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Numerical simulation of interaction of solitary deformation waves in

microstructured solids

A. Salupere a,b,∗, K. Tamm a,b, J. Engelbrecht a

aCentre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618,

Tallinn, Estonia
bDepartment of Mechanics, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia

Abstract

In the present paper 1D wave propagation in microstructured solids is modelled based on the Mindlin theory and

hierarchical approach. The governing equation under consideration is nonintegrable therefore it is analysed numerically.

Propagation and interaction of localised initial pulses is simulated numerically over long time intervals by employing

the pseudospectral method. Special attention is paid to the solitonic character of the solution.

Key words: Microstructured solids, Mindlin model, Solitary waves, Solitons
PACS: 05.45.Yv, 46.40.Cd

1. Introduction and model equations

Wide application of microstructured materi-
als (like alloys, crystallites, ceramics, functionally
graded materials, etc) in technology needs also
proper testing methods in order to evaluate the
properties of such materials. This need is especially
acute because microstructural properties affect
considerably the macrobehaviour of a compound
material or a structure. In most general terms,
microstructure means the existence of grains, in-
clusions, layers, block walls etc and the influence of
anisotropy. There are powerful methods in contin-
uum mechanics in order to describe the influence
of such irregularities of media starting from early
works of Cosserats and Voigt up to contemporary
formulations. Corresponding models should be able
to account for various scales of microstructure (see
[1–4] and references therein). The scale-dependence

∗ Corresponding author
Email addresses: salupere@ioc.ee (A. Salupere),

kert@cens.ioc.ee (K. Tamm), je@ioc.ee (J. Engelbrecht).

involves dispersive as well as different nonlinear ef-
fects and if they are balanced then solitary waves
and/or solitons may emerge.

Solitary waves in microstructured solids are
analysed using different models (see [4–6] and
references therein). However, the crucial point re-
lated to the derivation of governing equations is
to distinguish between nonlinearities on macro-
and microlevel together with proper modelling
of dispersive effects. In [7–9] the Mindlin model
[10] and hierarchical approach by Engelbrecht and
Pastrone [4] is used in order to derive governing
equations. By Mindlin [10], microstructured mater-
ial is interpreted as an elastic continuum including
microstructure that could be “a molecule of a poly-
mer, a crystallite of a polycrystal or a grain of a
granular material”. This microstructure is modelled
by microelements within the macrostructure. Ac-
cording to Eringen and Mindlin [1,10] fundamental
balance laws should be formulated for macro- and
microlevel separately. For 1D model this approach
results in equations of motion in the following form:

Preprint submitted to Elsevier 31 October 2007
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ρutt = σx,

Iψtt = ηx − τ.
(1)

Here u is the macrodisplacement, ψ the microdefor-
mation, ρ the macrodensity, I the microinertia, σ
the macrostress, η the microstress and τ is the inter-
active force. The free energy function is considered
in the following form:

W = W2 + W3,

W2 =
1

2
au2

x +
1

2
Bψ2 +

1

2
Cψ2

x + Dψux,

W3 =
1

6
Nu3

x +
1

6
Mψ3

x,

(2)

where a,B,C,D,M , N are constants. Here the
quadratic term W2 gives rise to the linear stress
and the cubic W3 — to the nonlinear part of stress.
Then using the formulae

σ =
∂W

∂ux
, η =

∂W

∂ψx
, τ =

∂W

∂ψ
(3)

eqs. (1) are expressed in terms of variables u and ψ

ρutt = auxx + Nuxuxx + Dψx,

Iψtt = Cψxx + Mψxψxx − Dux − Bψ.
(4)

Next, slaving principle [4,7] is applied (in order
to eliminate the microdeformation ψ from latter
equations) and in terms of dimensionless variables
X = x/L, T = tc0/L, U = u/U0, scale parameter
δ = l2/L2 (L and U0 are amplitude and wavelength
of the initial excitation, respectively; c2

0 = a/ρ and
l is the scale of the microstructure) equations (4)
result in the hierarchical model equation

L1 − δL2 = 0

L1 = UTT − bUXX −
µ

2

(

U2
X

)

X

L2 =

(

βUTT − γUXX − δ1/2 λ

2
U2

XX

)

XX

(5)

where L1 is macrostructure wave operator and L2

microstructure wave operator. New dimensionless
material constants b, µ, β, γ and λ are introduced
during change of variables and they are directly re-
lated to constants a,B,C,D,M , N in free energy
expression (2) (see [8,9] for details). If the scale pa-
rameter δ is small then the wave process is governed
by properties of the macrostructure and vice-versa,
if δ is large, then properties of the microstructure
govern the process.

For future analysis eq. (5) is expressed in terms of
deformation v = UX and lower-case letters x and t
are used for dimensionless coordinate and time.

vtt − bvxx −
µ

2

(

v2
)

xx
−

δ (βvtt − γvxx)xx + δ3/2 λ

2

[

(vx)
2
]

xxx
= 0.

(6)

The full derivation of governing equation (6) can be
found in [7,8].

Equation (6) is nonintegrable but it is possible to
find its travelling wave solution v(x−ct) in the form
of an asymmetric solitary wave using numerical inte-
gration under asymptotic boundary conditions (i.e.
u, ux, uxx, . . . → 0, if x → ±∞). The analytic con-
ditions for the existence of solitary waves modelled
by equation (6) are given by Janno and Engelbrecht
in [8,9]:

c2 − b

βc2 − γ
> 0,

(

βc2 − γ

c2 − b

)3

>
4λ2

µ2
,

µ 6= 0, βc2 − γ 6= 0, c2 − b 6= 0.

(7)

In the case of λ = 0 the nonlinearity in the mi-
croscale is neglected and equation (6) admits bell-
like solitary wave solution [6,9]

v(x − ct) = A sech2 κ(x − ct)

2
,

A =
3(c2 − b)

µ
, κ =

√

c2 − b

δ(βc2 − γ)
.

(8)

From the viewpoint of soliton dynamics, three
problems are of importance: the existence of solitary
waves, the emergence of solitary waves and the in-
teraction of solitary waves. The latter is important
in order to prove the solitonic character of solitary
waves, i.e. to understand whether solitary waves are
able to propagate at constant speed and shape and
to restore these quantities after interactions. If yes,
these solitary waves are called solitons. Here in this
paper the basic model is a two-wave equation with
complicated dispersive and nonlinear terms. The ex-
istence of solitary waves is proved by Janno and
Engelbrecht [8,9], the preliminary analysis of emer-
gence of trains of solitary waves is presented in our
earlier study [11] and here we present the prelim-
inary results on interaction of solitary waves. The
notion of solitary waves is used because the elastic
interaction should prove whether these waves are
solitons or not. As it is shown below, the problem is
complicated and needs further analysis.
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2. Statement of the problem and numerical

technique

In the present paper the propagation and the in-
teraction of localised initial pulses in microstruc-
tured materials (governed by equation (6)) is simu-
lated numerically over long time intervals. Two goals
are stated (i) to examine the solitonic character of
the solution and (ii) to estimate the influence of the
microlevel nonlinear parameter λ on the solution.

For this reason equation (6) is integrated numer-
ically under localised initial conditions

v(x, 0) =
2

∑

i=1

A0
i sech2 κi(x − ξi)

2
, 0 ≤ x < 2kπ.

(9)

Initial amplitudes A0
i and the widths κi (i = 1, 2)

correspond to different initial speeds c1 6= c2, ξi are
initial phase shifts, and k is integer. It is clear that
in case c1c2 < 0 head-on collision and in case of
c1c2 > 0 overtaking interaction takes place (if pe-
riodic boundary conditions are applied then this is
true as in case c1 > c2 as well as in case c1 < c2).

For numerical integration discrete Fourier trans-
form (DFT) based pseudospectral method (PsM)
[12,13] is used and therefore periodic boundary con-
ditions

v(x, t) = v(x + 2kπ, t) (10)

are applied.
In a nutshell, the idea of the PsM is to approxi-

mate space derivatives making use of DFT and then
to use standard ODE solvers for integration with re-
spect to the time. Due to the mixed partial deriva-
tive term δβvttxx the model equation (6) can not be
directly integrated by PsM. Therefore we introduce
new variable

Φ = v − δβvxx. (11)

In terms of DFT the latter can be presented in the
form

Φ = F−1[(1 + δβω2)F (v)], (12)

where F denotes the DFT, F−1 the inverse DFT and
ω = ±1,±2, . . . ± (N/2 − 1),−N/2,. Then variable
v and its spatial derivatives are expressed in terms
of the variable Φ

v = F−1

[

F (Φ)

1 + δβω2

]

,

∂nv

∂xn
= F−1

[

(iω)nF (Φ)

1 + δβω2

]

.

(13)

Finally, equation (6) can be rewritten in terms of
variable Φ

Φtt =

[

bv +
µ

2
v2 − δγvxx − δ3/2 λ

2
(v2

x)x

]

xx

(14)

(v and its space derivatives are calculated making
use of expressions (12) and (13)). In order to simu-
late the propagation and the interaction of localised
pulses equation (14) is solved numerically by PsM
under initial and boundary conditions (9) and (10),
respectively.

Calculations are carried out using SciPy package
[14]: for DFT the FFTW [15] library and for ODE
solver the F2PY [16] generated Python interface to
ODEPACK Fortran code [17] is used.

3. Results and discussion

In the present Section two different head-on inter-
action cases are considered. In the first case solitary
waves of equal amplitude propagate at equal ini-
tial speed in opposite directions (c1 = −c2 = 0.9)
and in the second case solitary waves of different
amplitude propagate at initial speeds c1 = 0.9 and
c2 = −0.9115. Five parameters for equation (6)
are fixed: b = 0.7683, µ = 0.125, δ = 9, β = 7.6452,
γ = 6.1825, but λ has three different values 0,
0.0025, and 0.005. For |ci| = 0.9115 and |ci| = 0.9
conditions (7) are satisfied for all considered values
of parameter λ. We stress here that if conditions
(7) are satisfied, then travelling wave solutions in
the form of single asymmetric solitary wave can
exist for equation (6) [8,9]. Numerical integration
is carried out for 0 ≤ t ≤ 6000, waveprofiles are
saved at every ∆t = 0.5, the length of the space
period is 60π and the number of space-grid points
is n = 1024. According to expression (8)

2
ampli-

tude A = 1.00 corresponds to the speed |ci| = 0.9
and amplitude A = 1.50 to the speed |ci| = 0.9115.
In all considered cases amplitudes of solitary waves
increase during interactions and decrease after in-
teractions. If initial amplitudes, shapes and veloci-
ties are restored after interactions — like in case of
Boussinesq models — then such solitary waves can
be called solitons.

In [18] the same interaction types were studied
for remarkably shorter time intervals (0 ≤ t ≤ 500).
For the equal initial amplitude case the length of the
space interval was 24π and in the case of nonequal
amplitudes 96π. It was found that for λ = 0 and for
relatively small values of parameters the behaviour
of solitary waves was very close to that of solitons

3
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Fig. 1. Wave-profile maxima and minimum against time in
case of c1 = −c2 = 0.9: a) λ = 0; b) λ = 0.005.

for the considered time and space intervals. Inter-
action between equal amplitude solitary waves was
found to take place without phase shifts, but if in-
teracting waves have different amplitude, then both
were phase-shifted.

3.1. Head-on collision of solitary waves with equal

amplitudes

In the present Subsection the interaction between
two solitary waves having initial velocities are c1 =
−c2 = 0.9 and equal initial amplitudes A0 = 1.00
is studied. In Fig. 1, waveprofile maxima (heights)
are plotted against time for two different values of
parameter λ. In the beginning of the integration in-
terval (t < 500) height at ”peaks” of interaction Ai

( ”peaks” of interaction correspond to local max-

500 1000 1500 2000 2500
2
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2.08

2.1

2.12

 t

 A
i

λ = 0
λ = 0.0025
λ = 0.005

Fig. 2. Amplitude at “peaks” of interactions Ai against time

in case of c1 = −c2 = 0.9.

ima of amplitude curves in Fig. 1) is close to double
initial amplitude of interacting solitary waves. How-
ever for t > 500 the amplitude Ai increases appar-
ently, cf. Fig. 2 where the amplitude Ai is plotted
against time for different values of λ. For t < 1000
all three curves practically coincide, but for higher
values of t they diverge essentially — the higher the
value of λ the lower the values of Ai. At t = 3000
the value of Ai is more than 6% higher than double
initial amplitude of interacting solitary waves for all
three values of λ.

The length of time intervals between ”peaks” of
interaction does not depend on λ and is between
values 104.63 and 104.71. It is clear from Fig. 1
that for t < 500 interacting solitary waves more
or less restore their initial heights for certain time
intervals. However, for higher values of t such a
phenomenon does not take place. Furthermore, for
λ > 0 right-propagating and left-propagating soli-
tary waves have different heights AR and AL be-
tween interactions. In Fig. 3 averaged amplitudes
Aa

R and Aa
L are plotted against the number of inter-

actions. Values of Aa
R and Aa

L after k−th interaction
are obtained by averaging amplitudes of right- and
left-propagating solitary waves over time intervals
where both amplitudes have near constant values
between kth and (k + 1)th interaction (cf. Fig. 1).
Analysis of single waveprofiles and data in Fig. 3
demonstrate that for λ > 0 amplitude Aa

R > Aa
L

until 15th interaction and vice versa Aa
R < Aa

L after
15th interaction. The higher the value of λ the higher
the amplitude AL and the lover the amplitude AR at
t = 3000. This phenomenon depicts the behaviour
at the given set of parameters and the critical value

4
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Fig. 3. Averaged amplitudes between interactions Aa

R

and Aa

L
against the number of interactions in case of

c1 = −c2 = 0.9.

can be changed at other sets. It is evident that the
averaged amplitudes tend to certain limits at larger
number of interactions. The fact that amplitudes are
not restored after interactions indicates that inter-
actions between solitary waves are not elastic, i.e., a
certain exchange of energy takes place between soli-
tary waves during interaction. One can see below
that the initial symmetric shape of solitary waves is
also altered during interactions.

Between interactions both solitary waves prop-
agate practically at initial speed. In order to es-
timate phase shifts during interactions the actual
trajectories of solitary waves are compared with
straight lines xi = ξi ± 0.9t, i.e., with phase-shift
free trajectories (ξi are initial phase shifts, cf. (9)).
In Fig. 4 cumulative phase shift in space is plotted
against the number of interactions. The cumulative
phase shift is calculated as average deviation be-
tween two considered trajectories over time interval
tk + 25 ≤ t ≤ tk+1 − 25, (time moments tk and tk+1

correspond to kth and (k +1)th interaction, respec-
tively). For the case λ = 0 both waves are shifted
by the same extent and the cumulative phase shift
after 28th interaction is about 0.81 which is 0.43%
of the length of the space period. For λ > 0 phase-
shifts for right-propagating and left-propagating
solitary waves are different — right-propagating
solitary wave is less phase-shifted than that of the
left-propagating. However, compared to the length
of the space period the cumulative phase-shift is
less than 1% in all considered cases.

Janno and Engelbrecht have shown in [8,9] that
for equation (6) exists symmetric bell-shaped trav-
elling wave solution for λ = 0 and asymmetric trav-
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Fig. 4. Cumulative phase-shift of left- and right-propagating
solitary waves against the number of interactions in case of

c1 = −c2 = 0.9: a) λ = 0; b) λ = 0.0025; c) λ = 0.005

.

elling wave solution — for λ > 0. In our numerical
experiments single solitary wave (8) propagates at
constant amplitude and speed in case of λ = 0. In
case of λ > 0 the initial symmetric solitary wave is
deformed to that of asymmetric. Numerical analy-
sis of interactions of solitary waves (8) demonstrate
that due to interactions initial symmetric solitary
waves are deformed to that of asymmetric even in
case λ = 0. This phenomenon can be observed in
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Fig. 6. Initial waveprofile and maximally separated waveprofiles after 28th interaction in case of c1 = −c2 = 0.9.

space
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e

Fig. 5. Timeslices of wave-profiles at t=0, at interaction
“peaks” and at time moments when two solitary waves are
maximally separated in case of c1 = −c2 = 0.9 and λ = 0.

Fig. 5 where maximally separated waveprofiles are
plotted besides waveprofiles at interaction “peaks”.
The asymmetry of solitary waves is clearly visible
in Fig. 6 where solitary waves are plotted at t = 0
and at time moment when they are maximally sep-
arated after 28th interaction (the left solitary wave
is propagating to the right and the right one to the
left). It is clear that the higher the value of λ, the
more asymmetric is the corresponding wave. Due to

the asymmetry both waves are partly located be-
low zero. Physically such a phenomenon can be in-
terpreted as region of depression (v > 0 correspond
to compression). The depression region is always lo-
cated behind the propagating wave and the more
interactions have taken place the stronger it is (cf.
wave-profile minimum curve in Fig. 1).

3.2. Head-on collision of solitary waves with

nonequal amplitudes

In the present Subsection we discuss interactions
between two solitary waves having initial amplitudes
A0

1 = 1.00 and A0
2 = 1.50 and initial velocities c1 =

0.9 and c2 = −0.9115. In Fig. 7 amplitude curves are
plotted for λ = 0 and λ = 0.005. In the beginning
of the integration interval the amplitude of waves at
”peak” of interactions Ai is close to the sum of ini-
tial amplitudes like in the previous case. However,
unlike the previous case the amplitude Ai is decreas-
ing during the integration time interval. In Fig. 8
amplitudes Ai are plotted against time for three dif-
ferent values of parameter λ. The higher the value of
λ the larger the decrease of the amplitude Ai. The
length of time intervals between ”peaks” of interac-
tion does not depend on λ (like in the previous case)

6
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Fig. 7. Wave-profile maxima and minimum against time in

case of c1 = 0.9 and c2 = −0.9115: a) λ = 0; b) λ = 0.005.
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Fig. 8. Amplitudes at “peaks” of interactions in case of
c1 = 0.9 and c2 = −0.9115.
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Fig. 9. Average amplitude between interactions in case of

c1 = 0.9 and c2 = −0.9115.

and is now between values 103.35 and 104.00.
The behaviour of the higher (left-propagating)

solitary wave between interactions is practically in-
dependent on the value of the parameter λ — after
the first interaction the initial amplitude is practi-
cally restored, but then the average amplitude Aa

L

decreases and after the 15th interaction near t =
1500 retains constant value (see Figs. 7 and 9). The
amplitude of the lower (right-propagating) solitary
wave behaves between interactions just the other
way round — the amplitude Aa

R is practically con-
stant in the beginning of the interaction interval and
starts to decrease after the 12th interaction near t =
1200. Furthermore, up to the 12th interaction the
right-propagating solitary wave practically restores
its initial height.

Both solitary waves propagate between interac-
tion at initial speed and we calculate the cumula-
tive phase shift in the same way like in the previous
case. Results are presented in Fig. 10 for three val-
ues of parameter λ. In the present case the maximal
value of the cumulative phase shift is near nine (in
previous case it was up to 1.2). Up to the 21st in-
teraction the left-propagating, i.e., the higher soli-
tary wave is more phase shifted than that of the
right-propagating for all three values of λ. After that
the cumulative phase shift for the right-propagating,
i.e., the lower solitary wave increases rapidly from
the value near 2.5 up to the value near 9 without
reference to the value of the parameter λ.

The larger the number of interactions the more
asymmetric is the lower solitary wave. Due to the
asymmetry, the part of the waveprofile behind it
is located below zero like in the previous case. For

7
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Fig. 10. Phase-shifts of left and right going solitary waves in
case of c1 = 0.9 and c2 = −0.9115: a) λ = 0; b) λ = 0.0025;

c) λ = 0.005

.

higher values of t waveprofile minimum has values
close to zero only for very short time intervals near
“peaks” of interactions (Fig. 7). In Fig. 11 solitary
waves are plotted at t = 0 and at time moment when
they are maximally separated after 28th interaction
(the left solitary wave is propagating to the right
and the right one to the left) for three values of λ.
In the present case parameter λ has very weak influ-
ence on the shape of the waveprofile — amplitude

of the lower solitary wave decreases slightly when λ
increases, but one can not distinct three profiles in
case of the higher solitary wave.

4. Conclusions

Well known and widely used evolution equations
( Korteweg–de Vries equation and its modifications
for example) are one-wave equations (the order of
time derivative is one), i.e., they are able to govern
only overtaking interactions of solitary waves. Equa-
tion (6) (used in the present paper) is a two-wave
equation (the order of time derivative is two) and
therefore gives us possibility to analyse also head-on
collisions of waves.

In case of λ = 0 single symmetric bell-like solitary
wave (8) is an analytical solution of equation (6)
and it propagates with a constant speed and shape.
Our numerical simulations have demonstrated that
in case of λ > 0 the symmetric shape of initial single
bell-like solitary wave (8) is altered to asymmetric
shape during propagation. In the present paper the
head-on collision of two sech2-shape localised initial
pulses is studied in case of λ = 0 as well as λ > 0.
Material parameters for equation (6) and initial con-
ditions (9) were chosen according to to conditions
(7), i.e., for all considered sets of parameters travel-
ling wave solutions in the form of single asymmetric
solitary wave can exist for equation (6).

Main results are the following:
– Interactions between solitary waves are not com-

plitely elastic even in case of λ = 0 — during in-
teractions the symmetric shape of initial waves is
altered to that of asymmetric. In case of λ = 0 and
A0

1 = A0
2 the asymmetry is very weak after very

first interactions. However, the higher the number
of interactions, the more distinctive the asymme-
try without reference to the values of parameter
λ and initial velocities. In case of A0

1 6= A0
2 the

shape of the higher solitary wave is altered only
slightly, but that of the lower one significantly.

– The asymmetry of the pulse is reflected in the al-
tering of the shape of compression region of the
pulse (v > 0) as well as in the emergence of de-
pression zone (v < 0) beside that of compression.
This phenomenon is more distinctive in case of
A0

1 6= A0
2.

– Phase shifts, characteristic for soliton type inter-
actions, can be easily traced in case of A0

1 6= A0
2.

In case of A0
1 = A0

2 even the cumulative phase
shift over long time intervals is small compared

8



Acc
ep

te
d m

an
usc

rip
t 

−50 0 50 100 150 200

0

0.5

1

1.5

 x

 v

 v
0

λ = 0
λ = 0.0025
λ = 0.005

28 30 32 34 36 38
0.8

0.85

0.9

126 127 128 129
1.455

1.46

1.465

1.47

1.475

0 10
−0.35

−0.3

−0.25

170 180
−0.35

−0.3

−0.25

−0.2

−0.15

Fig. 11. Initial waveprofile and maximally separated waveprofiles after 28th interaction in case of c1 = 0.9 and c2 = −0.9115.

to the considered space interval and/or distance
traveled by interacting waves.

– In the beginning of the integration interval the
heigth (amplitude) of interacting waves is prac-
tically restored between interactions. For higher
values of t the heigth can be altered remarkably.
In case of A0

1 = A0
2 heights of right- and left-

propagating waves are restored on unequal levels.
– The nonlinearity of the microstructure (parame-

ter λ) has stronger influence on the character of
solution in the case of equal initial amplitudes
A0

1 = A0
2 (cf. set of Figs. 1–4, 6 with Figs. 7–11).

– Over short time intervals and small number of
interactions the behaviour of the solution is very
close to the solitonic behaviour in all consdered
cases. The higher the number of interactions and
the longer the time interval the more the initial
and the restored waveprofiles differ.
In order to explain phenomena described in this

paper in more detail, a furthure analysis based on
energy distribution and spectral changes is needed.
Clearly, two-wave interactions differ from one-wave
interactions. The special analysis of one-wave inter-
actions is presented in [19,20], the same should be
done for this model.
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