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Abstract. A method for controlling nonlinear dynamics and chaos is applied to the infinite 

dimensional dynamics of a buckled beam subjected to a generic space varying time-periodic 
transversal excitation. The homoclinic bifurcation of the hilltop saddle is identified as the 
undesired dynamical event, because it triggers, e.g., cross-well scattered (possibly chaotic) 
dynamics. Its elimination is then pursued by a control strategy which consists in choosing the 
best spatial and temporal shape of the excitation permitting the maximum shift of the homoclinic 
bifurcation threshold in the excitation amplitude-frequency parameters space. 

The homoclinic bifurcation is detected by the Holmes & Marsden’s theorem [1981] 
constituting a generalization of the classical Melnikov’s theory. Two classes of boundary 
conditions are identified: for the first, the Melnikov function is exactly the same as obtained with 
the reduced order models, while for the second, which is more general, this is no longer true, and 
the nonlinear normal modes theory is used. Based on this distinction, the control method is then 
separately applied to the two cases, and the optimal spatial and temporal shapes of the excitation 
are determined. 

A detailed comparison of the infinite vs finite dimensional models is performed with respect 
to the control features, and it is shown that, depending on the boundary conditions, the control 
based on the reduced order model provides either exact or engineering acceptable results, 
although more systematic investigations are required to generalize the last conclusion. 

 
Keywords: Buckled beams, infinite dimensional system, homoclinic bifurcation, Holmes & Marsden theorem, 
nonlinear normal modes, reduced order models, optimal control of chaos. 

 

1 Introduction 
Nonlinear dynamics of many mechanical structures are governed by partial differential equations 

(PDEs), i.e., they are infinite dimensional. These equations are very difficult to be dealt with, or 

they are over-complicated, as the actual dynamics activates only few spatial modes, so that reduced 

order, finite dimensional, models governed by ordinary differential equations (ODEs) are usually 

introduced. Then, the question arises of the reliability of the involved approximations in providing 

accurate, qualitative and/or quantitative, descriptions of the true dynamics [Rega et al., 1999; 
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Blekhman, 2000; Nayfeh 2000; Steindl & Troger, 2001]. Of course, the answer strongly depends on 

the kind of investigated phenomena, since, depending on various circumstances, reduced order 

models can be able to exactly, accurately or poorly describe various nonlinear dynamical features. 

In this work this question is addressed with reference to the optimal control of the homoclinic 

bifurcation (herein identified as the first zero of the Melnikov function, see Remark 1 in the 

following) occurring in the finite planar dynamics of buckled beams, where the effects of the 

truncation due to the reduced dynamics are addressed against the actual full dynamics. In this 

respect, it is worth to point out that the theory and the development of this work are not related to 

the old and well-established theory of optimal control [Kirk, 2004], which has different objectives 

and uses different techniques. However, it is aimed at modifying, i.e. controlling, the system 

dynamics in an optimal way, and this is why we call it “optimal control.” 

The homoclinic bifurcation of the hilltop saddle (unstable rest position) is considered as the 

undesirable event to be eliminated, because it is well known that it triggers appearance of cross-well 

(scattered) dynamics, and that it is at the base of the principal manifestations of chaotic dynamics 

[Guckenheimer & Holmes, 1983; Holmes & Moon, 1983; Thompson & Stewart, 1986], although in 

general being not directly responsible for onset of chaotic attractors. 

First, the homoclinic bifurcation is detected in a full infinite dimensional framework. Use is 

made of the Holmes & Marsden’s theorem [1981] constituting an extension of the classical 

Melnikov’s theory for analytical measuring of the distance between stable and unstable manifolds. 

This permits detecting any kind of perturbations of the unperturbed homoclinic orbits, and therefore 

constitutes a straightforward generalization of the classical finite dimensional results 

[Guckenheimer & Holmes, 1983; Wiggins, 1988]. 

Its elimination is then pursued by a control method previously developed by the authors [Lenci 

& Rega, 1998, 2004a], which consists of optimally modifying the shape of the excitation in order to 

shift as far as possible the critical threshold in the excitation amplitude-frequency parameter space. 

It belongs to the family of control of chaos techniques [Chen & Dong, 1998; Ott et al., 1990; 

Fradkov, 2000] sharing the common feature of exploiting dynamical chaotic properties to obtain 

specific results – usually, but not always, elimination of chaos –, irrespective of the nature of the 

required regularization and of the actual tools used to this aim. 

The method has been formerly applied to various low dimensional mechanical systems and 

models [Lenci & Rega, 2003a, 2003b, 2004b, 2006; Cao, 2005], and its practical effectiveness has 

been confirmed by numerical simulations [Lenci & Rega, 2003a, 2003b]. The application of the 

method to an infinite dimensional system, which is one of the goals of this work and is herein 

pursued for the first time, appears therefore as the natural development of previous researches, 
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which are herein embedded in a more general theoretical framework. Apart from its intrinsic 

interest, this extension also permits to confirm the great generality and versatility of the control 

method, already highlighted in [Lenci & Rega 2004a, 2004b]. 

The extension to infinite dimensional systems entails a major freedom in the choice of the 

optimal excitation. In fact, while in low dimensional systems only the temporal shape of the 

periodic excitation is modified, in the present case also the spatial shape can be changed, at least 

from a theoretical point of view. Thus, different optimization problems can be expected in principle, 

and this constitutes the main technical difference with respect to previous authors’ works. However, 

it will be shown that the spatial shape can be preliminarily, and independently, determined in such a 

way that the temporal shape optimization proceeds just as in finite dimensional cases, so that the 

relevant results can be applied at once. 

Another objective of the paper, as said, is to compare the results of the infinite dimensional 

analysis with those obtained with finite dimensional models. In this respect, it is known [Troger & 

Steindl, 1991; Steindl & Troger, 2001; Rega & Troger, 2005] that obtaining reduced order models 

by the classical (linear) Galerkin method, which projects the dynamics on a planar subspace, may 

give incorrect results, even from a qualitative viewpoint (see, e.g., [Arafat & Nayfeh, 2003]), so that 

more refined analytical techniques are required to overcome this, and other, drawbacks. 

A phenomenon of this type has been found in the present analysis. More precisely, it will be 

shown how for a class of system boundary conditions the classical Galerkin method correctly 

captures the homoclinic bifurcation, while for others it does not. Accordingly, the application of the 

control method to the first class can be correctly performed by means of the reduced order model, 

while in the other case different techniques, such as nonlinear normal modes, are preliminarily 

required in order to correctly detect the homoclinic bifurcation, and the reduced order model 

provides only approximate results. 

In spite of this, however, we have found that, at least in a specific, yet technically meaningful, 

case the predictions made by the reduced order model are acceptable from the engineering 

viewpoint also for the second family of boundary conditions, although we have not proved this to 

be a robust property, so that it is not expected to hold for other parameter values or for other 

boundary conditions. 

The paper is organized as follows. In Sect. 2 the mechanical model and the associated partial 

differential equation are set. The homoclinic bifurcation of the hilltop saddle is then analytically 

detected by the Holmes & Marsden theorem (Sect. 3) for the case of hinged-hinged beam. These 

results are then employed in Sect. 4, where the control method is applied and the optimal spatial and 

temporal shapes of the excitation are determined. The comparison with the single d.o.f. reduced 
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model is performed in Sect. 5. Section 6 deals with the more intriguing case of fixed-fixed boundary 

conditions via the nonlinear normal mode technique, by dwelling upon the infinite vs reduced order 

analyses of homoclinic orbit and homoclinic bifurcation, and on their consequences in terms of 

optimal control of the latter. Some mechanical and mathematical extensions of the analysis are then 

addressed in Sect. 7, and the paper ends with some conclusions (Sect. 8). 

2 The mechanical model 
The dimensionless partial differential equation governing the planar nonlinear dynamics of an 

initially straight buckled beam is 

 w&& +w′′′′+Γw′′–kw′′ ∫
1

0

2)'( ζdw =ε[F(z,t)–δw& ], (1) 

where w(z,t) is the time dependent transversal displacement of the point at abscissa z∈[0,1], dot and 

prime represent derivatives with respect to time and space, respectively, Γ>Γcr is a dimensionless 

parameter and k is the dimensionless stiffness due to the membrane effects. The parameter Γ 

represents the first-order axial load (positive=compression, Γcr=buckling critical parameter) 

associated with a finite prescribed end-displacement of the beam in the axial direction [Villaggio, 

1997], δ is the coefficient of viscous damping, and 

 F(z,t)=∑ =
+

N

n nn tnzf
1

)sin()( ψω  (2) 

is the external T=2π/ω time periodic, spatially distributed, excitation. ε is a smallness parameter, 

introduced to stress that damping and excitations are small quantities; ε=0 is referred to as 

“unperturbed” or “conservative” problem. 

Equation (1) is the simplest model which describes the finite amplitude dynamics of the beam. It 

is used because it permits feasible computations and analytical developments without losing the 

main mechanical phenomena, at least for moderate displacements, which are implicitly assumed 

without further remarks. 

To make the problem (1) well-posed, initial and boundary conditions must be added. While 

initial conditions are not important, as we consider global system dynamics and not specific 

trajectories, boundary conditions (b.c. in the following) play a significant role in successive 

developments. Basically, we can have two different families of b.c., depending on whether they 

allow for a solution of the unperturbed problem in the form of separate variables or not. 

Looking for an exact solution of (1) (with ε=0) in the form w(z,t)=a(t)b(z) requires b′′′′∝b′′∝b, 

namely, b′′=κb. If κ is positive, this equation has solution b(z)=c1sinh(z√κ)+ c2cosh(z√κ), while for 

κ negative the solution is b(z)=c1sin(z√(–κ))+c2cos(z√(–κ)). As we have only the two unknowns c1 



Acc
ep

te
d m

an
usc

rip
t 

 5

and c2, in general there is no hope to satisfy all four b.c. associated to (1). This occurs only in some 

special cases, which constitute the first family. They are the hinged-hinged beam (Fig. 1a), which is 

the case considered by [Holmes & Marsden, 1981] and [Berti & Carminati, 2002], for which 

b(z)=√2 sin(πz), and the guided-hinged beam (Fig. 1b), for which b(z)=√2 cos(πz/2). 

 

a)                                  b)  

Figure 1. Examples of b.c. belonging to the first family. a) hinged-hinged: w(0)=w′′(0)=0, 
w(1)=w′′(1)=0, b) guided-hinged: w′(0)=w′′′(0)+Γw′(0)=0, w(1)=w′′(1)=0. 

 

a)                                b)                                c)  

Figure 2. Examples of b.c. belonging to the second family. a) fixed-fixed: w(0)=w′(0)=0, w(1)= 
w′(1)=0, b) fixed-hinged: w(0)=w′(0)=0, w(1)=w′′(1)=0, c) fixed-free: w(0)=w′(0)=0, 

w′′(1)=w′′′(1)+Γw′(1)=0. 
 

The b.c. not fulfilling the previous requirement belong to the second family. Examples are the 

fixed-fixed (Fig. 2a), the fixed-hinged (Fig. 2b) and the fixed-free (Fig. 2c) beams. 

The previous distinction has not only a mathematical character, but also an important dynamical 

meaning. In fact, for the first class of b.c. the invariant manifold Σ on which the homoclinic loop 

(which is the principal part of the dynamics herein considered) lies is flat (Sects. 3 and 4), while in 

the other case it is non planar (Sect. 6). This has strong consequences both on the amount of 

analytical computations and on the spatial modal shape associated with optimal control (Sect. 6). 

In this paper, one representative case for each family is considered. The main part (Sects. 3 and 
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4) is developed with reference to the hinged-hinged b.c., because it permits easier computations and 

easier development of the control technique. Successively (Sect. 6), to complete the analysis, the 

more general case of a fixed-fixed beam is considered as a representative of the second family of 

b.c.. 

3 The homoclinic bifurcation by the Holmes & Marsden theorem 
For buckled beams, the undeformed rest configuration is an unstable fixed point (saddle) in the 

appropriate, infinite dimensional, phase space. For conservative systems, the global unstable 

direction (which is unique for Γ in between the first and the second critical loads) of the hilltop 

saddle, which is a curve in the phase space and the swaying buckled spatial shape in the physical 

space, usually coincides with the corresponding global stable direction, and this special solution is 

the homoclinic orbit of the system. The remaining part of the phase space is a center manifold. A 

schematic picture of this situation (and of the invariant manifold Σ) is described in Fig. 3. 

 

invariant manifold Σ

stable manifold

unstable manifold

saddle =x 0
homoclinic orbit

 
Figure 3. A schematic picture of the dynamical system structure in the unperturbed case. The 

center manifold is perpendicular to Σ at the saddle. 
 

When damping and excitations are added, the stable and unstable manifolds split, and, depending 

on the relative magnitude of damping and excitation, they keep disjoint or intersect. The 

intermediate critical case, which may be very complex and may involve various phenomena, 

corresponds to manifolds tangency, and represents the homoclinic bifurcation threshold, whose 

detection is central for the application of the control technique (Sect. 4), which is aimed at shifting 

this event as far as possible in parameter space. 

The homoclinic bifurcation can be analytically detected by means of the Holmes and Marsden 

[1981] abstract theorem (H.M. theorem in the following) – see the Remark 1 in the following –, 

which is a generalization to infinite dimensional systems of the classical Melnikov’s method 

holding for finite dimensional systems [Guckenheimer & Holmes, 1983]. 

The theorem is quite technical, but the application to the case considered in this section (Fig. 1a) 
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is relatively straightforward, and basically has been done in [Holmes & Marsden, 1981]. Therefore, 

we refer to that work for the details and we simply summarize the hypotheses and the results, 

paying attention only to the aspects significant for the present work. The unique, important, 

modification is that the non-harmonic, but still periodic in time, excitation (2) is considered, while 

Holmes and Marsden [1981] considered only harmonic excitation, i.e., N=1 in (2). 

The first step consists in rewriting (1) as the evolution equation 

 
dt
dx =f0(x)+εf1(x,t)=[Ax+B(x)]+ε[A1x+f(t)],   x∈X, (3) 

in a Banach space X (see [Brezis, 1983] for the definitions of the Banach spaces used in the 

following). This is done by assuming x=(w,u)T, X= 2
0H [0,1]×L2[0,1], i.e., x∈X ⇔ w∈ 2

0H [0,1] and 

u∈L2[0,1], with the natural norm 2

X
x =||x||2=|w′′|2+|u|2= ∫

1

0

2)''( ζdw + ∫
1

0

2 ζdu , and 

 Ax= 







Γ−− '''''' ww

u
,   B(x)= 











∫
1

0

2)'(''
0

ζdwkw ,   A1x= 







− uδ

0
,   f(t)= 








),(

0
tzF

, (4) 

with fn(z)∈L2[0,1], which implies F(z,t)∈L2[0,1] for all t. Note that A:X⊃D(A)→X is an unbounded 

linear operator (i.e., there not exists a constant c such that ||Ax||<c||x||, ∀x∈D(A) ) with domain 

D(A)={(w,u)∈H4×H2|w=0, w′′=0 and u=0 at z=0,1} dense in X (i.e., for every x∈X there exists an 

y∈D(A) which is arbitrarily close to x), B:X→X is a C∞ nonlinear operator, A1:X→X is a bounded 

linear operator and f:IR→X is C∞ and T-periodic. 

There are four hypotheses to be satisfied. 

(H1). A generates a C0 one parameter group of transformations on X and the flow of (3) is 

defined for all t∈IR and for ε>0 sufficiently small. 

This has been proved in [Holmes & Marsden, 1981] by theorems of [Holmes & Marsden, 1978] and 

implies that the dynamics is globally well defined in time. 

(H2a) Assume that the unperturbed system is Hamiltonian with energy H:X→IR [Ω:X×X→IR is 

the weakly non-degenerate (i.e., Ω(u,v)=0 for all v implies u=0) associated symplectic form, such 

that Ω(f0(x),u)=dH(x)⋅u]. 

The symplectic form and the Hamiltonian are: 

 Ω(x1,x2)=Ω[(w1,u1),(w2,u2)]= ∫ −
1

0 1221 )( ζduwuw , (5a) 

 H(x)=H(w,u)=
2
1 |u|2 –

2
Γ |w′|2 +

2
1 |w′′|2 + 

4
k |w′|4. (5b) 



Acc
ep

te
d m

an
usc

rip
t 

 8

Note that the symplectic form will play a key role in the Melnikov function derived in the 

following, which is central for the purposes of this work. 

(H2b) Assume there exists a symplectic 2-manifold Σ⊂X invariant under the flow of the 

unperturbed system and that on Σ the fixed point x=0 has an homoclinic orbit xh(t) (i.e., limt→±∞ 

xh(t)=0, namely, limt→±∞wh(t)=0 and limt→±∞ )(twh& =0, which actually are the “initial” conditions for 

the temporal boundary value problem). 

Hypothesis H2b is sketched in Fig. 3. For the b.c. of the first family the symplectic manifold is 

planar because the equation of motion admits solutions in the separate variable form (Sect. 2), 

while for those of the second family this is no longer true (see Fig. 3). In the considered case of Fig. 

1a it is the plane (w,u)=(a1 sin(πz), a2 sin(πz)), (a1,a2)∈IR2. The homoclinic orbit is 

 wh(z,t)=±
π
2

k

2π−Γ

)cosh(
)sin(

2ππ

π

−Γt
z ,        uh(z,t)= ),( tzwh& . (6) 

This of course requires Γ>Γcr=π2. Indeed, we will assume in the following π2<Γ<4π2 (see (H4)), 

i.e., that the axial load belongs to the interval [Γcr,1, Γcr,2] delimited by the first and second 

branching points. Note that, by symmetry, there are two homoclinic loops, one positive (called 

“right”) and one negative (called “left”). 

(H3) Suppose that the linearized system dxL/dt=[A+εA1]xL+f(t) has a T-periodic solution xL(t,ε) 

such that  xL(t,ε)=O(ε). 

In this case xL(t,ε) can be computed exactly: 

 wL(z,t)=∑ ∑
∞

= =
















Φ+

1 1
)sin(sin(

j

N

n
nnj zjtnd πω ,        uL(z,t)= ),( tzwL& , (7a) 

 dnj=
22222222 )(])([ ωεδωππ

εγ

nnjj
nj

+−Γ−
,  γnj=2 ∫

1

0
)sin()( ζπζζ djfn ,  Φn=Φn(ψn,ω,δ). (7b) 

Eq. (7b) shows that (H3) is satisfied if and only if all the non-resonance conditions 

 n2ω2≠j2π2(j2π2–Γ), for all n=1,2..N, j=2,3,…,∞ such that γnj≠0, (8) 

hold. We remark that: (i) There is no non-resonance condition only for j=1, because of the next 

assumption (H4) π2<Γ<4π2, namely, the linear stiffness is negative on the first buckling mode, 

positive on the others. This explains why there is no non-resonance conditions for 1 d.o.f. models 

based on the first buckling mode [Holmes & Marsden ,1981]. (ii) There is a non-resonance 

condition to be satisfied only if γnj≠0, i.e., only if the jth buckling mode sin(jπz) is excited by the nth 

term fn(z) of the excitation. 
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(H4a) For ε=0, eTA has a spectrum consisting in two simple real eigenvalues e±λT, λ≠0, with the 

rest of the spectrum on the unit circle. 

(H4b) For ε>0, eT(A+εA1) has a spectrum consisting in two simple real eigenvalues 
±
ελTe  with the 

rest of the spectrum, εσ R , inside the unit circle |z|=1 and verifying the estimates 

C2ε≤dist( εσ R ,|z|=1)≤C1ε, C1,C2>0. 

(H4c) The spectrum of A does not accumulate on 0. 

A direct computation shows that the eigenvalues of eT(A+εA1) are 
ελ jTe , where 

 ελ j = ])()([
2
1 22222 ππεδεδ jj −Γ+±− . (9) 

The eigenvalues of eTA are 
0
jTe λ , while the eigenvalues of A are 0

jλ . Thus, for the hinged-hinged 

beam, (H4) is satisfied if and only if π2<Γ<4π2. Generalizing to other b.c., this hypothesis is 

satisfied if and only if Γcr,1<Γ<Γcr,2, where Γcr,j is the value of Γ for which 0
jλ  vanishes. Note that 

the eigenvalues of A are the complex numbers λ satisfying λ2w+w′′′′+Γw′′=0 + b.c. for w(z)≠0 

[Holmes & Marsden, 1981]. Note also that a slightly different, but equivalent, definition of 

eigenvalues is used in [Lenci & Rega, 2007]. 

This hypothesis implies that for the unperturbed system the saddle (rest position) has a one 

dimensional stable and a one dimensional unstable manifolds, which indeed coincide on the 

homoclinic loop, and an infinite dimensional center manifold (see Fig. 3). When the perturbations 

are added, the stable and unstable manifolds split, as said, and remain a one dimensional strongly 

stable and a one dimensional unstable manifolds. The center manifold, on the other hand, perturbs 

to a weakly stable manifold, so that the whole perturbed stable manifold becomes infinite 

dimensional. 

The physical interpretation is that the system is dissipative outside uWε  (the perturbation of the 

unstable invariant manifold Wu), at least in the neighborhood of the saddle, and therefore it is 

expected that, if the excitation amplitude is not too high, the steady state dynamics contracts on sWε  

(the union of the perturbation ssWε  of the stable invariant manifold Ws and of the perturbation of the 

center manifold) due to damping. Thus, the steady state should be “similar” to that of the 1 d.o.f. 

model based on the first buckling mode, at least if the excitation amplitude is low. It will be proved 

in the following that this conjecture is mathematically exact for the b.c. of the first family, while it 

is engineering acceptable for the other family. 

Once all the hypotheses have been verified, we are in a position of stating and applying the H.M. 

theorem. 
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Let hypotheses (H1-4) hold. Let M(m)= ∫
+∞

∞−
+Ω dtmttt hh ))/),(()),((( 10 ωxfxf  be the Melnikov’s 

function. Suppose that M(m) has a simple zero as a function of m. Then for ε sufficiently small, the 

stable sWε  and the unstable uWε  manifolds of the saddle xL(0,ε) of the stroboscopic Poincarè map 

associated with the flow intersect transversally. 

Before calculating the Melnikov function, we observe that, roughly speaking, the theorem says 

that simple zeros of M(m) imply the so-called “Melnikov chaos,” i.e., fractal basins boundaries, 

transient chaos, sensitivity to initial conditions, onset of the chaotic saddle possibly representing the 

skeleton for chaotic attractors, etc., which are direct consequences of the stable and unstable 

manifolds intersection [Guckenheimer & Holmes, 1983; Holmes & Moon, 1983]. The existence of 

the chaotic attractor is however not guaranteed. 

 

Remark 1. In this paper we identify the homoclinic bifurcation, i.e. the first tangency between 

the perturbed stable and unstable manifolds of the saddle ensuing from the rest position, with the 

threshold at which the Melnikov function M(m) has its first (double, and thus non-simple) zero. 

Technically speaking, in some cases we can have Melnikov chaos even below this threshold, 

because when x=0 has a homoclinic tangle on one side (say, the intersection of Ws,l and Wu,l is non-

trivial), the manifold Wu,l winds itself around Wu,r infinitely often, intersecting Ws,r before Wu,r does. 

Thus, the “first” homoclinic tangency on the other side, which would actually correspond to the 

relevant homoclinic bifurcation, does no longer exist. However, it is difficult to estimate the size of 

this effect, which is typically small, and we consider acceptable our identification from a practical 

point of view. 

With respect to the purposes of control, on the other hand, this fact is unessential. In fact, above 

the Melnikov threshold there certainly exists Melnikov chaos, and thus increasing this threshold is 

worthy in any case, even if some (spurious) chaos may occur for values of the excitation slightly 

lower than this critical threshold. 

 

After some computations we obtain that the Melnikov functions for right and left homoclinic 

loops are given by 

 Mr,l(m)=–δ ∫ ∫
∞

∞−

dtdztzwh

1

0

2 ),(& + ∫ ∫
∞

∞−

+ dtdzmtzFtzwh

1

0

)/,(),( ω& = 
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 =–
3
4

π
π
k

2/32 )( −Γ δ ∑
=










−Γ

+N

n

nn

n
nmn

k1

2

1

2
cosh

)cos(

π
ω

ψω
π
γ

m . (10) 

It is worth to note that only the terms γn1=2 ∫
1

0
)sin()( ζπζζ dfn  are involved in (10). This is due 

to the flatness of the invariant manifold Σ and no longer holds for the second family of b.c. (see eq. 

(41)). 

In the following it is convenient to rewrite (10) in the form 

 Mr,l(m)=const.[1±
)(,11

11

ωγ
γ

h
cr

h(m)], (11) 

where 

 )(,11 ωγ h
cr =δ 

kω
π

3
)(4 2/32−Γ










−Γ 22
cosh

π
ω ,    

 h(m)=∑
=

+
N

n
nn nmh

1
)cos( ψ ,           hn=

11

1

γ
γ n










−Γ










−Γ

2

2

2
cosh

2
cosh

π
ω

π
ω

n

n
. (12) 

We prefer to use the representation (11) because we assign γ11 the role of overall excitation 

amplitude, while the relative amplitudes of the superharmonics γn1/γ11 and the phases ψn determine 

the (temporal) shape of the excitation [Lenci & Rega, 2003a, 2004a]. The effects of the 

superharmonics on the Melnikov functions are instead governed by the parameters hn, n=2,3,…,N 

(note that h1=1, and that the amplitude-free, oscillating part h(m) of Mr,l(m) is 2π-periodic with zero 

mean value). 

According to the H.M. theorem, we have homoclinic intersection of the right (left) manifolds if 

there exists m∈[0,2π] such that Mr,l(m) have simple zeros, respectively. As in [Lenci & Rega 

2003b], we see that the equation Ml(m)=0 has a simple solution if and only if 

 γ11> l

h
cr

M
)(,11 ωγ

= )(,11 ωγ l
cr ,     Ml=maxm∈[0,2π]{h(m)}, (13) 

while the equation Mr(m)=0 has a simple solution if and only if 

 γ11> r

h
cr

M
)(,11 ωγ

= )(,11 ωγ r
cr ,     Mr=–minm∈[0,2π]{h(m)}. (14) 
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According to the previous Remark 1, )(,
,11 ωγ lr
cr , which are depicted in Fig. 4 in the 

frequency/amplitude parameter space (ω, γ11), are identified as the homoclinic bifurcation 

thresholds for the right (left) homoclinic loop. Above these critical curves right (left) homoclinic 

intersections certainly occur. 

In general )(,11 ωγ r
cr  and )(,11 ωγ l

cr  are distinct (although they are proportional, being 

)(,11 ωγ r
cr / )(,11 ωγ l

cr =Ml/Mr=const.), and coincide only for the excitations satisfying Ml=max{h(m)}= 

–min{h(m)}=Mr, like, for example, the harmonic excitation (N=1), for which h(m)=cos(ωt+ψ1) and 

Mr=Ml=1. These last equalities and (13)-(14) further show that the curve )(,11 ωγ h
cr , which is 

illustrated in Fig. 4, represents the coinciding right and left homoclinic bifurcation thresholds in the 

case of harmonic excitation, which is considered as a reference to measure the improvement 

obtained with control in the next sections. 

 

ω

δ
γ

region with
homoclinic

intersections
11

saved
region

γ11,cr
h

glo
ba

l

on
e-s

ide

γ11,cr
r,l

2 (Γ−π )√ 2

3 k√
2(Γ−π )2

 

Figure 4. The curves )(,11 ωγ h
cr  and )(,

,11 ωγ lr
cr  for Gr,l=1.2732 (optimal global control with infinite 

superharmonics) and Gr,l=2 (optimal one-side control with infinite superharmonics) 
 

The strip above )(,11 ωγ h
cr  and below )(,

,11 ωγ lr
cr  is called saved (i.e., controlled) region (Fig. 4), and 

represents the zone where the unharmonic excitation is theoretically effective. Its maximum 

enlargement constitutes the objective of the control method. 

To quantitatively measure the increment of the critical thresholds of the unharmonic excitations 

with respect to the harmonic reference case we introduce the gains [Lenci & Rega, 2004a, 2004b], 

which are the ratios 

 Gl=
)(
)(

,11

,11

ωγ
ωγ

h
cr

l
cr = lM

1 ,     Gr=
)(
)(

,11

,11

ωγ
ωγ

h
cr

r
cr = rM

1 , (15) 
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and which will be useful in the following. 

4 Optimal control 
In this section we apply to the buckled beam a method for controlling nonlinear dynamics and 

chaos developed by the authors [Lenci & Rega, 2004a, 2004b] and previously applied only to single 

d.o.f. mechanical systems [Lenci & Rega, 1998, 2003a, 2003b]. Those analyses are herein extended 

to the infinite dimensional system (1). 

The idea of the method is to increase the )(,
,11 ωγ lr
cr  thresholds or, equivalently, to enlarge the 

saved region or increase the gain. This result is pursued by optimally varying both the spatial (Sect. 

4.1) and temporal (Sect. 4.2) shapes of the excitation, and it is what we call “optimal control of 

homoclinic bifurcation.” In fact, the two problems can be analyzed separately. 

4.1 “Optimizing” the spatial shape of the excitation 

Still referring to the first family of b.c., the optimal choice of spatial shapes fn(z) of the excitation 

is based on the observation that, because of the flatness of Σ, only the coefficients γn1 are involved 

in the expression of the Melnikov function (10). Accordingly, only the spatial shape of the 

excitation parallel to the invariant manifold Σ plays a role in the Melnikov analysis, and then on 

control. This agrees with the physical considerations suggesting that, due to damping, the 

significant part of the dynamics occurs near Σ. 

As a consequence, if we assume fn(z) orthogonal to Σ, i.e., fn(z)=∑∞

=2
)sin(

j nj zjπγ , we have no 

homoclinic bifurcation at all, and the problem is meaningless. Thus, fn(z) must contain at least the 

term sin(πz). Indeed, we just assume fn(z)=γn1sin(πz), which implies that the useless coefficients 

γnj=2 ∫
1

0
)sin()( ζπζζ djfn , j=2,3,…∞, vanish identically. This entails two meaningful 

circumstances: 

(i) being sin(πz) the only spatial component of fn(z) able to modify the homoclinic bifurcation, 

this choice permits to minimize the cost of control, because we only use what is effective; 

(ii) having γnj=0, j=2,3,…∞, the non-resonance conditions (8) become meaningless, so that the 

control, which would not hold in the present form for the frequencies not satisfying eqs. (8), is 

applicable everywhere. This is practically important, because if N is large enough (i.e., if we use a 

lot of superharmonics, which provide the best optimal gains (see Tabs. A1 and A2 in the 

appendix)), the resonant frequencies are almost dense in IR and the control would not be applicable 

at all. 

The previous points show why we consider practically “optimal” the assumption fn(z)=γn1sin(πz). 
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In fact, contrary to what happens with the temporal shape (see Sect. 4.2), here the choice does not 

ensue from a mathematical optimization problem, but just from mainly qualitative considerations. 

From a practical point of view, the assumption fn(z)=γn1sin(πz) means that we do not excite the 

vibrating modes; from a theoretical point of view, on the other hand, it means that the perturbed 

manifold Σε remains planar and coincides with Σ. 

4.2 Optimizing the temporal shape of the excitation 

The issues of choosing the optimal temporal shape, i.e. the optimal superharmonics, is now 

addressed. It is quite clear from (13)-(14) that if we want to enlarge as much as possible the saved 

region we have to increase the gains (15). However, as shown in [Lenci & Rega, 2003b, 2004a], 

this requires some care, because the presence of two homoclinic orbits permits to choose among 

different control strategies. Indeed, we can control only the right (left) homoclinic bifurcation, 

irrespective of what happens to the other, or we can control simultaneously the right and the left 

homoclinic bifurcations. 

The two approaches are complementary rather than competing [Lenci & Rega, 2003b, 2004a]: 

the first is aimed at obtaining a topologically “localized” control and provides “large” optimal gains 

(see Tab. A1), whereas the second is aimed at controlling, on average, the “whole” phase space, but 

provides smaller optimal gains (see Tab. A2). 

i) “One-side” control of the right (left) homoclinic bifurcation. If we want to increase as 

much as possible r
cr,11γ  ( l

cr,11γ ) we have to solve the following mathematical problem of 

optimization: 

 Maximize Gr (Gl) by varying the coefficients hj and ψj, j=2,3,… of h(m). (16) 

These problems have been solved in [Lenci & Rega, 2003b, 2004a], and the solution is ψj=0, 

while the optimal gains and the optimal hj for increasing number N of added superharmonics are 

given in Tab. A1, which refers to the “right” case. The solution of the “left” case is that of Tab. A1 

with even coefficients h2j changed of sign. 

Table A1 shows that, as expected, the optimal gain is an increasing function of the number N of 

controlling superharmonics. It is bounded from above by 2, which corresponds to the (mostly 

theoretical) case of infinite superharmonics and shows that it is possible to double the critical 

excitation threshold. This limit case is reported in Fig. 4. From a practical point of view, very 

satisfactory optimal gains can be obtained with even few controlling terms. 

Using the coefficients of Tab. A1 in eq. (12)2 gives the physical ω-dependent optimal 

excitations, which for N=2 and N=3 and in the “right” case are reported below: 
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 F(z,t)=γ11sin(πz)[sin(ωt)+0.3535













−Γ

−Γ

)2/(cosh2

)2/(2cosh 

2

2

πω

πω
sin(2ωt)], (17) 

 F(z,t)=γ11sin(πz)[sin(ωt)+0.5528













−Γ

−Γ

)2/(cosh2

)2/(2cosh 

2

2

πω

πω
sin(2ωt)+0.1708













−Γ

−Γ

)2/(cosh3

)2/(3cosh 

2

2

πω

πω
sin(3ωt)]. 

The second of the previous excitations, divided by γ11sin(πz), is reported in Fig. 5a for various 

values of the parameter p= )2/( 2πω −Γ . 

 

ωt

p=0.1

p=1

p=1.5

           ωt

p=0.1

p=1

p=1.5

 
a)                                                                       b) 

Figure 5. The functions F(z,t)/γ11sin(πz) for various values of the parameter p= )2/( 2πω −Γ  and 
for N=3. a) optimal one-side “right” excitation, i.e., (17)2. Note that in this case there are two 

controlling superharmonics added to the reference basic harmonic. b) optimal global excitation, i.e., 
(19)1. In this case there is only one added superharmonic. 

 

ii) “Global” control. To control simultaneously the right and the left homoclinic bifurcations, 

the right and the left gains, Gr and Gl, must be increased at the same time. Mathematically, this 

entails to increase their minimum value, namely, to solve the following optimization problem: 

 Maximize G=min{Gr,Gl} by varying the coefficients hj and ψj, j=2,3,… of h(m). (18) 

The solution of (18) is given by ψj=0, h2j=0 (which automatically guarantees that max{h(m)}= –

min{h(m)}, i.e., that Gr=Gl) and by the coefficients reported in Tab. A2 [Lenci & Rega, 2003b, 

2004a]. 

As in the “one-side” control, the optimal gains are still increasing functions of N, but now they 

are strongly lesser than those of Tab. A1, showing how global control is theoretically less 

performant, even in the limit case N=∞ (see Fig. 4). The counterpart of this drawback is the 

possibility to control simultaneously both homoclinic bifurcations. 
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By the coefficients of Tab. A2 and by eq. (12)2 we can compute the first two ω-dependent 

optimal physical excitations (N=3 and N=5, respectively): 

 F(z,t)=γ11sin(πz)[sin(ωt)–0.1667













−Γ

−Γ

)2/(cosh3

)2/(3cosh 

2

2

πω

πω
sin(3ωt)], (19) 

 F(z,t)=γ11sin(πz)[sin(ωt)–0.2323













−Γ

−Γ

)2/(cosh3

)2/(3cosh 

2

2

πω

πω
sin(3ωt)+0.0610













−Γ

−Γ

)2/(cosh5

)2/(5cosh 

2

2

πω

πω
sin(5ωt)]. 

The first of the previous excitations, divided by γ11sin(πz), is reported in Fig. 5b for various 

values of the parameter p= )2/( 2πω −Γ . By comparing the two pictures of Fig. 5 it is possible to 

note how the one-side optimal excitation has slightly more pronounced peaks, and that for 

increasing values of p the third order superharmonic tends to become predominant.  

5 Comparison with the single d.o.f. reduced model 
In [Lenci & Rega, 2003b] the control method has been applied to the single d.o.f. approximation 

of the dynamics of a buckled beam. In this section we compare the present much more general 

analysis with that reported therein. 

The single d.o.f. approximation is obtained by the Galerkin method by projecting the dynamics 

onto the planar manifold spanned by the local stable and unstable directions, which for the first 

class of b.c. coincide with Σ. Therefore, we assume 

 w(z,t)=a(t)sin(πz), (20) 

insert this in (1), multiply by sin(πz) and integrate from 0 to 1. This yields the following ordinary 

differential equation: 

 a&& –π2(Γ–π2)a+k
2

4π a3=ε[∑ =
+

N

n nn tn
1 1 )sin( ψωγ –δ a& ],        γn1=2 ∫

1

0
)sin()( ζπζζ dfn . (21) 

Equation (21) is the classical Duffing equation with negative linear stiffness (being Γ>π2) which, 

in a different notation, has been investigated in [Lenci & Rega, 2003b], where it has been shown 

that the right and left homoclinic orbits are given by 

 ah(t)=±
π
2

k

2π−Γ

)cosh(
1

2ππ −Γt
. (22) 

Equation (22), together with (20), gives exactly (6). The classical, two dimensional, Melnikov 
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function [Guckenheimer & Holmes, 1983] can then be computed, which is shown [Lenci & Rega, 

2003b] to be exactly given by (10). This proves that, in the present case, even the single d.o.f. 

reduced order model is able to exactly capture the homoclinic bifurcation, and thus the theoretical 

developments and the practical implementations of the control method are identical for the finite 

and infinite dimensional models. 

This is a consequence of the flatness of Σ, and no longer holds for the second family of b.c. 

(Sect. 6). In any case, it must be emphasized that “the full power of the (Holmes & Marsden) 

theorem is necessary since in the infinite dimensional case, the perturbed manifolds … do not lie in 

Σ” [Holmes & Marsden, 1981], and therefore they are only approximated by the single d.o.f. model. 

These perturbations are generic and can be due to external excitation and/or nonlinear coupling 

between different modes, and their negligibility, now rigorously proved by the H.M. theorem, 

couldn’t be easily guessed a priori. 

Since in the specific case of Fig. 1a, and more generally for the first family of b.c., the 

application of the control method is identical for finite and infinite models, we can take advantage 

of the results in [Lenci & Rega, 2003b], where some numerical simulations are reported aimed at 

checking the theoretical predictions and the practical performance of control. In particular, the one-

side and global controls are numerically compared, and it has been shown: 

1) the numerical reliability of the Melnikov prediction of homoclinic bifurcations, which can be 

usefully applied in spite of its perturbative nature; 

2) the control induced regularization of fractal basin boundaries, which confirms the first 

predicted effect of elimination of the homoclinic bifurcation; 

3) the reduction of fractal erosion of the basins of attraction of confined attractors, which is very 

useful for reducing the sensitivity to initial conditions; 

4) the effect of control also beyond theoretical expectations, permitting, for example, the delay of 

the in-well to cross-well chaos transition in the case of one-side control. 

6 Different boundary conditions – non planar manifold Σ 
In this section the more general case of b.c. belonging to the second family is considered to 

complete the application of the control method to infinite dimensional dynamical systems. The 

analysis herein developed is general, but to fix ideas, and to make explicit computations, we refer to 

the fixed-fixed case of Fig. 2a. Furthermore, we choose Γ=40, which belongs to the interval [Γcr,1, 

Γcr,2]=[4π2, 8.183π2]=[39.478, 80.763] (hyp. (H4) of the H.M. theorem). 

6.1 Nonlinear normal mode technique for homoclinic solution 

The main difficulty is that the invariant manifold Σ of hyp. (H2b) is not planar and it is difficult 
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to be handled. To overcome this point, the nonlinear normal modes technique is used [Shaw & 

Pierre, 1993; Vakakis et al., 1996; Nayfeh, 2000]. Together with other related methods, such as the 

approximate inertial manifold and the proper orthogonal modes, it is one powerful technique 

developed to obtain reliable reduced order models, which is a matter of intensive on-going research 

(see also a recently published Special Issue [Rega & Troger, 2005]). Although these techniques 

were originally developed to deal with nonlinear oscillations, in this paper their application is 

concerned with homoclinic orbits [Lenci & Rega, 2007]. 

To apply the method, the first N eigenfunctions of the linear operator A are required. Because A 

is self-adjoint and its domain is dense, we get the exact manifold Σ in the limit N→∞. For 

w(0)=w′(0)=w(1)=w′(1)=0 and for Γ=40 the first five eigenvalues of A are: 

 λ1=2.620687,   λ2=44.085549i,   λ3=103.232438i,   λ4=181.871769i,   λ5=280.309519i, (23) 

while the expressions of the associated eigenfunctions are given in the appendix (eq. (A1)), and are 

depicted in Fig. 6. They have been normalized with 1)]([
1

0

2 =∫ ζζ dwj , which simplifies the inertial 

terms in the following expression (25) of the Hamiltonian. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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z

w
j(z

)

 
Figure 6. The first five normalized eigenfunctions wj(z) of the fixed-fixed case for Γ=40. 

Continuous lines are odd eigenfunctions, and dashed lines are even eigenfunctions. 
 

Note that, according to Γ∈[Γcr,1, Γcr,2], only the first eigenvalue is real, while the others are 

purely imaginary. This property, in particular, guarantees that the infinite non-resonance conditions 

n2λ1
2≠λn

2, n=2,3,4…, which are required for the validity of the procedure, as shown in [Lenci & 

Rega, 2007], are automatically satisfied. 

Due to symmetric boundary conditions, eigenfunctions with odd index are symmetric (i.e., 

w(0.5+δ)=w(0.5–δ), see the continuous lines in Fig. 6), while those with even index are anti-

symmetric (i.e., w(0.5+δ)=–w(0.5–δ), see the dashed curves in Fig. 6). Consequently, the odd 
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eigenfunctions span the symmetric part of the domain of A, while the even eigenfunctions span its 

complement, i.e., the anti-symmetric part of the configuration space. As the homoclinic solutions 

are expected to be spatially symmetric, because they approach the unstable symmetric 

eigenfunction w1(z) for t→∞, we neglect the even eigenfunctions. This has no consequences on the 

expected solution since even and odd terms are not coupled in the reduced order Hamiltonian, so 

that a solution initially symmetric remains symmetric for all times. 

Accordingly, we directly assume a2j=0, j=1,2,…, and look for the solution in the form 

 w(z,t)=a1(t)w1(z)+a3(t)w3(z)+a5(t)w5(z)+…,        u(z,t)= w& (z,t). (24) 

In the following we consider terms only up to w5(z) to limit the computations, but of course the 

analysis can be trivially extended. By inserting (24) in the Hamilton function (5b) we get 

 H=0.5( 2
1a& + 2

3a& + 2
5a& )+(–3.43400 2

1a +5328.47013 2
3a +39296.0690 2

5a )+ 

 +k(6.58790 2
1a +49.53020 2

3a +132.04221 2
5a –12.58343a1a3–7.67163a1a5–26.57427a3a5)2= 

 =0.5( 2
1a& + 2

3a& + 2
5a& )+V(a1,a3,a5). (25) 

The equation of motion can then be obtained by the classical Hamiltonian formalism from (25): 

 ja&& =–
ja

V
∂
∂ , (26) 

and it is trivial to show that they admit the saddle equilibrium point aj=0 with H=0. 

Generalizing the treatment of [Rand, 2003] (see also the introductory paper in [Rega & Troger, 

2005] for an overall framework), we identify a main, or master, variable (i.e.. modal amplitude) x 

and consider the others as secondary, or slave, variables (higher order modal amplitudes) yi. 

Because in the buckled beam problem the unstable direction triggering the homoclinic orbit is just 

along the first eigenfunction, it is natural to assume x=a1 and y1=a3, y2=a5 and so on. Equations (26) 

then become 

 x&& =–
x
V

∂
∂ ,      iy&& =–

iy
V

∂
∂ . (27) 

The key idea of the method consists in assuming that the slave variables can be expressed as 

time-independent functions of the master one: 

 yi=yi(x). (28) 

If we use only N terms in (24) the relation (28) provides an approximation of the searched 

manifold Σ (approximate manifold), while for N→∞ it exactly gives Σ (exact manifold). We will 

see that, in general, few terms are indeed sufficient to practically give an adequate approximation of 
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Σ. 

Differentiating (28) with respect to time we get, by the chain rule, 

  iy& =
dt
dyi =

dx
dyi

dt
dx =yi′ x& ,     iy&& = yi′′ x& 2+yi′ x&& . (29) 

Combining (29)2 with (27) yields 

 
iy

V
∂
∂ =–yi′′ x& 2+yi′ x

V
∂
∂ . (30) 

To apply the previous general treatment to the homoclinic orbit, we note that on these solutions 

we have H=0, namely, 

 0=( 2x& + ∑
−

=

1

1

2
N

i
iy& )+2V(x, yi(x))= 2x& [1+∑

−

=

1

1

2)'(
N

i
iy ]+2V(x, yi(x)). (31) 

From (30) and (31) we can eliminate x&  and finally get the strongly nonlinear ordinary differential 

equations permitting to determine the unknown functions (28): 

 2Vyi′′+[1+∑
−

=

1

1

2)'(
N

i
iy ] 








∂
∂

−
∂
∂

i
i y

V
x
Vy ' =0. (32) 

Equations (32) are the slave amplitudes equations which particularize the modal equations of 

Rand [2003]. Indeed, they are much more complex than the original system (27), and its 

introduction may appear useless. Notwithstanding, it contains only polynomial terms, and it is 

natural to look for a relevant solution in the Taylor series form [Lenci & Rega, 2007] 

 yi=
k

1 [yi,1(x√k)+yi,3(x√k)3+yi,5(x√k)5+yi,7(x√k)7+…], (33) 

where even terms have not been considered because of the symmetry of the system, which requires 

that if w(z,t) is a solution of (1), so is –w(z,t). Moreover, the constant term vanishes also because the 

manifold contains the trivial saddle, i.e., yi(0)=0. The parameter k has been explicitly singled out in 

(33) to have k independent numbers yi,l. 

To determine the unknowns yi,l, we insert (33) in (32) and expand in Taylor series. Equating to 

zero the coefficients of x we get 

 ci[1+∑
−

=

1

1

2
1, )(

N

j
jy ] yi,1=0 (34) 

(ci are constants different from zero). Since complex values of yi,1 cannot be accepted, the unique 

solution of (34) is yi,1=0. This shows that, in a neighborhood of x=0, a unique manifold Σ is detected 
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by this technique, and that it cubically approaches its tangent manifold at x=0. Thus, the non-

flatness of Σ is expected to be engineering important only “far enough” from the saddle. 

Equating to zero the coefficients of the successive powers of x we get a recursive series of linear 

algebraic equations permitting to determine the remaining constants yi,l. The first few of them are 

reported in Tab. 1, and they are used in Fig. 7 to draw the solutions y1(x) and y2(x). 

 

l y1,l → y1(x) y2,l → y2(x) 
1 0 0 
3 0.154679×10–1 0.128512×10–2 
5 –0.810240×10–3 –0.108526×10–4

7 –0.472535×10–4 –0.261876×10–6

Table 1. The Taylor coefficients yi,l of the slave amplitudes yi(x), i=1,2, for Γ=40. 
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Figure 7. The slave amplitudes y1(x) and y2(x) (up to the 7th order) for Γ=40, and a schematic 

section of a hypothetically bending exact manifold Σ. 
 

Several conclusions can be drawn from Tab. 1 and Fig. 7. The most important is that, at least for 

the considered value of Γ, the slave variables are orders of magnitude lesser than the master one. 

Furthermore, the degree of smallness of yi(x) increases with its order i, so that high order modal 

amplitudes (say, greater then 2) are practically unessential. 

When considering from an engineering point of view the previous comments and the fact that Σ 

vanishes cubically at x=0, we can conclude that the non-flatness of the manifold, while theoretically 

important, has a minor practical relevance. This does not appear completely surprising since the 

considered axial load is not much larger than the first buckling load (Γ/Γcr,1=1.013). In [Lenci & 

Rega, 2007] it has been shown how moving away from it, the non-flatness of the manifold becomes 

more important. 

To check the reliability of the approximation of y1(x) and y2(x) we have computed the 
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coefficients up to yi,25 and we have verified that in the range of interest x∈[0, 0.3] (see Sect. 6.2) the 

error is lesser than 0.005%, so that the functions of Fig. 7 are practically coincident with the true 

slave amplitudes y1(x) and y2(x). 

 

Remark 2. It is important to note that the previous treatment fails if the assumption (28) no 

longer holds, e.g., if the manifold Σ containing the homoclinic orbit bends (as schematically shown 

by the dashed curve of Fig. 7) and the orbit overcomes the turning point. As a general consideration, 

we can say that this does not occur for small values of Γ–Γcr,1, as assumed in this section, but this 

phenomenon might not happen even for not to small values of Γ–Γcr,1. 

 

6.2 Minimal order homoclinic solution and refined order homoclinic bifurcation 

By inserting the expression of y1(x) and y2(x) obtained in the previous section in the expression 

(25) of the potential V(x, yi(x)) we get 

 V(x)=
k
1 [–3.434000(x√k)2+43.400440(x√k)4–1.354661(x√k)6+0.194647(x√k)8 

 –0.213589×10–1(x√k)10+0.629506×10–3(x√k)12+…] (35) 

and the equation of motion of x is (27)1. Equation (35) contains the effect of up to the second higher 

(slave) mode, each relevant contribution being evaluated by accounting for up to the seventh order 

nonlinearity in the Taylor expansion (33). It describes an hardening potential with two symmetric 

wells, surrounded by two symmetric homoclinic loops xh(t), which are of primary interest for this 

work. In the phase space, they extend from xh(∞)=0 to xh(0)= x , where x  is the unique non null 

solution of V(x)=0. We get from (35) x =0.281634/√k. 

The 4th order approximation of the potential (35) 

 V(x)=
k
1 [–3.434000(x√k)2+43.400440(x√k)4]=–3.434000x2+43.400440kx4 (36) 

corresponds to a classical Duffing oscillator – which can also be obtained via a linear Galerkin 

projection –, and only accounts for the effect of the master mode. To check the validity of this 

approximation we have computed x  by (36) and we got x =0.281289/√k. As this is practically 

coincident with the “true” x , and because we are interested only in the dynamics in the range [0, 

x ], we will use (36) in the following. In terms of the reduced order models of homoclinic orbits 

discussed in [Lenci & Rega, 2007], this is equivalent to consider the minimal (or unrefined) one, 

which was shown to work very well close to the first buckling load, as we are doing herein. 

The equation of motion associated to (36) and the embedded homoclinic orbits are 
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 x&& –6.86800x+173.60176kx3=0, (37) 

 xh(t)=±
k

1
)620687.2cosh(

281289.0
t

. (38) 

The previous expression permits to compute an approximation of the homoclinic loop of the full 

dynamics, which can now be given the form 

 wh(z,t)=xh(t)w1(z)+y1(xh(t))w3(z)+ y2(xh(t))w5(z)+… (39) 

accounting for the dynamics on the higher modes. According to the terminology of [Lenci & Rega, 

2007], we are now performing a refined order analysis of the homoclinic bifurcation. 

Using this expression in the Melnikov function of the H.M. theorem we get, after some 

computations 

 Mr,l(m)=–δ ∫ ∫
∞

∞−

dtdztzwh

1

0

2 ),(& + ∫ ∫
∞

∞−

+ dtdzmtzFtzwh

1

0

)/,(),( ω& = 

 =–
k
δ β0 ∑

=

+++
+

N

n

nnn
n k

nnnnmn
1

553311 ...)()()()cos( ωβγωβγωβγψωm  (40) 

where 

 β0=k{ ∫
∞

∞−

dttxh )(2& + ∫
∞

∞−

dttxytx hh
2

1
2 ))]((')[(& + ∫

∞

∞−

dttxytx hh
2

2
2 ))]((')[(& +…}  

 γnj= ∫
1

0
)()( ζζζ dwf jn ,   β1(ω)= ∫

∞

∞−

dtttxk h )cos()( ω , 

 β3(ω)= ∫
∞

∞−

dtttxyk h )cos())((1 ω ,   β5(ω)= ∫
∞

∞−

dtttxyk h )cos())((2 ω , … . (41) 

Note that the constant β0 and the functions βj(ω) do not actually depend on k. They are even 

functions of ω, and in the interval [0,+∞[ they are monotonically decreasing and exponentially 

approach zero for ω→∞. 

6.3 Comparisons: flat vs non-flat manifolds, infinite vs finite dimensional models 

Expressions (40) and (41) make explicit the contribution of non-flatness of Σ to the homoclinic 

bifurcation, which is taken into account by the terms containing yi(x), which are missing in (10). 

There are contributions both in the constant part β0 and in the oscillating part of the Melnikov 

functions, due to β3(ω), β5(ω),…, and measured by the coefficients γn3, γn5,…. 
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To quantitatively measure these contributions, expressions (41) must be determined explicitly. β0 

and β1(ω) can be computed exactly, and in the reference case Γ=40 they are given by 

 β0={0.603839×10–1+0.428994×10–6+0.299111×10–8+…}  

 β1(ω)=
)599383.0cosh(

337200.0
ω

. (42) 

The coefficients βj(ω), j>2, on the other hand, can be evaluated only numerically. Therefore, 

supported by the fact that βj(ω) are monotonically decreasing in [0,+∞[, we consider only the 

maximum values βj(0) of each function βj(ω), which are given below (β1(0) is reported for 

comparison): 

 β1(0)=0.337200,     β3(0)=0.205702×10–3,     β5(0)=0.171352×10–4. (43) 

Once more, we have found that the non-flatness of Σ, while having theoretical relevance, gives 

contributions to the Melnikov functions which are orders of magnitude smaller than its flat 

approximation (given by the dominant terms and obtained by the one d.o.f. linear Galerkin 

approximation), and it is negligible from an engineering point of view for the considered 

parameters. 

The previous considerations not only permit to conclude that the non-flatness of Σ can be 

neglected, but also that the bifurcation analysis based on the 1D reduced order model (accounting 

for only the first term of β0 and for β1) gives the “same” results as the infinite dimensional analysis. 

This conclusion was obtained also in Sect. 5 for the case of flat Σ, but here, like there, it is 

important to stress that the full powerfulness of the H.M. theorem is necessary to take into account 

out of manifold perturbations, even if it has been shown a posteriori that they are practically 

negligible, a fact that couldn’t easily be guessed a priori. 

The difference is that for flat Σ the one d.o.f. model gives mathematically correct results in terms 

of Melnikov functions (Sect. 5), while for non-flat Σ it gives practically correct results, so that the 

theoretical background is different. However, it can be expected that, moving away from the first 

buckling load – which would entail considering a refined homoclinic orbit [Lenci & Rega, 2007] –, 

could evidence more marked differences of homoclinic bifurcation herein considered with respect 

to the linear Galerkin approximation. 

6.4 Optimal control 

Following the guidelines of Sect. 4, the application of the optimal control method to the second 

family of b.c. is now discussed. 

The influence of the spatial shape of the excitation is considered first. As in Sect. 4.1, we assume 
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the spatial shape of each time component equal to the first eigenfunction, fn(z)=γn1w1(z). This 

implies that the coefficients γnj= ∫
1

0
)()( ζζζ dwf jn , j=3,5,…, vanish, and permits to exactly (i.e. 

irrespective of engineering considerations) eliminate the influence of the non-flatness of Σ on the 

oscillating part of the Melnikov functions. The influence of the non-flatness of Σ, however, has not 

been completely removed by this choice, because it remains in the constant part β0, where it is 

unavoidable. 

In addition to the previous properties, and as in Sect. 4.1, the choice γnj=0, j=3,5,…, permits to 

get rid of the non-resonance conditions (8) of hypothesis (H3), and thus contributes to enlarge the 

range of applicability of the method. 

It is worth stressing the different meaning of the same assumption fn(z)=γn1w1(z) on the spatial 

shape of the excitation used for flat and non-flat manifold cases. In the former, it has no 

consequence in terms of the Melnikov function and only permits to reduce the cost of control (Sect. 

4.1). In contrast, in the latter, it is mandatory in order to strongly simplify the Melnikov function 

(40) (see eq. (44)), and the successive analysis. In both cases, however, this choice does not arise 

from mathematical optimization problems, as the choice of the temporal shape, but just from 

practical considerations. 

The previous assumption permits to rewrite the Melnikov function as 

 Mr,l(m)=–
k
δ β0 ∑

=

+
N

n

n
n k

nnmn
1

11 )()cos( ωβγψωm , (44) 

which is formally identical to (10). Then, the representation (11) is still valid with 

 )(,11 ωγ h
cr =δ

)(1

0

ωωβ
β

k
,           hn=

11

1

γ
γ n

)(
)(

1

1

ωβ
ωβ nn , (45) 

which have the same meaning of Sect. 3. 

This has strong consequences. The first is that the analysis of Sect. 4.2, where the optimal 

temporal shape of the excitation has been obtained, immediately applies to the present case. 

Consequently, we refer to that Section for the determination of the excitation permitting the optimal 

shift of the homoclinic bifurcation in parameter space. 

The second is that this result further confirms the generality of the proposed control method, 

which applies to a variety of mechanical systems and models within the same framework, as 

discussed in detail in [Lenci & Rega, 2004a]. 

To conclude this section, we note that the previous points have mainly a theoretical interest. In 

fact, according to the final considerations of Sect. 6.3, the application of the control method can be 

done as in the 1D Galerkin approximation, which is the subject of [Lenci & Rega, 2003b]. This 
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would provide just the first term in the expression (42)1 of β0, thus neglecting the contributions of 

higher order modes. 

7 Extensions and generalizations 
Various extensions and generalizations of the analysis of this paper are possible in principle and 

worthy to be investigated. In this section only two of them, the first of mechanical nature and the 

second of theoretical nature, are discussed. 

7.1 Shallow arches 

In addition to the buckled, initially straight beam, the control method can be applied to other 

mechanical systems. The application to shallow elastic arches, whose nonlinear dynamics is 

governed by the PDE equation [Fung & Kaplan, 1952; Lenci & Tarantino, 1996] 

 w&& +w′′′′–2(w′′+y′′) ∫ +
1

0

2 ]''2)'[( ζdyww =ε[F(z,t)–δw& ], (46) 

is straightforward. In (46) y(z) represents the dimensionless undeformed shape of the arch, which 

can also be interpreted as the shape perturbation to a theoretical straight beam, while the other 

symbols have the same meaning of the previous sections. 

First we note that if the arch is hinged at both ends and the initial spatial shape is harmonic, i.e., 

y(z)=hsin(πz) then the invariant manifold Σ of the theorem is flat and we are in the first family (see 

Sect. 2), which now involves not only boundary conditions but also undeformed shapes. The 

nonlinear dynamics and the homoclinic bifurcation of this case with harmonic (in time) excitation 

have been investigated in [Lenci & Tarantino, 1996] by the H.M. theorem. The single d.o.f. model 

obtained by the Galerkin method was also obtained, and it was shown to provide the same results of 

the infinite dimensional analysis, according to the fact that the manifold Σ is planar. 

The extension of the analysis of [Lenci & Tarantino, 1996] to the non-harmonic, but still 

periodic in time, excitations, which is necessary for the application of control, can be obtained by 

superposition, just as done in Sect. 3, and will not be detailed. We only note that the sag h of the 

arch plays the role of the axial load Γ of the buckled beam. 

The main mechanical difference between the shallow arch and the buckled beam is that the non 

vanishing initial shape destroys the symmetry of the system, which accordingly has also quadratic 

nonlinearities (see eq. (46)). This is at the base of the main dynamical differences, which are the 

non coincidence between the right and left homoclinic loops [Lenci & Tarantino, 1996, eq. (7)], 

which in turn implies different values of the homoclinic bifurcation threhsolds [Lenci & Tarantino, 

1996, eq. (10)]. 

The quadratic terms is present also in the reduced order model, and the resulting equation is the 
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Helmholtz-Duffing equation (2<h<3/√2, see [Lenci & Tarantino, 1996]) 

 a&& +
2

4π (h2–4–3h 42 −h )a–
2

3 4π (h– 42 −h )a2+π4a3=ε[∑ =
+

N

n nn tn
1 1 )sin( ψωγ –δ a& ], (47) 

instead of the Duffing equation (21). 

The control method has been applied to (47) in [Lenci & Rega, 2004b], which reports all the 

theoretical developments and shows how in this case the global control is no longer system 

independent, contrary to what happens for one-side controls and for global control of the symmetric 

(Duffing) system, where the solutions are system-independent. 

The situation of global control is relatively more involved, and two different approaches have 

been followed, based on increasing of either gains (global control without symmetrization) or 

excitation amplitudes (global control with symmetrization). In the latter case the symmetrization of 

system dynamics can be actually “achieved” or simply “pursued” [Lenci & Rega, 2004b]. 

As a consequence of the flatness of Σ for the considered undeformed shape and boundary 

conditions, the results of [Lenci & Rega, 2004b] can be immediately applied to the infinite 

dimensional case. Of course, the extension to the second family, i.e. to different initial shapes and to 

different b.c., requires an analysis similar to that of Sect. 6, and will not be pursued here. 

7.2 Berti and Carminati theorem 

The homoclinic bifurcations of infinite dimensional systems can be analytically detected also by 

the Berti and Carminati [2002] theorem (see also [Alessio et al., 1999]), which indeed is an 

extension of the H.M. theorem. 

The Berti and Carminati theorem permits to deal with the following cases, which do not fulfill 

the H.M. theorem hypotheses: 

1) the excitation does not need to be periodic, but can also be quasi-periodic and even more 

generic; 

2) parametric excitations can easily be considered, while the application of the H.M. theorem to 

this case requires some technicalities; 

3) the zeros of the Melnikov functions do not need to be simple. This is mainly a technical 

extension with minor practical consequences, because the non simple zeros of M(m) are structurally 

unstable; 

4) it can be applied to the case with more than one unstable direction, which is excluded by the 

H.M. theorem. This means that hypothesis (H4) can be relaxed, and we can consider an axial load Γ 

larger than the second branching point Γcr,2; 

5) it can be applied to a vectorial version of (1), this permitting a more accurate modeling of the 
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mechanical behaviour of the buckled beam. 

In addition to the previous advantages, however, there is also one disadvantage. In fact, the proof 

of Berti and Carminati theorem is strongly related to the buckled beam with hinged-hinged b.c., and 

the extension to other b.c., even of the first family, does not appear trivial. 

8 Conclusions and further developments 
A method for controlling nonlinear dynamics and chaos through elimination, or better, shift in 

parameter space, of the principal homoclinic bifurcation has been applied to an infinite dimensional 

model of a buckled beam. The method takes advantage of the partially free temporal and spatial 

shapes of the excitation, which is however constrained to be periodic in time, and allows to 

determine the relevant optimal shapes through either the solution of appropriate mathematical 

optimization problems, or practical considerations. 

The theoretical analysis is based on an abstract theorem of Holmes and Marsden, which is an 

infinite dimensional version of the classical Melnikov theory, permitting the analytical detection of 

the homoclinic bifurcation of the main saddle. This theorem has been applied to the present case, 

and the influence of the excitation shape on the Melnikov function has been determined. 

Two mechanically and mathematically different cases have been identified and studied 

separately. From a dynamical point of view, the two cases differ because in the first the homoclinic 

loops lie on a flat manifold, while in the second they lie on a non-flat manifold. From a mechanical 

point of view, they correspond to different beam boundary conditions. 

The simpler case of flat manifold has been investigated first. After detecting the homoclinic 

bifurcation threshold by the H.M. theorem, the control method has been applied. The “optimal” 

spatial shape of the excitation has been identified as the one parallel to the flat manifold, which 

solely plays a role in the Melnikov analysis, whereas the cases of one-side and global control have 

been discussed and compared with each other in addressing its optimal temporal shape. It has been 

shown that the application of the method entails the same optimization problem found in other 

discrete mechanical systems previously investigated by the authors. While confirming the great 

generality of the method, this permits to take advantage of the results of other works to get the 

optimal temporal excitations. 

The results of the infinite dimensional analysis have then been compared with those obtained 

with the reduced (indeed, one d.o.f.) model. It has been shown that the latter is able to exactly detect 

the homoclinic bifurcations, although the full power of the H.M. theorem is required to take into 

account out of manifold perturbations, so that the application of the control method is exactly the 

same for both finite and infinite dimensional models. This permits to refer to other works for 
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numerical simulations aimed at checking the practical performances of the method. 

The second case of non-flat manifold has then been considered. The nonlinear normal modes 

theory has been used to detect the non planar manifold and the embedded homoclinic loops. The 

homoclinic bifurcation threshold has then be computed again by the H.M. theorem. It has been 

shown by a numerical example that for axial loads only slightly larger than the buckling load, the 

non planarity of the manifold, while theoretically important, is practically negligible. 

The control method has then been applied also to this case, showing how it is possible to choose 

the spatial shape of the excitation in such a way to have the same optimization problem of the flat 

manifold case (but the non planarity of the manifold does not disappear at all). Thus, the application 

of the control method proceeds exactly as in the previous case. 

The comparison with the reduced order model has also been performed. It has been shown that, 

because of the practical negligibility of the manifold non-flatness, the reduced order model 

practically gives the same results as the full model. This theoretically differs from the previous 

case, where the reduced order model gives exactly the correct results. 

Finally, some hints about the possible extension of the infinite dimensional approach to control 

of homoclinic bifurcation of systems with initial curvature have been given. 

As far as further developments are concerned, we can quote, among others, at least the 

following, which appear to be particularly worthy to improve the knowledge of the whole matter: 

1) detailed application of Berti & Carminati theorem to deal with, e.g., non-periodic excitations; 

2) physical experiments; 

3) more involved mechanical models of the beam; 

4) parametric excitations. 
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Appendix 
In this appendix some results used in the text are reported. 

Tables A1 and A2 have been obtained in [Lenci & Rega, 2003b, 2004a]. 

 
 
 
 
 

N NG  2h  3h  4h  5h  6h  7h  8h  9h  
2 1.4142 0.353553        
3 1.6180 0.552756 0.170789       
4 1.7321 0.673525 0.333274 0.096175      
5 1.8019 0.751654 0.462136 0.215156 0.059632     
6 1.8476 0.807624 0.567084 0.334898 0.153043 0.042422    
7 1.8794 0.842528 0.635867 0.422667 0.237873 0.103775 0.027323   
8 1.9000 0.872790 0.706011 0.527198 0.355109 0.205035 0.091669 0.024474  
9 1.9130 0.877014 0.705931 0.518632 0.341954 0.195616 0.091497 0.031316 0.005929 
… … … … … … … … … … 
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∞ 2 1 1 1 1 1 1 1 1 

Table A1. The numerical results of various optimization problems with increasing finite number 
of superharmonics in the case of one-side right control. 

 
 

N NG  3h  5h  7h  9h  11h  13h  15h  
3 1.1547 -0.166667       
5 1.2071 -0.232259 0.060987      
7 1.2310 -0.264943 0.100220 -0.028897     
9 1.2440 -0.284314 0.125257 -0.053460 0.016365    

11 1.2518 -0.296177 0.141769 -0.071125 0.031854 -0.009969   
13 1.2568 -0.304101 0.153247 -0.083936 0.044376 -0.020352 0.006420  
15 1.2597 -0.307322 0.156798 -0.087358 0.047836 -0.024047 0.010154 -0.002998 
… … … … … … … … … 
∞ 1.2732 -1/3 1/5 -1/7 1/9 -1/11 1/13 -1/15 

Table A2. The numerical results of various optimization problems with increasing finite number 
of superharmonics in the case of global control of symmetric systems. 

 

The normalized eigenfunctions of Sect. 6.1, depicted in Fig. 6, are analytically given by: 
 w1(z)=–0.011200sin(6.31091z)–0.80798cos(6.31091z)+0.17021sin(0.41526z)+0.80798cos(0.41526z); 

 w2(z)=0.72180sin(8.27104z)–1.10927cos(8.27104z)–1.12007sinh(5.33011z)+1.10927cosh(5.33011z); 

 w3(z)=0.88169sin(11.18713z)–1.06911cos(11.18713z)–1.06890sinh(9.22778z)+1.06911cosh(9.22778z); (A1) 
 w4(z)=0.93579sin(14.24669z)–1.04433cos(14.24669z)–1.04434sinh(12.76590z)+1.04433cosh(12.76590z); 

 w5(z)=0.95954sin(17.34999z)–1.03044cos(17.34999z)–1.03044sinh(16.15618z)+1.03044cosh(16.15618z); 



Acc
ep

te
d m

an
usc

rip
t 

 32

List of figure captions: 

 

Figure 1. Examples of b.c. belonging to the first family. a) hinged-hinged: w(0)=w′′(0)=0, 

w(1)=w′′(1)=0, b) guided-hinged: w′(0)=w′′′(0)+Γw′(0)=0, w(1)=w′′(1)=0. 

 

Figure 2. Examples of b.c. belonging to the second family. a) fixed-fixed: w(0)=w′(0)=0, w(1)= 

w′(1)=0, b) fixed-hinged: w(0)=w′(0)=0, w(1)=w′′(1)=0, c) fixed-free: w(0)=w′(0)=0, 

w′′(1)=w′′′(1)+Γw′(1)=0. 

 

Figure 3. A schematic picture of the dynamical system structure in the unperturbed case. The center 

manifold is perpendicular to Σ at the saddle. 

 

Figure 4. The curves )(,11 ωγ h
cr  and )(,

,11 ωγ lr
cr  for Gr,l=1.2732 (optimal global control with infinite 

superharmonics) and Gr,l=2 (optimal one-side control with infinite superharmonics) 

 

Figure 5. The functions F(z,t)/γ11sin(πz) for various values of the parameter p= )2/( 2πω −Γ  and 

for N=3. a) optimal one-side “right” excitation, i.e., (17)2. Note that in this case there are two 

controlling superharmonics added to the reference basic harmonic. b) optimal global excitation, i.e., 

(19)1. In this case there is only one added superharmonic. 

 

Figure 6. The first five normalized eigenfunctions w(z) of the fixed-fixed case for Γ=40. Continuous 

lines are odd eigenfunctions, and dashed lines are even eigenfunctions. 

 

Figure 7. The slave amplitudes y1(x) and y2(x) (up to the 7th order) for Γ=40, and a schematic section 

of a hypothetically bending exact manifold Σ. 

 

 


