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Abstract

The paper summarizes the knowledge acquired from the analytical studies and the experimental imple-

mentation of a longitudinal noncollocated control strategy for the reduction of cable oscillations. The

control is introduced by imposing a longitudinal action at one support based on the knowledge of trans-

verse displacements and velocities of a few selected points. A spatially one-dimensional continuous model

of a suspended cable has been used to describe the main features of the noncollocated longitudinal active

control strategy. A discrete modal representation has permitted the introduction of suitable nonlinear

state-feedback controllers. The results have been used to derive an implementable strategy, based on

direct output feedback, which preserves the main previous control features. A physical model of an ac-

tively controlled cable has been used to demonstrate the control effectiveness of the proposed strategy

through a large campaign of experiments, conducted in various frequency ranges and amplitude levels

including meaningful external resonance conditions. The responses predicted by the analytical model and

the experimental results show good qualitative agreement with one another, in both the uncontrolled and

controlled experienced cable dynamics.

Key words: Active Control, Nonlinear Dynamics, Cables, Experimental Dynamics
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1 Introduction

The active control of cable oscillations presents a challenging research problem due to its twofold tech-

nical and theoretical nature involving control and nonlinear dynamics. The problem is a worthwhile

challenge because practically implementable control techniques to suppress cable vibrations will enhance

cable structural efficiency, preventing degradation and fatigue damage, and will increase serviceability

performance. Yet, the variety of nonlinear phenomena that cables present, along with the complexity of

their mathematical models [1], introduces appreciable novelty to the control problem.

Research on cable dynamics is primarily motivated by recurrent vibration phenomena experienced

in different engineering applications involving these important structural elements. Different methods

have been proposed to reduce such vibrations. Passive dampers acting in the transverse direction are

devices most commonly utilized and they have recently been enhanced through the use of semi-active

technology [2]. However, the location of these dampers, generally close to the cable support, limits the

maximum achievable modal damping, especially in long cables [3]. A recent alternative approach is

the use of an active control scheme utilizing either a transverse [4, 5] or a longitudinal [6, 7] boundary

motion. In the first case, a collocated control configuration is proposed with an imposed out-of-plane

movement of the support based on position, velocity and angle measure [4]. The stability properties of

the controlled system furnish the basis for an adaptive strategy to control out-of-plane cable oscillations

[5]. In the second case, a longitudinal action at the support is used to reduce transverse vibrations,

taking advantage of the fact that longitudinal motion is coupled with transverse motion in the range

of small amplitude vibrations, as well. Both noncollocated and collocated control configurations have

been considered. In the case of the noncollocated control configuration, the longitudinal action relies

on the measured transverse displacements and velocities of some monitored points; in the collocated

configuration, it relies only on physical quantities in the longitudinal direction at the support. Different

effects evidenced due to the longitudinal action [6, 7] are known as active stiffness control, when associated

with cable stretching, and active sag induced force control, when associated with the initial curvature of

the cable. The aim of the collocated configuration is to prevent spillover instability, but it has primarily

been used to reduce in-plane oscillations [8]. Noncollocated control strategies have also been considered in

slack [9] and shallow [10] cables. A previous study by one of the authors has shown that the longitudinal

active control scheme requires a careful analysis because geometric nonlinearities coupled with control

feedback may introduce non-dissipative terms, producing some undesirable effects [9]. Thus, the state-

feedback in a polynomial form was analyzed looking separately at the effects of the different terms. In
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particular, it has been shown that linear and quadratic velocity terms can be effective in reducing in-plane

oscillations, while quadratic terms have to be used for the out-of-plane components. Another possibility

is a feedback linearization of the system, which offers advantages and disadvantages, as shown in [11].

In the cited work, local and global analysis of the controllability of the nonlinear discrete system of the

cable have been developed. Hence, a state-feedback cancelation of the nonlinear terms describing the

cable elongation is presented, showing the possibility of obtaining a simpler controlled dynamical system

represented in a bilinear form, which assures global asymptotic stabilization of free oscillations in the

cable. Finally, in order to evaluate control spillover effects inherent to the proposed noncollocated scheme

an enlarged 8-dofs model is considered. This model numerically evidences the absence of instabilities in

the experienced control region.

The present paper demonstrates of the ability of multimodal longitudinal active control to reduce

nonlinear cable oscillations. Results previously obtained both theoretically and numerically [7, 9, 11]

are here extended by deeply considering the contribution of the anti-symmetric modes to the cable

dynamics, which contribution is strongly evidenced in the novel experimental validation of the studied

control strategies. In this respect, an implementable noncollocated control law based on direct-output

feedback is presented showing that this approach preserves all the previous features of the developed

control algorithms. Then, different refined reduced discrete models, with an increasing number of modes

accounted in the description of the relevant cable dynamics, has been used to evaluate numerically the

performance of the selected control laws. These analyses have been driven by the dynamics experienced

in the laboratory tests. Indeed, despite the nominal absence of internal resonance for the selected cable,

the experienced dynamics have shown, under in-plane harmonically-forced oscillations, a rich and evident

modal coupling between the first two in-plane and two out-of-plane modes, respectively. The main modal

interaction phenomena have been described constructing the frequency response curves, namely frcs to

in-plane symmetric harmonic load, for discrete cable models containing an increasing number of modal

components. The numerical findings have been confirmed by experimental results showing that in a wide

experienced frequency range of the symmetric harmonic force, selected around the first symmetric modes,

a rich modal interaction involving mainly the first four modes can be found even in the absence of internal

resonance conditions. These modal components are opportunely captured in the experiments by means

of two biaxial follower cameras positioned in two points at �/4 and 3/4�. The control strategy has been

based on a single longitudinal action driven by the direct-output nonlinear feedback. On the basis of the

measured four transverse components, the strategy has shown control capability in the entire experienced
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frequency range, overcoming all the encountered motions from the classical symmetric in-plane type to

more complicated spatial motion with both symmetric and anti-symmetric components.

2 Analytical model and control strategy

The static equilibrium configuration of a cable suspended between two fixed horizontal supports can be

described by a curve that lies in the vertical plane (Oxy in Fig. 1). By referring to taut and shallow

cables (i.e. d/� ≤ 1/8, where d is the cable sag and � is the distance between the two supports), the

configuration under self-weight can be described by a parabolic function, y(x) = 4d
[
x/�− (x/�)2

]
, with

constant horizontal tension H, assumed to describe the initial tension N0, (N0(s) � H).

The evaluation of the static reference configuration C0 described by the parabolic function y(x), permits

the derivation of the dynamic varied configuration C1 through the displacement components u(x, t),

v(x, t) and w(x, t) along the co-ordinate axes x,y and z, respectively.

Following [12], the Lagrangian measure of strain is assumed:

e(x, t) = u′ + y′v′ +
1
2

(
v′2 +w′2) (1)

the equations of motion of the system are obtained through the extended Hamilton’s principle,

mü+ μuu̇− [EAe]′ = 0

mv̈ + μv v̇ − [Hv′ + EA (y′ + v′) e]′ = 0

mẅ + μwẇ − [Hw′ + EAw′e]′ = 0 (2)

where E is the modulus of elasticity, A is the area of the cross section, m, μu, μv and μw are the mass

and damping coefficients of the cable for unit length; a dot and a prime indicate derivatives with respect

to time t and the abscissa x, respectively. The assumption has been introduced that the gradient of

the horizontal component of the dynamic displacement is smaller than the gradient of the transversal

components (u′ � v′, w′), and y′ � 1, H/EA� 1, and the problem is completed by boundary conditions

in 0, � which take into account both the control action uc and the vertical synchronous support motion vg

producing the in-plane excitation. In particular, a longitudinal displacement uc(t) of one support (x = �)

is imposed as a control action, assuming that uc/� � 1 for all t. With this type of control and external

excitation the differential equation of motion (2) is not changed, while the following boundary conditions
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hold:

u(0, t) = 0, u(l, t) = uc(t)

v(0, t) = vg(t), v(l, t) = vg(t)

w(0, t) = 0, w(l, t) = 0 (3)

Under the previous assumptions regarding the cable geometry and taking a slow dependence on time of

uc(t) with respect to the longitudinal frequencies, u(x, t) can be eliminated by a standard condensation

procedure leading to a definition of a constant elongation ē as

ē(t) =

[
uc/� + 1/�

∫ �

0

(
y′v′ +

v′2 + w′2

2

)
dx

]
(4)

Hence, the two integral-differential equations of motion in the transverse displacements are obtained:

mv̈ + μ̃v v̇ − [Hv′ + EA (y′ + v′) ē]′ = 0

mẅ + μ̃wẇ − [Hw′ + EAw′ē]′ = 0 (5)

Besides the well known quadratic and cubic interaction terms of an uncontrolled cable, Eqs.(5) show that

the imposed longitudinal control motion, uc, enters as a parametric action in the out-of-plane motion

and contemporary with parametric and external actions in the in-plane motion. On the basis of the

longitudinal dynamic strain measure, the reaction at the support can ideally be decomposed into three

different terms: N (t) = H + EAē(t) = H + Nc + Nd namely the static reaction H, the control force Nc

and the dynamic reaction Nd.

2.1 Discretized model

A non-dimensional form of the equations is obtained by normalizing the variables with respect to the

cable length and the first in-plane frequency ω1v of the cable, as reported in Appendix; however, in the

following, when there is no risk of confusion, the tilde will be omitted and a dot will indicate derivative

with respect to τ . In order to describe the non-linear oscillations of the system forced by the imposed

in-plane support motion and controlled by longitudinal action, the different contributions to the in-plane

displacements in the Hamiltonian functional have been distinguished

v(x, t) = vr(x, t) + vg(t) (6)
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where subscript r and g respectively denote the relative vertical displacement and the rigid uniform

translation induced by vertical support motion. The vertical relative displacement component and the

absolute horizontal component are described by the expansion

vr(x, t) =
nv∑
i=1

ϕi(x)qiv(τ ) , w(x, t) =
nw∑
i=1

ψi(x)qiw(τ ) (7)

where ϕi and ψi are the eigenfunctions of the linearized equations of motion (5) with the ωiv and ωiw

frequencies in a ratio that depends on the non-dimensional Irvine parameter; the use of the Galerkin

method leads to the following expanded expression for the constant elongation

ē(t) =
nv∑
j=1

b1jqjv +
nv∑

i=1,j=1

b2ijqivqjv +
nw∑
i=1

b3iq
2
iw + uc = φ(qi, qj) + uc (8)

Thus, the following nonlinear ordinary differential equations describe the motion:

q̈iv + ζijvq̇iv +
nv∑

j=1

a0ijqjv + (a1i +
nv∑

j=1

a2jqjv)ē = piv̈g

q̈iw + ζijw q̇iw + ω2
iwqiw + a3iqiwē = 0 (9)

where the in-plane cable frequency is obtained as ω2
iv = (a0ii + a1ib1i) while ωiw is the out-of-plane

frequency; the linear off-diagonal terms (a0ij + a1ib1j) = 0 due to eigenfunction orthogonality. The

expression of non-linear coefficients a0ij, a1i, a2j, a3i, b1j, b2ij, b3i, together with the modal damping

coefficients ζijv, ζijw and the modal participation factor pi are reported in the Appendix.

In the following nonlinear analysis, the displacement function has been described by a four-mode

expansion, involving the first two in-plane and out-of-plane modes. The analysis conducted on the effects

of a full-state feedback will be useful to provide a more realistic output feedback control directly related

to the output measured quantities.

2.2 Control strategy

- Linear and nonlinear velocity state feedback

A combination of both measured response components is considered in order to realize an effective

feedback control in both in-plane and out-of-plane oscillations. On the basis of results obtained by

different polynomial laws, [9], a control law has been selected which includes a linear and quadratic

enhanced velocity feedback control in the in-plane component and quadratic enhanced control in the

out-of-plane component (LQC):

uLQC(t) =
nv∑
i=1

αvliq̇iv +
nv∑
i=1

αvqiqivq̇iv +
nw∑
i=1

αwqiqiwq̇iw (10)
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where αvli, αvqi and αwqi are positive gain coefficients. However we will often refer in the following to

the simple (LC), (LQCin), (LQCout) feedbacks, such as:

uLC(t) = αvlq̇1v; uLQCin(t) = αvlq̇1v + αvqq2vq̇2v; uLQCout(t) = αvlq̇1v + αwqq1wq̇1w (11)

- State feedback bilinearization

Looking at the structure of the equation of motion (9), a control strategy may be developed by observing

that the system can be transformed into a bilinear form by a particular choice of the control feedback.

Introducing the control law (BL)

uBL(t) = −φ(qiv, qiw) + ūc (12)

the feedback cancelation of the scalar function ē representing the elongation may be obtained, leading to

a bilinear dynamical system controlled only by the second added term, ūc, in the equation (12):

q̈iv + μiv q̇iv +
nv∑
j=1

a0ijqjv + (a1i +
nv∑
j=1

a2jqjv)ūc = piv

q̈iw + μiw q̇iw + ω2
iwqiw + a3kqiwūc = 0 (13)

The feedback bilinearization, resulting in equation (13), permits the design of the control term, ūc, such

that the static equilibrium configuration is globally stable; following the work [13] a suitable expression

for ūc can be given, similar to equation (10).

- Linear and nonlinear direct output-feedback

The analytical results obtained through the use of state-feedback control laws, such as asymptotic

stability and optimal selection of the control gains in the case of the high-dimensional state model, are

not implementable in an experimental control system where amplitude is not measurable. However, the

previous results can be used to propose an enhanced direct output feedback (EDO), for which performance

similar to that obtained by the state-feedback controller is expected in the explored range of dynamics. In

particular, we have selected a measurable output of the system that can give a good, direct approximation

of the four fundamental modal amplitudes primarily involved in the cable dynamics. Considering two

symmetric points with respect to the midspan, e.g. at x = �1 = 1
4
� and x = �2 = 3

4
�, and measuring

the four transversal components {v (�1, t), w (�1, t), v (�2, t), w (�2, t)}, the following system output can be
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defined as a function of the system state described by the modal amplitudes qiv and qiw, as

η(qiv, qiw) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η1v

η2v

η1w

η2w

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=
1
2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v (�1, t) + v (�2, t)

v (�1, t) − v (�2, t)

w (�1, t) + w (�2, t)

w (�1, t) −w (�2, t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q1v

q2v

q1w

q2w

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+ o(q3v, ....; q3w, ....) (14)

The above defined output vector can easily be differentiated with respect to time through a digital

implementable procedure furnishing the derivative in time vector η̇. On the basis of the availability of all

components of the two vectors η and η̇ , the following enhanced direct output control law (EDO) may

be introduced,

uEDO(t) = αvlη1v + αvq η2vη̇2v + αwqs η1wη̇1w + αwqa η2wη̇2w (15)

The control law here presented has been implemented in the experimental set-up to obtain a multimodal

active control of the transverse cable oscillation. However, in a first step of the analysis, only the two

transversal components {v(�m, t);w(�m, t)} have been measured, at the cable midspan (x = �m = �/2);

assuming as output the quantities,

η̃(qiv, qiw) =

⎧⎨
⎩ η̃1v

η̃1w

⎫⎬
⎭ =

⎧⎨
⎩ v(�m , t)

w(�m, t)

⎫⎬
⎭ �

⎧⎨
⎩ q1v

q1w

⎫⎬
⎭ + o(q3v, ....; q3w, ....) (16)

within the presented framework the EDOm control has been implemented

uEDOm(t) = αvl
˙̃η1v,+αwqη̃1w

˙̃η1w (17)

3 Experimental model

Based on the analytical prediction, a physical model of an actively controlled cable was designed and

constructed at the Dynamics and Control Lab at DISAT University of L’Aquila. A general description of

the experimental setup can be found in Fig. 2. The experimental setup for active control of light cable

models was built in order to furnish both the external excitation and the control force independently

(see Fig. 2a). In this respect, a rigid plexiglass frame was designed and constructed to locate a control

actuator able to impose a longitudinal force/displacement at one end of the suspended cable (see Fig.

2b). In order to provide smooth and continuous actions with little time delay and a high degree of

dynamic efficiency in the expected frequency range of control activity, a piezoelectric actuator has been
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used (Physik Instrumente, length 151 mm, open loop travel 140 μm, max voltage 1000 V , max force

generation 9200 N , push/pull force capacity 4500/500 N , stiffness 66 N /m).

Moreover, the rigid frame was mounted upon an electro-dynamical shaker (Gearing & Watson V20B/PA100

(sinusoidal force peak 100N ; maximum acceleration peak 588 m/s2 ; frequency range 0-14000 Hz ) fur-

nishing an imposed synchronous vertical excitation at the cable supports.

In the setup studied, the cable was built with a thin nylon wire carrying seven concentrated masses

(steel balls with a diameter of 12 mm and a total added weight wb = 479N ). The masses were added

in order to reproduce the dynamic characteristic of a selected investigated cable. The cable has a length

� = 500mm and a diameter of the cross section φ = 0.24 mm; under self-weight with the steel masses it

was measured to have a sag d at the midspan, with d = 19mm. A wire with the same characteristics was

statically tested in order to measure the initial elastic extensional modulus, which has an average value of

E = 5567 N /mm2 . The measured quantities permit, firstly, evaluation of the horizontal static component

at the support, H = 1.57 N , and, secondly, the relevant nondimensional parameter μ = EA/H = 210.30,

ν = d/� = 0.038. Consequently, the characteristic Irvine’s parameter is evaluated as λ2 = 19.43, which

collocates the cable before the first crossover, classifying it as small − sag (parabolic) cable.

The investigated classes of cable motion and the relative control performance primarily regard vertical

symmetric forced oscillations. During the dynamic experiment the cable response has been acquired by

targeting the positions of cable mid-point and lower quarter-point with an optical follower camera through

analogic signal (1 Optron 5000 Hz , 2 Hamamatsu). The camera furnishes two independent signals related

to vertical and horizontal components of motion that can be related either to displacements or velocities.

The signals were acquired through a dSPACE 1103 PPC Controller Board. This card has 36 A/D

channels usable for signal acquisition of analogic and transformation to digital data and 8 D/A channels

to provide control signals to different actuators. The control loop, including I/O (ADC and DAC), can

be executed with a sample rate of 300 kHz . The control loop in MATLAB/Simulink has an execution

time of 1.2 μs. The dSPACE board was programmed by MATLAB and Simulink for acquisition, data

visualization and control activities. In the identification and control experiments the camera signals were

sampled at different time intervals (0.001≤ Δt ≤ 0.005) depending on the total acquired time interval in

the experiment.

In order to identify the natural frequencies of the physical model, while avoiding misleading effects

due to the non-linear system behavior, a specific test was performed exciting the model with imposed

low-level vertical random motion with white Gaussian spectral properties, such that only small oscillation
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amplitudes were induced.

From this data, the natural frequencies and the modal damping were clearly obtained, as reported in

Table 1. The damping ratio values are in the expected range based on similar experiments [14, 15]

4 Predicted control effectiveness by analytical model

The dynamical behavior of suspended cables and the effectiveness of the proposed control strategy has

been evaluated through the previosly presented analytical model. The model has been used to define

the main features of the controlled cable nonlinear dynamics under in-plane harmonic force. The system

response has been described through an extensive investigation conducted by means the pseudo-arclength

continuation method [16, 17]. The analysis has been conducted directly on the nonlinear modal equa-

tions (9) increasing the dimension of the discretized model in order to evidence the influence of higher

frequency modes in the studied dynamics due to the nonlinear modal coupling. In this respect, the higher

dimensional model here considered possesses 4-dofs representing the first two in-plane and out-of-plane

modal amplitudes, respectively. The nondimensional frequencies of the modes involved in the analysis are

presented in Table 1 together with the modal damping ratios. Discrete models describing different modal

interactions have been used to predict or justify the experimental observations for both uncontrolled and

controlled dynamics. Those models are obtained for a selected cable for which the linear frequencies,

obtained with the previously evaluated parameters μ, ν and λ2, are close to those observed in the ex-

perimental setup (see Table 1). For this cable the response to harmonic excitation and the effectiveness

of the proposed control strategies have been presented through frequency response curves of the system.

The dynamic features of the cable oscillation control effectiveness, as described through the analytical

model, are summarized in the folowing.

4.1 Control of in-plane motions

The presence of longitudinal control leaves the peculiarities of cable nonlinear oscillations unchanged,

where an in-plane motion occurs under in-plane excitation while an out-of-plane loading produces a

spatial motion. Consequently, a simple sdof model for the in-plane motion can be used to evaluate

the control effects on planar cable motion. Frequency response curves, named in the following frcs, in

frequency range close to the primary resonance, have been previously obtained through the multiple scale

method for both highly (λ2 = 19.43) and a moderately (λ2 = 15.36) taut cable [9]. For the studied
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moderately taut cable (λ2 = 19.43), following the approach used in [17], a richer behavior is evidenced

by performing a refined analysis using the continuation method applied directly to the modal equations

of the analytical model. In particular, this approach furnishes the complete scenario at once and allows a

direct comparison of the cable response at the primary and secondary (superharmonic and subharmonic)

resonances.

In Fig. 3a the modification of the frequency response curve is shown for a low level of external

amplitude, under different level of LC control. In this low-amplitude region the LC control effects are

quite similar to those obtained adding a linear viscous damping, with negligible contribution of control

quadratic terms.

Increasing the level of oscillation amplitudes, the typical distortion of the curve due to quadratic

and cubic terms is observed and the emergence of counteracting nonlinear control terms [9] produces a

non-proportional decrease of the oscillation amplitudes with respect to the used control gains αvl, while

the presence of super-harmonic resonance (3 - 3/2) in the uncontrolled case is strongly reduced by the LC

control (see Fig. 3b). The typical behavior of a system possessing quadratic and cubic nonlinearities can

also be evidenced showing sections at a given frequency, in the load-amplitude plane (q1v, p1v). The load-

amplitude curve, named in the following lac, for a fixed frequency Ω = 0.8, is shown in Fig. 3c, where the

uncontrolled case clearly evidences the softening-hardening behavior increasing the load. Moreover the

increase of the control gain αvl modifies the curve, producing a reduction of the oscillation amplitudes in

the range of a moderate level of oscillations, while for a high level of oscillations the control effectiveness

is reduced up to a zero point and after that becomes undesirable. However, the curves also show the

beneficial LC control effect in increasing the level of load amplitude for which the solution jumps to a

high level of oscillation; indeed, the augmentation of the control gains moves the LP points (tangential

bifurcations) to a high level of external amplitude. Similar behavior occurs for different frequencies (Fig.

3d).

Analysis previously conducted for in-plane symmetric quadratic control evidences certain difficulties

in reducing the oscillation amplitude beyond a certain level through this control law [9]. Indeed, for a high

value of the control gain, evident undesired effects appear in the low frequency range. Hence, an analysis

of the feedback bilinearization has also been pursued showing that the cancelation of the elongation term

increases the flexibility with consequent larger displacement, accompanied by a more regular behavior in

terms of control gain effects; see [18].

Furthermore, during the experiments a bifurcation of symmetric in-plane motion into a prevailing
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antisymmetric one has been observed in specific frequency ranges with a clear decrement of the effective-

ness of a certain class of control laws. With the aim of reproducing such bifurcation, the response of a

2-dofs model including the first symmetric and anti-symmetric in-plane modes has been analyzed. The

occurences of this phenomenon, deeply studied in the case of internal resonant cables [1, 20, 21], have

only recently been clearly described for nonresonant cables [19]. Two regions have been defined for which

the first antisymmetric mode can be involved in the dynamics through the bifurcation of the externally

excited first symmetric mode with loading frequency Ω: principal unstable region (Ω = 2ω2v), and second

unstable region (Ω = ω2v).

Here, the bifurcation of anti-symmetric motion during symmetrically-excited oscillation around the

primary resonance of the first symmetric mode has been experienced in the response of both analytical

and experimental models due to the closeness of the first antisymmetric mode with the second unstable

region. Fig. 4a shows the frc obtained through the continuation method directly applied to the 2− dofs

modal equations. Although the studied cable is not in resonance condition (ω1v �= ω2v), the second

unstable region, which is centered around the external frequency Ω = 1.25 = ω2v, is clearly present even

at a relatively low level of the external amplitude. In this narrow region the first solution branch is

losing its stability through a static bifurcation in P1 and P2 (BP Branch Points) producing a periodic

coupled motion with T -periodic modal components q1v and q2v with amplitudes depicted in Fig. 4a,b

with respect to the forcing frequency Ω.

The description of this bifurcation is completed by increasing the load amplitude at a given frequency.

The load-amplitude curves obtained at the resonant frequency Ω = 1.25 = ω2v are shown in Figs. 4 c,d.

Along these curves the loss of stability of the symmetric motion is evident at the point P5 (Fig. 4c) for

a second stable branch, which admits two stable solutions for a single amplitude load value (Fig. 4d).

The analysis aims primarily to evaluate the effect of the proposed control law for cable motions in

which relevant anti-symmetric components are present. The modification of the response introduced

by LC control (only αvl �= 0) shows a clear reduction of the first symmetric modal amplitude around

the primary resonance. However, the frequency band of the bifurcation region involving anti-symmetric

modes is unchanged, even if the anti-symmetric component appears at lower amplitude (see Figs. 4a,b).

The main qualitative result obtained by the presented analysis regards the detrimental effects of the LC

control for the anti-symmetric modal amplitudes (red curves in Fig. 4b). This undesired result has also

been confirmed by the experimental tests when the LC control has been used. In order to avoid the

amplification of the anti-symmetric component in the bifurcation region, a more complete feedback has
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been considered (αvl �= 0; αvq �= 0). In this case the addition of a quadratic feedback depending on the

anti-symmetric component permits the drastic reduction of this component with a negligible modification

of the bifurcation boundaries (green curves in Figs. 4a-d).

Finally, it should be mentioned that the continuation method permits the evidencing, in the inves-

tigated region of the (p1v,Ω)-space, of a second bifurcation which appears for amplitudes of the first

symmetric mode relatively larger than the previous one. However, the frequency range in which the bi-

furcation is encountered is quite large, affecting almost completely the higher part of the frc of the first

symmetric mode, in the frequency range 0.8 ≤ Ω ≤ 1.3. Indeed, the first branch of solution loses stability

through a period doubling (PD) bifurcation (points P3 and P4 on Figs. 4 a,b) due to the combination

resonance Ω = 1/2(ω1 + ω2). At higher amplitude the cubic terms increase their relative importance and

the q2vq
2
1v-term in the anti-symmetric modal component equation produces fractional-harmonic pairs

(1
2
Ω, 3

2
Ω, 5

2
Ω); these pairs occur in the spectrum of the anti-symmetric modal component in which the 3

2
Ω

harmonic component is in resonance with the first anti-symmetric frequency (at Ω = 0.82, 3
2Ω � ω2v). In

this case, as is evident in both the frcs (Figs. 4 a,b) and the lacs (Figs. 4 e,f), the LC control is effective

in canceling the bifurcation mechanism, drastically reducing the first symmetric amplitude.

4.2 Control of spatial motions

The bifurcation of in-plane motion to spatial motion has also been described through the use of a 2-dofs

discrete model, in the case of non-resonant cables. In similar cables, the effects of the dimensions of the

model in the description of the cable nonlinear dynamics have been investigated through an extensive

numerical campaign conducted through either path-following technique or finite element method [17].

These studies have shown that the main dynamics are well described with few modes. Here, similar

analyses have been conducted for the studied case. Beside that, the effects of the proposed control

strategy have been determined. Due to the nonlinear coupling between in-plane and out-of-plane modes

it is known that the quadratic q1wq1v-term in the first out-of-plane modal equation can be associated to

a Ω
2 frequency content resonant with the out-of-plane natural frequency ( for Ω � 1.2 Ω

2 � ω1w). The

resonant mechanism is confirmed by the results presented in Fig. 5, where the continuation procedure

has been used to derive the frcs to in-plane harmonic load of a 2-dofs model containing the first in-plane

and out-of-plane modes. In Fig. 5a the response of the first in-plane mode becomes unstable through

a period doubling (PD) bifurcation in the two points P1 and P2. Along the bifurcated branch a 2T -

periodic solution containing both the in-plane and out-of-plane components has been obtained with a
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larger out-of-plane amplitude (see Fig. 5b). The section at the given fixed frequency, Ω = 1.2, permits

the derivation of the lacs reported in Fig. 5c,d where it is evident that the bifurcation load amplitude is

close to zero for the given frequency. Two different controllers have been tested for reducing the spatial

motion in the bifurcation region; first an LC control has been used to construct the controlled frcs (red

line in Fig. 5). It is clear that this first control strongly reduces the in-plane component, but is ineffective

in the bifurcation cancelation, leaving the out-of-plane amplitude almost unchanged. When a second

out-of-plane quadratic control term is added (αvl �= 0; αwq �= 0), the first branch of the solution remains

unchanged (the green line is superimposed to the red one), while the second bifurcated branch is strongly

affected by the new control, drastically reducing the out-plane-component, and an augmentation of the

in-plane component in a narrow frequency band.

The effects of the LQC control have previously been presented considering in-plane symmetric/anti-

symmetric and in-plane/out-of-plane symmetric interactions; however a refined 4-dofs model has also

been considered in the analyses. In order to demonstrate the control effectiveness in the presence of all

possible interactions, a region of co-existence of symmetric and anti-symmetric modal amplitudes under

in-plane loading has been selected. This co-existence region is strongly dependent on the modal damping

ratio as shown in Fig. 6. For this reason an accurate numerical study has been conducted in order to

select damping ratios (Model B) that are representative of the experimental cable. Fig. 6 shows the

control effectiveness in the region of co-existence of in-plane symmetric and anti-symmetric modes and

symmetric out-of-plane modes, considering the transition from uncontrolled to controlled motion. Figs.

6a,d,g present the time-histories obtained through direct integration of the 4-dofs system in a region of

co-existence of three modal components (q1v, q2v, q1w). The uncontrolled motion is characterized by a

strong 2Ω component in the frequency spectra of the antisymmetric mode (q2v) involved in the motion

through a secondary instability (Ω � w2v). See Figs. 6b,e,h. The introduction of an LQC control with

selected positive gains (αvl1 = 0, 3;αvq2 = 80;αwq1 = 80) in equation (8), produces a sensible reduction

of the forced motion with a qualitative change of the dynamics. Indeed, after the control starts, in a very

short transient, the anti-symmetric components become null and the weak coupling between in-plane and

out-of-plane motion behaves along a controlled U-shape trajectory with a 2T out-of-plane component

(see Figs. 6c,f,i). The transition of the trajectory in the modal plane is depicted in Figs. 6l,m.
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5 Control effectiveness in the experimental model

The investigated classes of cable motion and the relative control performance deal with vertical symmetric

forced oscillations. The experimental set-up has been described in its entirety section 3.

After the preliminary characterization of the basic dynamic features of the physical model, several

tests have been conducted to determine frequency response curves to vertical symmetric harmonic loading

for an increasing level of excitation amplitude. Most of the nonlinear coupling phenomena evidenced

through the analysis of the model response have also been observed in the experienced dynamics of the

physical model. However, the implementation of possible control strategies has required several steps as

reported in the following.

5.1 Experimental results targeting a single point

Firstly, a single-input linear control (LC ) has been implemented based only on the vertical velocity

of the monitored cable midspan. Varying the control gain, different levels of attenuation have been

experienced in the region of the primary resonance of the first symmetric mode for a moderate level of

external excitation. However, the LC control has been ineffective, or in a few situations detrimental,

when the selected excitation parameters (frequency and amplitude), are such that nonlinear coupling

between in-plane and out-of-plane or symmetric and anti-symmetric modes are present.

The EDOm control, based on two inputs, in-plane and out-of-plane midspan components, has been

successively implemented. This direct control feedback behaves similarly to the nonlinear polynomial

control (LQCout , see equation (10)) and it is implemented assuming that the measured transversal com-

ponents are substantially contributed only by the first in-plane and out-of-plane modes, respectively. The

control strategy shows a great ability to reduce prevailing symmetric cable spatial motion. The obtained

response reduction depends quantitavely on the control gains; here, for sake of brevity, a single measured

dynamics is presented as shown in Fig. 7. The recorded time histories of the two midspan displacement

components evidences the immediate effect obtainable upon starting the control (Figs. 7a,d). A spectral

analysis conducted on the uncontrolled interval confirms that the bifurcation in spatial motion of the

in-plane excited dynamics is occuring through a period doubling for the physical model also. Indeed, the

Fourier spectra in Figs. 7b,e of the in-plane components possess mainly the forcing frequency (f =5.97

Hz ), while the out-of-plane displacement spectrum possesses a lower harmonic component at half of the

external frequency (f =2.99 Hz ). After the encouraging presented preliminary results, a larger experi-
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mental campaign has been conducted varying both the frequency and the amplitude of the symmetric

forcing load in order to classify the region of coupled symmetric in-plane/out-of-plane motion. In the

uncontrolled case the experienced region of coupling is summarized through Fig. 8a, in which the sta-

bility margins between single mode in-plane motion (cross) and coupled symmetric in-plane/out-plane

motion (dots) are depicted in the frequency-amplitude plane of the external excitation. Fig. 8b show

the new stability margins evaluated when the EDOm control was activated. A direct comparison of

the two presented results evidences the reduction of the unstable region where spatial motion occurs.

Representing the uncontrolled vs controlled response for a given external load permits the evaluation

of the experimental frcs to in-plane excitation as is given in Figs. 8c. Here, following the black line, a

prevailing in-plane motion is evident, coupled in a relatively narrow frequency range (5, 8 < f [Hz] < 6, 3)

with a smaller out-of-plane component. In the presence of the EDOm control (equation (17)), the frc

of the measured midspan in-plane component is strongly reduced up to the external frequency of 6 Hz ,

increasing its amplitude for larger frequencies. The augmentation of motion amplitude is accompanied by

a strong anti-symmetric component which was immediately visible in the experiment. The experienced

large region of control inefficiency has suggested the introduction of a multimodal control based on a

direct measuring of two points as further presented.

5.2 Experimental results targeting two points

Notwithstanding the promising obtained EDOm control performance, the experimental tests have clearly

evidenced the inability of this control to reduce the amplitude of motions with prevailing anti-symmetric

components. Consequently, the full (EDO) control (see equation (15)) has been introduced and suc-

cessively implemented in the experimental prototype. The performance obtained by this control is here

briefly summarized, presenting the control effects on the frcs to in-plane excitation of transversal displace-

ment of the cable quarter. The frcs of the tested physical model are obtained by moving the frequency,

back and forward, from low to high frequency values and measuring the response of the system. Figs.

9 show the experimental frcs for a relatively low value of the excitation amplitude. In the uncontrolled

case, the response shows two regions of resonance, the primary resonance of the first symmetric mode

with external frequency close to its frequency (f � f1v = 5.92Hz ), and the second resonance of the

anti-symmetric mode with external frequency close to this last one (f � f2v = 7.2Hz ). For a given

selection of the EDO control gains, a considerable reduction of the dynamic response has been obtained

in the whole experienced frequency range around the primary resonance, with a single exception in the
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point P1 (see Fig. 9a). This singular point is characterized by a superharmonic resonance with the third

mode (f � f3v/2). In this case the uncontrolled peak (point P1 ) is amplified by the control (point P2 ).

At the primary resonance, the EDO control permits a strong regularization of the periodic motion as is

visible in comparing the uncontrolled vs controlled (black vs red) motion, and comparing the orbits in

the (v,w)-plane. It is clear that in the uncontrolled case a small coupling between symmetric in-plane

and out-of-plane motion is present in the global dynamics. This coupling is completely suppressed by the

EDO control at the primary resonance.

The results of the experienced transition from uncontrolled to controlled motion in the region of the

primary in-plane resonance are summarized in Figs. 10 in which the strongly-coupled spatial motion is

reduced to a small in-plane motion when the EDO control is activated. Indeed, the time-histories in

Figs. 10a,d show the strong reduction of the out-of-plane component confirmed by the cancelation of the

frequency component f/2 (Figs. 10c,f) present in the spectrum of the uncontrolled motion (Figs. 10b,e).

In the region of the anti-symmetric modes (f ≥ 7.0 Hz ) a series of experiments have been conducted in

order to evaluate the sensitivity of the response to the variation of the control gains. A sensible reduction

of the anti-symmetric in-plane and out-of-plane amplitudes has been obtained as depicted in Figs. 11,

where the control effects on the response at the cable quarter are presented. In the uncontrolled response

two branches of solution have been classified; at lower frequency a spectral analysis of the response has

shown a quasi-periodic behavior which becomes periodic in the second higher branch of solution. The

control leaves these motion characteristics unchanged; however, lower amplitudes are recorded associated

with smaller orbits in the (v,w)-plane.

Also, in the region of prevailing anti-symmetric modal dynamics, the transition from uncontrolled

to controlled motion has been investigated and the results for a selected case are reported in Figs. 12.

The time-histories show in this case a complicated transient in which in some instances the out-of-

plane component exceeds the uncontrolled one (see Figs.12a,d). However, looking at either the frequency

component evaluated in the intervals before (Figs.12b,e) and after (Figs.12c,f) the control start or the orbit

in the (v,w)-plane, the EDO control effectiveness can be easily appreciated. In particular, considering

the symmetric and anti-symmetric components of the motion as it is shown in Figs.12h,i the efficiency of

the experimental apparatus for a multimodal control is confirmed.
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Conclusions

Multimodal active control of cable oscillations through a longitudinal action has been fully exploited

both through analytical-numerical models and experimental prototypes. On the basis of a classical

analytical model for nonlinear cable oscillations, different methodologies in the design of suitable control

feedbacks have been presented. Full state-feedbacks have been proposed with the aim of producing

an asymptotically-stable system in the case of bilinearization, or a dissipative system controlled by an

opportune polynomial nonlinear feedback.

Furthermore, the main research findings here presented deal with the validation through a physical

model, of the ability of longitudinal active control in stabilizing nonlinear cable oscillations. In this re-

spect, an implementable noncollocated control law based on direct-output feedback has presented showing

that this approach preserves all the features of the previously-developed control methodologies. Notwith-

standing the motion coupling, a noncollocated control law based on the independent measures of both

in-plane and out-of-plane response shows good ability to reduce in-plane and out-of-plane oscillations

simultaneously.

Different refined reduced discrete models, with an increasing number of modes, have been used

to demonstrate the performance of the selected control laws numerically. These analyses have been

driven by the dynamics experienced in the laboratory tests. Indeed, despite the nominal absence of

internal resonances for the selected cable, a small-sag parabolic cable, the experienced dynamics under

in-plane harmonically-forced oscillations has shown a rich and evident modal coupling between the first

two in-plane and two out-of-plane modes. The main modal interaction phenomena have been described

constructing the frequency response curves frcs to the in-plane symmetric load for models containing

an increasing number of modes. The frcs have been determined by the pseudo-arclength continuation

method, in order to describe the bifurcation points and the post-critical branches of solutions.

Further, the effects of the proposed control law are also presented examining the modification added

by the control to the frcs. The numerical findings have been confirmed by experimental results showing

that in a wide experienced frequency range of the external force, around the primary resonance of the

first symmetric mode, a rich modal interaction can be found even in absence of internal resonance con-

ditions. Thus, a motion mainly described by a symmetric in-plane mode can easily be coupled with the

symmetric out-of-plane mode and, in the proximity of the explored frequency region, also with the first

anti-symmetric in-plane and out-of-plane modes. These modal components are opportunely desumed by

the experimental measures, obtained at two points, �/4 and 3/4�, with two biaxial follower cameras. The
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control strategy based on a single longitudinal action driven by the direct-output nonlinear feedback,

on the basis of the four measured transverse components, has shown control capability in the entire

experienced frequency range overcoming all the encountered motions from the classical symmetric in-

plane type to more complicated spatial motion with the presence of both symmetric and anti-symmetric

components.
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Appendix

A non-dimensional form of eqs. (5) can be obtained introducing the following quantities:

x̃ =
x

l
, ỹ =

y

d
, ṽ =

v

�
, w̃ =

w

�
, ω̃iv =

ωiv

ω1v
, ω̃iw =

ωiw

ω1v
,

τ = ω1vt, μ =
EA

H
, ν =

d

�
, (18)

The modal shapes of a suspended cable are given by the following expressions:

ϕi(x) =
(

1 − tan
βi

2
sin βix− cos βix

)
bi, i = 1, 3, . . .(symmetric)

ϕi(x) = sin iπx, i = 2, 4, . . . (asym)

ψk(x) = sin kπx, k = 1, 2, 3, . . . (19)

where bi = cos βi

2
1

cosβi+(−1)h is a normalization constant (h = i for i = 1, 5, . . . and h = 2i for i = 3, 7, . . .)

and the spatial frequencies βi are given by the roots of the characteristic equation

tan
βi

2
−

[
βi

2
− 4
λ2

(
βi

2

)3
]

= 0 (20)

which depend on Irvine parameter λ2 = 64μν2, with μ and ν given by equations (18), [23] while the

related dimensional natural frequencies can be obtained as:

ωiv =
βi

π
ωs, i = 1, 3, . . . (sym) ωiv = iωs, i = 2, 4, . . . (asym)

ωiw = iωs, i = 1, 2, 3, . . . , where ωs =
π

�

√
H

m
(21)

In order to define the coefficients of eqs. (8)(13), let us introduce the following integrals:
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Im
i =

∫ 1

0

f2
i (x) dx, Ie

ij =
∫ 1

0

f ′i(x)f
′
j(x) dx, Ia

ij =
∫ 1

0

fi(x)fj(x) dx,

Iy
i =

∫ 1

0

y′(x) f ′i (x)dx, Ip
i =

∫ 1

0

fi(x)dx (22)

where fi and f ′i are the placeholders of ϕi(x), or ψi(x) and their derivatives where appropriate, and

y(x) is the parabolic function lying in the vertical plane. Consequently, the coefficients aij and bij, the

damping coefficients ζij = ζm
ij of the damping matrix, in eqs. (8)(13) are defined as follows :

In-plane equations

ζijv =
μv

mω1v
δij , pi =

Ip
i

Imv
i

a0ij =
Iev
ij

Imv
i

1
β2

1

, a1i = μν
Iyv
i

Imv
i

1
β2

1

, a2ij = μ
Iev
ij

Imv
i

1
β2

1

,

b1j = νIyv
j , b2ij =

1
2
Iev
ij , b3i =

1
2
Iew
ii ,

(23)

Out-of-plane equations

ζijw =
μw

mω1v
δij,

ω2
iw =

Iew
ii

Imw
ii

1
β2

1

, a3i = μ
Iew
ii

Imw
ii

1
β2

1

,

b1i = νIyv
j , b2ij =

1
2
Iev
ij , b3i =

1
2
Iew
ii ,

(24)

where δij is the Kronecher operator and the apexes of the integrals I define completely the type of

functions integrated, according to eqs. (22), together with the use of symbols v and w as indicators of

the used eigenfunctions ϕi(x) or/and ψi(x), respectively.
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Table 1: In-plane and out-of-plane frequencies and damping ratios of the cable models
Frequency f In 1vs 2va Out 1ws 2wa

ModelA 1.000 1.253 0.627 1.253

ModelB 1.000 1.253 0.627 1.253

ModelC 1.000 1.229 0.627 1.238

Damping ξ In 1vs 2va Out 1ws 2wa

ModelA 0.025 0.009 0.020 0.010

ModelB 0.027 0.0003 0.00215 0.0008

ModelC 0.025 0.001 0.002 0.001
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Figure 1: Cable configuration and control feedback.
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Figure 4: Planar cable response and effectiveness of linear symmetric (LC red line) and linear symmetric

and quadratic antisymmetric (LQCin green line) control feedbacks evaluated through a 2dof model: frcs

to in-plane symmetric harmonic load for p1v = 0.007; (a) 1st and 2nd branches of q1v-amplitude; (b) 2nd
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Figure 5: Spatial cable response and effectiveness of linear symmetric in-plane (LC red line) and linear

symmetric in-plane and quadratic symmetric out-of-plane (LQCout green line) control feedbacks evaluated

through a 2dof model: frcs to in-plane symmetric harmonic load for p1v = 0.007; (a) 1st and 2nd branches
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Figure 6: Numerical time histories of forced oscillations (Ω = 0.95; f1v = 5.92Hz) during the transition

to controlled motion evaluated through a 4 − dofs model: (b) (e) (h) FFT of the uncontrolled interval;

(c) (f) (i) FFT of the controlled interval.
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Figure 7: Experimental time histories of forced oscillations (Ω = 1.008; f1v = 5.92Hz) during the

transition to LQCout controlled motion: (a) (d) midspan transversal displacements; (b) (e) FFT of the

uncontrolled interval; (c) (f) FFT of the controlled interval; (g) (h)
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Figure 9: Effects of EDO control on experimental frcs of in-plane (a) and out-of-plane (b) transversal

displacement at a quarter-point to in-plane harmonic loading of an experimental cable (Model C) in the

region around the primary resonance (Ω � w1v) and the secondary resonance (Ω � w2v).
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Figure 10: Experimental time histories of forced oscillations (Ω = 1.18; f1v = 5.92Hz) for an experimen-
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Figure 11: Effects of EDO control on experimental frcs of in-plane (a) and out-of-plane (b) transversal

displacement at a quarter-point to in-plane harmonic loading of an experimental cable (Model C) at the

secondary resonance of the first anti-symmetric in-plane frequency (Ω � w2v).
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Figure 12: Experimental time histories of forced oscillations (Ω = 1.32; f1v = 5.92Hz) for an experimen-

tal cable (Model C) to EDO controlled motion: (a) (d) transversal displacement of a quarter-point; (b)

(e) FFT of the uncontrolled interval; (c) (f) FFT of the controlled interval; (g) orbits; (h) anti-symmetric

components; (i) symmetric components.


