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ITÔ CALCULUS EXTENDED TO SYSTEMS DRIVEN BY  

ALPHA-STABLE LÉVY WHITE NOISES 

(A NOVEL CLIP ON THE TAILS OF LÉVY MOTION)  
 

by 

  

M. Di Paola, A. Pirrotta and M. Zingales* 

 

Dipartimento di Ingegneria Strutturale e Geotecnica, Viale delle Scienze, I-90128, Palermo, Italy. 

 

ABSTRACT 

The paper deals with probabilistic characterization of the response of non-linear systems 

under α-stable Lévy white noise input. It is shown that, by properly selecting a clip in the 

probability density function of the input, the moments of the increments of Lévy motion process 

remain all of the same order ( )dt , like the increments of the Compound Poisson process. It 

follows that the Itô calculus extended to Poissonian input, may also be used for α-stable Lévy 

white noise input processes. It is also shown that, when the clip on the tails of the probability of 

the increments of the Lévy motion approaches to infinity, the Einstein-Smoluchowsky equation is 

restored. Once these concepts are outlined extension to single oscillator is readily obtained. A 

discussion on the proper way to perform Monte Carlo simulation is also exploited.    

Keywords: α-Stable Processes, Einstein-Smoluchowsky Equation, Itô Calculus, Truncated 

Lévy Motion. 

 

1. INTRODUCTION 

 Normal white noises are very popular stochastic processes and they have been used to model 

several types of physical phenomena. Such processes may be defined as formal time derivative of  

Wiener processes. In this setting the powerful machinery of Itô stochastic differential calculus 

may be used to yield the response probabilistic characterization of systems driven by normal 



Acc
ep

te
d m

an
usc

rip
t 

 2 

white noises, in terms of moments or of conditional probability density function (PDF), that is the 

Fokker-Planck-Kolmogorov (FPK) equation. The Fourier transform, of the FPK equation, rules 

the evolution of the characteristic function (CF) of the response, often termed as spectral FPK 

equation.  

 However, several real phenomena observed in physics, seismology, electrical engineering, 

economics and in some other research fields show evident non-Gaussianity either in heavy tails 

distribution or in the impulsive nature of the recorded samples. According to this new need, the 

Itô stochastic differential calculus has been extended to Poissonian white noises too, providing 

the equation governing the evolution of the probability density, known as Kolmogorov-Feller 

equation [1-4].  The need for non-Gaussian models, to describe the fluctuations exhibited by non-

Gaussian phenomena, has also raised the interest in the so-called α -stable Lévy processes [4-7]. 

This kind of stochastic process is characterized by the knowledge of four parameters, which are, 

respectively, the stability index α , the scale factor σ , the skewness β and the shift μ  [8]. The 

choice for different values of the stability index α  ( 0 2α< ≤ ) leads to formidable variety of 

stochastic processes including the Gaussian white noise obtained for 2α = . Linear and non-linear 

systems driven by external α -stable Lévy white noise processes (formal time derivative of the 

Lévy motion processes labeled as ( )L tα ) have been treated, in the past, either in terms of PDF 

Einstein-Smoluchowsky (ES) equation or in terms of CF (see e.g. [9]]). Moreover closed-form 

expressions of the probability density function of dynamical systems driven by external α -stable 

Lévy noises have been obtained for limited values of the stability index.  

The main challenge in the analysis of dynamical systems in presence of α -stable Lévy 

white noise is related to the divergence of statistical moments of the α -stable random variable 

( )L tα , namely  ( )pE L tα⎡ ⎤ = ∞⎣ ⎦  if p α≥ . Then unless the case of normal white noise ( 2)α = all 

the moments starting from the variance would diverge because of the heavy tails of the 

distribution of the random variable ( )L tα . In order to overcome this drawback some truncation of 

the PDF of α -stable random variable ( )L tα  have recently been performed [10] in which a  

power law with exponent (5-α ) has been used to truncate  the PDF of  α -stable distribution. In 

this context a modified fractional FPK equation has been obtained and the PDF of the response 

converges towards a Gaussian density in the central part. Tails of solution of the response of non-

linear systems are discussed in [11]. 
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In this paper, the Itô calculus will be extended to non-linear systems under α-stable Lévy 

white noise. In order to aim at this, a new form of truncation is introduced, different from that 

proposed in [10]. We, in fact, exclude the tails on the PDF for value greater than ( ) 1t n α
α

−Δ , 

being tΔ the time step and nα  a control clip parameter. It is shown that when a truncation is 

performed, all the moments of ( )dL tα  exist and are all of order dt like the increments of the 

Compound Poisson process. It follows that the Itô rule extended to Poisson white noise process 

may be used. It is also shown that when α → ∞n , the ES equation is fully recovered. In this 

setting a correct way for Monte-Carlo simulation (MCS) for the response analysis of non-linear 

systems under α-stable Lèvy white noise is given. Based on this solid ground, the extension to 

single oscillator is readily found (see Appendix B). Some numerical examples have been reported 

to assess the validity of the proposed formulation for linear and non-linear Langevin equation 

under α -stable Lévy white noise. 
 

2. INTRODUCTORY REMARKS ON ITÔ DIFFERENTIAL CALCULUS 

 

In this section some well known concepts of Itô calculus are briefly summarized for sake of 

clarity as well as for introducing appropriate symbology.  

Let the non-linear system under normal white noise be given in the form:  

( ) ( ) ( )2, ,Z f Z t g Z t W t� = +                 (1) 

where ( )2W t  is the normal white noise characterized by the correlation function 

( ) ( )
2 1 2 2 2 1,WR t t q t tδ= -  being ( )δ ⋅  a Dirac delta function. Moreover  2q  is the strength of the 

white noise,   ( ),f Z t  and ( ),g Z t   are deterministic non-linear functions of the random process 

( )Z t  and of time  t.  Eq. (1) is a non-linear one excited by a parametric excitation.  

In the following we will confine ourselves to the case in which ( ) ( ),g Z t g t= , that is the 

function g does not depend on the response ( )Z t , Eq. (1) is referred as a non-linear one (for the 

presence of the non-linear term ( ),f Z t ) driven by an external excitation.  
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From the definition of  ( )2W t , as formal time derivative of  Wiener process ( )B t  having 

independent increments, it follows that Eq.(1) may be rewritten in Itô form as follows: 

( ) ( ) ( ),dZ f Z t dt g t dB t= +                                                         (2) 

Once the original equation is transformed into an Itô type stochastic differential equation, the Itô 

differential rule may be used for the probabilistic characterization of the response process ( )Z t : 

( ) ( )
2

2
2

1,
2

d Z t dt dZ dZ
t Z Z

ψ ψ ψψ ∂ ∂ ∂
= + +

∂ ∂ ∂
                                                          (3) 

where ( ),Z tψ  is any non-linear function of Z  and t , continuous and differentiable on t  and 

twice differentiable on Z . The third term in the right-hand side of eq.(3) is essential since ( )dB t  

is of order of magnitude ( )1 2dt  and then term ( )2dZ  is of the same order of the first term. In 

order to derive the equation governing the evolution of the characteristic function 

( ) ( )( ), expZ t E i Z tφ θ θ⎡ ⎤= ⎣ ⎦  we put ( ) ( ), expZ t i Zψ θ=  in eq.(3), taking mathematical 

expectation and accounting for the non-anticipative property of Itô calculus 

( ) ( ) ( ) ( )( ), ,k kE Z t dB t E Z t E dB tψ ψ⎡ ⎤ ⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦ ⎣ ⎦  the differential equation governing the evolution 

of the CF is readily written as: 

( ) ( ) ( ) ( ) ( )
2

22,
exp , ,

2
Z

Z
t qi E i Z f Z t t g t

t
φ θ θθ θ φ θ
∂

È ˘= -Î ˚∂
                                     (4) 

An inverse Fourier transform of eq.(4) yields the so-called Fokker-Planck-Kolmogorov (FPK) 

equation governing the evolution of the PDF of the response: 

( ) ( ) ( ) ( ) ( )2
22

2
, ,

, ,
2

Z Z
Z

p z t p z tqp z t f z t g t
t z z

∂ ∂∂ È ˘= - +Î ˚∂ ∂ ∂
                      (5) 

Itô rule extended to the case of Poissonian white noise is reported in Appendix A. 

 

3. THE CASE OF α-STABLE WHITE NOISE EXTERNAL EXCITATION 

Let us now suppose that ( )2W t is substituted by  ( )W tα , being ( )W tα  the α -stable Lévy white 

noise process. In analogy to the definition of the previous  white noise, an α -stable Lévy white 

noise may be defined as the formal derivative of a corresponding α -stable Lévy motion ( )L tα  

(α  is the stability index of the stableα - process) having the following properties: 
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i) It has independent, stationary increments following the stableα -  distribution, that is  

( ) ( ) ( )( )1 ,0,0L t L s S t s α
α α α∼- -                                                                        (6a) 

ii) The CF of an increment of ( )αdL t , takes the form: 

( ) expdL dt
α

αφ θ θÈ ˘= -Î ˚                                                                      (6b)  

where ( )dL tα  represents the increment of α -stable Lévy motion ( )L tα and ( )kL tα , at a selected 

time ( )kt , is a symmetric α-stable ( )S Sα  random variable.  

iii) For 2α = , ( )L tα  reverts to ( )B t   and then the non-normal stableα -  process reverts to 

normal white noise process, or in other words the Wiener process is a particular case of 

the random process ( )L tα .  

In the case of Lévy white noise the equation governing the evolution of the PDF, for 

( ) ( ),g Z t g t=  (external excitation), is the so-called Einstein-Smoluchowsky (ES) equation [9] 

involving Riesz-Weil fractional derivative in the diffusion term, that is:  

( ) ( ) ( )( ) ( ) ( ),
, , ,Z

Z Z
p z t

p z t f z t g t p z t
t z z

αα
α

∂ ∂ ∂= - +
∂ ∂ ∂

              (7)  

in which z α∂ ∂ is the symmetric functional space derivative [12, 13] which is defined for a 

“sufficiently well-behaved” function through its Fourier transform [ ]i¡ : 

  ( ) ( ),
,Z

Z
p z t

t
z

α
α

α θ φ θ
È ˘∂

¡ = -Í ˙
∂Í ˙Î ˚

                (8)  

or in terms of the Riemann-Liouville derivatives as: 

( )
( ) ( ) ( ), 1 , ,

2cos 2
Z

Z Z
p z t

D p z t D p z t
z

α
α α

α πα + -
∂ È ˘= - +Î ˚∂

              (9)  

where 0α >  and if 0 1α< <  then Riemann-Liouville derivatives reads: 

( ) ( )
( )

( )

( ) ( )
( )

( )

,1,
1

,1,
1

z
Z

Z

Z
Z

z

p t
D p z t d

z z

p t
D p z t d

z z

α
α

α
α

ξ
ξ

α ξ

ξ
ξ

α ξ

Γ

Γ

+
-•

•

-

∂=
- ∂ -

∂= -
- ∂ -

Ú

Ú
                  (10 a, b) 

else for 1α > : 
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( ) ( )
( ) ( )11

, ,
n zn

n
Z ZnD p z t p z t d

n z
α αξ ξ ξ

αΓ
∓- -

±
-•

± ∂=
- ∂ Ú              (11)  

with 1n nα `- < £ Œ . In the specific case 1α =  the Riemann-Liouville derivative coalesces 

with the Hilbert transform of the function ( ),Zp tξ . The Dirichlet conditions about the existence 

of the [ ]i¡  are guaranteed since the area under the PDF is one. The derivatives in eqs.(10, 11) 

are characterized in the Fourier transform space as: 

  ( ) ( ) ( ), ,Z ZD p z t i tαα θ φ θ∓±È ˘¡ =Î ˚               (12) 

with: 

( ) ( )exp sgn
2

ii α α απθ θ θ∓È ˘- = Í ˙Î ˚
               (13)  

and ( )sgn i  is the well-known signum function. Combining eqs.(9, 11) with eq.(12),  eq.(8) is 

recovered. Fourier transform of eq.(7) yields the  CF equation in the form:    

  

( ) ( ) ( ),
, ,i ZZ

Z

t
i E f Z t e t

t
αθφ θ

θ θ φ θ
∂ È ˘= -Î ˚∂

             (14) 

in the following termed as spectral ES. Eq. (14) has also been obtained in [4, 14] using 

semimartingales.  

In the next section it will be presented an alternative way for finding ES equation or the spectral 

counterpart as well as for properly performing Monte Carlo simulation. 

 

 

4. ITÔ CALCULUS FOR EXTERNAL LÉVY WHITE NOISE 

Let us consider the dynamic system reported in eq.(1) (with function ( ) 1g t = ) enforced by  Lévy 

white noise and let us cast the differential equation of motion in incremental form as: 

( ) ( ) ( ) ( ) ( )1,k k k k kZ t t Z t f Z t t t L tα
αΔ Δ Δ+ = + +                                             (15) 

in which tΔ  is a small time increment and ( )kL tα  is a realization of an α-stable random variable, 

so that ( )1
kt L tα

αΔ  is the area of the impulse in the interval k kt t tΔ∏ + .  
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Peculiarity of α-stable random variables is long tail PDF. This feature will be reflected on 

experiencing eventual very high value ( )kL tα , when generating samples of ( )L tα . This leads to 

numerical overflow in the response evaluation. To avoid the latter problem, it should be selected 

the highest value of ( )kL tα , according to a negligible committed error in the evaluation of ( )L tα  

PDF . Evaluating the probability that ( )kL tα   is greater than a large real value ν  of an α-stable 

random variable ( ) ( ),0,0kL t Sα α σ∼  by: 

                       ( ){ }Pr ob kL t C α
α αν ν −> =    ;  ν Æ•               (16) 

where ( )
1

0

sinC x x dxα
α

−∞
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫  is a real number dependent on the stability index α , (for instance,  

[ ]0 for 2,  2  for 1,  1 (2) =1 for 0 8C C Cα α αα π α Γ α= = = = = = ). It follows that the 

probability of occurrence of values of ( )kL tα   larger than ( ) 1t α−Δ is C tα Δ , that is 

  ( ) ( ){ }1Pr ob   ;  0kL t t C t tα
α α

−> Δ Δ Δ →�              (17) 

 
Based on this consideration in [15], realization of ( )kL tα  greater than 1t α−Δ  may be neglected.  

Looking at eq.(17), we may say that, introducing a real value nα , ( 1nα ≥ ∈R ), in such a way:   

( )
1

Pr ob   ;  0k
t tL t C t

n n

α

α α
α α

Δ Δ
Δ�

-Ï ¸Ê ˆÔ Ô> ÆÌ ˝Á ˜Ë ¯Ô ÔÓ ˛
                                 (18) 

the probability remains of order tΔ  also for ( ) 1t n α
α

−Δ . This means that neglecting outcomes of 

( )kL tα   larger than ( ) 1t n α
α

−Δ , we introduce an approximation of order ( )t nαΔ . This 

approximation corresponds  “de facto” in a proper clip of the tails of   PDF, through a right 

choice of nα .  

Increasing values of nα  it results into smaller probability that ( )kL tα  exceeds the value 

( ) 1t n α
αΔ − . For instance, if values of nα  reach the order of magnitude of 1tΔ − , then the 

probability that a realization of ( )kL tα  is greater than ( ) 1t n α
αΔ −  is of order of magnitude 
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2tΔ and in the limit as 0tΔ → becomes an infinitesimal of higher order thus it may be really 

neglected.  It is worth stressing that, at the limit for  α → ∞n  the real PDF is restored.  

Previous considerations lead us to represent α-stable increments of the Lévy process ( )dL tα  in 

the form: 

( ) ( ) ( )
1

1

0

lim
n

t

tdL t dt L t L t
nα

α
α

α α α
α

→∞
Δ →

⎛ ⎞Δ
= = ⎜ ⎟

⎝ ⎠
              (19) 

It is worth noting,  that if 2α =   ( ) ( )( )L t B tα → , then Cα =0 and the area of each impulse that is 

( )1 2
kt B tΔ  remains finite setting nα =1 in eq.(19). 

In order to better clarify the role played by  eq.(19) we may write 

 

( ) ( ) ( )j j j j j
k k LE dL t E L t dt dt x p x dx

α

α α
α α

•

-•

È ˘ È ˘= =Î ˚ Î ˚ Ú              (20) 

Notice that in eq.(20) it is present the product of an infinitesimal quantity jdt α  and a divergent 

integral term.  The question is: what is the order of magnitude of ( )j
kdL tα ? In order to check out 

the convergence of eq.(20) we introduce the representation of  ( )dL tα as in eq.(19) yielding  

( ) ( )
( )

( )
( )

1

1
0

lim
t n

j j j
k L jt

t n

E dL t t x p x dx K n dt

α
α

α
α

α

α
α α

Δ

Δ
Δ

Δ

-

-
Æ

-

È ˘ = =Î ˚ Ú            (21) 

where ( )jK nα  are real finite numbers and then from eq.(21) we may state that the increments of 

the Lèvy motion are of order dt . This remarkable result allows us to assess that in this 

perspective, once nα  has been selected, the increments of the Lèvy motion behave exactly as the 

increments of the compound Poisson process [1-4] and then Itô rule for Poissonian white noise 

may be used (see eq. (A5) in the Appendix A.).  

As an example we may assume that ( )L tα  is Cauchy distributed, then PDF reads:  

   ( ) ( )21 1Lp x x
α

π= +                                                                           (22) 

and terms ( ) 0jK nα =  for j odd and ( ) ( )2 1jK n n jα α π= -  for j even. 
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Moreover if 2α = , 1nα =  and then  

( )
( )

( )
1 2

1 2

2 2 2

0

1 1lim exp
22

t
j j j j

jt
t

E dB t t x x dx t K
π

−

−

Δ

Δ →
− Δ

⎛ ⎞⎡ ⎤ = Δ − = Δ⎜ ⎟⎣ ⎦ ⎝ ⎠∫                  (23) 

  

where 2 1 0,jK + =  and ( )2
2 2 2 1 !!j

jK q j= − , (being ( ) ( ) ( )2 1 !! 2 1 2 3 3 1j j j− = − ⋅ − ⋅" ; with (-

1)!!=1), that is dB(t) is of order 1 2dt . It follows that the Itô rules according eq.(3) contains terms 

up to the order ( )2dZ  since the latter remains of order dt . Conversely, when the system is driven 

by Lèvy α -stable white noise, for fixed nα , all the increments ( )jdL tα  are of order dt , as shown 

in eq.(21). Then by selecting ( ) ( )( ), expZ t i Z tψ θ=  in eq.(A5) of the Appendix A, we get  

( ) ( ) ( ) ( ) ( ) ( )
1

exp , exp exp
!

j
j

j

i
d i Z i f Z t i Z dt i Z dL t

j α

θ
θ θ θ θ

•

=

È ˘ = +Î ˚ Â                      (24) 

By inserting eq.(21) into eq.(24), performing mathematical expectation, dividing by dt  and using 

the non-anticipative property of Itô calculus, we get: 

( ) ( ) ( ) ( ) ( ) ( )
1

, , exp ,
!

j

Z Z j
j

i
t i E f Z t i Z t K n

t j α

θ
φ θ θ θ φ θ

∞

=

∂
⎡ ⎤= +⎣ ⎦∂ ∑            (25) 

Summation in eq.(25) for 1α =  leads to 

 

( ) ( ) ( )
( )

2 2 1

1 1

2
! 2 ! 2 1

j j j

j
j j

i i nK n
j j j

α
α

θ θ
π

−∞ ∞

= =

=
−∑ ∑                                          (26) 

And in the limit when α → ∞n  converges to θ−  as shown in fig.(1a) in which the sum in the 

series (26) has been reported for different values of nα . 

Summation in eq.(25) for 1 2α =  (Lèvy distribution) is given as  

( ) ( ) ( )
( )

2 1

1 1

2
! ! 2 1

j j j

j
j j

i i nK n
j j j

α
α

θ θ
π

−∞ ∞

= =

=
−∑ ∑                                                       (27) 

and in the limit when α → ∞n  converges to 1 2θ−  as shown in fig.(2a). Many other intermediate 

values of  ( )jK nα  have been tested for different values of α  and always they give that at the 
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limit for α → ∞n  summation in eq.(25) converges to αθ− . Then we may conclude that eq.(25) 

when α → ∞n  coincides with eq.(14), and its Fourier transform fully restores the ES equation.  

On the other hand once these results have been obtained we may also assert that for every value 

of  α  the following relation  

            ( ) ( ) ( ) ( )
1

exp 1 1
!

j
j

dL
j

i
E dL t dt dt

j α

α α
α

θ
θ φ θ θ

∞

=

⎡ ⎤ = − − = − −⎣ ⎦∑ �             (28)                        

holds true. 

At this stage some further observations will be exploited about the validity of eq.(28) as claimed 

in [4, 14]. It may be observed that formal analytical derivations led to eq.(28) but along way we 

introduced two fundamental assumptions: 

• Setting the value of nα , moments of increments jE dLα⎡ ⎤⎣ ⎦  exist for every value of j and 

they are of order dt  (eq.21). 

• We consider that the series in eq.(28) converges to the CF of the increment ( )dL tα , that 

coincides with eq.(25) for α → ∞n . 

Summing up, the realization of the α - stable random variable may attain infinite values, if we 

accept that for 0tΔ Æ  the probability that the random variable ( ) ( ) 1
kL t t n α

α αΔ
->  is 

negligible, then jE dLαÈ ˘Î ˚ is of order  dt j"  . This means, “de facto” a proper clip  of the tails of 

the PDF of the random variable ( )kL tα . If this operation is performed then Itô rule, (eq.A5) for 

Poissonian white noise is still valid also for α - stable Lèvy white noise, and the ES equation is 

recovered.  The latter concept has to be accounted for the MCS, in which we have to neglect 

realizations of values of ( )kL tα  larger than ( ) 1t n α
αΔ

- . In any cases, it suffices selecting at most 

1n tα Δ= , for assessing that the error in clipping the tails of the PDF of ( )kL tα is of order 2tΔ . 

Obviously if we select nα  and we compute ( )jK nα and insert these values in eq.(24) we get 

( ),E Z tψ⎡ ⎤⎣ ⎦ . The same result is obtained by performing MCS excluding realizations of ( )kL tα  

larger than ( ) 1t n α
αΔ

- . In this framework some numerical applications will be reported in the 

following sections. 
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5. NUMERICAL APPLICATIONS 

In this section applications to linear and cubic non-linear system under α − stable Lèvy white 

noise ( )1α =  will be presented. The problem involving cubic non-linear oscillator has been 

selected since the solution in terms of spectral ES equation has been extensively studied (see i.e.  

[4],[9],[14]) and the existent solutions may be used as benchmark to highlight the role played by 

the truncation coefficient nα . The analyzed system is 

( )3  Z a Z b Z W tα
� = + +                (29) 

 

5.1 Linear system under Cauchy white noise 

The linear system, which is the hitherto studied case, is obtained setting 0b =  in eq.(29). In this 

case ( )Z t  is also an α − stable process having the same stability index as the Lèvy white noise, 

but with different scale (or amplitude). For this case the spectral ES may be written as: 

 ( ) ( ) ( ), ,
  ,     Z Z

Z

t t
a t

t
φ θ φ θ

θ θ φ θ
θ

∂ ∂
= −

∂ ∂
         (30 a) 

 ( )
0

1Z θ
φ θ

=
=              (30 b) 

 

With eq.(30 b) representing the attendant boundary condition. Steady-state solution of the 

differential equation described in eqs.(30) reads:  

   ( ) exp      Z aφ θ θ⎡ ⎤= ⎣ ⎦                       (31) 

The Ornstein-Uhelembeck CF described in eq.(31) has been reported in fig.(2) with continuous 

line. Such exact solution has been contrasted with results obtained by MCS for different values of 

nα . The values of the time interval has been selected to value 310t −Δ =  for the numerical 

simulation reported. Characteristic function ( )Zφ θ   in eq.(31) with the decaying factor 1a = − , 

has been depicted in fig.(2a) with continuous line. The CF obtained via MCS have been 

contrasted in fig. (2a) for several values of the truncation parameter nα  set equal to 1nα =  (star),  

50nα =  (triangle) and for the limit value 1 1000n tα = Δ =  (square).  

The selected values of nα  and tΔ  led us to exclude values of 

( ) ( ) ( )1000 (stars) ; 50000 (triangles); 1000000 (squares)k k kL t L t L tα α α> > >  according to 
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sec.4. It may be observed that for small values of nα  the Monte-Carlo estimate of the CF does not 

coincide with CF in eq.(31). A different scenario is observed increasing the value of nα  until its 

upper bound 1 tΔ  and it may be noticed that the CF obtained via numerical simulation coincides 

with the exact reported in eq.(31). A more precise description of the trend of the CF, for different 

nα ,  is furnished by observation of fig.(2b). In more detail, it may be observed that, a smooth CF 

at the origin appears, assuming 1nα = . On the other hand for values of the coefficient nα  

approaching the limit 1 tΔ  the peak of the exact CF at the origin is captured.  Several other 

clipping values of 2   or  3n t n tα α= Δ = Δ  have been considered for numerical analysis, but the 

obtained results match the reported CF for the limit value 1 tΔ . This aspect is much more 

important for numerical simulation of non-linear dynamical systems as it will be shown in the 

following section. 

 

5.2 Non-linear system under Cauchy white noise 

Let us now consider that the non-linear coefficient 0b ≠  in eq.(29). The associated spectral ES 

equation is [4],[9],[14]. 

 

  

( ) ( ) ( ) ( )

( ) ( ) ( )

3

3

0

, , ,
    ,

,
, 1;   0;   lim , 0

Z Z Z
Z

Z
Z Z

t t t
a b t

t
t

t t
θ θ

φ θ φ θ φ θ
θ θ θ φ θ

θ θ
φ θ

φ θ φ θ
θ= →∞

∂ ∂ ∂
= + −

∂ ∂ ∂
∂

= = =
∂

    (32) 

The boundary conditions in eq. (32 c) has been used in [9] and it is valid only if ( )Zφ θ  is 

differentiable for 0θ = . For the steady-state case the boundary value problem described in eq.(32 

a, b) may be solved for 0 and 0θ θ> <  assuming that ( ) [ ]expZφ θ ρ λθ=  with ρ  a 

normalization constant and λ  obtained by the solution of the algebraic equation: 

   3 1 0b aλ λ- + =                           (33)  

which for the selected values of parameters 1.0;  0.1a b= − = −   as reported in [14], yields the real 

roots 1 2 31.15347, 2.42362, 3.57709λ λ λ= − = − = . The latter positive real root must be 
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disregarded since it does not fulfill the boundary condition ( )lim , 0Z t
θ

φ θ
→∞

=  and the stationary CF 

reads: 

   
( ) ( ) ( )

( ) ( ) ( )

1 2
2 1

1 2 1 2

1 2
2 1

1 2 1 2

exp exp   ;   0

exp exp   ;   0

Z

Z

λ λφ θ λ θ λ θ θ
λ λ λ λ

λ λφ θ λ θ λ θ θ
λ λ λ λ

⎛ ⎞
= − ≥⎜ ⎟− −⎝ ⎠

⎛ ⎞
= − − + − <⎜ ⎟− −⎝ ⎠

   (34) 

In order to assess the validity of eqs.(34 a,b) MCS has been performed estimating the CF with 

747.000.000 deviates and for different values of nα . The time step of numerical integration has 

been set to 310t −Δ =  and the results of the estimation have been reported in fig.(3a) contrasted 

with solution in eq.(34).  Values of the truncation parameter nα  has been set to 1nα =  (star),  

50nα =  (triangle) and for the limit value 1 1000n tα = Δ =  (square). The selected values of nα  

and tΔ  lead us to exclude values of 

( ) ( ) ( )1000 (stars) ; 50000 (triangles) ; 1000000 (squares)k k kL t L t L tα α α> > >  according to 

sec.4. Close observation of fig.(3a) shows that in the limiting case 1n tα = Δ  the estimated CF 

totally overlaps the exact CF in eqs.(34 a,b) leading to conclude that the assumption reported in 

[9] about the differentiability of the CF at 0θ =  is correct. This consideration is still more 

evident in fig. (3b) where the behavior of the CF in the close vicinity of the origin has been 

investigated. In more detail we notice that for values of the truncation parameter too small, say 

1nα = , the estimated CF does not coincide with the exact expression in eq.(34 a,b). However as 

soon as the value of  nα  reaches 1 tΔ  the estimated CF perfectly match the exact expression and 

also for higher values of the truncation parameter, exceeding the limit value 1n tα = Δ , results do 

not change. Moreover, it must be stressed that Monte Carlo simulation of non-linear systems fails 

due to numerical overflows as soon as the truncation parameter exceeds the value 20n tα = Δ  

and then a clipping control parameter  1n tα = Δ  is the right choice, being the committed error of 

order 2tΔ . Moreover at the limit when 0tΔ → and the nα → ∞  the ES equation is fully restored. 

Question raised in [14] about the validity of the spectral ES equation remains clarified in sense 

that the spectral ES and hence the ES equation are fully valid and the Itô calculus may still be 

applied. 
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6. CONCLUSIONS 

In this paper the Itô stochastic differential rule holding for normal and Poissonian white noise has 

been extended to analysis of Lévy white noise in presence of external excitation. Extension of the 

differential rule to analysis of Lévy white noise has led to the formulation of the Einstein-

Smoluchowsky fractional differential equation in terms of characteristic function. This 

remarkable result relies on the assumption to neglect increments of the Lévy white noise larger 

than ( ) 1/t n α
αΔ

-  and in this context the Einstein-Smoluchowsky equation is restored. This latter 

consideration allows to perform Monte-Carlo simulation of dynamical systems under stableα -  

external excitation with an opportune clip on the increments of the stableα -  Lévy flights. Some 

numerical analyses, contrasting the proposed formulation with a Monte-Carlo simulation 

obtained neglecting values of the realization of the Lévy motion ( )L tα  higher than ( ) 1/t n α
αΔ

- , 

have been reported to assess the validity of the concepts here exploited. Analyses have been 

conducted for linear and non-linear dynamical systems excited by a particular class of Lévy 

flights with stability index 1α = , namely Cauchy white noises, which allows for an exact 

solution in terms of spectral ES.  

In this context a simple Langevin equation has been investigated to yield the stationary 

characteristic function of the response contrasted with the proposed Monte-Carlo simulation 

method. The numerical analyses conducted have shown that the proposed clip on tails of the 

probability density function of the increments of the Lévy flights yields estimates which are in 

good agreement with the estimate via the Monte-Carlo simulation, contrasted by solving the 

spectral ES. 

Remarkably it has been shown that the use of stochastic differential calculus yields the same 

differential equation for the characteristic function obtained via Fourier transform of the 

fractional Einstein-Smoluchowsky differential equation for the pdf of the dynamic response. This 

latter consideration may raise some comments about the range of validity of the Einstein-

Smoluchowsky equation or of its spectral counterpart in the analysis of non-linear dynamical 

systems under stableα -  Lévy flights. As in fact we may conclude that the ES equation may be 

considered as the limit case when the clip on the tails reaches infinity and the error made is of 
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order 2dt . In this perspective question raised in [14] about the validity of the spectral ES 

equation remains fully clarified. That is ES equation and own spectral counterpart are valid as 

soon as differentials of order greater than 2dt are neglected as usual done. 
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Appendix A: Itô Rule for Poissonian White Noise 
 

Let the equation of motion be given as: 

( ) ( ) ( ), PZ t f Z t W t= +�               (A1) 

where ( )PW t  is a Poissonian white noise, that is a stochastic process constituted by random 

impuleses randomly distributed in time in accordance to Poisson law. If R  is the random variable 

representing the intensities of the impulses and λ  is the mean number of impulses per unit time, 

then ( )PW t  is characterized by the cumulants: 

  

( ) [ ]
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

2
2 1 2 2 1

1 2 2 1 1

...

... ...

p

p p

r
r p p p r r

K W t E R

K W t W t E R t t

K W t W t W t E R t t t t

λ

λ δ

λ δ δ

⎡ ⎤ =⎣ ⎦
⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ = − −⎣ ⎦ ⎣ ⎦

         (A2) 

White noise process may be considered as the formal derivative of the Compound Poisson 

process ( )C t  with increments characterized by the expressions: 

  ( )r rE dC t E R dtλ⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦               (A3) 

Eq.(A1) may be reported in incremental form as: 

  ( ) ( ) ( ),dZ t f Z t dt dC t= +               (A4) 

and since ( )rdC t  is of order  dt r∀  the Taylor expansion of ( ),Z tψ  will be rewritten in its 

complete form (omitting arguments) as: 

  
( )

( ) ( )

1

1

,

j
j

j
j

j
j

j
j

d dt dZ
t Z

dt f Z t dt dC
t Z Z

ψ ψψ

ψ ψ ψ

∞

=

∞

=

∂ ∂
= + =

∂ ∂

∂ ∂ ∂
= + +

∂ ∂ ∂

∑

∑
           (A5) 

Since ( )dC t  has independend increments, the non-anticipative property of Itô calculus remains 

still valid.  By putting ( ) ( )( ), expZ t i Z tψ θ=  in eq.(A5) taking into account eq.(A3) making 

stochastic average and using the non-anticipative property of Itô calculus we get   

   
( ) ( ) ( ) ( ) ( ) j

Z j
Z

j 1

, t i
i E f Z, t exp i Z , t E R

t j!
φ ϑ ϑ

ϑ ϑ λφ ϑ
∞

=

∂
⎡ ⎤⎡ ⎤= +⎣ ⎦ ⎣ ⎦∂ ∑                      (A6) 
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 Since the Taylor expansion of CF of the random variable R is given as 

 

( ) ( ) j
j

R
j 1

i
1 E R

j!
ϑ

φ ϑ
∞

=

⎡ ⎤= + ⎣ ⎦∑                                                 (A7) 

Then eq.(A6) may also be rewritten  

( ) ( ) ( ) ( ) ( )( )Z
Z R

, t
i E f Z, t exp i Z , t 1

t
φ ϑ

ϑ ϑ λ φ ϑ φ ϑ
∂

⎡ ⎤= + −⎣ ⎦∂
                     (A8) 

An inverse Fourier transform of eq. (A8) yields the Kolmogorov-Feller equation ruling the 

evolution of the PDF 

( ) ( ) ( )( ) ( ) ( ) ( )Z
Z Z Z R

p z, t
f z, t p z p z p z p d

t z
λ λ ξ ξ ξ

∞

−∞

∂ ∂
= − − + −

∂ ∂ ∫          (A9) 
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Appendix B: Extension to a Single Oscillator System 
 

In this appendix the analysis of a non-linear system with  two degrees of freedom has been 

reported. Let the equation of motion of the system represented in the form: 

( ) ( ),X f X X W tα+ =�� �              (B1) 

Introducing the Lagrangian parameters ( ) ( ) ( ) ( )1 2;X t X t X t X t= = �  the second-order equation 

of motion in eq.(B1) may be represented by a system of first-order differential equations in the 

form: 

( ) ( )
( ) ( )

1 1 2
3

2 2 1

  
X t aX X W t

X t bX X W t
α

αε
⎧ = − + +⎪
⎨ = − + +⎪⎩

�
�         (B2) 

with system parameters 0, 0, 0a b ε> > < . System of differential equations in eqs.(B2 a,b) may 

be cast in an alternative form by means of a linear transform which reads: 

1 2 1

1 2 2

X X Y
X X Y

+ =
− =

         (B3) 

which may be substituted into system in eqs.(B2 a,b) yielding the equivalent non-linear system: 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

3
1 1 2 1 2

3
2 1 2 1 2

1 1 2
2 2 2 2 8

1 1
2 2 2 2 8

a b a bY t Y t Y t Y t Y t W t

a b a bY Y t Y t Y t Y t

α
ε

ε

⎧ + −⎛ ⎞⎛ ⎞ ⎛ ⎞= − − + + + +⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎨

+ +⎛ ⎞ ⎛ ⎞⎪ = − + − + + +⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠⎩

�

�
 (B4) 

Eqs.(B4 a,b) may be cast in an equivalent vector form as: 

( ) ( ) ( ),d t t dt dL tα= +Z g Z v              (B5) 

where ( ) ( ) ( )1 2
Tt Y t Y t= ⎡ ⎤⎣ ⎦Z ,  ( ) ( ) ( )1 2, , ,Tt g t g t= ⎡ ⎤⎣ ⎦g Z Z Z , [ ]1 0T =v   with the non-linear 

functions: 

   
( ) ( )

( ) ( )

3
1 1 2 1 2

3
2 1 2 1 2

1 1,
2 2 2 2 8

1 1,
2 2 2 2 8

a b a bg t Y Y Y Y

a b a bg t Y Y Y Y

ε

ε

+ −⎛ ⎞⎛ ⎞ ⎛ ⎞= − − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
+ +⎛ ⎞ ⎛ ⎞= − + − + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

Z

Z
              (B6) 
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The Itô rule for Poissonian white noise is written as: 

( ) [ ] ( ) ( )[ ]

1

1, ,
!

T jj

j

d t t d
t j

ψψ ψ
∞

=

∂
= + ∇

∂ ∑ ZZ Z Z              (B7) 

where [ ]1 2
T Y Y∇ = ∂ ∂ ∂ ∂Z  is the gradient vector, the exponent into brackets is the Kronecker 

power and ( ), tψ Z  is any real-valued function continuosly differentiable in t and times∞ −  

differentiable in Z . Particularization of eq.(B7) with ( ) ( ), exp  Tt iψ =Z Zθ  results in the 

expression:  

   
( )

( ) [ ] [ ] ( )
1

exp    , exp  

exp  
!

T

T T T

j
jj j T

j

d i i t i

i
dL i

j α

∞

=

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

⎡ ⎤+ ⎣ ⎦∑

Z g Z Z

v Z

θ θ θ

θ θ
          (B8) 

The application of mathematical expectation operator to both sides of eq.(B8), taking into 

account the non-anticipative property of the Itô calculus readss: 

   

( ) ( )

( ) [ ] [ ] ( ) ( )
1

,   , exp  

,
!

T

T T

j
jj j

j

d t i E t i dt

i
E dL t

j α

φ

φ
∞

=

⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦
⎡ ⎤

+ ⎢ ⎥
⎢ ⎥⎣ ⎦
∑

Z

Z

g Z Z

v

θ θ θ

θ θ
          (B9) 

and resorting to eq.(21): 

( ) [ ] [ ] ( ) ( ) ( )1 1
1 1! !

T
j j

jj j j
jnj j

i i
E dL lim K n dt dt

j jα

α
α αθ θ

∞ ∞

→∞
= =

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑vθ       (B10) 

yielding the spectral equation, ruling the evolution of the CF as: 

   ( ) ( ) ( ),
  , exp  ,T Tt

i E t i t
t

αφ
θ φ

∂ ⎡ ⎤⎡ ⎤= −⎣ ⎦⎣ ⎦∂
Z

Zg Z Z
θ

θ θ θ        (B11) 

Fourier transform of eq.(B11) yields the Einstein-Smoluchowsky equation extended for the single 

non-linear oscillator reported in eq.(B1) in the form: 

   ( ) ( ) ( ) ( )
1

,
, , ,Tp t
t p t p t

t Z

α

α

∂ ∂
= −∇ +⎡ ⎤⎣ ⎦∂ ∂

Z
Z Z Z

Z
g Z Z Z        (B12) 

Eq.(B12) represents the extension of the ES equation for the single degree of freedom  non-linear 

system. 
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Figure Caption 

 

Figure 1a: Asymptotic trend of the series ( ),f nαθ  for various nα  contrasted with θ− . 

 

 

Figure 1b: Asymptotic trend of the series ( ),f nαθ  for various nα  contrasted with 1 2θ− . 

 

 

Figure 2a: Characteristic function of the linear system with 1a = −  contrasted with Monte Carlo 

estimates with different values of the truncation parameter nα . 

 

Figure 2b: Behavior of the Characteristic function of linear system in the neighborhood of the 

origin contrasted with different values of the truncation parameter nα . 

 

Figure 3a: Characteristic function of the non-linear system with 1, 0.1a b= − = −  contrasted with 

Monte Carlo estimates with different values of the truncation parameter nα . 

 

Figure 3b: Behavior of the Characteristic function of non-linear system in the neighborhood of 

the origin contrasted with different values of the truncation parameter nα . 
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Figure 1a: Asymptotic trend of the series ( ),f nαθ  for various nα  contrasted with θ− . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1b: Asymptotic trend of the series ( ),f nαθ  for various nα  contrasted with 1 2θ− . 
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Figure 2a: Characteristic function of the linear system with 1a = −  contrasted with Monte Carlo 

estimates with different values of the truncation parameter nα  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2b: Behavior of the Characteristic function of linear system in the neighborhood of the 

origin contrasted with different values of the truncation parameter nα  

 

 4  2 0 2 4

0.2

0.4

0.6

0.8

1

θ

( )Zφ θ
1 1000n tα

−= Δ =

exact

1nα =  
50nα =

 0.1  0.05 0 0.05 0.1
0.95

0.96

0.97

0.98

0.99

1

1000nα =

exact

1nα =  
50nα =

θ

( )Zφ θ



Acc
ep

te
d m

an
usc

rip
t 

 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3a: Characteristic function of the non-linear system with 1, 0.1a b= − = −  contrasted with 

Monte Carlo estimates with different values of the truncation parameter nα . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3b: Behavior of the Characteristic function of non-linear system in the neighborhood of 

the origin contrasted with different values of the truncation parameter nα . 
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