaged with classical
Doppler instrumentation.

C2 E I C2 E I

E E I Ag 1 1

I I E Au 1 -1

Table 1
Multiplication table (left) and character table (right) for the point group C2. The
top row of the right table labels the group elements, and the first column labels the
one-dimensional irreducible even Ag and odd Au representations. E is the identity
and I denotes inversion or rotation by an angle π

In terms of symmetry properties[8], excitation XE and XI can be associated to
neutral element E and inversion element I of the C2 group of inversion whose
properties are given in Table 1. In fact, if we define ΦAu

= YE(t) − YI(t) and
ΦAg

= YE(t) + YI(t) which appear respectively in Eq.(2) and Eq. (3), one can
see that linear signature N1 and nonlinear signature N2 are completely isolated
and extracted thanks to these functions. On the other hand, ΦAg

= 2N2x
2(t)

and ΦAu
= 2N1x(t) can be seen as eigen-response of the system with respect

to linear and nonlinear parts. Signatures N1 and N2 can be extracted from
ΦAg

and ΦAu
, assuming a normalization by the input x(t) for ΦAu

and x2(t) for
ΦAg

. It is important to note that this calculation is not dependant of spectral
content of excitation x(t). Properties of (S) with respect to group inversion
C2 allow the separation between linear and nonlinear parts. The concept of
symmetrization of excitation is then defined if we consider that extraction
of the nonlinear signature N2 has been obtained thanks to the action of the
group elements E and I acting on the excitation x(t).

Assuming isomorphism properties between the inversion group and the rota-
tion point group C2, equivalent interpretation can be proposed in order to link
our analysis to classical results concerning PI. If we consider the single fre-
quency excitation x(t) = x0e

jωt, where ω is the angular frequency, the action
of inversion I on excitation x(t), ie XI can be written as :

XI = −x0e
jωt = x0e

jωte−jπ = x0e
jωt−jπ = x0e

j(ωt−π), (4)
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which is interpreted as a π-phase shift of the excitation x(t). Consequently,
the equivalence between the inversion group CI and the rotation group C2 is
again validated. This link between CI and C2 groups can be also recovered if
we try to find the rotation angle φ which must be applied to x(t) and x(t)ejφ

in order to obtain Eqs.(2-3). Assuming yφ = NL[x(t)ejφ], one obtains :

yφ = N1x(t)ejφ + N2x
2(t)e2jφ, (5)

y0 = N1x(t) + N2x
2(t), (6)

and then

ΦAg
= yφ + y0 = N1(1 + ejφ)x(t) + N2(1 + e2jφ)x2(t), (7)

ΦAu
= yφ − y0 = N1(1 − ejφ)x(t) + N2(1 − e2jφ)x2(t). (8)

In order to obtain uncoupled equations with respect to N1 and N2, φ = π can
be chosen, and demonstrate that C2 group properties simplify the problem.

2.1 Generalization of Symmetrization of Excitation : ESAM Analysis

Let us extend the previous analysis in order to consider a third order nonlinear
system (S) :

y(t) = NL[x(t)] = N1x(t) + N2x
2(t) + N3x

3(t), (9)

where N3 is the third order coefficient. Let us apply the previous method using
properties of the C3 group for which properties (multiplication and character
tables) are given in Table 2.

C3 E ε ε∗ C3 E ε ε∗

E E ε ε∗ A1 1 1 1

ε ε ε∗ E A2 1 1 -1

ε∗ ε∗ E ε E1 2 -1 0

Table 2
Multiplication table (left) and character table (right) for the point group C3. E is the

identity, ε = e
2iπ
3 denotes rotation by an angle 2π

3 , ε∗ = e−
2iπ
3 denotes rotation by an

angle −2π
3 . The first column of the right table labels the irreducible representations

(A1, A2, E1) and the top row labels the group elements (E , ε , ε∗)

The basic result of group theory states that basis functions of irreducible rep-
resentations of discrete groups can be obtained by using irreducible character
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table[8]. Generalization of the previous method can be done using the trans-
formation operator Ug associated to group element g, acting on the initial
excitation x(t) in order to built additional excitation Xg:

XE = UE(x(t)) = x(t), (10)

Xε = Uε(x(t)) = x(t)e
2iπ
3 , (11)

Xε∗ = Uε∗(x(t)) = x(t)e−
2iπ
3 . (12)

As done previously for PI, the second step is to define eigen-responses Φm

using C3 group properties given in Tab.2, which can be associated to basis
functions of irreducible representations m :

ΦA1
=

∑
g∈C3

χA1
(g)Yg, (13)

ΦA2
=

∑
g∈C3

χA2
(g)Yg, (14)

ΦE =
∑

g∈C3

χE(g)Yg, (15)

where χm(g) is the character associated to group element g of the mth irre-
ducible representation (Table 2), and Yg = NL[Xg] is the nonlinear response of
S related to the excitation Xg given by Eqs.(10-12). Starting from Eqs.(13-15),
eigen-responses Φm are then given by :

ΦA1
= 1YE + 1Yε + 1Yε∗, (16)

ΦA2
= 1YE + 1Yε − 1Yε∗, (17)

ΦE = 2YE − 1Yε. (18)

For ΦA1
and after inserting nonlinear response Yg = NL[Xg], it yields :

ΦA1
=N1x(t) + N2x

2(t) + N3x
3(t)

+N1x(t)e
2iπ
3 + N2x

2(t)e
4iπ
3 + N3x

3(t)e
6iπ
3 (19)

+N1x(t)e
−2iπ

3 + N2x
2(t)e

−4iπ
3 + N3x

3(t)e
−6iπ

3 ,

which gives finally

ΦA1
=

(
N1x(t) + N2x

2(t)
)

[1 + e
2iπ
3 + e

−2iπ
3 ] + 3N3x

3(t). (20)

5



Acc
ep

te
d m

an
usc

rip
t 

For all eigen-responses, one finally obtains:

ΦA1
= 3N3x

3(t), (21)

ΦA2
= N3x

3(t) − 2ε
[
N2x

2(t) + εN1x(t)
]
, (22)

ΦE = N3x
3(t) + (2 − ε∗)N2x

2(t) + (2 − ε)N1x(t). (23)

The most interesting application of this method is obtained using Eq.(21),
related to the completely symmetric irreducible representation A1, and which
yields the extraction of the third harmonic component N3 without any per-
turbation of N1 and N2 components. Furthermore, it can be shown that eigen-
response ΦA1

can cancel all p = 3n+1 and p = 3n+2 coefficients of a general
nonlinear system S where NL[x(t)] =

∑
p Npx

p and ΦA1
= 3

∑
i N3ix

3i, which
contain only 3i terms. Generalization of the group procedure can be done us-
ing C4, C5, ... point group symmetries and also properties of group products
Ci × Cj for multiple inputs of the kind x(t) = x1(t) + x2(t). All properties
related to irreducible representations of direct products could be used to find
new eigen-excitations, and constitutes an interesting practical perspective of
this method.

3 Practical evaluation of ESAM sensitivity

Numerical simulations, done with Matlab software, have been performed in
order to compare ESAM sensitivity with respect to classical Fourier Analy-
sis, done with FFT. The objective is to compare the detection of the third
harmonic generated by S when one applies a classical tone-burst excitation
x(t) = Πτ (t) cos(2πf0t)+γ(t), where Πτ (t) is the window function of duration
τ = 90µs, f0 = 1MHz is the frequency, γ(t) a uniformly distributed white
noise in the [−b; b] range. Comparison consists of evaluating the FFT ampli-
tude of direct output response y(t) and ESAM eigen-response ΦA1

given by
Eq.(13). A toneburst input signal x(t) was chosen because of its interest in
most nonlinear acoustics experiments applied to medical ultrasound and non-
destructive testing. The choice of classical FFT is arbitrary and any signal
processing tool can be applied without loss of generality.

As shown in Fig.1, the FFT amplitude of nonlinear response y(t) (direct output
response) presents classical behavior related to the presence of 2nd and 3rd
order nonlinearity : frequency lines at 2 and 3 MHz. Note that in the noiseless
case (b = 0), with N1 = 10, N2 = 0.158 and N3 = 0.0348, the 3rd harmonic
detection seems to be difficult to detect with the direct output response y(t)
whereas it is clearly present with ESAM eigen-response ΦA1

. As expected, the
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Fig. 1. Sensitivity comparison between direct output response y(t) and eigen-reponse
ΦA1

extracted with ESAM. Parameters of the nonlinear system S are : N1 = 10;
N2 = 0.158; N3 = 0.0348.

third harmonic component is revealed, even if there is still consequences due
to the FFT windowing, where classical ponderation windows like Hanning
leading to suppression of these effects have not been used intentionally. In
the particular case of Fig.1, ESAM dynamics of 3rd harmonic detection is
evaluated to 20 dB whereas direct output response dynamic is of the order of
1 dB. Detection of the fundamental and second harmonic is possible with y(t)
but difficult for the third harmonic, whereas ESAM dynamic for this third
harmonic is about 20 dB.

In order to evaluate ESAM threshold of sensitivity detection in the noiseless
case (b = 0), the 3rd order nonlinearity level N3 has been decreased, keeping
N1 = 10 and N2 = 0.158 constant. For each values of applied third order level
N3, the 3rd harmonic line amplitude level at f3 = 3 MHz is evaluated using
FFT.

Comparison of performances of the 3rd order harmonic detection is presented
in Fig.2, where the measured 3rd order level at f3 = 3 MHz has been done with
direct output response y(t) and with ESAM eigen-response ΦA1

for various val-
ues of applied third order level of nonlinearity N3. As expected, both methods
allow the same evaluation of nonlinearity N3 in the range [10−2; 102]. Arrow
indicates points that have been calculated using the spectrum presented in
Fig.1 where N3 = 0.0348. Threshold characterized by the plateau in the range
[10−7; 10−2] of direct output response is about 4 10−3 given for N3/N1 = 10−2.

Detection of nonlinearity N3 is limited if we consider direct output response
y(t). Detection is no longer possible if N3

N1
= 10−2 whereas ESAM detection is

still possible for N3

N1

= 10−7. Below 10−7, there is no interest of comparison of
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Fig.1

Fig. 2. ESAM sensitivity between eigen-response ΦA1
and direct output response

y(t). Parameters are : N1 = 10; N2 = 0.158; N3 ∈ [1.1 103; 3 10−7].

methods because of the lack of practical reality.
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ESAM

Fig. 3. ESAM Sensitivity between eigen-response ΦA1
and direct output response

y(t) with noise level b.

Conversely, ESAM sensitivity has also been evaluated introducing noise (b �=
0) at each step of the Matlab calculations (Eqs.(9-13)) used for the simula-
tions. Comparison between direct output and ESAM responses has been done
for various values of b (Fig.3). As expected, the ESAM sensitivity threshold
increases as the noise level increases, but is always kept lower than the direct
output sensitivity threshold. For b = 0.1, ESAM sensitivity seems to reach a
common limit as observed for direct output response. Exept for b = 0.1 where
noise effects are greater than FFT windowing ones, direct output response is
not sensitive to noise variation, whereas ESAM presents a significant depen-
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dance (10−4 for b = 0.001; 10−2 for b = 0.1). Note that the ESAM threshold

increase from N
(meas)
3 = 5 10−5 to 10−2 for b = 10−1, whereas no variation is

observed for direct output response measurements. This dependance can be
explained by the fact that adding noise in the system can be interpreted as
symmetry breaking. Eigen-responses ΦA, given by Eq.(21) is no longer pro-
portional to N3 and contains an additional term proportional to the noise
level which becomes significant in the case of decreasing the value of N3, or
increasing the value of noise perturbation.

3.1 ESAM test on real signals

ESAM has been tested with real data coming from experiments in ultrasound
imaging using TR-NEWS and NEWS-TR methods[9,10] which are based on
Nonlinear Elastic Wave Spectroscopy (NEWS) combined with Time Reversal
Acoustics (TR). The main objective of this kind of experiments[11] is to com-
bine TR-NEWS and PI in order to evaluate nonlinear properties of damaged
steel samples with cracks. In practice, the first response (Fig.4) coming from
ultrasonic wave propagation inside the sample is time reversed, used as a new
excitation xe(t) and reinjected in the nonlinear medium. This 1 ms coda which
contains several echoes coming from multiple reflections inside the sample, is
time reversed and used as a new excitation in most of our experimental studies.
Note that the experimental noise level amplitude is evaluated at b = 0.003.
Note that xe(t) intrinsic noise level has been evaluated on the first part of
the signal (t ∈ [0;0.1] ms) to be a uniformly distributed white noise in the
[−b; b] range, with b = 0.003. The spectrum, presented in (b) reveals 3rd or-
der harmonic line at f = 2.1 MHz coming from intrinsic nonlinearity of the
experimental set-up used for signal acquisition.

This new TR signal can have a rich spectral content, or can be polluted by
spurious spectral lines coming from nonlinearity, or can have been filtered by
bandwidth of the system. In any case, thanks to ESAM normalisation process
intrinsically contained (see Eq.(2) for example), theses effects will have no
incidence to the quality of N1 and N2 evaluation. ESAM sensitivity evaluation
has been done with this experimental signal as it was done previously on the
tone-burst.

As shown in Fig.4(a), initial signal xe(t) contains several tone-bursts at f0 =
700 kHz coming from wave reflections inside the sample, and also nonlinear-
ity (spectral line at 3f0 = 2.1 MHz) in Fig.4(b), where its origin may come
from acoustic propagation, electronics or signal quantification. Note that xe(t)
intrinsic noise level has been evaluated on the first part of the signal (t ∈

[0;0.1] ms) to be a uniformly distributed white noise in the [−b; b] range, with
b = 0.003. The noise value (b = 0.003) was added inside the ESAM sensitivity
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Fig. 4. Properties of the experimental signal xe(t) in the time (a) and frequency
(b) domains, coming from the measurement of ultrasonic tone-burst propagation at
f = 700 kHz in a steel sample with dimensions 1.2×2.5×10 cm.

evaluation with xe(t) as input signal. As previously done, ESAM sensitivity is
compared to the direct output response for N3 evaluation using xe(t) as the
initial excitation. The results are presented in Fig.5 where threshold difference
between ESAM and direct output response is about 10 dB. It can be noticed
that ESAM sensitivity does not depend on the presence of nonlinearity in the
initial excitation where, in the latter, a harmonic low pass digital filter with
a cutoff frequency fc = 1.4 MHz has been applied to xe(t) before its use as
excitation. In the first case of evaluation of nonlinearity with direct output
response, there is a bias due to the presence of component of the third order
in the initial excitation xe(t). Conversely, it is shown here that ESAM does not
depend on the spectral component of initial excitations xe(t) whereas classical
analysis based on 3rd harmonic generation is clearly dependant on the ini-
tial 3rd harmonic level. ESAM sensitivity threshold is about 7 dB higher than
classical analysis using the spectrum of ye(t) = NL[xe(t)] even if the harmonic
filtering at fc = 1.4 MHz has been applied in order to eliminate the intrinsic
3rd order harmonic nonlinearity of xe(t). As expected, direct output response
has a better sensitivity due to the suppression of intrinsic nonlinearity, where
ESAM presents the same sensitivity level, showing its non-dependance on the
harmonic presence in the initial excitation.

4 Conclusion

Analysis of the third order nonlinear systems has been conducted using a new
method which consists of Symmetry Analysis of Excitations (ESAM). Thanks
to the group theoretical approach, eigen-excitations have been constructed
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Fig. 5. Comparison between ESAM and direct output response sensitivity for N3

third order nonlinearity evaluation, using a real signal xe(t) given by Fig.4 and
where added noise level is b = 0.003.

and applied to the nonlinear system S leading to the extraction of the third
order harmonic component alone. It is done using intrinsic symmetries of S
independently of properties of initial excitation applied to S. Irreducible rep-
resentation and character tables properties of C3 point group of rotation are
on the heart of the analysis. ESAM sensitivity has been compared to classical
analysis in noisy systems and with experimental data. The main result is the
power of this technique which can be easily extended to higher order analysis.
Another interesting result is that ESAM is not sensitive to the presence of
spurious nonlinearity, leading to a suitable method for nonlinearity evalua-
tion of the system under consideration. A high order extension of ESAM will
be conducted with odd nonlinearities coming from Nonclassical Nonlinearity
generated in hysteretic systems[3]. As a perspective, practical implementation
of ESAM could be proposed for exciting a medium with odd nonlinearities:
damaged material with cracks and bubbly biological medium where superhar-
monics responses could be extracted with an extension of Harmonic Imaging
using the PI method.
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