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Low-frequency band gaps in chains with

attached non-linear oscillators

B. S. Lazarov ∗ , J. S. Jensen

Department of Mechanical Engineering, Solid Mechanics, Nils Koppels Alle,

Building 404, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

Abstract

The aim of this article is to investigate the wave propagation in one-dimensional

chains with attached non-linear local oscillators by using analytical and numerical

models. The focus is on the influence of non-linearities on the filtering properties of

the chain in the low frequency range. Periodic systems with alternating properties

exhibit interesting dynamic characteristics that enable them to act as filters. Waves

can propagate along them within specific bands of frequencies called pass bands, and

attenuate within bands of frequencies called stop bands or band gaps. Stop bands

in structures with periodic or random inclusions are located mainly in the high

frequency range, as the wave length has to be comparable with the distance between

the alternating parts. Band gaps may also exist in structures with locally attached

oscillators. In the linear case the gap is located around the resonant frequency of the

oscillators, and thus a stop band can be created in the lower frequency range. In the

case with non-linear oscillators the results show that the position of the band gap

can be shifted, and the shift depends on the amplitude and the degree of non-linear

behaviour.

Key words: Non-linear wave propagation, Local resonators, Low frequency band

gaps
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PACS:

1 Introduction

The filtering properties of periodic structures with alternating characteris-

tics have been investigated by many authors by using analytical, numerical

and experimental methods. Such systems possess interesting filtering proper-

ties. Waves can propagate unattenuated along these structures within specific

bands of frequencies called propagation or pass bands, and attenuate within

bands of frequencies called stop bands, attenuation zones or band gaps. Band

gaps in linear systems can also be created by introducing random inclusions

or geometric disturbances. External excitation in such structures results in

localised response surrounding the external input. The majority of the texts

consider linear systems [2,6,7]. Localisation phenomena can also be observed

in perfectly periodic non-linear structures [8–10,14], where spring-mass chains

are studied and the non-linear behaviour is introduced either in the spring

between the two neighbour masses, or by adding non-linear springs between

the ground and the masses. The applications of these filtering phenomena are

mainly in the high frequency range, as the distance between the inclusions has

to be comparable with the wave length.

In the beginning of the twentieth century Frahm discovered the vibration

absorber as a very efficient way to reduce the vibration amplitude of machinery

∗ Corresponding author.

Email addresses: bsl@mek.dtu.dk (B. S. Lazarov), jsj@mek.dtu.dk ( J. S.

Jensen).

2



Acc
ep

te
d m

an
usc

rip
t 

and structures by adding a spring with a small mass to the main oscillatory

body [1]. The additional spring-mass system is tuned to be in resonance with

the applied load. When the natural frequency of the attached absorber is equal

to the excitation frequency, the main structure does not oscillate at all, as the

attached absorber provides force equal and with opposite sign to the applied

one. The idea can be exploited further by attaching multiple absorbers on a

wave guide. Waves are attenuated in a frequency band located around the

resonant frequency of the local oscillators, and thus stop bands can be created

in the lower frequency range, which is often more important in mechanical

applications. The effect has been studied experimentally and analytically in

[11–13].

If the attached oscillators are non-linear, the response displays a dependency

between the amplitude and the frequency. Very little is known about the

filtering properties of the systems in this case. Periodic spring-mass system

with attached non-linear pendulums are investigated in [15]. The attached

pendulums are considered to be stiffer than the main chain, and they do not

introduce band gaps in the lower frequency range. The aim of this paper is to

investigate the behaviour of one-dimensional infinite spring-mass chain with

locally attached oscillators with linear or non-linear behaviour. The oscillators

are considered to be relatively soft compared to the main chain, and to create

band gaps in the lower frequency range. The non-linearities in the attached

oscillators are considered to be cubic. First the mechanical system together

with the equations of motion is presented. The appearance of band gaps is

shown in the linear case, and in the case with non-linear attached oscillators

the method of harmonic balance is utilised to obtain a system of equations

for the wave amplitude, as well as an approximate expression for the wave
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propagation properties of the chain. The analytical results are compared with

the ones obtained by numerical simulations, some of which are presented in

[16].

2 Mechanical system and equations of motion

The considered spring-mass system with attached local oscillators is shown in

Figure 1. Using the dynamic equilibrium condition for mass j, the equations

describing its motion together with the equation of motion of the attached

oscillator can be written as

(m+M)
d2uj

dτ 2
+ 2kuj − kuj−1 − kuj+1 +M

d2qj
dτ 2

= 0 (1)

M
d2qj
dτ 2

+ cq̇j + klf (qj) +M
d2uj

dτ 2
= 0 (2)

where k is the spring stiffness between two masses, m is the mass at position

j = 0, 1, . . . ,∞, M is the mass of the attached local oscillator, klf (qj) is its

restoring force and c is a viscous damping coefficient. uj is the displacement

of mass j, with positive direction shown in Figure 1, and qj is the relative

displacement of the local oscillator. Both uj and qj are functions of the time

and their positions j. The function f (qj) is assumed to be in the form

f (qj) = qj + γjq
3
j (3)

where γj is a parameter controlling the degree of non-linearity. By introducing

normalised time t = ω0τ , where ω0 =
√

k/m, the coefficients β = M/m and

α = kl/k, the equations (1) and (2) can be written as

üj + 2uj − uj−1 − uj+1 − βκ2f (qj) − 2βζκq̇j = 0 (4)

q̈j + 2ζκq̇j + κ2f (qj) + üj = 0 (5)
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j + 2
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m

qj

ujuj−1 uj+1

qj−1 qj+1

k

kl

Fig. 1. Spring mass system with attached local oscillators.

where κ =
√

α/β and (̈) denotes the second derivative with respect to the

normalised time t.

3 Band gaps in spring-mass chains with attached oscillators

3.1 Linear undamped oscillators

Using the idea for the vibration absorber, an efficient filter for waves propagat-

ing along a spring-mass chain can be created by attaching multiple absorbers

to the chain as shown in Figure 1. The equations of motion are given by (4)

and (5), where the non-linear parameter γ and the damping parameter ζ are

set to zero. In order to study the transmission properties of the chain, the

solution is sought in the form [2]

uj = Bejµu+iωt (6)

where µu is the so-called wave propagation constant of harmonic wave with

frequency ω, which is equal to the wave number multiplied by the distance

between the masses in the main chain, and j is the mass index. The displace-

ments of the neighbour masses j + 1 and j − 1 become
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uj+1 = eµuuj, uj−1 = e−µuuj (7)

By inserting (6) and (7) into the equations of motion (4) and (5), and requiring

the resulting equations to be valid at all time instances, the following relation

between µu and ω is obtained

cosh(µu) = 1 +
1

2

ω4 − (1 + β)κ2ω2

κ2 − ω2
(8)

Eq. (8) is also known as the dispersion relation. Plots of the real and the

imaginary part of µu for different frequencies are shown in Figure 2. Around

the natural frequency of the attached oscillators there exists a frequency band

where waves are attenuated. Outside the band gap, two neighbour masses j

and j+1 oscillate with phase difference Im(µu). Inside the band gap, below the

natural frequency κ of the attached oscillators, two neighbour masses oscillate

with an opposite phase Im(µu) = π and above κ they oscillate with phase

difference Im(µu) = 0. The real part Re(µu) gives the attenuation rate of the

wave amplitude. At ω = κ the real part of µu is infinity and decreases to zero

outside the band gap. It should be pointed out that the system studied in this

section has no energy dissipation mechanism.

3.2 Non-linear local oscillators

A solution of the non-linear system of equations (4) and (5) is not known in a

closed form. An approximate solution can be obtained by using the method of

harmonic balance, the method of multiple scales or the method of averaging,

e.g. [3,4]. Non-linear oscillators with third order non-linearities, as the one
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Fig. 2. Dispersion relation for κ = 1.0 and β = 0.1.

described by (5), are well studied in the literature. Based on these solutions

the method of harmonic balance is applied here, in order to study the wave

propagation along the chain with attached damped non-linear oscillators.

The time response of qj(t) is assumed to be periodic in the form of complex

Fourier series

qj(t) =
∑

k

ε
k−1

2 Ak,je
ikωt + ε

k−1

2 Āk,je
−ikωt k = 1, 3, . . . (9)

where ε is a dimensionless bookkeeping parameter showing the order of the

amplitude of the motion. By substituting (9) into (5) and integrating twice

with respect to time, the following expression for the time response of mass j

can be obtained

uj(t) = A1,j

(

−1 +
κ2

ω2
+ 3ε

γjκ
2

ω2
A1,jĀ1,j +

2iζκ

ω

)

eiωt+

+ε

(

−A3,j +
2

3

iζκ

ω
A3,j +

1

9

κ2

ω2
A3,j +

1

9

γjκ
2

ω2
A3

1,j

)

ei3ωt + c.c.+O(ε2)

(10)
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The expression in the above equation is obtained by truncating the time series

and preserving only the first two terms. By substituting (10) and (9) into (4)

and equating to zero the coefficients in front of eikωt, a system of algebraic

equations for the amplitudes Ak,j can be obtained

(

2

(

κ2

ω2
− 1

)

+ ω2 − β1κ
2 + 2iζ

κ

ω

(

2 − β1ω
2
)

)

A1,j

+3γj

κ2

ω2

(

2 − β1ω
2
)

A2
1,jĀ1,j +

(

1 − κ2

ω2
− 2iζ

κ

ω

)

(A1,j+1 + A1,j−1)

−3γj+1
κ2

ω2
A2

1,j+1Ā1,j+1 − 3γj−1
κ2

ω2
A2

1,j−1Ā1,j−1 = 0 (11)
(

2

(

κ2

ω2
3

− 1

)

+ ω2
3 − β1κ

2 + 2iζ
κ

ω3

(

2 − β1ω
2
3

)

)

A3,j

+

(

2
κ2

ω2
3

− β1κ
2

)

γjA
3
1,j +

(

1 − κ2

ω2
3

− 2iζ
κ

ω3

)

(A3,j+1 + A3,j−1)

−γj+1
κ2

ω2
3

A3
1,j+1 − γj−1

κ2

ω2
3

A3
1,j−1 = 0 (12)

where β1 = β+1 and ω3 = 3ω. By specifying the amplitudes for two neighbour

masses and respectively for the attached oscillators, a solvable system of equa-

tions for the response amplitudes of the attached oscillators can be obtained.

The system is non-linear and there can be multiple solutions satisfying it in

certain cases. The amplitude of the wave travelling along the main chain can

be obtained by inserting the amplitude of the attached oscillators into (10).

The wave travelling along the spring-mass chain can also be investigated by

using the wave number multiplied by the distance between the masses in the

main chain µu. The displacements of the masses neighbour to mass j can be

expressed as

uj±1 =
∑

k

Bk,je
±µuk eikωt + c.c (13)
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where Bk,j are the coefficients in front of eikωt from equation (10). It can

be clearly seen that the solution in the non-linear case consists of a zero

order wave with frequency ω and additional high order waves. As the non-

linearities are assumed to be small and the focus is on the filtering properties

of the chain around the linear natural frequency of the attached oscillators, the

contributions to the solution of the harmonics of order equal to and higher

than k = 3 are neglected. Substituting (13) and (9) into (4), equating the

coefficients in front of eiωt to zero and solving the resulting equation with

respect to µu, the dispersion relation for the non-linear case is obtained in the

form

cosh(µu) = 1 − 1

2
ω2 − 1

2

ω2β
(

κ2 + 2iζκω + 3κ2γjA1,jĀ1,j

)

(

κ2 + 2iζκω + 3κ2γjA1,jĀ1,j − ω2
) (14)

The dispersion relation for the linear case can be obtained from (14) by set-

ting the non-linear parameter γj equal to zero and removing the damping in

the attached oscillators. The influence of the damping parameter ζ on the

dispersion relation in the linear case can be seen in Figure 3. Den Hartog

has shown in [1] that the introduction of viscous damping in the vibration

absorber increases the frequency interval in which the device is effective. Sim-

ilar behaviour can be observed for wave propagation problems. The maximal

value of the attenuation rate decreases with increasing the damping in the

attached oscillators, and for high values of ζ the band gap practically disap-

pears. Similar behaviour is observed for 2D wave propagation problems in [5].

The value of Im(µu) is always different from 0 or ±π in the damped case, and

thus oscillatory behaviour in the spatial domain can always be observed. The

influence of the mass ratio β on the band gap is shown in Figure 4. The width

9
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Fig. 3. Dispersion relation for β = 0.1, γ = 0 and different damping ratios.
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of the stop band can be increased by increasing the attached mass.

For the non-linear spring-mass chain, µu depends on the amplitude of the

attached oscillator at position j. Plots of the dispersion relation for different
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values of the non-linear parameter γA1,jĀ1,j are shown in Figure 5. As can be

seen, the position of the maximal value of the attenuation rate varies with the

value of the nonlinear parameter. The maximum is shifted above the linear

natural frequency of the attached oscillators, and the shift increases for larger

values of the amplitude A1,j . For a negative value of the non-linear parame-

ter γ, the shift will occur in the opposite direction, below the linear natural

frequency. As the wave propagates, the amplitude A1,j decreases, due to the

reflections from the attached oscillators, as well as due to the damping in

the system, and the position of the maximal value of Re (µu) moves toward

ω/κ = 1. The amplitudes vary along the chain, and µu becomes a function of

the spatial coordinate j. A fixed wave propagation constant cannot be defined

in the non-linear case.

3.3 Transmission properties based on analytical calculations

For given values of the amplitudes B1,j and A1,j of mass j and the corre-

sponding attached oscillator, the value of µu can be calculated using (14).

The amplitude of the mass at position j + 1 is calculated as B1,j+1 = eµuB1,j .

The amplitude A1,j+1 of the attached oscillator can be calculated by solving

the following equation

B1,j+1 = A1,j+1

(

−1 +
κ2

ω2
+ 3

γj+1κ
2

ω2
A1,j+1Ā1,j+1 +

2iζκ

ω

)

(15)

which is obtained from (10) and (13) by equating the coefficients of eiωt.

Eq. (15) resembles the equation for the amplitude of the stationary response

of externally excited Duffing oscillator. By using polar representation for the

amplitudes A1,j+1 = RA (cos(ψ) + i sin(ψ)) and RB = |B1,j+1|, (15) can be
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written as

9γ2r4R6
A + 6γj+1r

2
(

r2 − 1
)

R4
A +

(

(

r2 − 1
)2

+ 4ζ2r2
)

R2
A −R2

B = 0 (16)

where r = κ/ω. Eq. (16) can be represented as a cubic equation with respect

to R2
A. It has either one, or three real roots for R2

A. In the second case, two

of the solutions are stable and one of them is unstable, which is well known

property of the Duffing oscillator [3]. There are two values of µu corresponding

to the two stable solutions of (16), and a unique value for B1,j+2 cannot be

obtained. The two solutions for µu,j+1 can be ordered by the magnitude of

their real part. The one with larger absolute real value, µl
u,j+1, produces an

amplitude with a smaller absolute value, and the other one, µu
u,j+1, produces

an amplitude with a larger absolute value. Continuing in this way, an estimate

for the upper and the lower bounds of the absolute value of the wave amplitude

can be obtained.

∣

∣

∣Bu
1,j+k

∣

∣

∣ =

(

∏

n=1...k

eRe(µu
u,j+n

)

)

∣

∣

∣Bu
1,j

∣

∣

∣

∣

∣

∣Bl
1,j+k

∣

∣

∣ =

(

∏

n=1...k

eRe(µl
u,j+n

)

)

∣

∣

∣Bl
1,j

∣

∣

∣ (17)

In the case where only a single real solution for R2
A exists, µl

u,j+k is equal to

µu
u,j+k and

∣

∣

∣Bu
1,j+k

∣

∣

∣ =
∣

∣

∣Bl
1,j+k

∣

∣

∣.

4 Numerical simulations

The theoretical analysis derived in the previous section is validated by using

numerical simulations for finite spring-mass chain, as shown in Figure 1. Ab-
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sorbing boundary conditions are applied at each end of the chain by adding

dash-pot with a damping constant c = 1. The damping constant corresponds

to the exact absorbing boundary condition for a continuous rod with dis-

tributed mass ρA = 1 and stiffness EA = 1, where ρ is the mass density, A is

the section area and E is the elastic modulus. A wave travelling in the right

direction is generated by applying a harmonic force with frequency ω and unit

amplitude at the left end of the chain. The first and the last 10 masses in the

chain are without attached oscillators. The wave travels undisturbed, until it

reaches the part with the attached oscillators, where a part of it is reflected

back, and a part of it propagates until it reaches the right end of the chain.

The system is integrated numerically, until steady state is reached. The RMS

(root-mean-squared) value of the response amplitude

[Bj ] =
1√
2

√

1

T

∫ t+T

t
u2

j(t) dt (18)

is calculated at the right end of the chain and is compared with the results

obtained by using the analytical prediction derived in the previous section. The

RMS value is calculated for a finite time interval T = 20λ, where λ = 2π/ω

and ω is the frequency of the generated wave. The contribution of the higher

order harmonics to the RMS value of the response amplitude is assumed to

be small.

4.1 Influence of the nonlinearities

The transmission properties of a chain with 2000 attached oscillators calcu-

lated by using numerical simulations, and the procedure in section 3.3, are

shown in Figure 6. The non-linear coefficients γj = γ are taken to be the

same for all attached oscillators. The results are obtained for several values of

13
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γ = 0.0, 0.1, 0.25, 0.5, 1.0, 1.5, β = 0.1, ζ = 0.01. The RMS value of the amplitude of

the first mass is 0.25.

γ. The linear normalised frequency κ of the attached oscillators is 0.05. For

small values of the non-linear coefficient the estimated upper and lower values

of the absolute value of the amplitude bound well the estimated RMS value

of the amplitude from the numerical simulations. For large values of the non-

linearity the results start to deviate. The frequency shift in the band gap can
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Fig. 7. Comparison of the theoretical prediction (dotted curve) of the transmitted

amplitude with the one obtained by numerical integration for different numbers of

the attached oscillators nl = 250, 500, 1000, 1500, 2000, 2500 and γ = 0.3.

be clearly observed in all plots for γ 6= 0. In addition, the shape of the band

gap changes, and the decaying rate decreases with increasing the non-linear

coefficient.
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4.2 Influence of the chain length

The results obtained by both numerical simulations and analytical calcula-

tions for chains with different number of the attached oscillators are shown

in Figure 7. The non-linear parameter γ = 0.3 is kept at a fixed value for

all different spring-mass chains, and is taken to be the same for all attached

oscillators. As can be seen, for small number of the attached oscillators the

frequency shift of the band gap is significant. The reduction of the transmit-

ted amplitude is relatively small compared with the one obtained for larger

number of the attached oscillators. As the wave propagates along the chain,

the amplitude is decreasing leading to frequency shift of the band gap back

towards the linear natural frequency. The effect can be clearly observed by

studying the plots.

4.3 Chains with variable non-linear coefficients

If the wave frequency is located in the band gap, the amplitude is decaying

fast, and the band gap is shifted back to the one obtained for linear attached

oscillators. The shift depends on the value of γjA1,jĀ1,j. As the amplitude

decreases along the chain, γj can be changed, in order to keep the shift of

the band gap at a desirable frequency. For very small amplitudes the value

of γ needs to be very large and thus, there will always be a wave with finite

amplitude propagating after the part of the chain with attached oscillators.

Plots of the transmitted amplitude for chains with 400 attached oscillators

are shown in Figure 8. A chain with variable non-linearities is chosen with γ

equal to 0.12
√

exp((i− 1)/100), and for comparison the results for chains with
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Fig. 8. Comparison of the transmitted amplitude for variable (solid line) and fixed

(circular dots γ = 0.3) γ for chain with 400 attached oscillators. The two dashed

lines show the transmitted amplitude for fixed γ (0.12, 0.88) equal to the lowest and

the highest value used for the chain with varying non-linearities. The second plot is

obtained by using the analytical calculations with variable γ and γ = 0.3.

constant γ = 0.12 corresponding to the minimal value of γ in the chain with

variable non-linearities, γ = 0.88 (maximal value) and γ = 0.3 (intermediate

value), are shown in the figure. The input RMS value of the amplitude is equal

to 0.25, the damping coefficient is ζ = 0.02 and i is the number of the attached

oscillators. The theoretical prediction is calculated by using the procedure in

3.3. In all cases with γ 6= 0, a shift in the stop band frequency can be clearly

observed. The shift of the chain with variable γ is between the shift for the

cases with γ = 0.12 and γ = 0.88, and close to the case with the intermediate

value γ = 0.3. The theoretical prediction indicates better filtering properties

in the case with variable γ and this result is also supported by the numerical

simulations.

The expression for γ in the chain with variable non-linearities is obtained

by trial and error. A systematic optimisation procedure can produce better

results. More improvements are possible if variation is allowed not only in the

non-linearities but also in the linear stiffness coefficients, mass ratio and the
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damping. A study based on a topology optimisation approach for a similar

linear continuous system is presented by the authors in [17]. An extension to

the non-linear case is a subject for future work.

5 Conclusions

The focus in this article is on the influence of the non-linearities on the filter-

ing properties of the chain around the linear natural frequency of the attached

oscillators. The position of the band gap can be shifted by changing the de-

gree of non-linearity of the oscillators, or by changes of the wave amplitude. A

comparison with numerical simulations for a finite chain with attached oscil-

lators shows that the analytical predictions match simulations well for small

non-linearities, and start to deviate for large ones. Both estimations clearly

show a shift in the band gap. The transmitted amplitude will always be differ-

ent than zero for wave frequencies different than the linear natural frequency

of the attached oscillators and for finite values of the non-linear parameter

γ. The change in the position of the stop band can be utilised in the design

of adjustable filters in the lower frequency range. The optimal distribution of

the non-linearities, as well as the natural frequencies and the damping of the

attached oscillators, is subject to further investigations.
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