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Abstract 

In this paper, we introduce the concept of Integrated Preisach-Mayergoyz 

(IPM) density to analyze static uniaxial compression tests at values well below 

the critical strength, and to characterize the elasticity of materials with 

hysteresis in their stress-strain relationship. The IPM density can be deduced 

from a particular force protocol following basic data treatment. The advantage 

of the IPM density over prior approaches is that no second order differentiation 

of the data is required which reduces the errors and uncertainties typical for 

past practice in the specific context of rock elasticity using scanning curves and 

PM density analysis. The characterization of the elasticity of the material is 

established in terms of a non-hysteretic strain contribution in the form of a 

nonlinear but reversible equation of state, and a hysteretic contribution 

represented by the IPM density. The IPM inversion procedure is tested for 

simulated stress-strain data subjected to additive noise, and the results are 

compared to the traditional methodology. In addition, we analyze the hysteretic 

and non-hysteretic characteristics of five natural building stones, and show 

evidence for a classification based on the inferred properties. 

 

Keywords: hysteresis, rock mechanics, non-destructive testing, nonlinear constitutive 

behavior 
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1. Introduction 

The class of materials for which hysteresis is believed to be responsible for the 

nonlinear elastic and acoustical properties, is quite extensive (rocks, minerals, 

construction materials, composites, ceramics, polycrystalline metals, martensites). An 

enlightening exemplar for observing the separation of loading and unloading curves in 

static stress-strain tests is the family of sandstones, where cyclic static tests under 

pressures of a few tens of MPa’s reveal a difference between the ascending and 

descending branches (loop thickness) which is comparable to the elastic strain itself. A 

similar branch separation can be observed in the stress-strain behavior of fatigued 

metals. This makes hysteresis a material state property of primary importance and, 

consequently, the problem of its characterization and its inversion from measurements 

arises. 

A traditional model for the description of rate-independent hysteresis is the 

Preisach space approach [1] which was initially developed for ferromagnetics. Later, 

this methodology was generalized in the perspective of control theory, including the 

proofs of several important theorems by Krasnosel’skii and Pokrovskii [2], whose 

results are discussed in a classical paper by Mayergoyz [3]. In the 1990’s, this 

formalism was applied for the elasticity of martensites [4] and geomaterials [5], and in 

this context the term PM model or PKM model (or space) was adopted. Key player in 

this model is the PM-density distribution which represents the statistical distribution of 

microscopic units with a bistable state within a representative volume. 

As far as material characterization is concerned, the basic methodology for 

inverting the hysteretic material characteristic (i.e. the PM density) from experimentally 

obtained stress-strain data was published by Guyer et al. [6]. It was noted that the PM-

density inversion is a highly underdefined problem: the number of constraints that can 
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be obtained from a few hysteretic loops is typically much smaller than the number of 

points defining the PM density (2D surface). To avoid this difficulty, one generally uses 

regularization (or “smoothening”) methods (see for instance Tikhonov and Arsenin [7] 

for a fundamental description of the underlying theory). Guyer et al. [6] proposed three 

different ways to realize the regularization, resulting in three inversion algorithms: 

“simulated annealing” (direct minimization of a regularized objective function), 

“normal modes” (approximation of the PM density with an orthonormal set of 

functions) and “exponential decay” (imposing an explicit form of the PM density 

characterized by a limited number of model parameters). Visually, the agreement 

between the three obtained density surfaces from the same set of data is acceptable; 

however, an extensive quantitative comparison and error calculation has not been 

performed. Nonetheless, using numerical tests with simulated data, it is straightforward 

to calculate the actual PM density reconstruction error for any of these approaches 

directly. 

In this paper, we look at the problem from a slightly different point. On one 

hand, the fact that the PM density inversion is underdefined can be compensated to a 

certain extent by operating a special stress protocol that consists of an extended 

sequence of loops with different upper and lower stresses. Even though the finite 

measurement precision limits the amount of experimental stress-strain data points, it can 

be significantly increased. On the other hand, we note that the problem of reconstructing 

the PM density is highly ill-posed: similar stress-strain responses may correspond to 

highly different PM distributions. Indeed, as shown by Mayergoyz [3], the PM density 

can be obtained as the second derivative of the hysteresis information contained in the 

measured data. However, it is well known that each differentiation procedure is an 

extremely bad conditioned operation, especially on noisy data, and tends to blow up 
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small errors on the measurements. Furthermore, once the PM density has been inferred 

from the data by double differentiation, it is then necessary to perform a 2D integral 

calculation of the PM density over a specific area to predict the stress-strain curves in 

response to an arbitrary stress protocol. 

The above mentioned traditional practice opens a simple question: is it possible 

to avoid the double differentiation and the subsequent double integration, and 

characterize the material by a property that relates to the data more directly? In other 

words, can we use for instance an integral characteristic instead of a differential one? 

Sure enough, there is not much scientific progress in using an integral property 

instead of a differential one. However, from a practical point, the approach that will be 

outlined in the next paragraphs completely avoids solving an ill-posed problem and 

performing a badly conditioned operation. Indeed, we will show that the 

characterization of both hysteretic and non-hysteretic material elasticity can be solved 

with a precision of a few percents even for very noisy data, if we are not obliged to infer 

the traditional representation of the PM density. 

Ideally, when solving the hysteretic elasticity characterization problem, the 

inferred material property describing the mechanical hysteresis should 

¾ not depend on the experimental conditions; 

¾ be able to predict results for new experiments; 

¾ and be obtained by means of a well-posed inversion. 

Such a method is proposed in the present communication and is discussed in detail 

below for the treatment of simulated noisy data and real experimental data. 



Acc
ep

te
d m

an
usc

rip
t 

 

 

6

6

2. PM density and IPM density 

The traditional treatment of hysteresis using the Preisach space (or PM space) consists 

in the evaluation of the following expression for the uniaxial stress(σ)-strain(ε) 

relationship: 

 

( ) ( ),NH H history ofε ε σ ε σ σ= + .      (1) 

 

Here, εNH(σ) is a one-variable function representing the non-hysteretic contribution 

(sometimes referred to as classical nonlinearity since it is generally approximated by a 

simple polynomial expansion [8]). The second term accounts for the hysteresis itself 

and is history-dependent. The dependence on the stress history appears in the following 

way. We suppose that any representative (physically small) volume of the material 

contains a large number of hysteretic mechanical units, which can be found in one of 

two states: “open” or “closed”. A single mechanical element is assumed to be 

characterized by two stress values σo and σc, so that it opens if σ < σo when the actual 

stress σ decreases, closes if σ > σc when the stress σ increases. In all other cases it 

keeps its previous strain state. Here we adopt the conventions (convenient for 

compression tests) that σ and ε are both positive for compression. Even though there is 

no experimental evidence for this, we can associate the hysteretic elements 

hypothetically with internal cracks, which are closed at higher compression and open at 

smaller values. It is then obvious that σo<σc for any element. The conjectural 

association of hysteretic units with microcracks and partially contacting surfaces has 

been studied in recent work by Pecorari [9-10], and Aleshin and Van Den Abeele [11-
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13]. Experimental evidence for the connection between crack density and macroscopic 

effects of hysteresis can be found in Van Den Abeele et al. [14]. 

We assume that the material (or better, each representative volume) is 

characterized by a distribution ρ(σc,σo) of hysteretic elements (called PM density) with 

characteristic stress values σo and σc, so that ρ(σc,σo)dσcdσo is the probability to find an 

element in the rectangle (σc,σc+dσc)×(σo,σo+dσo) and ( ), 1c o c od dρ σ σ σ σ
+∞ +∞

−∞ −∞

=∫ ∫ . We 

also accept that open units do not contribute to the stress-strain relationship given in 

Eq. (1) and that the total hysteretic strain contribution is given by γ  when all elements 

are closed. Under these assumptions, the hysteretic addition εH to the total strain simply 

equals the fraction of closed elements multiplied by γ:  

 

( ) ( ), ,
c c

H c o c o c o c od d d dε γ ρ σ σ σ σ ρ σ σ σ σ
Ω Ω

= =∫∫ ∫∫ % ,   (2) 

 

where Ωc denotes the area in the (σc,σo)- or PM-space containing the closed elements, 

and ρ γρ=% . An example is displayed in Figure 1 in which the population of closed 

units is represented by the dark gray area. Taking into account the above accepted rules 

for individual element switching, any stress loading history leads to a configuration in 

the PM space in which the closed (Ωc) and open (Ωo) areas are divided by a staircase 

line (Figure 1) defined by the loading history and, in particular, carrying information 

about the relevant stress extrema (e.g. Krasnosel’skii and Pokrovskii [2]. 

Starting from the classical representation of the PM-density, ρ(σc,σo), we can 

also define the integral PM density (IPM density) H(σc,σo), which is a dimensionless 

quantity: 
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( ) ( ) ( ), , ,
c c

o o o o

x x

c oH dx x y dy dx x y dy
σ σ

σ σ σ σ

σ σ γ ρ ρ= =∫ ∫ ∫ ∫ % .    (3) 

 

The area of integration is a right-angled triangle defined by the corners (σc,σc), (σo,σo) 

and (σc,σo) (as for instance indicated in Figure 4 which will be discussed later). It is 

easy to prove that Eq. (2) can be rewritten as 

 

( )1 2 3
1,

... 1 i
H n i

i n
H H H H Hε

=

= − + − ± = − −∑ ,     (4) 

 

where the values Hi correspond to the IPM densities at the (σc,σo) points i=1,2..n on the 

staircase-line as illustrated in Figure 1. The last sign is “+” if n is odd and “-” otherwise. 

Here, we assume for simplicity that the section 1-2 is vertical (in practice, this is easily 

achievable by introducing an additional point very closely to the first one). Otherwise, 

Eq. (4) should read: 2 3 4 ...H H H Hε = − + − . 

The relation between the PM density and the IPM density can also be rewritten 

as follows: 

 

( ) ( )2 ,
, c o

c o
c o

H σ σ
ρ σ σ

σ σ
∂

= −
∂ ∂

% .       (5) 

 

As it will be shown later, the advantage of the IPM density is that its distribution 

can be found directly from the stress-strain data. In addition, we avoid the ill-posed 

operation of calculating the second derivative of potentially noisy data. As a result, the 
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IPM density will appear to be a more relevant material characteristic than the 

conventional differential one. 

 

 

3. Data treatment procedure for IPM density reconstruction 

In this Section we formulate the essential algorithm for retrieving the IPM density from 

obtained stress-strain data. The proposed method requires a specific stress protocol as 

displayed in Figure 2. This protocol contains NL=N(N+1)/2 loading-unloading cycles, 

with N an integer number (e.g. N=8 in Figure 2), and is constructed in such a way that 

each compression-decompression cycle in the left hand side of Figure 2 corresponds to 

one of the possible triangles in the PM space, formed by any two orthogonal grid lines 

in the figure on the right hand side. Inversely, each of the NL=N(N+1)/2 triangles that 

can be found on the N×N grid, corresponds to a compression-decompression cycle in 

the stress protocol (a single loop in the stress-strain relationship). In the rest of this 

paper, we will refer to this particular protocol as the N-level stress protocol. 

Starting from the basic equations of the PM model, i.e. Eqs. (1-2), it is easy to 

verify that the thickness ∆ε of a hysteretic loop at a constant stress value σ equals the 

integral of the PM density over a rectangle with corners (σ,σ), (σmax,σ), (σmax,σmin) and 

(σ,σmin), where σmin and σmax denote the lowest and highest stresses for this particular 

loop (as shown in Figure 3): 

 

( ) ( ) ( )
max

min

,c c o od d
σ σ

σ σ

ε ε σ ε σ σ ρ σ σ σ↑ ↓∆ = − = ∫ ∫ % .    (6) 
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Here, ( )ε σ↑  and ( )ε σ↓  respectively represent the strain value at a compression σ 

when loading or unloading the sample within the particular hysteretic loop. From the 

above equation it readily follows that 

 

( )
2

max
max

, ερ σ σ
σ σ
∂ ∆

=
∂ ∂

% .       (7) 

 

The conventional practice of inferring the PM density thus implies the second derivative 

of the loop thickness information in the experimental stress-strain curves. Since 

experimental stress-strain curves are usually subject to substantial noise, this differential 

operation is badly conditioned. We can avoid the differential density reconstruction by 

working with the integral formulation. 

In the integral approach, it suffices to measure the thicknesses ∆ε from the 

available stress-strain data for all σ-levels at the grid points in the PM space. For an 

N×N grid with NL=N(N+1)/2 possible triangles (i.e. loops in the stress-strain relation) 

and the corresponding N-level stress protocol, the maximum number of possible “non-

zero” thickness measurements is NM=N(N2-1)/6. This means that each N-level protocol 

gives us the PM density integrals over NM rectangles, overlapping as well as non-

overlapping. Once these values are known, it is possible to infer the integrals over the 

individual 1×1 squares in the PM space (which we call blocks or bins). The number of 

such bins is NB=N(N-1)/2. Remark that the number of unknown bin integrals NB is 

always smaller then the number NM of known data points (i.e. loop thickness 

measurements, or rectangles (bins combinations)), except in the trivial case for N=2, 

when both numbers equal 1. As a consequence, we have an over-determined system of 

linear equations that can be solved by minimizing the corresponding objective function: 
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2

,
1 ,

MN

i k l
i k l i

F Iε γ
= ∈

⎛ ⎞
= ∆ −⎜ ⎟

⎝ ⎠
∑ ∑ ,       (8) 

 

where ∆εi is the result of the i-th thickness measurement and ,
,

k l
k l i

I
∈

∑  represents the 

summation of all bin integrals (i.e., PM density integrals over the (k,l)th bin) belonging 

to the corresponding i-th rectangle. The residual value of the objective function can be 

used as a criterion for deciding whether we are dealing with a good PM system or a 

system that significantly deviates from the ideal one. (Note that an ideal PM system is 

defined by Eqs. (1-2) or (1,4), and its properties can by found in the classical article by 

Mayergoyz [3] or in the fundamental book by Krasnosel’skii and Pokrovskii [2]. 

The problem of calculating the individual bins values from their combinations 

basically requires the subtraction of two closely valued positive numbers, each known 

with some precision. In that case, the relative error of the result is much higher than the 

relative errors of the individual components. In other words, the calculation of the 

individual bins values is a coarse-grid equivalent of the continuous differentiation given 

by Eq. (7). However, in our current approach, we don’t really need the bin values 

themselves, but only a specific combination of them corresponding to the grid points 

where the IPM density is calculated. To find the IPM density in a given grid point 

(σc,σo) we must collect all bins located at the upper-left hand side from that point (see 

Figure 4). By summing bin integrals, we avoid the above mentioned instability problem 

since the sum of positive numbers always has a small relative error. In other words, we 

calculate a combination of items from another combination of items, that’s why the 

requirements to error on each item are not too high. 
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Note that, despite the fact that we combine bins in the IPM reconstruction 

algorithm, it is advisable to assure the stability of the process of deriving the bins 

themselves. A typical regularization technique [7] consists in considering a stabilizing 

addition to the objective function (Eq. 8) of the following kind 

 

( ) ( )2 2

, 1, , , 1
, ,

' k l k l k l k l
k l k l

F F I I I Iα α+ += + − + −∑ ∑ ,    (9) 

 

which penalizes large differences between neighboring bins and smoothens the coarse-

grained PM density. The same consideration was made by Guyer et al. [6], however, 

with one major substantial difference. In this article the proposed smoothening is of 

vital importance for finding the differential density, while here it represents just a small 

correction that is not critical at all. The stabilizing parameter α must be predetermined 

depending on the noise value (as will be discussed later). 

As presented in Figure 4, the IPM density H(σc,σo) consists of elementary 

square bins and small triangular bins which are located at the diagonal σo=σc. To 

estimate the integrals in the triangular bins, we assume that the PM density in each 

triangular bin has a constant value (N in total). This is, of course, not exactly true and 

may lead to errors which will be discussed later. From Eq. (6), it follows that the area 

inside any closed stress-strain loop, extending from σmin to σmax under the assumption of 

a constant PM density 0ρ% , is 

 

( )
max

min

3
0 max min 6A d

σ

σ

ε σ ρ σ σ= ∆ = −∫ % .      (10) 
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Thus, by measuring the areas A for all the smallest stress-strain loops, one easily obtains 

the values of the triangular bin integrals: 

( )
( )

2
max min

0
max min

3
2

Aσ σ
ρ

σ σ
−

=
−

%       (11) 

 

Here 0ρ% , σmax and σmin are, of course, different for different triangular bins.  

With this, we have all information for obtaining the IPM density H(σc,σo) at the 

discrete grid points. Finally, we interpolate the set of IPM points with a smooth function 

to get the IPM density distribution everywhere in the (σc,σo) space. Inversely, this 

distribution can then again be used to predict the hysteretic contribution to the total 

strain following any arbitrary stress protocol. 

We now return to the nonhysteretic contribution to the total strain. The 

component εNH(σ) in Eq. (1) can only be reconstructed once the IPM density is found. 

To do this, we consider the loading curve ( )ε σ↑  for the largest loop of the protocol and 

we note that 

 

( ) ( ) ( )min,NH Hε σ ε σ σ σ↑ = + .      (12) 

 

Alternatively, we can also consider the unloading curve for which 

 

( ) ( ) ( ) ( )max min max, ,NH H Hε σ ε σ σ σ σ σ↓ = + − .    (13) 

 

Using both the measured loading and unloading branches and with the known IPM 

density values at hand, we can retrieve εNH(σ) twice. Certainly, for an ideal PM system 
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these two values must coincide. For realistic cases, they deviate with a discrepancy 

characterizing the validity of the discussed PM model. 

 The performed numerical analysis enabled us to choose the number N from the 

following compromise consideration: on one hand, to coarse grid hides local features of 

the density, but, on the other hand, too fine grid makes it difficult to measure thickness 

of the smallest internal loops. N=8 was established as a optimum in our situation. 

In conclusion, the algorithm for the IPM density computation and nonlinear 

elasticity calculation can be summarized in the following seven steps: 

1. Choose N and execute the corresponding N-level stress protocol depicted in 

Figure 2.  

2. Measure the thickness of all loops at the grid points. 

3. Minimize the objective function (Eq. 9) to get all square bins. 

4. Measure the areas of the smallest loops to get all triangular bins. 

5. Collect all bins related to the IPM density at the grid points. 

6. Interpolate the discrete set of IPM points to obtain the IPM density 

distribution everywhere in the (σc,σo) space. 

7. Determine the non-hysteretic contribution. 

 

In the next Section, we will illustrate the use of this method for simulated data, and 

discuss how to choose the optimal values for certain parameters used in the algorithm. 

 

 

4. Testing the algorithm with synthetic data 

In order to test the proposed method and illustrate the IPM density reconstruction, 

including errors, we performed the following actions: 
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1. We assume a particular analytical model form for the PM (or IPM) density. 

2. We compute the response (stress-strain loops) for an 8-level stress protocol by 

means of Eq. (4). 

3. We accept a particular noise model and contaminate the stress-strain response 

with noise of given amplitudes. 

4. We approximate the noisy stress-strain data by piecewise polynomials of a 

given degree.  

5. We reconstruct the IPM density using the algorithm discussed in section 3, 

and calculate the global reconstruction error by comparing the result with the 

assumed analytical IPM density. 

6. We vary certain parameters of the algorithm in order to minimize this error. 

7. We repeat actions 3-6 for different noise amplitudes. 

The above detailed plan makes our method and its results fully reproducible by the 

reader. 

The particular model form we assumed for the verification of the reconstruction 

model is a two-dimensional Gaussian distribution of the PM density: 

 

( ) ( ) ( )2 2

2 2
||

, exp exp
4 4

c o c o
c o m d d

σ σ σ σ
ρ σ σ ρ

⊥

⎛ ⎞ ⎛ ⎞− +
= − −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

% %    (14) 

 

where the parameters ⊥d  and ||d  account for the widths of the distributions 

perpendicular and parallel to the diagonal σo=σc, and mρ%  is a normalization constant 

whose value is not critical for the discussion here. For this particular formulation, we 

numerically computed the IPM density H(σc,σo) given by Eq. 3, and obtained, using 

Eq. 4, the hysteretic component of the stress-strain curve for an 8-level stress protocol 
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(see Figure 2). For the non-hysteretic component we choose a simple first order 

nonlinear σ-εNH dependence  

 

( 1 )o NH NHEσ ε β ε= +         (15) 

where Eo denotes the static Young’s modulus and β  reflects a first order elastic 

nonlinearity parameter. In the simulation we have set 5000MPaoE =  and 380β = . 

Inversely, this corresponds to the nonlinear relation 

( )31.316 10 1 0.304 1NHε σ−= ⋅ ⋅ + − , with σ expressed in MPa. This expression is based 

on a fit of real experimental data, but is not critical to the present study since the IPM 

reconstruction algorithm works with loop thicknesses, thereby eliminating the reversible 

contributions. 

In order to simulate real experimental conditions, we introduced noise 

contamination on the numerical stress-strain data. In our simulation, we used a model of 

purely additive noise: 

 

ηξεε +=' ,         (16) 

 

where ε  is the numerically calculated value of the strain response, 'ε  is the strain value 

contaminated with noise, η is the noise amplitude (an instrumental constant), and ξ is a 

random number with Gaussian distribution of zero mean and unit variance. The choice 

of the noise model resulted from a comparison of experimental and simulated stress-

strain data. Using the additive noise model, the behavior of the polynomial 

approximation error versus loop number for real data and for simulated data subjected 

to Eq. (16) were found to be quite similar (we omit the graphs for brevity). 
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In an additive noise model, smaller loops are more drastically affected by the 

noise than larger loops. Figure 5 illustrates a typical case for η=3 10-5. The loop 

corresponding to a small excursion with stress amplitude σmax-σmin equal to 12.5% of 

the total stress excursion (50 MPa) almost completely loses its shape, while a big loop 

with σmax-σmin=50 MPa is still clearly discernible and reproducible. As a result, it is 

reasonable to use a different (smaller) degree of polynomials to approximate the 

smallest loops. 

In order to reconstruct the IPM density, we first approximated the noisy stress-

strain data by piecewise polynomial functions of degree Np1 for the smallest loops and 

Np2 for the other loops. Next, we determined the thicknesses of all loops except for the 

smallest ones. For the smallest ones, we measured their areas. If due to the presence of 

noise, some lengths or areas are found to be negative, we assign a zero value. 

The obtained values are then transformed into the IPM density using the 

aforementioned procedure. Figure 6 illustrates the resulting reconstructed IPM density, 

Hrec(σc,σo), smoothed by a 2D spline interpolation, corresponding to the case with a 

noise amplitude η=3·10-5, and the corresponding local reconstruction error 

( , ) ( , )c o rec c oH Hσ σ σ σ− . In some regions close to the diagonal σo=σc, the noisy data 

may lead to very small negative IPM densities in the spline approximated distribution. 

The underlying reason for the negative values, which are obviously not physical, is 

purely of mathematical nature. Even though we assume an anti-symmetric extension of 

the IPM density into the half-plane σo>σc, i.e. Hrec(σc,σo) = – Hrec(σo,σc), small negative 

values may appear as approximation errors, since the anti-symmetry axis σo=σc is 

angled 45° with respect to the IPM space grid lines. In any case, we have found that 

these approximation errors increase the reconstruction error only slightly. An alternative 

assumption which sets Hrec(σc,σo)=0 for σo>σc does not greatly affect the situation. 
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The reconstruction algorithm uses several parameters: the degrees of the 

polynomials Np1 and Np2 for the approximation of the stress-strain loops (the smallest 

and the others, respectively), the regularization parameter α (see Eq. (9)) for the bins, 

and the spline order Ns for the final 2D IPM approximation of the gridded data. Their 

role has been investigated in terms of the optimization of the reconstruction. The main 

criterion in the parameter’s optimization is the final global IPM reconstruction error for 

the inverted and spline approximated distribution in comparison with the exact IPM 

distribution, i.e. [ ] [ ]( , ) ( , ) ( , )c o rec c o c oRMS H H RMS Hσ σ σ σ σ σ− . The least squares 

reconstruction error was computed on a 700×700 mesh in the (σc,σo)-space, restricted to 

the half space σc<σo. (As the final form of the reconstructed IPM density is given by a 

spline, it is possible to calculate the analytical function at any (σc,σo)-point.) In addition, 

we also calculated the least squares reconstruction errors for the individual bin integrals 

and for the gridded IPM data (again, in comparison with the exact values). 

The values shown in Figure 7 represent the three above mentioned errors for 

different noise amplitudes and for optimized algorithm parameters. One clearly 

observes that the global reconstruction error on the bin values is much higher compared 

to the gridded and spline interpolated IPM reconstruction errors. We expected this 

beforehand, since the reconstruction of the bin values is a coarse grid equivalent 

solution of the ill-posed problem of the PM density reconstruction. This graph confirms 

that the IPM inversion is well-posed. 

With respect to the reversible elasticity parameters, as listed in Eq.(15), we 

obtained an error on the static Young’s modulus Eo of 0.9% for the largest noise level, 

and an error of 4% for the first order nonlinear coefficient β. 

Numerous numerical experiments lead us to the following general conclusions 

about the optimal parameter values. 
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• The choice of the spline order Ns does not influence the bin and gridded IPM 

errors. For Ns=3 the additional error introduced by the splines is minimal, at all 

noise amplitudes. 

• For polynomial degrees Np1 and Np2 we recommend the values Np1=3 and Np2=6, 

again for all noise amplitudes. 

• The optimum regularization parameter α depends on the noise amplitude η (in 

accordance with the general theory by Tikhonov and Arsenin [7]). Nevertheless, 

the global error is not crucially sensitive to α, since α serves as an internal 

regularization only, which mainly affects the bin values. 

 

Table 1 lists the recommended values of α for different η. The use of an α value 

which deviates by 50 or even 100% from the recommended value is often not critical. 

For instance, for η = 4·10-5 the value α=1.5 (optimal) leads to a global reconstruction 

error of 4.0% while at α=0.5 the error equals 4.2%. However, if one takes α=10 then 

the global reconstruction error grows to 7.1%. So, we may conclude that only orders of 

α-values are essential.  

A proper choice of the degree Np1 is more important: for example, for Np1=4 instead 

of 3 (optimal), the global error easily increases by 0.3-0.8% for noisy data (η > 1·10-5). 

Strictly speaking, the magnitude of the reconstruction error may vary for 

different values of the PM density widths ⊥d  and ||d  (see Eq. 14), but our numerical 

tests have shown that the general recommendations hold. Here we used ⊥d =30 MPa and 

||d =50 MPa, which correspond to the differential PM density shown in the 2D grayscale 

plot of Figures 2 to 4. Smaller value of the widths will generally increase the error since 
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the assumption of a constant PM density inside each of the triangular bins then is 

violated more easily. 

 

 

5. IPM density reconstruction from experimental data 

We now apply the reconstruction method to real experimental data resulting from 

uniaxial compression tests on natural building stones. We have analyzed the following 

rock materials: Serena sandstone, Sander sandstone, Vicenza limestone, Lecce 

limestone and Portland limestone. Some physical properties of these rocks are listed in 

Table 2. Among other natural stones, these materials were extensively tested in 

laboratory conditions within the EU-FP5 grant DIAS [15] for comparison with the 

results of a combination of three prototype devices (micro-drilling, micro-indentation 

and Rayleigh wave acoustics) developed for in-situ characterization of their mechanical 

and acoustical parameters in historical buildings. 

After having determined the uniaxial compression strength (UCS) for each rock 

type, we instrumented cylindrical samples (with a length of about 50mm, and a diameter 

of 25mm) with 2 dynamic strain gauge extensometers (Instron 2620-603 with gauge 

length 10 mm (Ext1) and 25 mm (Ext2) and full-scale range ± 1mm) and placed them 

between the grips of a MTS 810 TestStar load frame (Figure 8). This system is capable 

of loading up to 100kN. The MTS software allows to translate custom designed 

command signals, such as our 8-level stress protocol. The experiments are load-driven 

and can be controlled very accurately (error between command and actual loading is 

less than 0.025kN). The tests on the different samples are performed with the same 

speed (0.125kN/s). For each rock type, we define the loading maximum σ60% for the 8-
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protocol as 60% of the material’s strength at failure. During the experiment, both 

extensometers and the actual loading force are registered every 0.2s. 

Figure 9 illustrates the complete stress protocol which is loaded on the 

experimental device. It contains three parts which are executed without delay in 

between. In the first part, we initialize the complete system by performing ten cycles of 

60% of the maximum stress loading and unloading. The initialization assures that the 

stress-strain behavior becomes repeatable. In the second part, the 8-level stress protocol 

is executed. Finally, we continue with additional loading-unloading commands which 

are used to test the IPM reconstruction. The first “conditioning” loops and the final 

“additional” loops are not used in the reconstruction algorithm. Only the second part 

between 5000 and 13000 seconds is used for the inversion. 

Figure 10, similarly to Figure 5 for the synthetic data, illustrates two loops of the 

stress-strain curve for Serena sandstone (σ60%=58MPa). The large loop (0→σ60%→0) 

switches all the hysteretic elements contained in the covered pressure range. This loop 

evidently shows the largest difference between loading and unloading curves. The inset 

represents one of the smallest loops obtained at the highest ambient pressure 

(58MPa→51MPa→58MPa). At these pressures almost all hysteretic movement (in 

compression or shear) of crack surfaces inside the rock is disabled [16], and the loop 

becomes considerably less hysteretic than the others. Correspondingly, the two loops in 

Figure 10 are the most and the least hysteretic ones within the protocol. 

The largest loop (0→58MPa→0) was used to retrieve the non-hysteretic 

contribution εNH(σ) according to Eqs. 12-13. The results are shown in Figure 11. As 

mentioned, the algorithm enables to reconstruct the non-hysteretic dependence twice, 

based on either the up-going or the down-going branches of the largest loop. Good 
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coincidence between the inverted data points (large and small crosses) confirms the 

validity of the PM model for this material. 

In Figure 12 we have plotted two IPM portraits, one for a sandstone (Sander) 

and one for a bioclastic limestone (Lecce). The petrographic parameters (type and size 

of grains, pores and binding material) of these two rocks are considerably different, as 

well as their physical properties. In particular, as can be seen from Table 2, the porosity, 

grain size, and UCS values all differ about an order of magnitude. The reconstructed 

hysteretic portraits of both rocks deduced from their corresponding experimental stress-

strain curves are found to be considerably different too: the IPM densities have 

distinctive shapes. We observe that the contour lines for the IPM density of Sander 

sandstone are more inclined with respect to the diagonal than for Lecce limestone. This 

means that Serena sandstone has relatively more hysteretic features with low opening 

pressures. 

Figure 13 summarizes all reconstructed IPM portraits for the rocks considered in 

the present study. We clearly see that the two sandstones display a similar structure of 

the IPM distribution with rather different characteristics compared to the three 

limestones. Some characteristic parameters of the IPM-distributions are listed in Table 

3. The maximum IPM density Hmax corresponds to the hysteretic contribution to the 

strain εΗ,max at 60% of the ultimate compression strength (σ60%). We notice that these 

values are comparable for rocks of the same types: around 8·10-4 for the class of the 

‘harder’ sandstones, and from 0.6 to 2·10-4 for the class of the ‘softer’ limestones. 

Interestingly enough, the normalized parameter Hmax/σ60%
2 which characterizes the total 

“amount” of hysteresis per unit of pressure-pressure space does not show the same 

classification tendency. This means that apparently similar portraits for rocks of the 

same class, despite the visual similarity, can have significantly varying quantitative 
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parameters. We have also found that, if properly prepared, two samples of the same 

rock produce the same IPM densities within their error intervals. 

The 2D information in the IPM density distribution makes it hard to directly 

compare quantities between the rocks. On the other hand, simple numerical parameters 

such as the ones listed in Table 3 carry severely limited information on the full 

reconstructed portraits. For a quick and meaningful understanding of the differences 

between the rocks, we compared particular 1D profiles expressed in normalized 

variables in Figure 14. We therefore considered the two sections H(σc,σo=0) and 

H(σc=σ60% ,σo). Note that, despite the reduction of the number of arguments, both 

characteristics are not “local” but rather integral quantities, since they cover all 

hysteretic elements contained in particular triangles with only one varying side. In fact 

the two profiles simply correspond to the hysteretic strain contributions on the loading 

and unloading branches of the largest loop. In order to compare the comportment for 

different rocks, we first normalized these dependencies, H(σ,σo=0)/Hmax and 

H(σc=σ60%,σ)/Hmax , and plotted them as function of σ/σ60% in Figure 14 for all the 

rocks under test. Certainly, the values σ60% and Hmax used in the definition of the section 

and in the normalization bring in a certain influence of the arbitrary parameter of 60% 

UCS. Nevertheless, in a similar manner as in the IPM portraits, rocks of the same types 

tend to group around similar profiles. In conclusion, we can say that the normalized 1D 

curves, although suffering from the point of generality, offer a simple means for the 

comparison of the hysteretic properties. 

In an analogous manner, we analyzed the non-hysteretic contribution ( )NHε σ  to 

the total strain for the different rocks using Eq. (12) and/or (13). When normalized to its 

maximum at σ60% and expressed in terms of the normalized stress value σc/σ60%, we can 

observe the same clustering of the two groups, as illustrated in Figure 15. In addition, 
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we used the first order nonlinear expression of the non-hysteretic stress-strain relation 

(Eq. 15) to quantify the values of the quasi-static Young’s Modulus E0 and the first 

order nonlinearity coefficient β. The values are listed in Table 4 and, for the Young’s 

modulus, they are compared to the values obtained from dynamic velocity 

measurements which were performed on similar cylindrical samples using resonance 

spectroscopy. The observation is that the static modulus is generally smaller than the 

dynamic modulus and that the limestones have a smaller ‘classical’ first order 

nonlinearity coefficient compared to the sandstones. 

As a final point in the experimental analysis, we also investigated the predictive 

power of the considered methodology. As mentioned before, the final part of the 

executed protocol (Figure 9, gray line for times later than 13000 seconds) was not used 

for the construction of the system’s IPM portrait. It was added to the protocol in order to 

serve as a test for the stress-strain prediction. Figure 16 illustrates the actual 

measurement of the stress-strain curve together with the predicted behavior that was 

calculated using Eq. (1), Eq. (4) and the reconstructed IPM density for Sander sandstone 

(Figure 13). The agreement is most satisfactory. The experimental and predicted shapes 

only weakly deviate from each other: the relative error of the deviation 

( , exp, ,( ) / ( )p i i exp iRMS RMSε ε ε− ) is 2 %. The major difference is a constant shift, which 

can be attributed to the fact that successive cycles are never perfectly repeatable. Even 

after a long initialization process, a small shift of the successive loops remains present 

in the experiment. 
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6. Conclusions 

We introduced the IPM density as a means for characterizing the hysteretic mechanical 

properties of solid materials and showed that it is a robust concept, even in the presence 

of noise. The reconstruction of the IPM density is based on a particular force protocol 

and involves simple mathematical data treatment. The methodology has been illustrated 

for synthetic data and applied for the characterization of several classes of natural 

building stones. The reconstruction of the IPM density and the analysis of the 

nonhysteretic stress-strain contribution revealed that sandstones are more hysteretic and 

more nonlinear than limestones in the compressive stress range of 0 to 60% of the 

limiting strength. The physical reason for this difference is to be found in the different 

composition and binding properties of the two classes. 

Even though a limiting stress value of 60% of the UCS was used, the protocol 

and methodology can be executed for any arbitrary stress range. The resulting IPM 

density then enables us to predict any stress-strain relation within this range with great 

accuracy. 

In the future, we intend to characterize the influence of damage mechanisms on 

the IPM density of various materials by investigating the alterations in the distribution 

characteristics as the result of progressive thermal and/or mechanical fatigue loading. 

This may for instance lead to a very interesting application in the quantitative evaluation 

of the effect of fire damage on concrete walls, housing, tunnels, etc. 

In addition we plan to perform an intense comparative study between the static 

nonlinear and hysteretic elasticity, and the dynamic nonlinear properties of the same 

material. This will inform us about the link, or the absence of a link, between the two 

strain ranges. 
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Figure captions 

 

Figure 1. Schematic representation of areas of closed (dark gray, Ωc) and open (light 

gray, Ωo) hysteretic units in a PM space (σc,σo), separated by a staircase line (1, 2, 3, 

…n). 

 

Figure 2. Specific N-level stress protocol (with N=8) used in the reconstruction 

algorithm (left figure). Each individual loading-unloading cycle uniquely corresponds to 

one of the possible triangles composed by any two grid lines shown at the right hand 

side. 

 

Figure 3. Illustration of the strain thickness measure ∆ε at constant stress value σ for a 

typical hysteretic loop in the stress-strain relationship (left figure) and the corresponding 

rectangle in the PM space (on the right). The density integral over this rectangle equals 

∆ε. The corners of the rectangle are defined by the highest and the lowest stress values 

of the loop as well as the stress σ at which ∆ε is measured. 

 

Figure 4. The IPM density at the marked grid point (σc,σo) is the sum of the PM density 

integrals for all bins (square and triangular) in the hatched triangle. 

 

Figure 5. The largest loop simulation of the 8-level stress protocol (0→50MPa→0) and 

one of the smallest loops (50MPa→43.75MPa→50MPa) affected by the additive noise 

model (Eq. 16) with η=3·10-5. The solid lines represent polynomial approximation of 3rd 

and 5th degree for the small and the large loop, respectively. 



Acc
ep

te
d m

an
usc

rip
t 

 

 

30

30

 

Figure 6. The reconstructed IPM density Hrec(σc,σo), left, and the local reconstruction 

error, right, for synthetic data contaminated with additive noise (η=3·10-5) based on the 

PM density given by Eq.(14) for d⊥ =30 MPa and ||d =50 MPa. The global 

reconstruction error is 3% for a regularization parameter α=0.5, a 3rd degree polynomial 

approximation of the smallest loops and a 6th degree approximation for the others loops. 

Splines of the 3rd order were used to retrieve the entire distribution function from the 

discrete IPM grid data. 

 

Figure 7. Global reconstruction errors for different noise amplitudes η using the 

optimized parameters of the algorithm. Black: global reconstruction error on the bin 

integrals; dark gray: global reconstruction error on the gridded IPM density; light gray: 

global reconstruction error on the spline approximated IPM density. 

 

Figure 8. Experimental set-up for cyclic uniaxial compression tests on cylindrical rock 

samples. 

 

Figure 9. Typical experimental stress command protocol, including initialization cycles 

(time < 5000 sec), 8-level stress protocol for reconstruction analysis (5000 < time < 

13000 sec), and additional cycling for validating the reconstruction (time > 1300 sec). 

 

Figure 10. Experimental data corresponding to the largest loop of the 8-level stress 

protocol (0→58MPa→0) and of one of the smallest loops (58MPa→51MPa→58MPa) 

for a sample of Serena sandstone (each 20th point is plotted). The solid lines represent 
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polynomial approximation of 3rd and 6th degree for the small and the large loop, 

respectively. 

 

Figure 11. Non-hysteretic contribution εNH(σ) (discrete data points) and the largest 

hysteretic loop (solid lines) in the stress-strain behavior of Serena Sandstone. The small 

crosses correspond to the inversion of εNH(σ) from the loading curve (Eq.12) and the 

large ones are obtained from the unloading curve (Eq. 13). 

 

Figure 12. Reconstructed IPM density distributions for two different rocks (Serena 

sandstone and Lecce limestone). 

 

Figure 13. Reconstructed IPM portraits for various rocks. In the right column: Serena 

and Sander sandstone. In the right column: Portland limestone, Vicenza limestone and 

Lecce limestone. The values σc and σo range from 0 to σ60% (60% of UCS) for each 

rock. The maximum IPM density Hmax corresponding to this interval is listed in Table 3 

and defines the color scale of the plot. 

 

Figure 14. Comparison of the normalized IPM densities at σo=0 and at σc=σ60% for 

different rocks. The thick black line represents Serena sandstone, the thick gray line is 

for Sander sandstone, the thin black line is for Vicenza limestone, the dotted line is for 

Lecce limestone, and the dashed line is for Portland limestone. 

 

Figure 15. Comparison of the normalized non-hysteretic contribution for different 

rocks. Same line-style as in Figure 14. 
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Figure 16. Prediction of additional loading-unloading cycles made for Sander 

sandstone. Black – actual experimental data; Gray – prediction based on the 

reconstructed IPM density. The relative RMS of the deviation between prediction and 

actual measurement is 2%. 

 

 

Table captions 

Table 1. Recommended values of the regularization parameter α for different noise 
amplitudes. 

 

Table 2. Material properties 

 

Table 3. Maximum IPM density Hmax, maximum pressure σ60% of the protocol, and 

relative Hmax related to the total pressure area σ60%
2 for different rocks. 

 

Table 4. Linear and classical nonlinear moduli for different rocks. Comparison of the 

Quasi-Static (QS) Young’s modulus (deduced from a first order polynomial expansion 

of the nonhysteretic contribution in the quasi-static stress strain relation) and the 

dynamic (Dyn) Young’s modulus (deduced from velocity measurements at zero stress). 
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Table 1: Recommended values of the regularization parameter α for different noise 
amplitudes. 

 

η 0 0.5·10-5 1.0·10-5 1.5·10-5 2.0·10-5 2.5·10-5 3.0·10-5 3.5·10-5 4.0·10-5 

α 0 0.02 0.06 0.1 0.15 0.3 0.5 1.0 1.5 
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Table 2: Material properties. 

 Density 
(kg/m³) 

Total 
Porosity 

(%) 

Mean 
Grain Size 

(µm) 

UCS 
(MPa) 

Serena sandstone 2560 6.5 200-800 95.8 
Sander sandstone 2200 19.7 150-200 58.3 
Portland limestone 2030 20.1 300 31.4 
Vicenza limestone 1970 29.3 400-2000 29.3 
Lecce limestone 1460 47.4 80-100 11.0 
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Table 3: Maximum IPM density Hmax, maximum pressure σ60% of the protocol, and 

relative Hmax related to the total pressure area σ60%
2 for different rocks. 

 Hmax (-) σ60%, MPa Hmax/σ60%
2, MPa-2 

Serena sandstone 8.48·10-4 58.0 2.56·10-7 

Sander sandstone 7.55·10-4 34.8 6.34·10-7 

Portland limestone 1.86·10-4 18.7 5.40·10-7 

Vicenza limestone 5.92·10-5 17.6 1.97·10-7 

Lecce limestone 1.06·10-4 6.50 2.65·10-6 
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Table 4. Linear and classical nonlinear moduli for different rocks. Comparison of the 

Quasi-Static (QS) Young’s modulus (deduced from a first order polynomial expansion 

of the nonhysteretic contribution in the quasi-static stress strain relation) and the 

dynamic (Dyn) Young’s modulus (deduced from velocity measurements at zero stress). 

 E0-Dyn  

(GPa) 

E0-QS  

(GPa) 

1st order QS-

Nonlinearity β (−) 

Serena sandstone 25.0 20.5 414 

Sander sandstone 15.7 14.0 1070 

Portland limestone 20.7 18.1 63 

Vicenza limestone 20.0 18.4 76 

Lecce limestone 8.6 9.1 125 
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Figure 1. Schematic representation of areas of closed (dark gray, Ωc) and open (light 

gray, Ωo) hysteretic units in a PM space (σc,σo), separated by a staircase line (1, 2, 3, 

…n). 
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Figure 2. Specific N-level stress protocol (with N=8) used in the reconstruction 

algorithm (left figure). Each individual loading-unloading cycle uniquely corresponds to 

one of the possible triangles composed by any two grid lines shown at the right hand 

side. 
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Figure 3. Illustration of the strain thickness measure ∆ε at constant stress value σ for a 

typical hysteretic loop in the stress-strain relationship (left figure) and the corresponding 

rectangle in the PM space (on the right). The density integral over this rectangle equals 

∆ε. The corners of the rectangle are defined by the highest and the lowest stress values 

of the loop as well as the stress σ at which ∆ε is measured. 
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Figure 4. The IPM density at the marked grid point (σc,σo) is the sum of the PM density 

integrals for all bins (square and triangular) in the hatched triangle. 
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Figure 5. The largest loop simulation of the 8-level stress protocol (0→50MPa→0) and 

one of the smallest loops (50MPa→43.75MPa→50MPa) affected by the additive noise 

model (Eq. 16) with η=3·10-5. The solid lines represent polynomial approximation of 3rd 

and 5th degree for the small and the large loop, respectively. 
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Figure 6. The reconstructed IPM density Hrec(σc,σo), left, and the local reconstruction 

error, right, for synthetic data contaminated with additive noise (η=3·10-5) based on the 

PM density given by Eq.(14) for d⊥ =30 MPa and ||d =50 MPa. The global 

reconstruction error is 3% for a regularization parameter α=0.5, a 3rd degree polynomial 

approximation of the smallest loops and a 6th degree approximation for the others loops. 

Splines of the 3rd order were used to retrieve the entire distribution function from the 

discrete IPM grid data. 
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Figure 7. Global reconstruction errors for different noise amplitudes η using the 

optimized parameters of the algorithm. Black: global reconstruction error on the bin 

integrals, dark gray: global reconstruction error on the gridded IPM density, light gray: 

global reconstruction error on the spline approximated IPM density. 
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Figure 8. Experimental set-up for cyclic uniaxial compression tests on cylindrical rock 

samples. 
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Figure 9. Typical experimental stress command protocol, including initialization cycles 

(time < 5000 sec), 8-level stress protocol for reconstruction analysis (5000 < time < 

13000 sec), and additional cycling for validating the reconstruction (time > 1300 sec). 
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Figure 10. Experimental data corresponding to the largest loop of the 8-level stress 

protocol (0→58MPa→0) and of one of the smallest loops (58MPa→51MPa→58MPa) 

for a sample of Serena sandstone (each 20th point is plotted). The solid lines represent 

polynomial approximation of 3rd and 6th degree for the small and the large loop, 

respectively. 
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Figure 11. Non-hysteretic contribution εNH(σ) (discrete data points) and the largest 

hysteretic loop (solid lines) in the stress-strain behavior of Serena Sandstone. The small 

crosses correspond to the inversion of εNH(σ) from the loading curve (Eq.12) and the 

large ones are obtained from the unloading curve (Eq. 13). 
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Figure 12. Reconstructed IPM density distributions (left in 3D, right in contourplot) for 

two different rocks (Serena sandstone and Lecce limestone). 
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Figure 13. Reconstructed IPM portraits for various rocks. In the right column: Serena 

and Sander sandstone. In the right column: Portland limestone, Vicenza limestone and 

Lecce limestone. The values σc and σo range from 0 to σ60% (60% of UCS) for each 

rock. The maximum IPM density Hmax corresponding to this interval is listed in Table 3 

and defines the color scale of the plot. 
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Figure 14. Comparison of the normalized IPM densities at σo=0 and at σc=σ60% for 

different rocks. The thick black line represents Serena sandstone, the thick gray line is 

for Sander sandstone, the thin black line is for Vicenza limestone, the dotted line is for 

Lecce limestone, and the dashed line is for Portland limestone. 
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Figure 15. Comparison of the normalized non-hysteretic contribution for different 

rocks. Same line-style as in Figure 14. 
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Figure 16. Prediction of additional loading-unloading cycles made for Sander 

sandstone. Black – actual experimental data; Gray – prediction based on the 

reconstructed IPM density. The relative RMS of the deviation between prediction and 

actual measurement is 2%. 

 

 


