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System with a Nonlinear Negative Self-excitation 
 
Půst Ladislav  
Institute of Thermomechanics,  Academy of Sciences of the CR, 182 00 Prague 8, Czech Republic 
 
Tondl Aleš 
Zborovská 41, 150 00 Prague 5, Czech Republic 
 
 
Abstract 
A two-mass system is analyzed consisting of a self-excited basic system, which is mounted on 
a foundation subsystem consisting of a mass on a spring. The self-excitation is expressed in 
differential equations by a nonlinear term of the second power. The efficiency of the self-
excited vibration suppressing of different positive damping components in both the 
subsystems is investigated by means of analytical and numerical solution. Phase plane 
trajectories gained by numerical solution show the distortion of pure harmonic forms of 
oscillations presumed in analytical solution. Ranges of system parameters in which the 
approximate bifurcation diagrams coincide with numerical results are ascertained. 
 
Key words: nonlinear self-excitation, basic and foundation subsystems, effect of different  
damping components 

 
1. Introduction 
 
The prevailing part of self-excited systems analyzed up to now in literature belongs to the 
class of systems where the source of self-excitation is characterized by the negative linear 
damping component. But a negative nonlinear damping component can also exist. Although 
there exist an enormous amount of literature dealing with systems excited by the action of the 
negative linear damping component, the analysis of negative nonlinear damping components 
does practically not exist. From the theoretical point of view these systems can be represented 
by a broad class of systems. 
 In most cases the self-excited vibration represents an undesirable phenomenon, particularly 
in rotor-dynamics (see e.g. [1]-[5]) and it is a question how to suppress this vibration. For 
example how to use the passive means (e.g. using a tuned absorber or a foundation mass 
subsystems) and which character of additional passive damping would be most efficient in 
these subsystems. In [6] it is shown that for systems were the source of self-excitation is due 
to the action of negative linear damping the above mentioned additional subsystems using 
linear positive damping can even fully suppress self-excited vibration when certain conditions 
are met. This is not the case when the basic self-excited system is governed by differential 
equations where the self-excitation is expressed by nonlinear terms. An example thereof is the 
mathematical model of a system excited by vortex shedding where the self-excitation is 
described by the nonlinear term of zero power (see [6], Chapter 12). For this system to add a 
subsystem of a tuned absorber or a foundation subsystem with linear damping does not lead to 
full suppressing the self-excited vibration of this kind (see also in [6]). 
 This presented analysis is a contribution to the case where the source of self-excitation is 
due to the negative nonlinear damping characterized by the term of second power (see also 
[12]). As a means of vibration suppression a foundation subsystem is considered.  
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      This model represents a more intensive self-excitation than that expressed by the negative 
linear damping. It will be shown the existence possibility of more steady state solutions of the 
differential equations of motion. 
 
2. Differential equations of motion 
 
 Let us consider a one-mass system which is self-excited by a nonlinear negative damping 
component expressed by the product of the absolute value of the mass deflection and its 
velocity ( )11 yy . Besides the negative nonlinear damping a positive progressive damping 
component is acting expressed by the product of the square of the mass deflection and 
velocity. 
Both the above-mentioned damping components are proportional to the square of the flow 
velocity U. Also a positive linear viscous component of the mass m1 motion is considered in 

order to get a more general idea on the effect of different damping 
components. This basic system characterized by mass m1 on the 
spring having stiffness k1 is attached to the foundation subsystem 
characterized by mass m2 suspended on a spring having stiffness 
k2, (see Fig. 1). The foundation mass motion is damped by two 
positive damping components – viscous linear and nonlinear 
characterized by the product of the absolute value of the 
deflection 2y and its velocity 2y . The system is governed by the 
following equations: 
 
Fig. 1 
 

 
  ( ) ( ) ,01

2
11

2
1121111 =−−+−+ yydybUybyykym            (2.1) 

 
  ( ) 0220222221122 =+++−− yybybykyykym . 
 
Denoting 11

2
1 / mk=ω  and using time transformation τω =t1  and relative deflections 

jj uyy =0/     (j= 1,2) equations (2.1) can be transformed into the dimensionless form 
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Let us start with the analysis of the basic system which is governed by the following 

equations: 
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  ( ) 01

2
11

2
1111 =′−−′++′′ uuuVuuu δβκ .               (2.3) 

 
Seeking the solution in the form 
 
  τΩ= cos1 Au                         (2.4) 
 
and using the method of harmonic balance the following algebraic equations are obtained: 
 
  ( ) 01 2 =Ω−A , 
 

  0
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1
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⎣

⎡
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⎠
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⎛
−− AAA

π
V δβκ .               (2.5) 

 
From the first one it follows that 1=Ω ; then the second equation gets the form 
 

  044 2
12 =+−

V
AA

δ
κ

δ
β  

where 

  ββ
π3
4

= .                         (2.6) 

 
For 01 =κ  

  
δ
β4=A             (2.7) 

 
 
is obtained, i.e. amplitude A is independent on V. Fig. 2 
shows amplitude A in dependence on V for two 

alternatives (a)  04.01 === κδβ .  ;  (b) δβ = , 
02.01 =κ . 

 For alternative (a) the curve has two branches: with 
higher values of A (solid line) and lower values of A 
(dash line) corresponding to stable and unstable 
respectively to which stable and unstable limit cycles in 
the phase plane ( )11 , uu ′  correspond. 
Let us go back to the system with 2 DOF. Supposing 

                          Fig. 2                 that all the damping coefficients are small system (2.2) 
can be transformed into the quasi-normal form using transformation 

            211 xxu +=  ,  22112 xaxau +=        (2.8) 
 
where 

  2
1

21 Ω−+
=

Mq
Ma  , 2

2
22 Ω−+

=
Mq
Ma                 
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and 1Ω , 2Ω  are the roots of the characteristic equation of the abbreviated system. The 
following relations are valid for a1 , a2 : 
 
  a1 > 0 ,  a2 < 0.                      (2.9) 
 
In this way the differential equations in the quasi-normal form read: 
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 Now we shall seek the single-frequency vibration with the first and second vibration 
modes. The steady state vibration with the first mode can be approximated in the form: 
 
  τcos11 Xx =  ,  02 =x .                  (2.11) 
 
Using the harmonic balance method the following algebraic equations are obtained: 
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From the first equation it follows:  
 
  1Ω=Ω  
 
and from the second one equation  01 =X  or 
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From this amplitude X1 as a function of V can be obtained or, from the inversion function  
V (X1) using equation 
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For the alternative 021 == κκ  amplitude X1 can be determined from the equation 
 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= 2

2

2
1

1 4
Va

aX
δ
ϑ

δ
β  .                   (2.15) 

 
Considering that 02 <a  we can see that X1 has sense when 1cVV >  where Vc1 is the critical 
value of the relative flow velocity (for the first vibration mode) given by the equation:  
 

  
β
ϑ

2

2
12

1c a
aV −=  .                      (2.16) 

 
Using similar approach for the second vibration mode and applying the approximation 
 
  01 =x  ,      τΩ= cos22 Xx                   (2.17) 
 
the following equations are obtained: 
  2Ω=Ω  ,                        (2.18) 
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Again amplitude X2 as a function of V can be determined either from the quadratic equation 
for X2 or from the inversion function ( )2XV  that can be determined using equation: 
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 For the alternative of zero value of the coefficients of linear positive damping coefficients, 
i.g. for 021 == κκ , the following relations are valid: 
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2 4
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δ
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1

2
22

c2 a
aV

β
ϑ

=  .                       (2.21a) 

 
 In case when 021 == κκ  the mentioned critical values Vc1 , Vc2 mean that for 1cVV >  self-
excited vibration with the first vibration mode occurs and the equilibrium position is unstable 
to this vibration mode. A similar situation is when c2VV >  . For c21c VV <  the equilibrium 
position is absolutely stable for 1cVV < . When V exceeds the both critical values then three 
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different vibrations can exist: two single-frequency vibrations and one two-frequency 
vibration. There can exist three domains of attracting leading to different types of vibration. 
This problem is not treated in this contribution. 
 For illustration the dependence of X1 , X2 on V is shown in Fig. 3 the case 5.02 == Mq  
and for three alternatives of damping coefficients: 
 
    /a/  04.022 21 ==== κκδβ ,   0=ϑ ; 
 
    /b/  04.0=== ϑδβ ,   021 == κκ ;              (2.22) 
 
    /c/  04.022 21 ===== κκϑδβ ; 

 
 
 
because for 5.02 == Mq  21 aa =  
the dependences ( )VX1 , ( )VX 2  
are identical. The parts where the 
corresponding solutions are 
unstable are marked by dash lines. 
For alternatives /a/ and /c/ the 
trivial solution is stable in the 
whole range of V; for alternative /b/ 
only for cVV < .  For alternatives 
(a) and (c) the equilibrium position 
corresponding to trivial solutions of 

       Fig. 3                                            differential equations of motion is 
stable because the corresponding equations for small disturbances are linear with positive 
damping. 
 In case when either 01 ≠κ , or 02 ≠κ  or even both the coefficients 1κ , 2κ   differ from 
zero value then the trivial solution (i.e. equilibrium position) is stable but not absolutely stable 
in the whole range of V values. From a certain value of V up to the higher values there exist 
locally oscillatory solutions besides the locally stable equilibrium position. Let us denote this 
value of V as V1min or V2min according to whether it corresponds to the oscillatory solution with 
lower or higher vibration mode. These values can be determined from the equations for 
determining amplitudes X or X resp. from the condition that the roots of the equation 
expressing X1 or X2 merge into one. This can be symbolically expressed by equation: 
 
  ( ) ( ) 00

2
1

22
2 =+− QXVQXVQ jj    ( )2,1=j           (2.23) 

 
and which is a biquadrate equation for V where Q2 , Q1 are the functions of 2V . Then the 
above mentioned condition reads: 
 
  ( )[ ] ( ) 04 0

2
2

22
1 =− QVQVQ                  (2.24) 

 
The minimum value of V determines Vjmin    ( )2,1=j . 
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For  V1min :  ( ) 22
2 4

VVQ δ
= ,   ( ) ⎟⎟
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2
122

1 a
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2

1
10 κκ
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For  V2min :  ( ) 2
2 4

VVQ δ
= ,   ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+= ϑβ

1

2222
1 a

aa
VVQ ,   2

1

2
10 κκ

a
aQ −= . 

 
 For further illustration diagrams of ( )VX1 , ( )VX 2  are shown in Figs. 4 and 5 both for 

021 == κκ  and === ϑδβ 0.04. The alternative for 12 == qM  is shown in Fig. 4 and the  

     
      Fig. 4                 Fig.  5 
 
alternative for 5=M , 1=q  in Fig. 5. In the latter alternative only ( )VX1  is presented 
because Vc2 = 6.334 is higher then 6. We can see that for higher values of M the initiation of 
self-excited vibration when the higher mode is really shifted to higher values of the relative 
flow velocity V.  
     Vc and Vmin values determine the coordinates of V for bifurcation points of different kind. 
These bifurcations corresponding to Vc coordinates are similar to Hopf bifurcation and these 
corresponding to Vmin are similar to saddle-node bifurcation. For the alternatives when 
V>Vmin there exist locally stable trivial solution and also one or two oscillatory solutions 
corresponding to the first or second vibration mode or even oscillatory solution with both 
vibration modes. To determine the domains of attraction corresponding to different steady 
state solutions would need special methods. 
 
3. Numerical solution 
 
The equations (2.2) contain eight different coefficients κ1, V,  β, δ, q, M, κ2, ϑ  which affect 
the dynamic behavior of the whole 2 DOF systems. The general qualitative analysis of the 
system properties carried out in the previous chapter was orientated on the analytical 
approximate solution. In this chapter, the numerical solution of the basic equations (2. 2) is 
presented using the set program in Turbo Pascal elaborated together with F. Peterka ([7]-[10]) 
and using Runge-Kutta integration algorithm. The influence of individual parameters are 
studied quantitatively. The following figures plot the maximum displacements u1max and u2max 
versus dimensionless flow velocity V=U/U0 for very slowly increasing or decreasing velocity 
in the range V∈(1, 6). The velocity change near critical point was lower than 1.10-6V/ period, 
so that the records are quasi-stationary. 
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 Records of bifurcation diagrams are completed by records of time history and of phase 
plane trajectories ( ) ( )ττ 11 , uu ′  and ( ) ( )ττ 22 , uu ′  for selected values of dimensionless flow 
velocity V. These diagrams show the real course of the motion and serve as a verification of 
correctness of assumption of harmonic form of oscillations. 
 There exists only trivial solution (u1max= 0, u2max= 0) when increasing velocity V. This 
trivial solution is stable if at least one of 1κ  or 2κ  is positive. In the critical case, when 

021 ==κκ , the stability of the solution depends according to Ljapunov [11] on the nonlinear 
function and can be either stable (e.g. for large ϑ ) or unstable (for small ϑ ). Nontrivial 
oscillations can be initiated only at high initial conditions and at higher V. Therefore the 
records of nontrivial solutions are realized at decreasing velocities V and at initial conditions 

6≅V , 3)0(1 =u , 3)0(2 =u , 1)0(1 =′u , 1)0(2 =′u . For the prescribed system parameters, the 
solution with all other initial values sufficiently near to the mentioned ones pass over to  the 
same stationary motion. 
     As an example of influence of damping parameter 1κ  are the bifurcation diagrams in Fig. 
6. The first curve 01 =κ  and 02 =κ  corresponds to the critical case b) in (Fig. 3). The other 
parameters are: 04.0=== ϑδβ , 0.9425/4π34/π3 ==== ϑϑββ , 5.02 == Mq . 
 

  
     Fig.  6                Fig.  7 
 
 The upper half of Fig. 6 shows the bifurcation diagram Vu ,max2 , the bottom half those for 

Vu ,max1 , where the dimensionless velocity parameter V∈(0, 6). The other curves in Fig. 6 
describe the curves Vu ,max2  and Vu ,max1  for increasing damping parameter 1κ , step 0.1. Step 
0.1 is dimensionless, as the damping parameter is also dimensionless (see eq. 2.2). 
 The vertical lines indicate the jumps to zero values 021 == uu  (trivial solution) at crit.VV = . 
The bifurcations points where these jumps downwards begin are always near to the value 

2max1 =u , 4.1max2 =u . The ratio /max2u 7.0max1 =u  is typical for first mode of oscillations but 
it changes with higher velocity V. 
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 In order to ascertain the real property of the system described by e.g. (2.2), the phase plane 
trajectories for different velocities V=1; 2; 3; 4; 5 and 6 are recorded in Fig. 7. Ellipse forms 
corresponding to nearly harmonic motion (e.g. 2.4) exist only for V= 1 and 2, the distortion of 
curves for greater V indicates the presence of higher harmonic components.  
 This distortion, which can be explained by the strong nonlinear absolute values in (2.2), is 
clearly shown in time history of motion ( )τ1u  and ( )τ2u  in Fig. 8 at V= 6 and particularly in 
velocities records ( )τ1u′  and ( )τ2u′  (second and fourth lines). In spite of the very marked 
peaks in the course of velocity u1’, the motion is continuous without any non-smooth 
phenomena, as seen from the zoom Fig. 9. It is caused by the continuous functions on the 
right sides of eq. (2,2), which are only weakly non-smooth due to multiplication of absolute 
values by smooth functions u1’ and u2’.  
 

        
       Fig. 8                Fig. 9 
 

   
 Figures 6 -9 show that the assumption of 
harmonic solution (2.4) is quite convenient for 
small overcritical velocities near bifurcation 
point. The influence of break in absolute value is 
amplified by the large coefficients at nonlinear 
terms in eq. (2.2). In comparison to the 
coefficient 1 and 1κ  in linear part at 11 and uu ′ , 
the negative damping coefficient β2V  grows 
quadratically with velocity V and at V= 6 reaches 
for given example the value 3.39, indicating that 
the motion at these velocities is near to the 
relaxation oscillations. However, the range of V 
for roughly harmonic oscillations increases with  

Fig. 10                           lowering the parameters ϑδβ and,  of nonlinear 
terms. 

 Let us have a look now on the solution in quasi-normal form after transformation (2.8). 
Plots of maximal amplitudes max1x  and max2x  versus velocity V are shown in Fig. 10. It can be 
seen that for the low velocity range V∈(Vcrit, 2) the system oscillates mostly in the first mode, 
but for higher V the second mode component increases and reaches 46% of the first mode 
component at V= 6. Unlike the plot max1x ,V, the plot max1x ,V contains three curves indicating 
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that the motion ( )τ2x  has three different maximum values. This property can be seen also 
from the upper half of Fig. 11, where the phase plane trajectory ( )τ2x , ( )τ2x′  at V= 6 has 
three loops. The corresponding curves ( )τ2x , ( )τ2x′  at V= 6 (bottom of Fig. 11) have  
 

   
      Fig. 11              Fig.  12 
 
very complicated forms, too. Harmonic oscillations and separation of modes can be therefore 
supposed only for small overcritical velocities ( )2,critVV ∈ . Examples of time history records 

( )τ1x ,…, ( )τ2x′  in Fig. 12 present the system oscillations at V= 6. The peaks in velocity 
curves ( )τ1x′  and ( )τ2x′  arise in the times when x1= 0, that is when the breaks of absolute 
value of x1 occur. It is evident that the great distortion of motions x1 and x2 is caused both by 
the absolute value function and by the high values of coefficients at nonlinear terms. 
 The calculations of system oscillations for other values of parameters q,,,,, 21 ϑδβκκ  
and M give qualitatively the same results. 

 
 
 
 Let us present only one example with the 
higher values of mass ratio 5/ 21 == mmM  and 
frequency ratio ( ) 1/ 2

122
2 == ωmkq  (see also 

Fig. 5). The modal bifurcation diagrams Vx ,max1  
and Vx ,max2  in Fig. 13 are qualitatively similar 
to those of Fig. 10. The higher components in 

Vx ,max2  are suppressed, but some new harmonic 
components occur in Vx ,max1 . 
 
 

      Fig. 13 
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Conclusion 
 

      The new model of a self-excited 2DOF system with nonlinear excitation was solved 
analytically by the first approximation method (under the assumption of single-frequency 
vibration) and numerically by the direct solution of differential equations. 
     The comparison of both results enables to ascertain ranges of parameter values in 
which the single-frequency vibration with the first vibration mode occurs and the first 
approximation gives sufficient exact results and the motion is near to the harmonic one. 
This is valid for smaller values of flow velocity V. For higher values of flow velocity far 
from the critical one, the vibration with both mode components as well as with higher 
harmonics are initiated.  
      The main distortion of roughly harmonic course of oscillation is caused by the 
nonlinear non-smooth functions 11 yy  or 22 yy , particularly at higher coefficients at 
nonlinear terms. 
     The analysis results show that for systems with nonlinear self-excitation several steady 
state solutions can exist. The stable equilibrium position need not mean that the system is 
safe for self-excited vibration. Some disturbances can lead to violent vibration. This 
means that the stability investigations where in the model all forces are expressed only by 
linear terms does not always guarantee the save run of the machine or device. 
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Fig. 1  Scheme of the system 
Fig. 2 Vibration amplitude A of the basic system in dependence on the relative flow 

velocity V for κ1= 0.02 and 0.04 
Fig. 3 Vibration amplitudes X1, X2 in dependence on flow velocity V for the following 

parameter values: 5.02 == qM , and for three alternative of damping coefficients: 
  (a)  04.022 21 ==== κκδβ ,   0=ϑ ; 
  (b)  04.0=== ϑδβ ,   021 == κκ ; 
  (c)  04.022 21 ===== κκϑδβ ; 
Fig. 4 Diagrams of ( )VX1 , ( )VX 2  for 1== qM  and 021 == κκ , 04.0=== ϑδβ  
Fig. 5 Diagram of ( )VX1  for M= 5, q=1 and the same damping coefficients as in Fig. 4. 
Fig. 6  Influence of damping parameter κ1 on bifurcation diagrams Vu ,max1 and Vu ,max2  
Fig. 7  Phase plane trajectories  u2 , 2u′  and  u1, 1u′  for different velocities V 
Fig. 8  Time history of motion ( )τ1u , ( )τ1u′ , ( )τ2u , ( )τ2u′  for flow velocity V= 6 
Fig. 9 Zoom diagram ( )τ1u , ( )τ1u′  
Fig. 10 Bifurcation diagram of quasi-normal forms  x2max ,V  and  x1max ,V for critical case 

0,0 21 == κκ  
Fig. 11 Phase plane trajectories of quasi-normal solution  x2 , 2x′  and  x1, 1x′  for different 

velocities V 
Fig. 12 Time history of quasi-normal oscillations, ( )τ1x , ( )τ1x′ , ( )τ2x , ( )τ2x′  for flow 

velocity V= 6 
Fig. 13 Bifurcation diagram of quasi-normal forms  x2max ,V  and  x1max ,V for critical case 

0,0 21 == κκ  and for q2 = 1,  M = 5 
 


