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Application of the Krylov-Bogoliubov-Mitropolsky method to

weakly damped strongly nonlinear planar hamiltonian

systems

Serge Bruno Yamgoué and Timoléon Crépin Kofané

Laboratoire de Mécanique, Département de Physique, Faculté de Sciences,

Université de Yaoundé I, B.P. 812 Yaoundé Cameroun

Abstract

In this paper, an analytical approximation of damped oscillations of some strongly nonlinear,

planar hamiltonian systems is considered. To apply the Krylov-Bogoliubov-Mitropolsky method

in this strongly nonlinear case, we mainly provide the formal and exact solutions of the homoge-

neous part of the variational equations with periodic coefficients resulting from the hamiltonian

systems. It is shown that these are simply expressed in terms of the partial derivatives of the

solutions, written in action-angle variables, of the hamiltonian systems. Two examples, includ-

ing a nonlinear harmonic oscillator and the Morse oscillator, are presented to illustrate this

extension of the method. The approximate first order solution obtained in each case is observed

to be quite satisfactory.
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1 Introduction

Oscillations are ubiquitous in all fields of fundamental and applied sciences. The modeling of the

involved phenomena leads very often to some ordinary differential equations (ODEs) that, in most

of the cases, are nonlinear. Solving nonlinear ODEs is thus of great importance for gaining insights

into real-world or engineering problems. Unfortunately, one has long been led to observe that, in

general, nonlinearity precludes exact analytical solutions to ODEs. In this context some useful

perturbation methods, including the method of multiple scales (MMS), the Lindstedt-Poincaré (LP)

method and the Krylov-Bogoliubov-Mitropolsky (KBM) method [1], have been developed to provide

approximate analytical solutions for nonlinear ODEs. But these classical perturbation methods apply

only to weakly nonlinear problems, i.e., those problems in which (i) there is a linear part and (ii)

the magnitude of the nonlinear part is small compared to that of the linear one. This appears to be

too restrictive for the nonlinear problems that are currently encountered in various fields.

Therefore, several new approximate methods that overcome one and/or both of the above-

mentioned limitations of the classical perturbation methods have been proposed in the literature

in recent years. For instance, Liao [2] has described a nonlinear analytical technique which does

not require a small parameter. The range of applicability of the LP method has enormously been

improved by the technique of expansion of constant [3]. Amore and Aranda [4] have also combined

the LP method with the linear delta expansion to develop another interesting approximate method.

For systems undergoing symmetric restoring forces, the linearized harmonic balance technique [5, 6]

yields very accurate solution.

We remark that these developments are mainly focused to the determination of analytical ap-

proximations to periodic or limit-cycle solutions of oscillator equations [5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16]. Comparatively, little attention is granted to the determination of approximate solutions

to autonomous damped equations. The few recent works (to our knowledge) in which analytical

approximations to damped nonlinear oscillator equations are explicitly considered are by Liao [17],

and Chatterjee and collaborators [18, 19, 20]. As a contribution to this effort, we have shown in

a previous paper [21] how to merge the idea of expansion of constant [3] and the KBM method to

derive better accurate slow flows for damped single degree of freedom oscillators. This contribution

is continued in the present paper in which, as in the subharmonic Melnikov method [22], we consider

specifically weakly perturbed planar hamiltonian systems. Our motivation stems from the simple

observation that, for some systems not directly described by polynomial equations (e.g., the Morse
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oscillator considered herein) as assumed in existing works, the application of the available methods

might not enable to obtain fully analytical approximate solutions; or would require at least as much

work as the direct approach presented here to give the same degree of accuracy.

The remaining part of this paper is organized as follows. In Sec. 2, the applicability of the standard

KBM method to strongly nonlinear planar oscillator is formally demonstrated by combining it with

the basic ideas of the subharmonic Melnikov method. Then in Sec. 3, two examples, including a

damped nonlinear harmonic oscillator and the Morse oscillator, are provided. We end our work in

Sec. 4 by some remarks.

2 Formalism

We consider systems of the general form

Ẋ = JDH(X) + εh(X), X =

⎛
⎝ x

y

⎞
⎠ ∈ R2, (2.1)

where 0 < ε � 1, H : R2 → R and h : R2 → R2 are sufficiently smooth. DH and J are respectively

a column vector and a square matrix defined as

DH =

⎛
⎝ ∂H

∂x

∂H
∂y

⎞
⎠ and J =

⎛
⎝ 0 1

−1 0

⎞
⎠ . (2.2)

When ε = 0, Eq.(2.1) becomes a planar hamiltonian system with hamiltonian function H(X). We

assume for this hamiltonian system that in some open set in R2 there exists a fixed point of cen-

ter type, Xc, surrounded by a one-parameter family of periodic orbits. We also assume that the

corresponding solutions can be obtained analytically and expressed as functions of two independent

variables, X = X(I, φ), such that X(I, φ + 2π) = X(I, φ). Here, I is a time-independent parameter

(i.e., İ = 0) that determines the amplitude of oscillations for a given periodic orbit. The variable φ

corresponds to the phase of oscillations. It varies linearly in time: φ = Ω(I)(t − t0), with Ω(I) the

angular frequency of motion and t0 the initial time.

We remark that in the system coordinate defined by (I, φ), which we assume without loss of

generality to be the well-known action-angle coordinate system [22], the hamiltonian is a function of

I only, and that the open set mentioned above maps to an open set of R \ {0} in which this latter

function is strictly monotonic, i.e., H ′(I) �= 0. We emphasize however that a similar treatment can

be extended even when I is not an action variable.
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Several methods exist for the determination of approximate solutions to equations of the form

(2.1) when the unperturbed system (ε = 0) is linear. However, we are concerned in the present

study with the more general situation where the unperturbed system may be strongly nonlinear.

We tackle the strong nonlinearity in an approach similar to that of Das and Chatterjee [19]. Here,

however, instead of the MMS, we find that the KBM method is most suited for adaptation for

strongly nonlinear systems. This method consists in expressing the solution X(t) of Eq.(2.1) as a

power series of the small parameter ε:

X(t) =

∞∑
n=0

εnXn(I, φ), I = I(t), φ = φ(t). (2.3)

The first coefficient of the series (2.3), X0(I, φ), is chosen to be the solution of the unperturbed

hamiltonian system. The others coefficients, Xk(I, φ), k ≥ 1, are unknown functions to be deter-

mined. In addition to the series (2.3), one also assumes in the KBM method that the time evolutions

of the action and angle variables are respectively solutions of the following ODEs

İ = ξ(I) =
∞∑

n=0

εnξn(I), φ̇ = Ωε(I) =
∞∑

n=0

εnΩn(I) (2.4)

where the coefficients of both series are also unknown except ξ0(I) = 0 and Ω0(I) = Ω(I). Notice that

the approximation (2.3) mainly plays a role as a transformation from (2.4) to (2.1). To obtain the

coefficients Xk(I, φ), ξk(I) and Ωk(I) for k ≥ 1, one expands Eq.(2.1) in powers of ε after inserting

Eq.(2.3) and Eq.(2.4) in it. Then, by equating coefficients of like powers of ε in the resulting equation,

one is led to solve a sequence of linear ODEs with periodic coefficients of the form

∂

∂φ
Xk(I, φ) = A(I, φ)Xk(I, φ) + Bk(I, φ), k ≥ 1, (2.5)

where A(I, φ) = 1
Ω(I)

JD2H(X0(I, φ)); D2H(X0(I, φ)) being the Hessian matrix of the hamiltonian

function H evaluated at the solution X0(I, φ) of the unperturbed system and Bk(I, φ) is a R2 column

vector whose components depend on Xj(I, φ), ξj(I) and Ωj(I), j = 0, · · · , k − 1. We remark that

B1(I, φ) is necessarily 2π-periodic with respect to φ and that if Xj(I, φ), j = 2, · · · , k − 1 are all

periodic, so will be Bk(I, φ). From the linear theory of ordinary differential equations, the general

solution of Eq.(2.5), assuming the initial condition Xk(I, φ = φ0) = Xφ0

k = (x0
k, y

0
k)

T
, is formally

given by [23]

Xk(I, φ) = K(I, φ)K(I, φ0)
−1Xφ0

k + K(I, φ)

∫ φ

φ0

K(I, ϕ)−1Bk(I, ϕ)dϕ. (2.6)
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Here, K(I, φ) is the fundamental matrix of Eq.(2.5) with Bk ≡ 0, i.e., a matrix whose columns

comprise the linearly independent solutions of that equation for Bk ≡ 0 (homogeneous system);

and K(I, φ)−1 denotes its inverse. On the contrary of linear systems with constant matrix, the

determination of the fundamental matrix is not a trivial matter when the system’s matrix is a

function of the independent variable. The case where the given set of linear ODEs derives from an

expansion about the exact solution of a strongly nonlinear hamiltonian system, such as Eq.(2.5), is

particular. We provide here the systematic expression of the fundamental matrix for this case. It is

very easy to verify (see Appendix A) that the two vectors

V1(I, φ) =
∂X0

∂φ
(I, φ) and V2(I, φ) =

∂X0

∂I
(I, φ) +

Ω′(I)

Ω(I)
φV1(I, φ) (2.7)

are solutions of the homogeneous part of Eq.(2.5). Moreover, as also shown in Appendix A, their

determinant is the ratio of the derivative H ′(I) of the Hamiltonian to the angular frequency Ω(I);

which are all nonzero for periodic orbits. They are thus linearly independent, and so, K(I, φ) =

[V1(I, φ), V2(I, φ)]. We also note that these expressions of V1(I, φ) and V2(I, φ) are valid for linear

systems for which Ω′(I) = 0. The integral in Eq.(2.6) can now be carried out to get the solution

of the full equation Eq.(2.5). This solution however still depends on ξk(I) and Ωk(I) which remain

undetermined. To find their expressions, we impose the usual solvability condition, that is, the

condition for Xk(I, φ) to be bounded (in fact, 2π-periodic) in φ. Assuming that Bk(I, φ) is periodic

in φ, it is straightforward to show that

Xk(I, φ + 2π) − Xk(I, φ) = λ1V1(I, φ) + λ2V2(I, φ), (2.8)

with

λ1 = 2π
Ω′(I)

Ω(I)

(
κ(φ0) −

∫ φ0

fk(2)(I, φ)dφ

)
+ f̄k(1) − π

Ω′(I)

Ω(I)
f̄k(2), λ2 = f̄k(2); (2.9)

where κ(φ0) is the second component of the vector K(I, φ0)
−1Xφ0

k while the overbar (̄) denotes an

average with respect to φ, and

fk(1)(I, φ) = Bk(I, φ) Λ
∂Xk

∂I
(I, φ) and fk(2)(I, φ) =

∂Xk

∂φ
(I, φ) Λ Bk(I, φ). (2.10)

The symbol Λ represents here the usual cross-product of two vectors, defined for A = [a1, a2]
T and

B = [b1, b2]
T as AΛB = a1b2 − a2b1. By the linear independence of V1 and V2, the left hand side

of Eq.(2.8) vanishes if and only if both λ1 and λ2 are zero. This forms a system of two algebraic

equations which determine ξk(I) and Ωk(I). Note that they depend on the initial condition Xφ0

k
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which has to be fixed explicitly in order to eliminate unnecessary constants in the final solution

Eq.(2.1). Indeed, the solution of a first order planar system of ODEs should mathematically contains

exactly two arbitrary constants. These will be provided in our case by the integration of Eq.(2.4).

Our choice for the initial condition is: φ0 = 0 and X0
k = 0, i.e., Xk(I, 0) = 0; other choices are in

principle valid.

The approximate solution of the autonomous equation (2.1) is finally given by the truncation at

some order, say N , of the series in (2.3), with I(t) and φ(t) being the solutions of the truncations at

the order N + 1 (in a strict sense [1]) of the series in (2.4).

3 Examples

In this section, we provide an illustration of the application of the extended KBM method presented

above to the determination of approximate solutions to strongly nonlinear planar hamiltonian systems

perturbed by viscous damping. We begin with a system which is sufficiently simple for the analytical

computations to be achieved quite easily. We then consider the damped Morse oscillator as the

second example. In both examples, the center type point for the unperturbed system is the origin.

For convenience, we assume that the parameter I is positive and such that limI→0 X(I, φ) = Xc = 0.

From the unperturbed system, we also determine the hamiltonian function H such that H(Xc) =

H(0) = 0.

3.1 A nonlinear harmonic oscillator

We consider the system

ẋ =
(
x2 + y2 + 1

)
y, (3.1a)

ẏ = − (
x2 + y2 + 1

)
x − εδy (3.1b)

which is similar to but different from an example given by Yagasaki [22] to illustrate his results on

the subharmonic Melnikov’s theory in the degenerate resonance case. For ε = 0, this system admits

the Hamiltonian

H(x, y) =
1

4
(x2 + y2 + 1)2. (3.2)

6



Acc
ep

te
d m

an
usc

rip
t 

The corresponding unperturbed periodic orbits are represented with trigonometric functions as in

the case of a linear oscillator:

x(t) = I sin Ωt, y(t) = I cos Ωt. (3.3)

Here, however, the pulsation Ω of the motion is a function of the oscillation’s amplitude I:

Ω ≡ Ω(I) = I2 + 1. (3.4)

For our theory, it is important to write down the unperturbed solution as a 2π-periodic function

of φ. In doing so for (3.3), we choose the simplest parametrization of the amplitude (a possible

parametrization is via the action variable ρ: I =
√

2ρ)

x(I, φ) = I sin φ, y(I, φ) = I cos φ. (3.5)

Inserting these expressions into Eq.(3.2), one gets

H(I) =
1

4
(I2 + 1)2 (3.6a)

whose derivative

H ′(I) = I(I2 + 1) (3.6b)

is monotonic for all I > 0. In the following, we will constantly drop the argument of Ω in view of

simplifying the notation (i.e., we write Ω instead of Ω(I)).

Now, we seek an approximate solution to the perturbed system that includes up to the second

order in the perturbation parameter ε. So we express xε(t) and yε(t) as

xε = I sin φ +

3∑
i=1

εixi(I, φ) + O(ε4), (3.7a)

yε = I cos φ +

3∑
i=1

εiyi(I, φ) + O(ε4); (3.7b)

with

İ =

3∑
i=1

εiξi(I) + O(ε4), (3.8a)

φ̇ = Ω(I) +
3∑

i=1

εiΩi(I) + O(ε4). (3.8b)

Note that Eqs.(3.7) include terms of order O(ε3) although we are looking for solutions to the order

O(ε2) only. These terms are necessary for the determination of ξ3 and Ω3 which, as already stated,
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are required in a rigorous sense for a solution at the order O(ε2). Substituting Eqs.(3.7)-(3.8) into

Eqs.(3.1), and expanding and collecting terms of like powers of ε, we find that the matrix A and the

first two forcing terms Bi (i=1,2) in Eq.(2.5) are respectively given by

A(I, φ) =
1

Ω

⎛
⎝ I2 sin(2φ) Ω + 2I2 cos2 φ

−Ω − 2I2 sin2 φ −I2 sin(2φ)

⎞
⎠ ; (3.9)

B1(I, φ) =
1

Ω

⎛
⎝ Ω1I cos φ − ξ1 sin φ

Ω1I sin φ − (ξ1 + δI) sin φ

⎞
⎠ ; (3.10)

and

B2(I, φ) =
1

Ω

⎛
⎝ B

(1)
2

B
(2)
2

⎞
⎠ (3.11)

with

B
(1)
2 = (x2

1 + y2
1)I cos φ + 2Ix1y1 sin φ + 2Iy2

1 cos φ − ξ2 sin φ − Ω2I cos φ − ξ1
∂x1

∂I
− Ω1

∂x1

∂φ
,

B
(2)
2 = ξ1

∂y1

∂I
− (x2

1 + y2
1)I sin φ − 2Ix1y1 cos φ − 2Iy2

1 sin φ − δy1 − ξ2 cos φ − Ω2I sin φ − Ω1
∂y1

∂φ
.

The fundamental matrix K is also given by

K(I, φ) =
1

Ω

⎛
⎝ Ω cos φ Ω sin φ + 2I2φ cosφ

−Ω sin φ Ω cos φ − 2I2φ sin φ

⎞
⎠ . (3.12)

Performing the algebra involved in the integral of Eq.(2.6) with these expressions of K and B1 in one

hand, and then in the elimination of secular terms in X1 = (x1, y1)
T , we find that, corresponding to

Eq.(2.9),

λ
(1)
1 = −2πI

Ω2
(Ω1Ω + 2πIξ1 + πδI2)

λ
(1)
2 = −π

Ω
(2ξ1 + δI).

Solving the equations λ
(1)
1 = λ

(1)
2 = 0 for ξ1 and Ω1, we obtain

ξ1 = −δ

2
I, Ω1 = 0. (3.13)

Then, the expression of the first order correction is found to be

X1(I, φ) = − δI

2Ω2

⎛
⎝ I2 cos φ sin2 φ

[1 + I2 cos2 φ] sin φ

⎞
⎠ . (3.14)
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Repeating the same operations for K and B2, we also obtain

λ
(2)
1 = − πI

8Ω3
(Ω2(48I2 + 16 + 16I6 + 48I4) + δ2(6I2 − 5I4 + 2) + πξ2I(64I2 + 32 + 32I4)),

λ
(2)
2 = −2πξ2,

from which

ξ2 = 0, Ω2 =
δ2

16Ω3
(5I4 − 6I2 − 2). (3.15)

Whence,

X2(I, φ) =
δ2I

16Ω4

⎛
⎝ [2 + 8I2 + 4I4 − (5I4 + 2I2) cos2 φ − 4I4 cos4 φ] sin φ

I2[4I2 cos2 φ + 7I2 + 2] cos φ sin2 φ

⎞
⎠ . (3.16)

The final step which involves B3 (whose cumbersome expression is omitted here) results to

ξ3 = − δ3I3

32Ω4
(1 + 10I2), Ω3 = 0. (3.17)

Recapitulating, the solution of Eqs.(3.1) to the second order in the perturbation parameter ε is given

by

Xε(t) =

⎛
⎝ I sin φ(t)

I cos φ(t)

⎞
⎠ + εX1(I(t), φ(t)) + ε2X2(I(t), φ(t)) (3.18)

where X1 and X2 are given respectively by Eq.(3.14) and Eq.(3.16) (in which Ω ≡ Ω(I)); I(t) and

φ(t) being the solutions of

İ = −δ

2
I − δ3I3

32(1 + I2)4
(1 + 10I2), (3.19a)

φ̇ = 1 + I2 +
δ2(5I4 − 6I2 − 2)

16(1 + I2)3
. (3.19b)

This solution is analytic only if the second term in the right hand side of Eq.(3.19a) is neglected. In

this case, the solutions of Eqs.(3.19) are given by

I(t) = I0e
− εδ

2
(t−t0), (3.20a)

φ(t) = G(I(t)) − G(I0) + φ0; (3.20b)

G(u) = −u2

εδ
− 9εδ

32(1 + u2)2
− εδ

8
log(u2 + 1) −

(
2

εδ
− εδ

4

)
log(|u|) +

7εδ

16(u2 + 1)
.

In Fig. 1, we compare the wave form and the associated trajectory corresponding to the approximate

solution of Eq.(3.18) with Eq.(3.20) to the result of direct numerical integration using the fourth order
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Runge-Kutta algorithm. The initial conditions have been chosen sufficiently large to ensure that the

nonlinearity of the system acts. A very good agreement is observed. It is interesting to remark that

such a good result was obtained in [21] (for a different system) starting from an initial approximation

which is not the exact solution of the unperturbed hamiltonian system. Both the approach of

[21] and the present one exploit the KBM method which essentially performs a transformation to

action-angle. One might then expect to still obtain good result by the present approach with an

initial approximation different from the exact solution of the hamiltonian system. We recall however

that the determination of the linearly independent solutions of the homogeneous part of Eq.(2.5) is

crucial for the present procedure. At present, our ability to determine these solutions heavily relies

on the fact that the initial approximation is the exact solution of the unperturbed system which

should furthermore be hamiltonian. Further investigations are therefore necessary to ascertain the

applicability of our procedure with different initial approximations.

3.2 The Morse oscillator

In the form of a system of first order ODEs, the equations of the damped but undriven Morse

oscillator we now consider reads

ẋ = y, (3.21a)

ẏ = e−2x − e−x − εδy. (3.21b)

Note that the corresponding hamiltonian function is defined as

H(x, y) =
1

2

[
y2 +

(
e−x − 1

)2
]
. (3.22)

In terms of (I, φ), the solutions of Eq.(3.21) with ε = 0 are given by

x0(I, φ) = ln

(
1 −√

1 − Ω2 cos φ

Ω2

)
, (3.23a)

y0(I, φ) =
Ω
√

1 − Ω2 sin φ

1 −√
1 − Ω2 cos φ

; (3.23b)

where

Ω ≡ Ω(I) = 1 − I (3.24)

is the angular pulsation of the motion. Inserting Eq.(3.23) into Eq.(3.22), one gets

H(I) = I − I2

2
; (3.25a)

10
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and

H ′(I) = Ω(I) (3.25b)

is monotonic for 0 ≤ I < 1.

Letting f(x) = e−2x−e−x, the matrix of the linearized system, A, and the two first inhomogeneous

vectors B1 = (B
(1)
1 , B

(2)
1 )T and B2 = (B

(1)
2 , B

(2)
2 )T for this example can be expressed in terms of the

solutions of the hamiltonian system as

A =

⎛
⎝ 0 1

f ′(x0) 0

⎞
⎠ ;

B
(1)
1 = − 1

Ω

(
ξ1

∂x0

∂I
+ Ω1

∂x0

∂φ

)
;

B
(2)
1 = − 1

Ω

(
ξ1

∂y0

∂I
+ Ω1

∂y0

∂φ
+ δy0

)
;

B
(1)
2 = − 1

Ω

(
ξ2

∂x0

∂I
+ ξ1

∂x1

∂I
+ Ω2

∂x0

∂φ
+ Ω1

∂x1

∂φ

)
;

B
(2)
2 = − 1

Ω

(
ξ2

∂y0

∂I
+ ξ1

∂y1

∂I
+ Ω2

∂y0

∂φ
+ Ω1

∂y1

∂φ
+ δy1 − 1

2
f ′′(x0)x

2
1

)
.

Then, upon evaluating the integrals defining λ
(1)
1 and λ

(1)
2 and subsequently solving for ξ1 and Ω1,

we obtain (note that δ is absorbed into ε)

ξ1 = −I, Ω1 = 0. (3.26)

The formal expression of the first correcting term in the approximate solution to the damped oscil-

lator, X1, is given by

X1(I, φ) = Zφ(I, φ)
∂X0

∂φ
(I, φ) + ZI(I, φ)

∂X0

∂I
(I, φ); (3.27)

where

Zφ(I, φ) =

∫ φ

0

f1(I, θ)dθ +
Ω′(I)

Ω(I)
φ

∫ φ

0

f2(I, θ)dθ − Ω′(I)

Ω(I)

∫ φ

0

θf2(I, θ)dθ (3.28a)

ZI(I, φ) =

∫ φ

0

f2(I, θ)dθ; (3.28b)

with

f1(I, θ) = y0(I, θ)
∂x0

∂I
(I, θ), f2(I, θ) = −

(
I + y0(I, θ)

∂x0

∂θ
(I, θ)

)
. (3.29)

It turns out here that the last integral in Eq.(3.28a) cannot be computed analytically unless we

use the Fourier series expansion with respect to θ of f2(I, θ). We employ the method of residue to

11



Acc
ep

te
d m

an
usc

rip
t 

compute the coefficients of the Fourier expansions of f1(I, θ) and f2(I, θ) and find that

f1(I, θ) =
∞∑

n=1

Sn(I) sin(nθ), f2(I, θ) =
∞∑

n=1

Cn(I) cos(nθ) (3.30)

with

Sn(I) =
1 − n + (2 + n)I − I2

I(2 − I)

(
I

2 − I

)n
2

, Cn(I) = (n − 1 − nI)

(
I

2 − I

)n
2

.

Then

Zφ(I, φ) =

∞∑
n=1

(
nΩ(I)Sn(I) + Ω′(I)Cn(I)

n2Ω(I)

)
(1 − cos(nφ)), (3.31a)

ZI(I, φ) =

∞∑
n=1

Cn(I)

n
sin(nφ). (3.31b)

Using arguments based on the parities of the components of X0(I, φ) and X1(I, φ) with respect

to φ, we find that ξ2 = 0. But the fact that the analytic expression of X1(I, φ) involves Fourier

series renders the algebra involved in the determination of Ω2 analytically intractable. We are then

compelled to neglect this term and, furthermore, to limit ourselves at this level of the approximation

for the present example. Therefore, the action and the angle vary approximately as

I(t) = I0e
−εδ(t−t0), φ(t) = φ0 + t − t0 +

I0

εδ

(
e−εδ(t−t0) − 1

)
; (3.32)

and the approximate solution Xε(t) = X0(t) + εδX1(t) is analytic. As can be observed in Fig. 2, a

satisfactory agreement is noticed between this approximation and the direct numerical solution.

4 Concluding remarks

We have been concerned in this paper by the analytical approximation of solutions of weakly per-

turbed planar hamiltonian systems. For this purpose, we have first provided formal arguments by

which the standard KBM method can be applied to such systems. Our primary motivation in this

paper has been about strictly dissipative perturbations. Thus the perturbation considered in our

examples consists only of viscous damping. However the method can well be applied to conservative

perturbations in view of approximating periodic solutions of nonlinear oscillators. In this case, and

for hamiltonian systems whose solutions involve jacobian elliptic functions, the method is expected

to provide equivalent results to those obtained by the elliptic Lindstedt-Poincaré method [15, 16].

For our examples, the comparison of the obtained approximate analytical solutions to the direct
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numerical solutions show quite good agreements. This agreement results from two ingredients: the

initiation of the approximation from a solution which is valid in a larger region (the exact solu-

tion of the unperturbed hamiltonian system) and the strength of the KBM method in handling the

modulation of the amplitude parameter.
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A Appendix A

We show here, assuming X0(I, φ) = [x0(I, φ), y0(I, φ)]T is a solution of Eq.(2.1) with ε = 0, that

V1(I, φ) and V2(I, φ) defined in Eq.(2.7) are linearly independent solutions of the variational equation

(2.5) with Bk ≡ 0. The arguments of the various functions are omitted to simplify the notation in

what follows.

X0 being an exact solution of the unperturbed (hamiltonian) equation, we have

⎛
⎝ ∂H

∂y

−∂H
∂x

⎞
⎠ = Ẋ0

= φ̇
∂X0

∂φ
+ İ

∂X0

∂I

= Ω
∂X0

∂φ
; (A.1)

since φ̇ = Ω and İ = 0 for the hamiltonian system. Thus

V1 =
∂X0

∂φ

=
1

Ω

⎛
⎝ ∂H

∂y

−∂H
∂x

⎞
⎠ . (A.2)

Differentiating (A.2) with respect to φ, one gets

∂V1

∂φ
=

1

Ω

⎛
⎝ ∂2H

∂x∂y
∂x0

∂φ
+ ∂2H

∂y2
∂y0

∂φ

−∂2H
∂x2

∂x0

∂φ
− ∂2H

∂y∂x
∂y0

∂φ

⎞
⎠

=
1

Ω

⎛
⎝ ∂2H

∂x∂y
∂2H
∂y2

−∂2H
∂x2 − ∂2H

∂y∂x

⎞
⎠

⎛
⎝ ∂x0

∂φ

∂y0

∂φ

⎞
⎠

=
1

Ω

⎛
⎝ 0 1

−1 0

⎞
⎠

⎛
⎝ ∂2H

∂x2
∂2H
∂x∂y

∂2H
∂x∂y

∂2H
∂y2

⎞
⎠

⎛
⎝ ∂x0

∂φ

∂y0

∂φ

⎞
⎠

=
1

Ω
JD2HV1

= AV1; (A.3)

thus V1 is a solution of (2.5) with Bk ≡ 0. To proceed with V2, we first need the expression of ∂2X0

∂I∂φ
.
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It is obtained by differentiating (A.2) with respect to I:

∂2X0

∂I∂φ
= −Ω′

Ω2

⎛
⎝ ∂H

∂y

−∂H
∂x

⎞
⎠ +

1

Ω

⎛
⎝ ∂2H

∂x∂y
∂x0

∂I
+ ∂2H

∂y2
∂y0

∂I

−∂2H
∂x2

∂x0

∂I
− ∂2H

∂y∂x
∂y0

∂I

⎞
⎠

= −Ω′

Ω

⎡
⎣ 1

Ω

⎛
⎝ ∂H

∂y

−∂H
∂x

⎞
⎠

⎤
⎦ +

1

Ω

⎛
⎝ ∂2H

∂x∂y
∂2H
∂y2

−∂2H
∂x2 − ∂2H

∂y∂x

⎞
⎠

⎛
⎝ ∂x0

∂I

∂y0

∂I

⎞
⎠

= −Ω′

Ω
V1 +

1

Ω

⎛
⎝ 0 1

−1 0

⎞
⎠

⎛
⎝ ∂2H

∂x2
∂2H
∂x∂y

∂2H
∂x∂y

∂2H
∂y2

⎞
⎠

⎛
⎝ ∂x0

∂I

∂y0

∂I

⎞
⎠

= −Ω′

Ω
V1 + A

∂X0

∂I
. (A.4)

Let us now compute the partial derivative of V2 with respect to φ. We have

∂V2

∂φ
=

∂

∂φ

[
∂X0

∂I
+

Ω′(I)

Ω(I)
φV1

]

=
∂2X0

∂φ∂I
+

Ω′(I)

Ω(I)
V1 +

Ω′(I)

Ω(I)
φ

∂V1

∂φ

= A
∂X0

∂I
+

Ω′(I)

Ω(I)
φAV1

= A

[
∂X0

∂I
+

Ω′(I)

Ω(I)
φV1

]

= AV2, (A.5)

where we have used (A.3) and (A.4) to step from the second to the third of the above equalities.

The determinant of [V1, V2] is

V1ΛV2 =
∂X0

∂φ
Λ

[
∂X0

∂I
+

Ω′(I)

Ω(I)
φ

∂X0

∂φ

]

=
∂X0

∂φ
Λ

∂X0

∂I

=
1

Ω

⎛
⎝ ∂H

∂y

−∂H
∂x

⎞
⎠Λ

∂X0

∂I
, using A.2

=
1

Ω

(
∂H

∂y

∂y0

∂I
+

∂H

∂x

∂x0

∂I

)

=
H ′

Ω

�= 0, (A.6)

since H ′ �= 0 for periodic orbits as remarked in the text.
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FIGURE CAPTIONS

Figure 1. Comparison of the approximate analytical (dash-dotted line) waveform and phase

trajectory to the corresponding exact numerical (solid line) ones for the nonlinear har-

monic oscillator Eq.(3.1) for δ = 0.5. The initial conditions are: x0 = 0, y0 = 5. Perfect

agreement is observed.

Figure 2. Comparison of the approximate analytical (dash-dotted line) waveforms and phase

trajectories to the corresponding exact numerical (solid line) ones for the Morse oscillator

Eq.(3.21) for εδ = 0.1 ((a)-(b)) and εδ = 0.2 ((c)-(d))). The initial conditions are: x0 =

−0.624, y0 = 0. A quite satisfactory agreement is obtained.
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Figure 1: S. B. Yamgoué and T. C. Kofané

19



Acc
ep

te
d m

an
usc

rip
t 

0 5 10 15 20 25
−1

−0.5

0

0.5

1

1.5

2

x

t

(a)

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

x

y

(b)

0 5 10 15 20 25

−0.5

0

0.5

1

t

x

(c)

−0.5 0 0.5 1

−0.5

0

0.5

1

y

x

(d)

Figure 2: S. B. Yamgoué and T. C. Kofané
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