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Abstract

Interaction of two counterpropagating ultrasonic waves in an inhomogeneously

prestressed elastic material (a structural element) with quadratic non-linearity is

studied theoretically by using the perturbative formalism. The analytical solution

that describes wave-wave, wave-material and wave-prestress non-linear interaction

is derived. This rather cumbersome solution is studied in the case of a harmonic

boundary condition in the material (specimen) subjected to two-parametric inhomo-

geneous prestressed state. The model problems are solved and the influence of the

prestress on the wave interaction is cleared up. Resulting oscillations on two parallel

boundaries of the material are prestress sensitive. It is proposed to use boundary

oscillation data for nondestructive characterization of inhomogeneous prestressed

state.

Keywords: Ultrasonic waves; Non-linear interaction; Non-linear elastic material; In-
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1. Introduction

Ultrasonic nondestructive evaluation (NDE) of prestress in materials, structural

elements, machinery, etc., is intensively studied over the last decade [1-4]. The

main tool is the acoustoelastic effect that is defined as the dependence of ultrasonic

wave velocity on the value of prestress [5, 6]. Theory and applications for NDE of

the homogeneous prestress field on the basis of the acoustoelastic effect have been

elaborated in detail [7-10]. The amount of quantities which needs to be determined

by the NDE of the inhomogeneous prestress field increases essentially [11-14]. Several

methods that combine the acoustoelastic effect with other features of wave motion

are proposed for this purpose in order to enhance the accuracy of NDE [15-17].

In this paper the non-linear effects of wave propagation and interaction are pro-

posed to be used as an additional source of information for NDE of inhomogeneous

prestress field in the material. For this purpose, counter-propagation of two ul-

trasonic waves in the non-linear elastic material subjected to inhomogeneous plane

strain is studied theoretically. The analytical solution for description of simultaneous

propagation of waves with arbitrary smooth initial profiles excited on the parallel

boundaries of the specimen is derived making use of the perturbation technique.

The obtained solution permits to investigate propagation and interaction effects in

detail and to separate linear and non-linear parts of solution.

Analyses of the results of numerical simulations lead to the conclusion that non-

linear effects of boundary oscillations caused by the simultaneous propagation of

two ultrasonic waves in the material are informative and may be used as addi-
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tional information for enhancing the NDE of inhomogeneous prestress field. This is

demonstrated by a model problem of simultaneous propagation of two sine waves

in the material subjected to two-parametric prestressed state that corresponds to

the pure bending with tension or compression. The phenomenon of amplification of

the amplitude of boundary oscillations in domains of wave interactions is taken into

account. The analysis shows clearly that the non-linear part of boundary oscilla-

tions is sensitive to the variation of prestress. The analyses of non-linear boundary

oscillation data enable to distinguish qualitatively the special cases of prestress and

to estimate the values of the parameters of the prestress field.

2. Problem formulation

The purpose is to excite simultaneously two ultrasonic longitudinal waves in the

material (specimen, structural element, etc.) subjected to a prestress state that

corresponds to the plane strain. This means a certain geometrical constraint that

a specimen must have two parallel surfaces. In the civil engineering and machinery

such objects are plates with different types of supports, beams, thin-wall open sec-

tions, et al. Ultrasonic NDE of inhomogeneous prestress field in these objects is then

possible provided the access to the parallel boundaries of the material is feasible.

Theoretically, it is assumed that the isotropic and homogeneous material with

quadratic non-linearity is initially in an undeformed natural state. At some instant

material is subjected to the external loading and up to now it is in a prestressed

state. Small but finite deformations of the material are described by the non-linear
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theory of elasticity [18] in Lagrangian rectangular coordinates XJ , J = 1, 2, 3 and

the corresponding Kirchhoff pseudostress tensor is TKL(XJ , t), K, L = 1, 2, 3. The

physical and geometrical non-linearity of the problem is taken into account. The

prestressed state is characterized by the displacement U0
K(XJ). The static (time

independent) prestressed state is considered by assumption U0
3 (XJ) = 0, i.e., it

corresponds to the plane strain.

The ultrasonic waves are excited in the specimen simultaneously on two parallel

boundaries X1 = 0 and X1 = h, where h denotes the thickness of the specimen. The

problem is treated as a quasi one-dimensional: two one-dimensional longitudinal

waves are propagating simultaneously in the material subjected to two-dimensional

prestressed state (see Fig. 1). The wave is characterized by displacement U1(X1, t)

and is governed by the equation of motion [19]

[1 + k1 U0
1,1 + k2 U0

2,2] U1,11 + [k1 U0
1,11 + k3 U0

1,22 + k4 U0
2,12] U1,1

+k1 U1,11 U1,1 − c−2 U1,tt = 0. (1)

Here, indices 1, 2 and t after a comma indicate differentiation with respect to X1,

X2 and time t, respectively. The constants

k1 = 3 + 6 k (ν1 + ν2 + ν3), k2 = k (λ + 6 ν1 + 2 ν2),

k3 = 1 + k (ν2 +
3

2
ν3), k4 = k [ λ + µ + 3 ( 2 ν1 + ν2 +

1

2
ν3)],

k = (λ + 2 µ)−1, c−2 = ρ0 k (2)

are functions of the Lamè constants λ and µ, the elastic constants of the third order

ν1, ν2 and ν3 and the density ρ0.
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Equation (1) may be solved provided information about the prestressed state is

available. The two-dimensional prestressed state (plane strain) is described analyt-

ically by a set of two elliptic PDE

[1 + k1 U0
I,I + k2 U0

J,J ] U0
I,II + [2 k3 U0

I,J + 2 k5 U0
J,I ] U0

I,IJ

+ [k7 + k3 U0
I,I + k3 U0

J,J ] U0
I,JJ + [k5 U0

I,J + k3 U0
J,I ] U0

J,II

+ [k3 U0
I,J + k5 U0

J,I ] U0
J,JJ + [k6 + k4 U0

I,I + k4 U0
J,J ] U0

J,JI = 0, (3)

where the indices I and J are equal to I = 1, J = 2 for the first equation of

equilibrium and I = 2, J = 1 for the second one. The constants

k5 = k (µ + ν2 +
3

2
ν3), k6 = k ( λ + µ), k7 = k µ (4)

are dependent on the material properties.

3. Plane strain

The problem (1), (3) is solved by assumption that deformations are small but

finite and the plastic deformations are not allowed. This leads to the idea to solve

Eqs. (1) and (3) making use of a small parameter ε � 1 that has the physical

meaning of small strain. The solution to Eq. (1) is sought in the form of series

U1 =
∞∑

n=1

εn U
(n)
1 , (5)

and to Eq. (3) by the series

U0
K =

∞∑
m=1

εm U
0 (m)
K . (6)
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Here, the small parameters in series (5) and (6) may actually be of the different

order. This case was studied in [20]. The conclusion was that the non-linear effects

of wave motion contain maximum information about the prestressed state provided

the displacements caused by prestress and wave motion are of the same order. This

is a reason why here the same small parameter is used in series (5) and (6).

The prestressed state is described by the solution to a set of equations (3).

This solution is derived making use of the perturbation technique. The series (6)

is introduced into Eq. (3) and following the perturbation procedure, the sets of

equations in terms of series (6) are obtained. The first term is the solution to the

set of two linear elliptic second order PDE

U
0 (1)
I,II + k7 U

0 (1)
I,JJ + k6 U

0 (1)
J,JI = 0, (7)

where I = 1, J = 2 are the indices for the first equation and I = 2, J = 1 for the

second one.

Equations (7) are solved under eight boundary conditions in terms of Kirchhoff

pseudostress tensor

T
0 (1)
11 (0, X2) = T

0 (1)
11 (h, X2) = T

0 (1)
12 (0, X2) = T

0 (1)
12 (h, X2) = 0,

T
0 (1)
22 (X1,±L/2) =

5∑
n=0

wnX
n
1 , T

0 (1)
21 (X1,±L/2) = 0, (8)

where L denotes the length of the specimen (structural element) and wn are con-

stants. These boundary conditions can be expressed on the basis of the theory of

elasticity [18] in terms of displacement.

The second and the subsequent terms in solution (6) are solutions to the sets of
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following equations with known r.h.s.:

U
0 (n)
I,II + k7 U

0 (n)
I,JJ + k6 U

0 (n)
J,JI = F ( U

0 (n−1)
I , U

0 (n−1)
J ), n = 2, 3, ... . (9)

Equations (9) are solved under boundary conditions (8) where the upper index

(1) is changed to (n) and the value of T
0 (n)
22 (X1,±L/2) is equal to zero.

The aim is to solve the problem of NDE of the parameters of the prestressed

state on the basis of wave propagation data. For this purpose, it is convenient to

describe the prestressed state by polynomials

U0
1 = ε P 2,2

1 + ε2 P 5,5
2 , U0

2 = ε P 1,1
3 + ε2 P 5,5

4 , (10)

where P m,n
l =

∑m
p=0

∑n
s=0 ep,s Xp

1 Xs
2 , l = 1, 2, ..., 4, and ep,s is a constant.

This leads to a NDE problem where the coefficients of polynomials may be

considered as the parameters of the prestressed state that must be evaluated.

Substitution of polynomials P 2,2
1 , P 1,1

3 into the linear equations of equilibrium (7)

by boundary conditions (8) gives the analytical polynomial expressions for the terms

U
0(1)
1 and U

0(1)
2 in solution (6). The terms U

0(2)
1 and U

0(2)
2 are determined making

use of the polynomials P 5,5
2 P 5,5

4 and corresponding boundary conditions. The result

is that the prestressed state of the material is determined by the main domain of

the prestress - the component T 0
22 = a + bX1 of the Kirchhoff pseudostress tensor.

The non-linear correction to the prestressed state is considered of the negligible

magnitude.

Consequently, the considered prestressed state corresponds to the plane strain

and it may be considered as a two-parametric situation. It is characterized by the

parameter a (constant part of prestress) and the parameter b (linearly variable part
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of prestress).

4. Counterpropagating waves

These are waves excited simultaneously on the opposite parallel surfaces of the

specimen. They propagate into the depth of the material, reach the opposite bound-

ary, reflect and arrive at the boundary of excitation. It is assumed that in this initial

stage these waves have arbitrary smooth initial profile, the distortion of wave profile

is weak and the shock waves are not generated.

The wave propagation process is described by the solution (5) to the equation of

motion (1) with known variable in space coefficients. The solution is derived making

use of the perturbation technique. The three first terms in series (5) are solutions

to the equations

O(ε) :

U
(1)
1,11 − c−2 U

(1)
1,tt = 0, (11)

O(ε2) :

U
(2)
1,11 − c−2 U

(2)
1,tt = −k1 U

(1)
1,11 U

(1)
1,1 − [k1 U

0(1)
1,11 + k3 U

0(1)
1,22 + k5 U

0(1)
2,12 ] U

(1)
1,1

−[k1 U
0(1)
1,1 + k2 U

0(1)
2,2 ] U

(1)
1,11 , (12)

O(ε3) :

U
(3)
1,11 − c−2 U

(3)
1,tt = −k1 U

(1)
1,11 U

(2)
1,1 − k1 U

(2)
1,11 U

(1)
1,1 − [k1 U

0(1)
1,1 + k2 U

0(1)
2,2 ] U

(2)
1,11

−[k1 U
0(2)
1,1 + k2 U

0(2)
2,2 ] U

(1)
1,11 − [k1 U

0(1)
1,11 + k3 U

0(1)
1,22 + k5 U

0(1)
2,12 ] U

(2)
1,1
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−[k1 U
0(2)
1,11 + k3 U

0(2)
1,22 + k5 U

0(2)
2,12 ] U

(1)
1,1 . (13)

Counterpropagating waves are excited at the boundaries of the specimen at zero

initial conditions

U1(X1, X2, 0) = U1,t(X1, X2, 0) = 0 , (14)

and by boundary conditions

U1,t(0, X2, t) = ε a0 ϕ(t) H(t) , (15)

U1,t(h, X2, t) = ε ah ψ(t) H(t) . (16)

Here H(t) is the Heaviside’s unit step function, and a0 and ah are constants. The

smooth arbitrary initial wave profiles are denoted by functions ϕ(t) and ψ(t) with

max | ϕ(t) | = 1 and max | ψ(t) | = 1.

The wave propagation in the specimen is studied under the assumption that the

properties and the prestressed state of the material are known. From the mathe-

matical point of view equations (11),...,(13) are solved like the second order PDEs

with the known constant coefficients and with the known right-hand sides. The

coordinate X2 is regarded as a parameter. The solution (5) consists of the linear

part (first term) and the corrections (subsequent terms) that describe the influence

of prestress and non-linearity in the process. The advantage of this solution is that

the linear part of it is easily separable and the remainder can be used as a source of

information in the problems of NDE of material properties and the parameters of

its state.

The linear process involving counter-propagation of waves, reflection from the
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opposite surfaces and arrival to the boundaries of excitation in the homogeneous

prestress free specimen is described by the solution

U
(1)
1 (X1, X2, t) = a0 H(ξ)

∫ ξ

0
ϕ(τ)dτ + ah H(η)

∫ η

0
ψ(τ)dτ

− a0 H(θ)
∫ θ

0
ϕ(τ)dτ − ah H(ζ)

∫ ζ

0
ψ(τ)dτ , (17)

ξ = t − X1/c , η = t − h/c + X1/c ,

ζ = t − h/c − X1/c , θ = t − 2 h/c + X1/c ,

to Eq. (11) derived under the initial and boundary conditions

U
(1)
1 (X1, X2, 0) = U

(1)
1,t (X1, X2, 0) = 0 , (18)

U
(1)
1,t (0, X2, t) = a0 ϕ(t) H(t) , (19)

U
(1)
1,t (h, X2, t) = ah ψ(t) H(t) . (20)

The wave-wave, wave-material and wave-prestress interaction, i. e., the non-

linear affect of wave to wave, physical material properties to wave and prestress

to wave is described by the second and the subsequent terms in series (5) as solu-

tions to Eqs. (12), (13). These equations may be expressed in the similar form

U
(n)
1,11(X1, X2, t) − c−2 U

(n)
1,tt(X1, X2, t) =

m∑
j=1

G
(n)
j (X1, X2) F

(n)
j (ϑ

(n)
j ) , (21)

ϑ
(n)
j = t − g

(n)
j (X1) , g

(n)
j (X1) ≥ 0 ,

with known right-hand sides where it is possible to separate the independent vari-

ables X1 and ϑ
(n)
j . Equation (21) is solved under the initial and boundary conditions

U
(n)
1 (X1, X2, 0) = U

(n)
1,t (X1, X2, 0) = 0 , (22)
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U
(n)
1,t (0, X2, t) = U

(n)
1,t (h, X2, t) = 0, n = 2, 3, ... , (23)

making use of the Laplace integral transformation and it has the solution

U
(n) L
1 (X1, X2, p) =

m∑
j=1

{ c

2 p
F

(n) L
j (p) [ P

(n)
j (X1, X2, p)

− e−p h/c (V
(n)
j (X1, X2, p) + W

(n)
j (X1, X2, p))] }, (24)

where

V
(n)
j (X1, X2, p) = ep (X1−h)/c [ − e−p h/c P

(n)
j (0, X2, p) + P

(n)
j (h, X2, p) ], (25)

W
(n)
j (X1, X2, p) = e−p (X1+h)/c [ − ep h/c P

(n)
j (0, X2, p) + P

(n)
j (h, X2, p) ]. (26)

Here p is the transform parameter, and upper index L denotes the Laplace transforms

of corresponding functions.

The initial wave profile determines the function F
(n) L
j (p). Functions G

(n)
j (X1, X2)

and g
(n)
j (X1) in

P
(n)
j (X1, X2, p) = e−p X1/c [ e2p X1/c

∫
e−p(X1/c+g

(n)
j (X1)) G

(n)
j (X1, X2) dX1

−
∫

ep(X1/c−g
(n)
j (X1)) G

(n)
j (X1, X2) dX1 ] (27)

are dependent on the inhomogeneity in material properties.

The solution to Eq. (21)

U
(n)
1 (X1, X2, t) = lim

Y →∞
1

2 π i

∫ α+iY

α−iY
eτ p U

(n) L
1 (X1, X2, p) dp . (28)

valid in time interval

0 ≤ t < 2 h / c. (29)
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is obtained by applying the inverse Laplace transformation to the expression (24).

The outcome, solutions (17) and (30) determine all the terms in series (5) and

this enables us to describe analytically counter-propagation and interaction of one-

dimensional longitudinal waves with smooth arbitrary initial profiles ϕ(t) and ψ(t)

in the inhomogeneously prestressed elastic medium.

5. Interaction of harmonic waves

Solution (5) may be used for description of the simultaneous propagation and

interaction of two counterpropagating longitudinal waves with arbitrary smooth ini-

tial profiles in the non-linear elastic material undergoing arbitrary inhomogeneous

two-dimensional plain strain. In this paper the possibility to use this solution as a

basis for algorithms of NDE techniques of two-parametric prestress field is discussed.

For this purpose, the initial profiles of the excited waves are determined as sine

functions with the same amplitude and frequency. Sine waves are excited on opposite

surfaces of the specimen in terms of particle velocity

U1,t(0, t) = ε a0 sin ωt H(t) , (30)

U1,t(h, t) = ε ah sin ωt H(t) , (31)

where ω denotes the frequency.

The evolution of wave profile is recorded on the same surfaces in terms of stress.

Expression for the wave induced stress has the form

T11 = ε T
(1)
11 + ε2 T

(2)
11 + ...,
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T
(1)
11 = (λ + 2µ) U

(1)
1,1 ,

T
(2)
11 = (λ + 2µ) U

(2)
1,1 + [λ/2 + µ + 3 (ν1 + ν2 + ν3)] U

(1)2
1,1 . (32)

The linear part of stress T
(1)
11 is a function of displacement U

(1)
1,1 and specifies

the stress caused by waves in the prestress free specimen. The term T
(2)
11 depends

in addition on displacement U
(2)
1,1 that takes the non-linearity in material properties

and the influence of the prestress into account. Consequently, provided the physi-

cal properties of the material (functions U
(1)
1,1 and T

(1)
11 ) are known, the diagnostics

problem of the prestressed state turns to extraction of the stress component T
(2)
11

from the recorded data and to the analysis of the function U
(2)
1,1 .

The analytical expression for U
(2)
1,1 is derived making use of the symbolic compu-

tational software Maple 9 and it has the form

U
(2)
1,1 = A

(2)
0 +

m1∑
j=1

A
(2)
1j sin ωϑj +

m2∑
j=1

A
(2)
2j cos ωϑj

+
m3∑
j=1

A
(2)
3j sin 2ωϑj +

m4∑
j=1

A
(2)
4j cos 2ωϑj , (33)

where ϑj = t + c1j h/c + c2j X1/c , and c1j, c2j , m1, ..., m4 are constants. The

expression (33) consists of nonperiodic term A
(2)
0 and periodic terms with arguments

ωϑj and 2ωϑj . Analytical expressions for nonperiodic term A
(2)
0 and amplitudes

A
(2)
ij , i = 1, ..., 4 are too cumbersome to be presented here.

From the physical point of view, function U
(2)
1,1 describes the main part of non-

linear effects including the non-periodic term A
(2)
0 , evolution of the second harmonic

(fourth and fifth term in Eq. (33)), influence of the prestress on the evolution of the

first harmonic (second and third term in Eq. (33)) and the non-linear interaction

13
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between the first two harmonics (terms with frequencies ω = 2ω − ω, 2ω = ω + ω in

sums of Eq. (33)). Influence of the linear and non-linear physical properties on the

wave propagation is involved in all terms of Eq. (33). The evolution of the third and

the higher harmonics are neglected here as higher order small quantities.

6. Boundary oscillations versus prestress

There is an analytical solution (5) at our disposal which describes non-linear

counter-propagation, reflection and interaction of longitudinal waves with arbitrary

smooth initial profiles in the physically non-linear elastic material (specimen) sub-

jected to plane prestrain. For applications it is assumed that the initial wave profiles

are determined by sine functions. Harmonic waves are excited in terms of particle

velocity (Eqs. (30) and (31)) and recorded in terms of wave induced stress (Eq.

(32)). Separation of overlapping elastic waves from measured data is described in

[21]. Information about the prestress contains in the higher order terms of stress and

the main domain of this information is included into the function U
(2)
1,1 (Eq. (33)),

i. e., into non-linear effects of wave motion.

Evolution of non-linear effects in duralumin Al 7475 is illustrated in Fig. 2

on the basis of numerical simulation of Eq. (33). The material has the density

ρ0 = 2800 kg/m3, Lamè constants λ = 57 GPa, µ = 27 GPa, the third order

elastic constants ν1 = −115 GPa, ν2 = −132.5 GPa, ν3 = −9.2 GPa [22], and

the thickness of the sample h = 0.1 m. Strain is characterized by the dimensionless

constant ε = 5 ∗ 10−4 and the excitation frequency equals to ω = 1.1868∗10(6)rad/s.
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Initial amplitudes of harmonic waves are chosen by the values of constants a0 and ah

equal to a0 = −ah = c m/s. In the discussions below the function εU
(2)
1,1 is plotted in

the vertical axis of figures. This function characterizes the ratio of the magnitude of

the amplitude of non-linear effects with respect to the amplitude of the linear wave

motion in the considered special case.

The analytical solution (5) permits to investigate the influence of the value of

prestress on the wave motion in the whole X1 − t plane. In experiments it is more

convenient to record the oscillations caused by wave motion on the boundaries of

the sample (structural element).

6.1. Boundary oscillation profile distortion

The non-linear part of boundary oscillations evoked by simultaneous propagation

of two harmonic waves in duralumin with the physical properties described above

is studied. Several special cases of two-parametric prestress state characterized by

the component T 0
22 = a + bX1 of the Kirchhoff pseudostress tensor are considered.

The main domain of non-linear boundary oscillations in the prestress free speci-

men (T 0
22 = 0) is illustrated in Fig. 3. Oscillations on both boundaries X1 = 0 and

X1 = h coincide. It is possible to distinguish two intervals on time axis - the interval

of propagation 0 ≤ τ < 1 and the interval of interaction 1 ≤ τ < 2. Here τ denotes

the dimensionless time (τ = t h/c).

Oscillations in the interval of propagation are plotted in Fig. 4.

Essential is that the non-linear wave interaction amplifies the boundary oscilla-
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tions in the interval of interaction in comparison with the oscillations in the interval

of propagation about a hundred times. The main physical reason to this effect is the

evolution of the second harmonic from the nonentity on the boundary of excitation

to the remarkable value on the opposite boundary. This phenomenon facilitates the

usage of non-linear effects of wave interaction in NDE of material properties and

states.

The non-linear part of boundary oscillations in the prestress free material is char-

acterized by constant amplitudes which are different in the interval of propagation

and interaction. Oscillation amplitudes are sensitive to the physical properties of

the material (density, linear and non-linear elastic constants) and less sensitive to

the value of the excitation frequency.

The homogeneous prestress (T 0
22 = a) modulates the boundary oscillations (Figs.

5 and 6). The shape and the depth of modulation carry information about the sign

and the value of prestress. The oscillation profiles on both boundaries coincide.

The inhomogeneous prestress (T 0
22 = a+ bX1) modulates oscillations on different

boundaries in a different way (see Fig. 7). Interesting is that in the special case

of triangular stress distribution the boundary oscillation is not modulated on the

boundary where the value of the prestress T 0
22 is equal to zero only in the interval

0 ≤ τ < 1. In the case of pure bending when the stress T 0
22 has the equal value but

the opposite sign on opposite boundaries the boundary oscillation profiles coincide

but have a phase shift.

The analysis of boundary oscillations evoked by non-linear effects of two sine

wave simultaneous propagation in the specimen leads to the conclusion that it is

16



Acc
ep

te
d m

an
usc

rip
t 

easy to distinguish qualitatively:

- the prestress free specimen. Boundary oscillations have constant amplitudes in

both time intervals,

- specimen with homogeneous prestress. Boundary oscillations are modulated and

oscillations on both boundaries coincide,

- specimen undergoing pure bending. Modulated boundary oscillations on both

boundaries coincide with phase shift,

- specimen with triangular prestress distribution. The boundary oscillation is not

modulated on the boundary where the value of the prestress is equal to zero only in

the interval 0 ≤ τ < 1,

- specimen undergoing arbitrary two-parametric prestress. The modulated bound-

ary oscillations on both boundaries do not coincide.

6.2. Boundary oscillation amplitude variation

The depth of modulation of non-linear boundary oscillations caused by counter-

propagation of two sine waves in the specimen is sensitive to the value of prestress.

This is studied on the basis of the following model problem. The geometry and

the physical properties (density, elastic constants of the second and the third order)

of the specimen are described above. The specimen is subjected to two-parametric

prestressed state that corresponds to the pure bending with tension or compression

characterized by the Kirchhoff pseudostress tensor component T 0
22 = a + bX1.

Making use the analytical solution (33) the plots boundary oscillation amplitudes
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at two instants τ1 and τ2 versus prestress parameters a and b for the specimen under

investigation are composed (Fig. 8). The values of instants τ1 and τ2 are chosen to

correspond to two first local maxima of boundary oscillation amplitudes in prestress

free material. The values of oscillation amplitudes at the instants τ1 and τ2 are fixed

on both boundaries.

The remarkable sensitivity of the value of the boundary oscillation amplitude to

the prestress parameters leads to the theoretical possibility to evaluate the prestress

parameters on the basis of the boundary oscillation amplitude variation data.

It is assumed that the boundary oscillation profiles on opposite boundaries are

recorded and plotted in the interval of interaction for the real specimen (Fig. 7)

and the Fig. 8 corresponds to the real specimen also. The calculated values of the

differences of fixed amplitudes on opposite boundaries at the instants τ1 and τ2 in

Fig. 8 enable to determine two possible values of the parameter b. The parameter a

is determined in Fig. 8 making use of the absolute value of the oscillation amplitude

on one of the boundaries at the instant τ1 or τ2. The other free absolute values of

the oscillation amplitude may be used for verification of the obtained results.

8. Conclusions

In order to describe inhomogeneity of materials (including also inhomogeneous

prestress), more parameters are needed compared to the homogeneous case. Conse-

quently, the ultrasonic NDE of inhomogeneous material properties needs additional

information for determining these parameters. One possible way to enhance the
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efficiency of NDE techniques is to use the non-linear effects that accompany the

multi-wave propagation and interaction in the material (structural element).

In this paper, the counter-propagation of sine waves in physically non-linear

elastic material (structural element) subjected to the two-parametric prestress state

is studied theoretically. The non-linear effects of boundary oscillations are clarified.

They contain additional information which is profitable by composing algorithms for

nondestructive characterization of the two-parametric inhomogeneous prestressed

state of the specimen.

From the practical point of view the proposed algorithms make use besides the

acoustoelastic effect - dependence of the wave phase velocity on the prestress also

on the nonlinear effects of wave propagation and interaction that leads in applica-

tions to the necessity to modify the existing nondestructive testing equipment.
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Figure captions

Fig. 1. Loading scheme of the specimen.

Fig. 2. Evolution of non-linear effects that accompany counter-propagation of har-

monic waves in non-linear elastic material.

Fig. 3. Main domain of non-linear boundary oscillations in prestress free material.

Fig. 4. Non-linear oscillations on the boundaries of the prestress free material in

the interval 0 ≤ τ < 1.

Fig. 5. Effect of homogeneous prestress on non-linear boundary oscillations in the

interaction interval.

Fig. 6. Non-linear boundary oscillations in the interval 0 ≤ τ < 1 of the homoge-

neously prestressed material.

Fig. 7. Modulation of boundary oscillations by inhomogeneous prestress (solid line

- X1 = 0, dashed line - X1 = h).

Fig. 8. Boundary oscillation amplitudes at instants τ1 and τ2 versus prestress pa-

rameters a and b.
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Figure 7 
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Figure 8 


