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In the present paper 1D wave propagation in microstructured solids is modelled based on the Mindlin theory and hierarchical approach. The governing equation under consideration is nonintegrable therefore it is analysed numerically. Propagation and interaction of localised initial pulses is simulated numerically over long time intervals by employing the pseudospectral method. Special attention is paid to the solitonic character of the solution.

Introduction and model equations

Wide application of microstructured materials (like alloys, crystallites, ceramics, functionally graded materials, etc) in technology needs also proper testing methods in order to evaluate the properties of such materials. This need is especially acute because microstructural properties affect considerably the macrobehaviour of a compound material or a structure. In most general terms, microstructure means the existence of grains, inclusions, layers, block walls etc and the influence of anisotropy. There are powerful methods in continuum mechanics in order to describe the influence of such irregularities of media starting from early works of Cosserats and Voigt up to contemporary formulations. Corresponding models should be able to account for various scales of microstructure (see [START_REF] Eringen | Microcontinuum Field Theories. I Foundations and Solids[END_REF][START_REF] Phillips | Crystals, Defects and Microstructures. Modelling Across Scales[END_REF][START_REF] Maugin | Nonlinear Waves in Elastic Crystals[END_REF][START_REF] Engelbrecht | Waves in microstructured solids with nonlinearities in microscale[END_REF] and references therein). The scale-dependence involves dispersive as well as different nonlinear effects and if they are balanced then solitary waves and/or solitons may emerge.

Solitary waves in microstructured solids are analysed using different models (see [START_REF] Engelbrecht | Waves in microstructured solids with nonlinearities in microscale[END_REF][START_REF] Erofeev | Wave Processes in Solids with Microstructure[END_REF][START_REF] Porubov | Amplification of Nonlinear Strain Waves in Solids[END_REF] and references therein). However, the crucial point related to the derivation of governing equations is to distinguish between nonlinearities on macroand microlevel together with proper modelling of dispersive effects. In [START_REF] Engelbrecht | Waves in microstructured materials and dispersion[END_REF][START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF][START_REF] Janno | An inverse solitary wave problem related to microstructured materials[END_REF] the Mindlin model [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] and hierarchical approach by Engelbrecht and Pastrone [START_REF] Engelbrecht | Waves in microstructured solids with nonlinearities in microscale[END_REF] is used in order to derive governing equations. By Mindlin [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], microstructured material is interpreted as an elastic continuum including microstructure that could be "a molecule of a polymer, a crystallite of a polycrystal or a grain of a granular material". This microstructure is modelled by microelements within the macrostructure. According to Eringen and Mindlin [START_REF] Eringen | Microcontinuum Field Theories. I Foundations and Solids[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF] fundamental balance laws should be formulated for macro-and microlevel separately. For 1D model this approach results in equations of motion in the following form: 

Here u is the macrodisplacement, ψ the microdeformation, ρ the macrodensity, I the microinertia, σ the macrostress, η the microstress and τ is the interactive force. The free energy function is considered in the following form:

W = W 2 + W 3 , W 2 = 1 2 au 2 x + 1 2 Bψ 2 + 1 2 Cψ 2 x + Dψu x , W 3 = 1 6 N u 3 x + 1 6 M ψ 3 x , (2) 
where a, B, C, D, M , N are constants. Here the quadratic term W 2 gives rise to the linear stress and the cubic W 3 -to the nonlinear part of stress. Then using the formulae

σ = ∂W ∂u x , η = ∂W ∂ψ x , τ = ∂W ∂ψ (3) 
eqs. ( 1) are expressed in terms of variables u and ψ

ρu tt = au xx + N u x u xx + Dψ x , Iψ tt = Cψ xx + M ψ x ψ xx -Du x -Bψ. (4) 
Next, slaving principle [START_REF] Engelbrecht | Waves in microstructured solids with nonlinearities in microscale[END_REF][START_REF] Engelbrecht | Waves in microstructured materials and dispersion[END_REF] is applied (in order to eliminate the microdeformation ψ from latter equations) and in terms of dimensionless variables X = x/L, T = tc 0 /L, U = u/U 0 , scale parameter δ = l 2 /L 2 (L and U 0 are amplitude and wavelength of the initial excitation, respectively; c 2 0 = a/ρ and l is the scale of the microstructure) equations ( 4) result in the hierarchical model equation

L 1 -δL 2 = 0 L 1 = U T T -bU XX - µ 2 U 2 X X L 2 = βU T T -γU XX -δ 1/2 λ 2 U 2 XX XX (5) 
where L 1 is macrostructure wave operator and L 2 microstructure wave operator. New dimensionless material constants b, µ, β, γ and λ are introduced during change of variables and they are directly related to constants a, B, C, D, M , N in free energy expression (2) (see [START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF][START_REF] Janno | An inverse solitary wave problem related to microstructured materials[END_REF] for details). If the scale parameter δ is small then the wave process is governed by properties of the macrostructure and vice-versa, if δ is large, then properties of the microstructure govern the process.

For future analysis eq. ( 5) is expressed in terms of deformation v = U X and lower-case letters x and t are used for dimensionless coordinate and time.

v tt -bv xx - µ 2 v 2 xx - δ (βv tt -γv xx ) xx + δ 3/2 λ 2 (v x ) 2 xxx = 0. (6) 
The full derivation of governing equation ( 6) can be found in [START_REF] Engelbrecht | Waves in microstructured materials and dispersion[END_REF][START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF]. Equation ( 6) is nonintegrable but it is possible to find its travelling wave solution v(x -ct) in the form of an asymmetric solitary wave using numerical integration under asymptotic boundary conditions (i.e. u, u x , u xx , . . . → 0, if x → ±∞). The analytic conditions for the existence of solitary waves modelled by equation ( 6) are given by Janno and Engelbrecht in [START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF][START_REF] Janno | An inverse solitary wave problem related to microstructured materials[END_REF]:

c 2 -b βc 2 -γ > 0, βc 2 -γ c 2 -b 3 > 4λ 2 µ 2 , µ = 0, βc 2 -γ = 0, c 2 -b = 0. (7) 
In the case of λ = 0 the nonlinearity in the microscale is neglected and equation ( 6) admits belllike solitary wave solution [START_REF] Porubov | Amplification of Nonlinear Strain Waves in Solids[END_REF][START_REF] Janno | An inverse solitary wave problem related to microstructured materials[END_REF] 

v(x -ct) = A sech 2 κ(x -ct) 2 , A = 3(c 2 -b) µ , κ = c 2 -b δ(βc 2 -γ) . (8) 
From the viewpoint of soliton dynamics, three problems are of importance: the existence of solitary waves, the emergence of solitary waves and the interaction of solitary waves. The latter is important in order to prove the solitonic character of solitary waves, i.e. to understand whether solitary waves are able to propagate at constant speed and shape and to restore these quantities after interactions. If yes, these solitary waves are called solitons. Here in this paper the basic model is a two-wave equation with complicated dispersive and nonlinear terms. The existence of solitary waves is proved by Janno and Engelbrecht [START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF][START_REF] Janno | An inverse solitary wave problem related to microstructured materials[END_REF], the preliminary analysis of emergence of trains of solitary waves is presented in our earlier study [START_REF] Engelbrecht | Nonlinear deformation waves in solids and dispersion[END_REF] and here we present the preliminary results on interaction of solitary waves. The notion of solitary waves is used because the elastic interaction should prove whether these waves are solitons or not. As it is shown below, the problem is complicated and needs further analysis.

A c c e p t e d m a n u s c r i p t 2. Statement of the problem and numerical technique

In the present paper the propagation and the interaction of localised initial pulses in microstructured materials (governed by equation ( 6)) is simulated numerically over long time intervals. Two goals are stated (i) to examine the solitonic character of the solution and (ii) to estimate the influence of the microlevel nonlinear parameter λ on the solution.

For this reason equation ( 6) is integrated numerically under localised initial conditions

v(x, 0) = 2 i=1 A 0 i sech 2 κ i (x -ξ i ) 2 , 0 ≤ x < 2kπ. (9) 
Initial amplitudes A 0 i and the widths κ i (i = 1, 2) correspond to different initial speeds c 1 = c 2 , ξ i are initial phase shifts, and k is integer. It is clear that in case c 1 c 2 < 0 head-on collision and in case of c 1 c 2 > 0 overtaking interaction takes place (if periodic boundary conditions are applied then this is true as in case c 1 > c 2 as well as in case c 1 < c 2 ).

For numerical integration discrete Fourier transform (DFT) based pseudospectral method (PsM) [START_REF] Fornberg | A Practical Guide to Pseudospectral Methods[END_REF][START_REF] Salupere | On the longtime behaviour of soliton ensembles[END_REF] is used and therefore periodic boundary conditions

v(x, t) = v(x + 2kπ, t) (10) 
are applied. In a nutshell, the idea of the PsM is to approximate space derivatives making use of DFT and then to use standard ODE solvers for integration with respect to the time. Due to the mixed partial derivative term δβv ttxx the model equation ( 6) can not be directly integrated by PsM. Therefore we introduce new variable

Φ = v -δβv xx . (11) 
In terms of DFT the latter can be presented in the form

Φ = F -1 [(1 + δβω 2 )F (v)], (12) 
where F denotes the DFT, F -1 the inverse DFT and ω = ±1, ±2, . . . ± (N/2 -1), -N/2,. Then variable v and its spatial derivatives are expressed in terms of the variable Φ

v = F -1 F (Φ) 1 + δβω 2 , ∂ n v ∂x n = F -1 (iω) n F (Φ) 1 + δβω 2 . ( 13 
)
Finally, equation ( 6) can be rewritten in terms of variable Φ

Φ tt = bv + µ 2 v 2 -δγv xx -δ 3/2 λ 2 (v 2 x ) x xx (14) 
(v and its space derivatives are calculated making use of expressions ( 12) and ( 13)). In order to simulate the propagation and the interaction of localised pulses equation ( 14) is solved numerically by PsM under initial and boundary conditions ( 9) and [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], respectively.

Calculations are carried out using SciPy package [START_REF] Jones | SciPy: Open source scientific tools for Python[END_REF]: for DFT the FFTW [START_REF] Frigo | The design and implementation of FFTW3[END_REF] library and for ODE solver the F2PY [START_REF] Peterson | F2PY: Fortran to python interface generator[END_REF] generated Python interface to ODEPACK Fortran code [START_REF] Hindmarsh | Odepack, a systematized collection of ODE solvers[END_REF] is used.

Results and discussion

In the present Section two different head-on interaction cases are considered. In the first case solitary waves of equal amplitude propagate at equal initial speed in opposite directions (c 1 = -c 2 = 0.9) and in the second case solitary waves of different amplitude propagate at initial speeds c 1 = 0.9 and c 2 = -0.9115. Five parameters for equation ( 6) are fixed: b = 0.7683, µ = 0.125, δ = 9, β = 7.6452, γ = 6.1825, but λ has three different values 0, 0.0025, and 0.005. For |c i | = 0.9115 and |c i | = 0.9 conditions [START_REF] Engelbrecht | Waves in microstructured materials and dispersion[END_REF] are satisfied for all considered values of parameter λ. We stress here that if conditions [START_REF] Engelbrecht | Waves in microstructured materials and dispersion[END_REF] are satisfied, then travelling wave solutions in the form of single asymmetric solitary wave can exist for equation [START_REF] Porubov | Amplification of Nonlinear Strain Waves in Solids[END_REF] [START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF][START_REF] Janno | An inverse solitary wave problem related to microstructured materials[END_REF]. Numerical integration is carried out for 0 ≤ t ≤ 6000, waveprofiles are saved at every ∆t = 0.5, the length of the space period is 60π and the number of space-grid points is n = 1024. According to expression (8) 2 amplitude A = 1.00 corresponds to the speed |c i | = 0.9 and amplitude A = 1.50 to the speed |c i | = 0.9115. In all considered cases amplitudes of solitary waves increase during interactions and decrease after interactions. If initial amplitudes, shapes and velocities are restored after interactions -like in case of Boussinesq models -then such solitary waves can be called solitons.

In [START_REF] Salupere | On interaction of deformation waves in microstructured solids[END_REF] the same interaction types were studied for remarkably shorter time intervals (0 ≤ t ≤ 500). For the equal initial amplitude case the length of the space interval was 24π and in the case of nonequal amplitudes 96π. It was found that for λ = 0 and for relatively small values of parameters the behaviour of solitary waves was very close to that of solitons for the considered time and space intervals. Interaction between equal amplitude solitary waves was found to take place without phase shifts, but if interacting waves have different amplitude, then both were phase-shifted.

Head-on collision of solitary waves with equal amplitudes

In the present Subsection the interaction between two solitary waves having initial velocities are c 1 = -c 2 = 0.9 and equal initial amplitudes A 0 = 1.00 is studied. In Fig. 1, waveprofile maxima (heights) are plotted against time for two different values of parameter λ. In the beginning of the integration interval (t < 500) height at "peaks" of interaction A i ( "peaks" of interaction correspond to local max- ima of amplitude curves in Fig. 1) is close to double initial amplitude of interacting solitary waves. However for t > 500 the amplitude A i increases apparently, cf. Fig. 2 where the amplitude A i is plotted against time for different values of λ. For t < 1000 all three curves practically coincide, but for higher values of t they diverge essentially -the higher the value of λ the lower the values of A i . At t = 3000 the value of A i is more than 6% higher than double initial amplitude of interacting solitary waves for all three values of λ.

The length of time intervals between "peaks" of interaction does not depend on λ and is between values 104.63 and 104.71. It is clear from Fig. 1 that for t < 500 interacting solitary waves more or less restore their initial heights for certain time intervals. However, for higher values of t such a phenomenon does not take place. Furthermore, for λ > 0 right-propagating and left-propagating solitary waves have different heights A R and A L between interactions. In Fig. 3 averaged amplitudes A a R and A a L are plotted against the number of interactions. Values of A a R and A a L after k-th interaction are obtained by averaging amplitudes of right-and left-propagating solitary waves over time intervals where both amplitudes have near constant values between kth and (k + 1)th interaction (cf. Fig. 1). Analysis of single waveprofiles and data in Fig. 3 demonstrate that for λ > 0 amplitude A a R > A a L until 15th interaction and vice versa A a R < A a L after 15th interaction. The higher the value of λ the higher the amplitude A L and the lover the amplitude A R at t = 3000. This phenomenon depicts the behaviour at the given set of parameters and the critical value can be changed at other sets. It is evident that the averaged amplitudes tend to certain limits at larger number of interactions. The fact that amplitudes are not restored after interactions indicates that interactions between solitary waves are not elastic, i.e., a certain exchange of energy takes place between solitary waves during interaction. One can see below that the initial symmetric shape of solitary waves is also altered during interactions.

Between interactions both solitary waves propagate practically at initial speed. In order to estimate phase shifts during interactions the actual trajectories of solitary waves are compared with straight lines x i = ξ i ± 0.9t, i.e., with phase-shift free trajectories (ξ i are initial phase shifts, cf. ( 9)). In Fig. 4 cumulative phase shift in space is plotted against the number of interactions. The cumulative phase shift is calculated as average deviation between two considered trajectories over time interval t k + 25 ≤ t ≤ t k+1 -25, (time moments t k and t k+1 correspond to kth and (k + 1)th interaction, respectively). For the case λ = 0 both waves are shifted by the same extent and the cumulative phase shift after 28th interaction is about 0.81 which is 0.43% of the length of the space period. For λ > 0 phaseshifts for right-propagating and left-propagating solitary waves are different -right-propagating solitary wave is less phase-shifted than that of the left-propagating. However, compared to the length of the space period the cumulative phase-shift is less than 1% in all considered cases.

Janno and Engelbrecht have shown in [START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF][START_REF] Janno | An inverse solitary wave problem related to microstructured materials[END_REF] that for equation ( 6) exists symmetric bell-shaped travelling wave solution for λ = 0 and asymmetric trav- . elling wave solution -for λ > 0. In our numerical experiments single solitary wave [START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF] propagates at constant amplitude and speed in case of λ = 0. In case of λ > 0 the initial symmetric solitary wave is deformed to that of asymmetric. Numerical analysis of interactions of solitary waves [START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF] demonstrate that due to interactions initial symmetric solitary waves are deformed to that of asymmetric even in case λ = 0. This phenomenon can be observed in 5. Timeslices of wave-profiles at t=0, at interaction "peaks" and at time moments when two solitary waves are maximally separated in case of c 1 = -c 2 = 0.9 and λ = 0. Fig. 5 where maximally separated waveprofiles are plotted besides waveprofiles at interaction "peaks". The asymmetry of solitary waves is clearly visible in Fig. 6 where solitary waves are plotted at t = 0 and at time moment when they are maximally separated after 28th interaction (the left solitary wave is propagating to the right and the right one to the left). It is clear that the higher the value of λ, the more asymmetric is the corresponding wave. Due to the asymmetry both waves are partly located below zero. Physically such a phenomenon can be interpreted as region of depression (v > 0 correspond to compression). The depression region is always located behind the propagating wave and the more interactions have taken place the stronger it is (cf. wave-profile minimum curve in Fig. 1).

Head-on collision of solitary waves with nonequal amplitudes

In the present Subsection we discuss interactions between two solitary waves having initial amplitudes A 0 1 = 1.00 and A 0 2 = 1.50 and initial velocities c 1 = 0.9 and c 2 = -0.9115. In Fig. 7 amplitude curves are plotted for λ = 0 and λ = 0.005. In the beginning of the integration interval the amplitude of waves at "peak" of interactions A i is close to the sum of initial amplitudes like in the previous case. However, unlike the previous case the amplitude A i is decreasing during the integration time interval. In Fig. 8 amplitudes A i are plotted against time for three different values of parameter λ. The higher the value of λ the larger the decrease of the amplitude A i . The length of time intervals between "peaks" of interaction does not depend on λ (like in the previous case) and is now between values 103.35 and 104.00.

The behaviour of the higher (left-propagating) solitary wave between interactions is practically independent on the value of the parameter λ -after the first interaction the initial amplitude is practically restored, but then the average amplitude A a L decreases and after the 15th interaction near t = 1500 retains constant value (see Figs. 7 and9). The amplitude of the lower (right-propagating) solitary wave behaves between interactions just the other way round -the amplitude A a R is practically constant in the beginning of the interaction interval and starts to decrease after the 12th interaction near t = 1200. Furthermore, up to the 12th interaction the right-propagating solitary wave practically restores its initial height.

Both solitary waves propagate between interaction at initial speed and we calculate the cumulative phase shift in the same way like in the previous case. Results are presented in Fig. 10 for three values of parameter λ. In the present case the maximal value of the cumulative phase shift is near nine (in previous case it was up to 1.2). Up to the 21st interaction the left-propagating, i.e., the higher solitary wave is more phase shifted than that of the right-propagating for all three values of λ. After that the cumulative phase shift for the right-propagating, i.e., the lower solitary wave increases rapidly from the value near 2.5 up to the value near 9 without reference to the value of the parameter λ.

The larger the number of interactions the more asymmetric is the lower solitary wave. Due to the asymmetry, the part of the waveprofile behind it is located below zero like in the previous case. . higher values of t waveprofile minimum has values close to zero only for very short time intervals near "peaks" of interactions (Fig. 7). In Fig. 11 solitary waves are plotted at t = 0 and at time moment when they are maximally separated after 28th interaction (the left solitary wave is propagating to the right and the right one to the left) for three values of λ. In the present case parameter λ has very weak influence on the shape of the waveprofile -amplitude of the lower solitary wave decreases slightly when λ increases, but one can not distinct three profiles in case of the higher solitary wave.

Conclusions

Well known and widely used evolution equations ( Korteweg-de Vries equation and its modifications for example) are one-wave equations (the order of time derivative is one), i.e., they are able to govern only overtaking interactions of solitary waves. Equation (6) (used in the present paper) is a two-wave equation (the order of time derivative is two) and therefore gives us possibility to analyse also head-on collisions of waves.

In case of λ = 0 single symmetric bell-like solitary wave ( 8) is an analytical solution of equation ( 6) and it propagates with a constant speed and shape. Our numerical simulations have demonstrated that in case of λ > 0 the symmetric shape of initial single bell-like solitary wave ( 8) is altered to asymmetric shape during propagation. In the present paper the head-on collision of two sech 2 -shape localised initial pulses is studied in case of λ = 0 as well as λ > 0. Material parameters for equation ( 6) and initial conditions [START_REF] Janno | An inverse solitary wave problem related to microstructured materials[END_REF] were chosen according to to conditions [START_REF] Engelbrecht | Waves in microstructured materials and dispersion[END_REF], i.e., for all considered sets of parameters travelling wave solutions in the form of single asymmetric solitary wave can exist for equation [START_REF] Porubov | Amplification of Nonlinear Strain Waves in Solids[END_REF].

Main results are the following: -Interactions between solitary waves are not complitely elastic even in case of λ = 0 -during interactions the symmetric shape of initial waves is altered to that of asymmetric. In case of λ = 0 and A 0 1 = A 0 2 the asymmetry is very weak after very first interactions. However, the higher the number of interactions, the more distinctive the asymmetry without reference to the values of parameter λ and initial velocities. In case of A 0 1 = A 0 2 the shape of the higher solitary wave is altered only slightly, but that of the lower one significantly.

-The asymmetry of the pulse is reflected in the altering of the shape of compression region of the pulse (v > 0) as well as in the emergence of depression zone (v < 0) beside that of compression. This phenomenon is more distinctive in case of A 0 1 = A 0 2 . -Phase shifts, characteristic for soliton type interactions, can be easily traced in case of A 0 1 = A 0 2 . In case of A 0 1 = A 0 2 even the cumulative phase shift over long time intervals is small compared to the considered space interval and/or distance traveled by interacting waves. -In the beginning of the integration interval the heigth (amplitude) of interacting waves is practically restored between interactions. For higher values of t the heigth can be altered remarkably. In case of A 0 1 = A 0 2 heights of right-and leftpropagating waves are restored on unequal levels.

-The nonlinearity of the microstructure (parameter λ) has stronger influence on the character of solution in the case of equal initial amplitudes A 0 1 = A 0 2 (cf. set of Figs. [START_REF] Eringen | Microcontinuum Field Theories. I Foundations and Solids[END_REF][START_REF] Phillips | Crystals, Defects and Microstructures. Modelling Across Scales[END_REF][START_REF] Maugin | Nonlinear Waves in Elastic Crystals[END_REF][START_REF] Engelbrecht | Waves in microstructured solids with nonlinearities in microscale[END_REF][START_REF] Porubov | Amplification of Nonlinear Strain Waves in Solids[END_REF][START_REF] Engelbrecht | Waves in microstructured materials and dispersion[END_REF][START_REF] Janno | Solitary waves in nonlinear microstructured materials[END_REF][START_REF] Janno | An inverse solitary wave problem related to microstructured materials[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF][START_REF] Engelbrecht | Nonlinear deformation waves in solids and dispersion[END_REF]. -Over short time intervals and small number of interactions the behaviour of the solution is very close to the solitonic behaviour in all consdered cases. The higher the number of interactions and the longer the time interval the more the initial and the restored waveprofiles differ.

In order to explain phenomena described in this paper in more detail, a furthure analysis based on energy distribution and spectral changes is needed. Clearly, two-wave interactions differ from one-wave interactions. The special analysis of one-wave interactions is presented in [START_REF] Salupere | Long-time behaviour of soliton ensembles. Part I-Emergence of ensembles[END_REF][START_REF] Salupere | Long-time behaviour of soliton ensembles. Part II-Periodical patterns of trajectories[END_REF], the same should be done for this model. 
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  ρu tt = σ x , Iψ tt = η x -τ.
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 1 Fig. 1. Wave-profile maxima and minimum against time in case of c 1 = -c 2 = 0.9: a) λ = 0; b) λ = 0.005.
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 2 Fig.2. Amplitude at "peaks" of interactions A i against time in case of c 1 = -c 2 = 0.9.
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 3 Fig. 3. Averaged amplitudes between interactions A a R and A aL against the number of interactions in case of c 1 = -c 2 = 0.9.
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 4 Fig. 4. Cumulative phase-shift of left-and right-propagating solitary waves against the number of interactions in case of c 1 = -c 2 = 0.9: a) λ = 0; b) λ = 0.0025; c) λ = 0.005
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 6 Fig.6. Initial waveprofile and maximally separated waveprofiles after 28th interaction in case of c 1 = -c 2 = 0.9.
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 789 Fig. 7. Wave-profile maxima and minimum against time in case of c 1 = 0.9 and c 2 = -0.9115: a) λ = 0; b) λ = 0.005.
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 10 Fig. 10. Phase-shifts of left and right going solitary waves in case of c 1 = 0.9 and c 2 = -0.9115: a) λ = 0; b) λ = 0.0025; c) λ = 0.005

Fig. 11 .

 11 Fig.11. Initial waveprofile and maximally separated waveprofiles after 28th interaction in case of c 1 = 0.9 and c 2 = -0.9115.
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